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Abstract

We show that a weak transverse spatial modulation in (2+41) nonlinear
Schrédinger equation with saturable nonlinearity can result in nontrivial dy-
namics of radially symmetric solitons. In particular, in the case of hexagonal
profile of the modulation the soliton moves chaotically.

The nonlinear Schrodinger (NLS) equation plays a central role in understanding var-
ious physical phenomena in plasma physics, hydrodynamics, Bose-Einstein conden-
sation, nonlinear optics. In particular, NLS describes pulse propagation in nonlinear
fibers and self-focusing of paraxial beams of light in a homogeneous Kerr medium
[1]. In the case of purely cubic nonlinearity, (2-+1)-dimensional NLS possesses a
localized solution, known as Townes mode [2|. However, this solution is always un-
stable: small perturbations lead to a collapse, i.e. to an unbounded growth of the
field amplitude within a finite time interval. A suppression of the collapse can be
achieved by various means. In particular, replacing the cubic nonlinearity with a
saturable one achieves an arrest of the collapse and a stable self-collimated propa-
gation of a light beam [3]. In a spatially homogeneous medium the paraxial beam
propagates with a constant velocity along a straight line. However, because of re-
cent developments in fabrication of microstructured wave-guiding materials known
as photonic crystals [4], there is a growing interest to the study of nonlinear beam
propagation in various inhomogeneous settings |1, 5, 6, 7, 8|.

In our paper we study mobility properties of the stable solitons of (2+41)-dimensional
NLS equation with a saturable nonlinearity in the situation where the refractive
index of the medium is modulated periodically in the transverse directions. It is
known that the effective particle approach is very efficient in such type of problems
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. In particular, in the case of weak modulation
amplitude we apply this approach to derive an equation, which describes the soliton
as a Newtonian particle in the external potential created by the refractive index
profile. This remains valid independently of the ratio of the soliton transverse size
to the modulation period, even when the soliton is quite wide.

We show that like a particle in a two-dimensional potential, the soliton in the
medium with a transversely modulated refractive index can move both in a regular
and chaotic manner, and the choice between these two types of motion is foremost
determined by the geometry of the refractive index profile. Thus, when the refractive
index forms a rectangular lattice, the effective potential is integrable, and the soliton
transverse motion is very close to integrable one for long time intervals. In this case
there are two typical dynamical regimes: the first corresponds to low-energy quasi-
periodic oscillations around local maximum of the refractive index (minimum of the

1



effective potential), the second corresponds to quasi-periodic oscillations superim-
posed on a constant velocity drift. In the case of hexagonal lattice the situation is
drastically different. Here, with the increase of energy the oscillations near a local
maximum of refractive index become chaotic and transform into a random walk
an unbounded transverse motion of the soliton wandering chaotically between dif-
ferent cells of the refractive index profile. Thus, our results show that even in simple
periodic media a soliton can exhibit very complicated motion patterns.

Consider the equation
O A=iAA+ A[ (JA]°) +ic%g (r) A, (1)

where r = (2,y), A = Oy + 0y, and A(r,?) is a complex field amplitude. Note
that when f is purely imaginary, Eq. (1) is Hamiltonian, with the energy functional
given by

1 =5 [ [0.AF +10,4F + @ (|AP) = (e, )| AP ey,

where ® = if. The conservation of energy H means that the purely imaginary f
corresponds to the light propagation in a transparent medium. In order to ensure
the stability of the soliton we use the saturable nonlinearity 3|

F(14°) = 2)

An important feature of Eq. (1) is that at ¢ = 0 it is invariant with respect to the
Galilean transformation to a moving coordinate frame:

Alr,t) = A(r — vt t)exp (it - v/2 — i[v|’t/4) . (3)

It follows that for € = 0 any stationary solution of Eq. (1) coexists at with a family of
uniformly moving solutions parameterized by the velocity vector v (here and below
we use bold-face letters to denote spatial 2-component vectors, while the central dot
denotes a scalar product of such vectors.

The term ic?g in the right-hand side of Eq. (1) with small € and real g (r) describes
the spatial variation of the refractive index profile. If ¢ is not spatially homogeneous,
the translational and, hence, Galilean symmetries are broken at non-zero &, which
results in a non-trivial motion of the soliton in the (z,y)-plane.

The propagation of paraxial light beams in a dissipative media can be described
by the same equation (1), where the function f in the right-hand side is no longer
purely imaginary. In our simulations we take f real:

G Q
L HAR 11 AP’

FIAP) = -1+ (4)

where G and @) are linear gain and, respectively, absorption coefficients, and s > 1
is the ratio of the saturation intensities of the gain and absorber media [19].
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In this case, the Hamiltonian structure of the equation is lost, while the Galilean
symmetry is preserved at € = 0. As we show below, the presence of this symmetry
results in a great similarity between the character of soliton motion in the conserva-
tive and dissipative cases, in spite of the difference between the physical mechanisms
of the soliton formation.

Let Eq. (1) at ¢ = 0 have a radially symmetric stationary soliton A (v, ¢) = Ag(r)e™o!,
where Ay — 0 exponentially fast as r — oo (we denote r = |r|). Since the equation
at ¢ = 0 is symmetric with respect to spatial translations, the vector-function

U=VA="Ar)
r
satisfies LU = 0, where the operator
L:X —[i(A—wy)+ f(E)+ Eof (Eo)] X+ ASf' (Eo) X*

yields the linearization of the right-hand side of Eq. (1) at the soliton solution. Here
the star denotes complex conjugation, and Ey = |Ag|*.

Note that the Galilean symmetry of Eq. (1) implies the existence of the vector-
function Z such that LZ = U. By differentiating formula (3) with respect to v, it
is easy to find that Z = —irAq(r)/2.

Let us define the following inner product of the functions X and Y:
(X,Y) = / (XY + X*Y*)dady.
According to this definition, the adjoint to L operator L' reads as
L' X e [0 (A = wo) + f (Bo) + Eof (Eo)l X + [A3f (Eo)|” X,

Like L, the operator L' has a non-trivial odd solution to L'UT = 0. Due to the
rotational symmetry we can write this solution in the form U' = LUT(r), where
Ut (r) is a scalar function. An easy computation gives

(2,,U1) = (2,,U]) = /\Il(r)dxdy,

where U(r) = [F*°Im {UT(T/)AO(T/)} dr', while the functions Z,, and U, , denote
the components of the vector-functions Z and UT.

Below we assume that [ W(r)dzdy # 0, i.e. <Z,UT> # 0, which means that there
is no solution to LX = Z. Note that in the Hamiltonian case where f is purely
imaginary and Ay is real, it is easy to see that LT (iX) = iLX, which implies that

1
Ut =iU = 4,(r), and () = 5 A5(0).
T

In the non-Hamiltonian case these relations are no longer true, and we do not have
explicit formulas for UT and W.



At non-zero € we will be looking for a slowly moving soliton solution in the form of
series expansion

{Aollr = R(et)]] +eAs [r — R(et) et] + Ay [r — Ro(et) et] + ...} e, (5)

where R is the soliton center position and A; o describe a small correction to the
soliton shape. Substituting expansion (5) into Eq. (1) and collecting first order
terms in € we find that

(the dot over R denotes the derivative with respect to the slow time et). Since
U = LZ, we can take Ay = —R - Z.

Now, collecting the second order terms in £ we obtain
LA, = —R-Z(r—R) —ig(r)Ay(lr —R|) — F(r —R), with F(-r)= F(r).

According to the Fredholm alternative, the solvability of this equation with respect
to Ay requires the orthogonality of its right-hand side to the solutions of the homo-
geneous equation LTX = 0. So, by taking the inner product of the right-hand side
to Uf(r —R) and U} (r — R), and noticing that (F,U] ) = 0, we get the following
necessary solvability condition:

ﬁ/\IJ(T)dxdy -2 /g (r+R)Im [UT(r)AO(r)} dxdy = 0.

Integrating by parts, we obtain finally the following equation for the soliton motion:

R=-VV(R), (6)
e o+ R) (r)dad
g(r -+ r)dray
V(R) = -2 7
(R) [V (r)dxdy (7)
As we mentioned, ¥ = —A2/2 in the Hamiltonian case. Formula (7) generalizes the

expression for the effective potential obtained for the integrable case of 1D NLS in
Refs. 11, 17].

As we see, both in transparent and active-dissipative media, the transverse soliton
motion is described, to the leading order, by the Hamiltonian equation (6). This
is the equation of a unit mass particle moving in the external potential. Up to the
factor of (—2) the potential is obtained by averaging the refractive index g with a
weight determined by the soliton intensity. Note that Eqs. (6) and (7) are valid for
arbitrary ratio of the soliton width to the characteristic period of the refractive index
modulation. When this ratio is small, we obtain V (R) = —2¢g (R). As the ratio
grows, the averaging smooths the inhomogeneity of the refractive index. Therefore,
when the soliton is sufficiently wide it moves, essentially, like a free particle.

Being a Hamiltonian system with two degrees of freedom, equation (6) may exhibit
both regular and chaotic dynamical regimes, depending on the shape of the potential
and on the value of energy. Below we show that the transverse dynamics of the
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soliton depends strongly indeed on the structure of the refractive index profile. We
consider square (g = g4) and hexagonal (g = g3) lattices, defined by

(1) = —l:jilcos 1T, kg = cos(rl/j)
gj (r) = 2 (kj-7), ka=k [ sin(rl/5) ] .

Here j = 4 and k = /27 /d for the square lattice, j = 3 and k = 47/ (3d) for the
hexagonal lattice, with d being the size of the lattice cell defined as the distance
between a local maximum of g and its nearest local minimum. According to Eq. (7),
the effective potential that governs the soliton transverse motion is given by

where the response coefficient S (k) is defined by

[ cos (kx) ¥ (r)dxdy

S (k) =2 [ (r)dxdy

In the limit of a narrow soliton (k — 0), we have S (k) — 2, while in the opposite
limit & — oo the response function decays exponentially. In Fig. 1 we plot the
graph of amplitude profile and the response coefficient S(k) for the solitons whose
dynamics we studied in our numeric simulations. As it can be seen from the figure,

S(k) is not negligibly small for the soliton sizes up to roughly twice the size of the
lattice cell.
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Figure 1: Considered soliton amplitude profiles (a) and the response function S(k)
(b). Solid and dotted lines correspond, respectively, to conservative nonlinearity (2)
and dissipative nonlinearity (4) with G = 2.11, @ = 2.0, and s = 10.



Figure 2: Regular and
chaotic soliton motion
(black and red curves)
in the refractive index
profile forming square
(a,b) and hexagonal
(c,d) lattice. Blue (red)
color indicates higher
(lower) values of the re-
fractive index. The left
two figures (a,c) corre-
spond to conservative
nonlinearity (2) and the
right two figures (b,d)

to dissipative nonlin-
earity (4) with the pa-
rameter values given in
X X the caption of Fig. 1.

In the case of square lattice, the effective potential
V = S(k) [cos (kz) 4 cos (ky)]

is separable, and therefore Eq. (6) is integrable, which means a quasiperiodic motion
for the soliton. This result is confirmed by direct numerical integration of Eq. (1).
Indeed, as we see in Figs. 2a,b, the soliton in the square lattice is either trapped
in a lattice cell and oscillates quasiperiodically in it, or the quasiperiodic oscilla-
tions accompany a constant velocity drift. This picture is the same both for the
conservative nonlinearity (2) and for the active-dissipative case (4). However, in the

Figure 3: Time dependencies of
the coordinates x (black) and
y (red) of the soliton moving
in square and hexagonal lattices.
The figures (al) and (a2), (bl)
and (b2), (c1) and (c2), (d1)
and (d2) present the timetraces
corresponding to the trajectories
shown in figures 2a, 2b, 2c, 2d,
respectively.

soliton  peak coordinate
T

1 1 1 1
time time
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Figure 4: Soliton motion in hexagonal refractive index profiles with different size
d = 8mw/(3n) of an elementary cell. Here, n = 1 (panel a), n = 2 (b), n = 3 (c)
n =4 (d), and n =5 (e). The soliton size is approximately visible in panel f).
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Figure 5: Soliton motion in a medium with nonzero spatial spectral filtering coeffi-
cient 0 = 0.01. Other parameter values are the same as in Figs. 2d and 3d1,d2.

non-Hamiltonian case we may see (Fig. 3b) a slow decay in the oscillation amplitude,
due to higher order corrections which we neglected in our derivation of Eq. (6).

The hexagonal refractive index lattice induces a different type of soliton motion, as
the hexagonal potential is known to create chaotic dynamics [20]. Namely, while low-
energy oscillations near the minimum of the potential remain typically quasiperiodic
(by KAM-theorem), the increase of the energy leads to a random walk between the
cells. The numerical simulations both for conservative (2) and active-dissipative
(4) nonlinearities in Eq. (1) confirms this conclusion, showing either low-amplitude
regular oscillations or chaotic wanderings of the soliton center, see Figs. 2c,d and
3c,d.

The effect of the decrease of the lattice cell size d on the soliton motion is illustrated
in Fig. 4. For soliton diameters up to ~ 4d we see a behavior resembling that of a
particle in the potential. In Fig. 5 we present the results of numerical integration of
Egs. (1), (4) with the term JAA added into the right-hand side. This term with real
and small 9 > 0 corresponds to a spatial spectral filtering, which breaks the Galilean
symmetry of Eq. (1) at ¢ = 0. One can show that taking it into account results in
adding the dissipation term yR in the left-hand side of Eq. (6), with v = O(8/¢).
Indeed, as we see in Fig. 5, we have at 0 # 0 a steady decrease of the amplitude
of oscillations, regular and chaotic alike. In this case the soliton transverse motion
finally halts at some position corresponding to a local maximum of the refractive
index.

To conclude: we have established a chaotic character of motion of a soliton on
hexagonal lattice engages itself in chaotic motion, even for a weak amplitude of the
spatial modulation. The effect occurs both in the conservative case and in the case



of dissipative solitons.
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