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Abstra
tWe show that a weak transverse spatial modulation in (2+1) nonlinearS
hrödinger equation with saturable nonlinearity 
an result in nontrivial dy-nami
s of radially symmetri
 solitons. In parti
ular, in the 
ase of hexagonalpro�le of the modulation the soliton moves 
haoti
ally.The nonlinear S
hrödinger (NLS) equation plays a 
entral role in understanding var-ious physi
al phenomena in plasma physi
s, hydrodynami
s, Bose-Einstein 
onden-sation, nonlinear opti
s. In parti
ular, NLS des
ribes pulse propagation in nonlinear�bers and self-fo
using of paraxial beams of light in a homogeneous Kerr medium[1℄. In the 
ase of purely 
ubi
 nonlinearity, (2+1)-dimensional NLS possesses alo
alized solution, known as Townes mode [2℄. However, this solution is always un-stable: small perturbations lead to a 
ollapse, i.e. to an unbounded growth of the�eld amplitude within a �nite time interval. A suppression of the 
ollapse 
an bea
hieved by various means. In parti
ular, repla
ing the 
ubi
 nonlinearity with asaturable one a
hieves an arrest of the 
ollapse and a stable self-
ollimated propa-gation of a light beam [3℄. In a spatially homogeneous medium the paraxial beampropagates with a 
onstant velo
ity along a straight line. However, be
ause of re-
ent developments in fabri
ation of mi
rostru
tured wave-guiding materials knownas photoni
 
rystals [4℄, there is a growing interest to the study of nonlinear beampropagation in various inhomogeneous settings [1, 5, 6, 7, 8℄.In our paper we study mobility properties of the stable solitons of (2+1)-dimensionalNLS equation with a saturable nonlinearity in the situation where the refra
tiveindex of the medium is modulated periodi
ally in the transverse dire
tions. It isknown that the e�e
tive parti
le approa
h is very e�
ient in su
h type of problems[9, 10, 11, 12, 13, 14, 15, 16, 17, 18℄. In parti
ular, in the 
ase of weak modulationamplitude we apply this approa
h to derive an equation, whi
h des
ribes the solitonas a Newtonian parti
le in the external potential 
reated by the refra
tive indexpro�le. This remains valid independently of the ratio of the soliton transverse sizeto the modulation period, even when the soliton is quite wide.We show that like a parti
le in a two-dimensional potential, the soliton in themedium with a transversely modulated refra
tive index 
an move both in a regularand 
haoti
 manner, and the 
hoi
e between these two types of motion is foremostdetermined by the geometry of the refra
tive index pro�le. Thus, when the refra
tiveindex forms a re
tangular latti
e, the e�e
tive potential is integrable, and the solitontransverse motion is very 
lose to integrable one for long time intervals. In this 
asethere are two typi
al dynami
al regimes: the �rst 
orresponds to low-energy quasi-periodi
 os
illations around lo
al maximum of the refra
tive index (minimum of the1



e�e
tive potential), the se
ond 
orresponds to quasi-periodi
 os
illations superim-posed on a 
onstant velo
ity drift. In the 
ase of hexagonal latti
e the situation isdrasti
ally di�erent. Here, with the in
rease of energy the os
illations near a lo
almaximum of refra
tive index be
ome 
haoti
 and transform into a random walk �an unbounded transverse motion of the soliton wandering 
haoti
ally between dif-ferent 
ells of the refra
tive index pro�le. Thus, our results show that even in simpleperiodi
 media a soliton 
an exhibit very 
ompli
ated motion patterns.Consider the equation
∂tA = i∆A + Af

(

|A|2
)

+ iε2g (r)A, (1)where r = (x, y), ∆ = ∂xx + ∂yy, and A(r, t) is a 
omplex �eld amplitude. Notethat when f is purely imaginary, Eq. (1) is Hamiltonian, with the energy fun
tionalgiven by
H =

1

2

∫

[

|∂xA|2 + |∂yA|2 + Φ
(

|A|2
)

− ε2g(x, y)|A|2
]

dxdy,where Φ′ ≡ if . The 
onservation of energy H means that the purely imaginary f
orresponds to the light propagation in a transparent medium. In order to ensurethe stability of the soliton we use the saturable nonlinearity [3℄
f

(

|A|2
)

=
−i

1 + |A|2 . (2)An important feature of Eq. (1) is that at ε = 0 it is invariant with respe
t to theGalilean transformation to a moving 
oordinate frame:
A(r, t) → A (r − vt, t) exp

(

ir · v/2 − i|v|2t/4
)

. (3)It follows that for ε = 0 any stationary solution of Eq. (1) 
oexists at with a family ofuniformly moving solutions parameterized by the velo
ity ve
tor v (here and belowwe use bold-fa
e letters to denote spatial 2-
omponent ve
tors, while the 
entral dotdenotes a s
alar produ
t of su
h ve
tors.The term iε2g in the right-hand side of Eq. (1) with small ε and real g (r) des
ribesthe spatial variation of the refra
tive index pro�le. If g is not spatially homogeneous,the translational and, hen
e, Galilean symmetries are broken at non-zero ε, whi
hresults in a non-trivial motion of the soliton in the (x, y)-plane.The propagation of paraxial light beams in a dissipative media 
an be des
ribedby the same equation (1), where the fun
tion f in the right-hand side is no longerpurely imaginary. In our simulations we take f real:
f

(

|A|2
)

= −1 +
G

1 + |A|2 − Q

1 + s|A|2 , (4)where G and Q are linear gain and, respe
tively, absorption 
oe�
ients, and s > 1is the ratio of the saturation intensities of the gain and absorber media [19℄.2



In this 
ase, the Hamiltonian stru
ture of the equation is lost, while the Galileansymmetry is preserved at ε = 0. As we show below, the presen
e of this symmetryresults in a great similarity between the 
hara
ter of soliton motion in the 
onserva-tive and dissipative 
ases, in spite of the di�eren
e between the physi
al me
hanismsof the soliton formation.Let Eq. (1) at ε = 0 have a radially symmetri
 stationary solitonA (r, t) = A0(r)e
iω0t,where A0 → 0 exponentially fast as r → ∞ (we denote r = |r|). Sin
e the equationat ε = 0 is symmetri
 with respe
t to spatial translations, the ve
tor-fun
tion

U = ∇A =
r

r
A′

0(r)satis�es LU = 0, where the operator
L : X 7→ [i (∆ − ω0) + f (E0) + E0f

′ (E0)] X + A2

0f
′ (E0) X∗yields the linearization of the right-hand side of Eq. (1) at the soliton solution. Herethe star denotes 
omplex 
onjugation, and E0 = |A0|2.Note that the Galilean symmetry of Eq. (1) implies the existen
e of the ve
tor-fun
tion Z su
h that LZ = U. By di�erentiating formula (3) with respe
t to v, itis easy to �nd that Z = −irA0(r)/2.Let us de�ne the following inner produ
t of the fun
tions X and Y :

〈X, Y 〉 =
∫

(XY + X∗Y ∗)dxdy.A

ording to this de�nition, the adjoint to L operator L† reads as
L† : X 7→ [i (∆ − ω0) + f (E0) + E0f

′ (E0)] X +
[

A2

0f
′ (E0)

]∗
X∗.Like L, the operator L† has a non-trivial odd solution to L†

U
† = 0. Due to therotational symmetry we 
an write this solution in the form U
† = r

r
U †(r), where

U †(r) is a s
alar fun
tion. An easy 
omputation gives
〈

Zx, U
†
x

〉

=
〈

Zy, U
†
y

〉

=
∫

Ψ(r)dxdy,where Ψ(r) =
∫

+∞
r Im

[

U †(r′)A0(r
′)

]

dr′, while the fun
tions Zx,y and Ux,y denotethe 
omponents of the ve
tor-fun
tions Z and U
†.Below we assume that ∫

Ψ(r)dxdy 6= 0, i.e. 〈

Z,U†
〉

6= 0, whi
h means that thereis no solution to LX = Z. Note that in the Hamiltonian 
ase where f is purelyimaginary and A0 is real, it is easy to see that L† (iX) = iLX, whi
h implies that
U

† = iU = i
r

r
A′

0(r), and Ψ(r) = −1

2
A2

0(r).In the non-Hamiltonian 
ase these relations are no longer true, and we do not haveexpli
it formulas for U
† and Ψ. 3



At non-zero ε we will be looking for a slowly moving soliton solution in the form ofseries expansion
{

A0 [|r −R (εt)|] + εA1 [r − R (εt) , εt] + ε2A2 [r− R (εt) , εt] + . . .
}

eiω0t, (5)where R is the soliton 
enter position and A1,2,... des
ribe a small 
orre
tion to thesoliton shape. Substituting expansion (5) into Eq. (1) and 
olle
ting �rst orderterms in ε we �nd that
LA1 = −Ṙ · ∇A0 ≡ −Ṙ · U(the dot over R denotes the derivative with respe
t to the slow time εt). Sin
e

U = LZ, we 
an take A1 = −Ṙ · Z.Now, 
olle
ting the se
ond order terms in ε we obtain
LA2 = −R̈ · Z(r − R) − ig(r)A0(|r −R|) −F(r −R), with F(−r) = F(r).A

ording to the Fredholm alternative, the solvability of this equation with respe
tto A2 requires the orthogonality of its right-hand side to the solutions of the homo-geneous equation L†X = 0. So, by taking the inner produ
t of the right-hand sideto U †

x(r − R) and U †
y(r − R), and noti
ing that 〈F , U †

x,y〉 = 0, we get the followingne
essary solvability 
ondition:
R̈

∫

Ψ(r)dxdy − 2
∫

g (r + R) Im
[

U
†(r)A0(r)

]

dxdy = 0.Integrating by parts, we obtain �nally the following equation for the soliton motion:
R̈ = −∇V (R), (6)where

V (R) = −2

∫

g (r + R)Ψ(r)dxdy
∫

Ψ(r)dxdy
. (7)As we mentioned, Ψ = −A2

0/2 in the Hamiltonian 
ase. Formula (7) generalizes theexpression for the e�e
tive potential obtained for the integrable 
ase of 1D NLS inRefs. [11, 17℄.As we see, both in transparent and a
tive-dissipative media, the transverse solitonmotion is des
ribed, to the leading order, by the Hamiltonian equation (6). Thisis the equation of a unit mass parti
le moving in the external potential. Up to thefa
tor of (−2) the potential is obtained by averaging the refra
tive index g with aweight determined by the soliton intensity. Note that Eqs. (6) and (7) are valid forarbitrary ratio of the soliton width to the 
hara
teristi
 period of the refra
tive indexmodulation. When this ratio is small, we obtain V (R) = −2g (R). As the ratiogrows, the averaging smooths the inhomogeneity of the refra
tive index. Therefore,when the soliton is su�
iently wide it moves, essentially, like a free parti
le.Being a Hamiltonian system with two degrees of freedom, equation (6) may exhibitboth regular and 
haoti
 dynami
al regimes, depending on the shape of the potentialand on the value of energy. Below we show that the transverse dynami
s of the4



soliton depends strongly indeed on the stru
ture of the refra
tive index pro�le. We
onsider square (g = g4) and hexagonal (g = g3) latti
es, de�ned by
gj (r) = −

l=j−1
∑

l=0

cos(~kjl · ~r), ~ksl = k

[

cos(πl/j)
sin(πl/j)

]

.Here j = 4 and k =
√

2π/d for the square latti
e, j = 3 and k = 4π/ (3d) for thehexagonal latti
e, with d being the size of the latti
e 
ell de�ned as the distan
ebetween a lo
al maximum of g and its nearest lo
al minimum. A

ording to Eq. (7),the e�e
tive potential that governs the soliton transverse motion is given by
V (x, y) = −g(x, y)S (k) ,where the response 
oe�
ient S (k) is de�ned by

S (k) = 2

∫

cos (kx) Ψ(r)dxdy
∫

Ψ(r)dxdy
.In the limit of a narrow soliton (k → 0), we have S (k) → 2, while in the oppositelimit k → ∞ the response fun
tion de
ays exponentially. In Fig. 1 we plot thegraph of amplitude pro�le and the response 
oe�
ient S(k) for the solitons whosedynami
s we studied in our numeri
 simulations. As it 
an be seen from the �gure,

S(k) is not negligibly small for the soliton sizes up to roughly twi
e the size of thelatti
e 
ell.
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Figure 1: Considered soliton amplitude pro�les (a) and the response fun
tion S(k)(b). Solid and dotted lines 
orrespond, respe
tively, to 
onservative nonlinearity (2)and dissipative nonlinearity (4) with G = 2.11, Q = 2.0, and s = 10.
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aL bL Figure 2: Regular and
haoti
 soliton motion(bla
k and red 
urves)in the refra
tive indexpro�le forming square(a,b) and hexagonal(
,d) latti
e. Blue (red)
olor indi
ates higher(lower) values of the re-fra
tive index. The lefttwo �gures (a,
) 
orre-spond to 
onservativenonlinearity (2) and theright two �gures (b,d)� to dissipative nonlin-earity (4) with the pa-rameter values given inthe 
aption of Fig. 1.In the 
ase of square latti
e, the e�e
tive potential
V = S(k) [cos (kx) + cos (ky)]is separable, and therefore Eq. (6) is integrable, whi
h means a quasiperiodi
 motionfor the soliton. This result is 
on�rmed by dire
t numeri
al integration of Eq. (1).Indeed, as we see in Figs. 2a,b, the soliton in the square latti
e is either trappedin a latti
e 
ell and os
illates quasiperiodi
ally in it, or the quasiperiodi
 os
illa-tions a

ompany a 
onstant velo
ity drift. This pi
ture is the same both for the
onservative nonlinearity (2) and for the a
tive-dissipative 
ase (4). However, in the
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b1) Figure 3: Time dependen
ies ofthe 
oordinates x (bla
k) and
y (red) of the soliton movingin square and hexagonal latti
es.The �gures (a1) and (a2), (b1)and (b2), (
1) and (
2), (d1)and (d2) present the timetra
es
orresponding to the traje
toriesshown in �gures 2a, 2b, 2
, 2d,respe
tively.6
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Figure 4: Soliton motion in hexagonal refra
tive index pro�les with di�erent size
d = 8π/(3n) of an elementary 
ell. Here, n = 1 (panel a), n = 2 (b), n = 3 (
)
n = 4 (d), and n = 5 (e). The soliton size is approximately visible in panel f).
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Figure 5: Soliton motion in a medium with nonzero spatial spe
tral �ltering 
oe�-
ient δ = 0.01. Other parameter values are the same as in Figs. 2d and 3d1,d2.non-Hamiltonian 
ase we may see (Fig. 3b) a slow de
ay in the os
illation amplitude,due to higher order 
orre
tions whi
h we negle
ted in our derivation of Eq. (6).The hexagonal refra
tive index latti
e indu
es a di�erent type of soliton motion, asthe hexagonal potential is known to 
reate 
haoti
 dynami
s [20℄. Namely, while low-energy os
illations near the minimum of the potential remain typi
ally quasiperiodi
(by KAM-theorem), the in
rease of the energy leads to a random walk between the
ells. The numeri
al simulations both for 
onservative (2) and a
tive-dissipative(4) nonlinearities in Eq. (1) 
on�rms this 
on
lusion, showing either low-amplituderegular os
illations or 
haoti
 wanderings of the soliton 
enter, see Figs. 2
,d and3
,d.The e�e
t of the de
rease of the latti
e 
ell size d on the soliton motion is illustratedin Fig. 4. For soliton diameters up to ∼ 4d we see a behavior resembling that of aparti
le in the potential. In Fig. 5 we present the results of numeri
al integration ofEqs. (1), (4) with the term δ∆A added into the right-hand side. This term with realand small δ > 0 
orresponds to a spatial spe
tral �ltering, whi
h breaks the Galileansymmetry of Eq. (1) at ε = 0. One 
an show that taking it into a

ount results inadding the dissipation term γṘ in the left-hand side of Eq. (6), with γ = O(δ/ε).Indeed, as we see in Fig. 5, we have at δ 6= 0 a steady de
rease of the amplitudeof os
illations, regular and 
haoti
 alike. In this 
ase the soliton transverse motion�nally halts at some position 
orresponding to a lo
al maximum of the refra
tiveindex.To 
on
lude: we have established a 
haoti
 
hara
ter of motion of a soliton onhexagonal latti
e engages itself in 
haoti
 motion, even for a weak amplitude of thespatial modulation. The e�e
t o

urs both in the 
onservative 
ase and in the 
ase8
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