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ON LOWER BOUNDS OF THE MODERATE AND CRAMER 
TYPE LARGE DEVIATION PROBABILITIES 

IN STATISTICAL INFERENCE 

Mikhail S. Ermakov 

Summary. We indicate new simple assignments of the lower bounds for 
the probabilities of the moderate and Cramer type large deviations of type I 
and type II errors of statistical tests. These assignments are based on a one 
natural property of the normal distribution. Using these results we deduce 
easily the lower bounds for the probabilities of the moderate and Cramer 
type large deviations of estimators. The lower bounds were obtained under 
the more weak assumptions then in the previous papers. The lower bound 
for the probabilities of the Cramer type large deviations of estimators has 
not been proved earlier. The results are also extended on the problems of 
asymptotically minimax statistical inference about a value of functional. 

Key words· and phrases: moderate large deviations, Cramer type large de-
viations, asymptotic efficiency, asymptotically minimax estimation, asymp-
totically minimax hypothesis testing, Bahadur efficiency, Chernoff efficiency. 
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1. Introduction 
Nowadays the theory of the large deviations of tests and estimators has been 
obtained the comprehensive development. A wide range of problems of statis-
tical inference has been studied on the base of the Bahadur (1960), Chernoff 
(1952) and Hodges-Lehmann (1956) efficiencies. The moderate and Cramer 
type large deviations of tests and estimators were also considered in many 
papers. However for such types of large deviations the problem of asymptotic 
efficiency has been treated by the unit authors. Up to the last time there 
existed only the Kallenberg ( 1983) intermediate efficiency for the character-
ization of the moderate large deviations and did not exist any asymptotic 
efficiency for the Cramer type large deviations. 

In the last years the essential progress has been made by Borovkov and 
Mogulskii (1992a),(1992b ), Ermakov (1990), (1993) and Radavichius (1991 ). 
In Ermakov (1990),(1993) a new natural lower bound has been proposed for 
the probabilities of the moderate large deviations in the problems of hypoth-
esis testing. This lower bound allowed to introduce a new type of efficiency 
called in this paper by the moderate large deviation or MLD efficiency. Ra-
davichius (1993) has obtained the lower bound for the moderate large devi-
ations of estimators. This lower bound can be interpreted as intermediate 
between the Hajek-Le Cam (1972) and Bahadur (1960) lower bounds. At 
the same time it is easy to show that the Radavichius (1991) lower bound 
is a particular case of the lower bound for the MLD-efficiency in hypothesis 
testing. 

The comprehensive analysis of the moderate and Cramer type large de-
viations of the Bayes and maximum likelihood ratio tests has been made 
by Borovkov and Mogulskii (1992a),(1992b ). On the base of these results 
they extended the lower bound for the MLD efficiency on the multivariate 
case and proposed a similar version of this lower bound for the Cramer type 
large deviations. Note that their version of the last lower bound has an-
other assignment than in this paper and has been proved under the strong 
assumptions. 

Our results are based on the following property of the normal distribution. 
Let Xi, ... ,Xn be Gaussian i.i.d.r.v.'s, EX1 = (), DX1 = 1. Suppose 

a hypothesis () = 0 has to be tested versus alternatives () = Un, Un --+ 0, 
nu~ --+ oo as n --+ oo . For any test Kn = Kn(Xi, ... , Xn) let an( Kn) = 
EoKn be its level and let /3n(Kn) = /3(Kn, Un) = Eun(l - Kn) be its type 
II error probability. Put Xn = n-1(X1 + ... + Xn) and define the tests 
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Ln = x(Xn > en), 0 < en < Un. Here x(A) denotes the indicator of event A. 
Denote by q)(s) = (27rt1l 2 J~00 exp{-x2 /2}dx, s E R1 , the standard normal 
distribution function. Define the inverse functions = q>-1 (y) by the equation 
y = q>(s). Since q>-1 (an(Ln)) = -n112en, <P-1(,Bn(Ln)) = -n112(un-en) then 

<P-1 (an(Ln)) + <P-1(,Bn(Ln)) = -n112un. (1.1) 

Hence for any sequence of tests Kn 

and if an( Kn) < e < 1, ,Bn(Kn) < e < "1 additionally then we obtain the 
lower bound for the LD efficiency proved in Ermakov [5] 

lim sup n-1l2u~1 (l2logan(Kn)l 1/2 + j2log,8n(Kn)l112)::; 1. (1.3) 
n-+oo 

The more exact version of (1.2) is as follows 

The similar results are also valid for the problem of hypothesis testing()= 0 
against the twosided alternatives IBI = Un· For any test Kn let ,B(Kn, un), 
,B(Kn, -un) be respectively its type II error probabilities for the alternatives 
()=Un and()= -Un· Denote 

Then the relation (1.3) remains valid. Define the functions= <J>-1 (y) by the 
equation y = 2q>(s). Put Ln = x(IXnl >en)· Then 

2n112un + 2<J>-1 (an(Ln)) + q>-1(,B(Ln, Un)+ q>-1(,B(Ln, -Un)= 0 

and for. any sequence of tests Kn 

It is easy to see that the equality in (1.2) or (1.3) takes place if and only 
if for any sequence of tests Nn, an(Nn) ::; an(Kn), 

lim sup log ,Bn(Kn)/ log ,Bn(Nn) ::; 1. (1.6) 
n-+oo 
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At the same time if we assume additionally that the nu~ ~ 0 as n ~ oo 
then the equality in (1.4) or (1.5) implies that for any sequence of tests 
Nn, an(Nn) :::; an(I<n), 

lim sup f3n(I<n)/ f3n(Nn) :::; 1. (1. 7) 
n-+oo 

Thus the inequalities (1.2)-(1.5) can be considered as the lower bounds for 
the moderate and Cramer type large deviation probabilities of sequences of 
tests. 

The purpose of the paper is to show that these lower bounds are valid 
for arbitrary regular families of distribution and. to deduce easily on the base 
of these results the lower bounds for the moderate and Cramer type large 
deviations of estimators. After that the similar lower bounds will be obtained 
for the problem of asymptotically minimax statistical inference about a value 
of functional. For the estimation problems the lower bound of the Cramer 
type large deviations is proved in the traditional local asymptotic minimax 
setting. At the same time we show that the lower bound for the moderate 
large deviations can be obtained as a lower bound in essentially more simple 
problem of estimation of one from two possible values of parameter. In 
the paper we do not indicate directly the lower bounds for the problems of 
testing composite parametric hypothesis. As wellknown such results follow 
easily from the lower bounds for the ·simple hypothesis. The asymptotic 
minimax lower bounds for the problem of hypothesis testing about a value 
of functional confirm excelently this assertion. 

On the base of the proposed lower bounds we introduce two new asymp-
totic efficiencies. A sequence of tests or estimators is called moderate large 
deviation or MLD asymptotic efficient if a lower bound for its probabilities 
of the moderate large deviations is achieved. If a lower bound for the prob-
abilities of the Cramer type type large deviations is achieved we say that 
the corresponding sequence of tests or estimators is strong large deviation or 
SLD asymptotic efficient. 

As abovementioned in the problems of hypothesis testing there exists a 
wide range of different asymptotic efficiencies. In this connection it is natural 
to discuss the advantages of the new asymptotic efficiencies in comparison 
with the asymptotic efficiencies proposed earlier. As it follows from the lower 
bounds (1.2)-(1.5) in the case of the MLD and SLD asymptotic efficiencies 
the type I and type II error probabilities can tend to zero simultaneously 
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with increasing sample size. Thus, the MLD and SLD asymptotic efficiencies 
allow us to study the widespread problems of hypothesis testing with the 
small probabilities of the type I and type II errors. Earlier the asymptotic 
behaviour of test statistics in this situation has been characterised only on 
the base of the Chernoff efficiency. For the Pitman, Kallenberg intermediate, 
Bahadur, Hodges-Lehmann efficiencies at least one of the error probabilities 
is supposed to be fixed. The MLD-efficiency has also another merit. The 
Kallenberg intermediate and local Bahadur, Chernoff, Hodges-Lehmann effi-
ciencies turn out to be particular cases of the MLD efficiency. From our point 
of view these arguments justify such general names of the new efficiencies. 

The results of the paper show that the MLD and SLD efficiencies are 
closely connected with the Pitman efficiency in hypothesis testing and lo-
cally asymptotically minimax efficiency in estimation. Although these effi-
ciencies correspond to different situations, they have the Fisher information 
as a common lower bound. Thus for the essentially more wide spectrum 
of the problems of statistical inference there exists the common measure of 
efficiencies and this measure equals to that of the traditional efficiencies in 
estimation and hypothesis testing. 

In the paper a large number of different positive absolute constants will 
be used. All these constants will be denoted by the letters c, C. 
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2. Lower bounds of the MLD and SLD-asymptotic efficiencies 

2.1. General setting. In the most general form the results will be 
obtained in the terms of the Hellinger metric. The Hellinger metric gives 
the best approximation of the Kullback-Leibler information than the Fisher 
one and this turns out essential in the problems of the moderate and Cramer 
type large deviations. 

Let A be the set of all probability measures on a measurable space (S,B) 
and let Xi, ... Xn be i.i.d.r.v.'s with p.m. Pe E A , 0 E R1 • Suppose the 
p.m. 's Pe, 0 E R1, are absolutely continuous with respect to measure v E A 
and have the densities f(x, 0) = dPe/dv(x), x E S. The Hellinger distance 
of p.m.'s Pe1 , Pe2 , 01 , 02 E R1 , equals 

Fix 0 = t and denote by P0, P0 the absolutely continuous and singular 
components of p.m. Pe, 0 E R1 w.r.t. p.m. Pt. Put g(x, t + u) -
((f(x, t + u)/ f(x, t))1! 2 - l)J-1l2(x, t) for all x ES, u E R1 • 

The main results are proved under the following assumption. 
A. There exists a function w(u), w(u) < rw(u/r) for all r ~ 1, w(u) ~ 0 as 
u ~ 0, such that P/+u(S) = O(u2w(u)) as u ~ 0 and 

Jsl(x,t+u)x(lg(x,t+u)I > r-1 )dPt < Cp2(t,t+u)w(ur) (2.1) 

for any r > 1 and all u E R1 • 

Note that A does not imply the existence of the Fisher information. At 
the same time the existence of the Fisher information implies (2.1) with some 
function w(u), w(u) ~ 0 as u ~ 0. 

The statistical experiment E = { ( B, S), Pe, 0 E R1 } has the finite Fisher 
information at the point 0 = t if there exists the function cp(x) = l/2fe(x, t)f-1 (x, t) E 
L2(Pt) such that 

AO. f8 (g(x, t + u) - ucp(x))2dPt = o(u2), Pi1.+u(S) = o(u2) (2.2) 
as u ~ 0. 

The Fisher information equals I= I(t) = 4f8 cp2(x)dPt. 
Let a finite Fisher information exist at the point 0 = t. Then A fulfilled 

under the following sufficient conditions. 
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Al. For all r ~ 1 and all u E R1 

ls(g(x, t+u)-ucp(x)) 2x(lg(x, t+u)-w.p(x)I > r-1 )dPt ~ Cu2w(ur) (2.3) 

and Pi+u(S) = O(u2w(u)) as u-+ 0. 

A2. f8 cp2(x)x(lcp(x)I > u-1 )dPt < Cw(u), (2.4) 
The results can be expressed in the terms of the Fisher information if one 

of the following additional assumptions is valid. 

A3. Ifs g2(x, t + u)dPt - lu21 < Cu 2w(u), u E R1 • 

A4. f8 (g(x, t + u) - ucp(x))2dPt < Cu2w2(u), u E R1 

and P/+u(S) = O(u2w(u)) as u-+ 0. 

In section 4 we show that Al-A3 follows from A2,A4. 
Let w(u) = u7 , 0 < / ~ 1, and let 

9-y ( x' t + u) = ( f ( x' t + u) I/( x' t)) 1 I ( 2+7 ) - 1. 

Then A holds if 

u E R1 

and P/+u(S) = 0( u2+7 ) as u-+ 0. 
The assumptions Al,A2 are valid if 

ls cp2+7 (x)dPt < C, (2.8) 

ls (g'Y(x, t + u) - 2/(2+1)urp(x))2+.,dP1 < Cu2-h, 

and P/+u(S) = 0( u2+-Y) as u-+ 0. 

(2.7) 

u E R1 

(2.5) 

(2.6) 

(2.9) 

2.2. MLD and SLD asymptotic efficiencies in hypothesis testing. 
First we indicate the lower bounds of the MLD efficiency and discuss the 
relation of the MLD efficiency and the Pitman, Kallenberg intermediate, local 
Bahadur, Chernoff, Hodges-Lehmann efficiencies. Then Theorems 2.2,2.3 
about the lower bounds of the SLD efficiency will be given. 

7 



Suppose the hypothesis Htni : () = tn1 = t + Vn has to be tested versus 
the alternatives Htn2 : () = tn2 = t + Vn + Un with Vn ~ 0, Un ~ 0, nu~ ~ oo 
as n ~ oo . For any test Kn let an(Kn) = a(Kn, Ptn1 ) and f3n(Kn) = 
(3(Kn, Ptn2 ) be respectively its probabilities of the type I and type II errors. 
Denote Pn = p( tn1, tn2). 

Theorem 2.1. Assume A. Let Kn be a sequence of tests for testing a hy-
pothesis Htni against the alternatives Htn2 such that 

Then 

lim sup (2n112Pnt1l'P-1(an(Kn)) + <P-1(f3n(Kn))I < 1. (2.11) 
n-oo 

The equality in (2.11) is achieved on the sequences of the likelihood ratio tests 
Ln satisfiing the same assumption 

that is, 

lim sup (2n112Pnt1 l<P-1(an(Ln)) + 'P-1 (f3n(Ln))I = 1. 
n-oo 

This implies that if a(Kn) < C < 1 and f3n(Kn) < C < 1 then 

lim sup (2n1/ 2 Pnt1 (1 2 log an( Kn) j1/ 2 + I 2 log f3n(Kn) 1
112 ) ~ 1 

n-oo 

and if an(Ln) < c < 1 and (2.12) is valid then 

lim(2n1
/

2Pn)-1 (l2logan(Ln)l1 / 2 +l2logf3n(Ln)l1 / 2 )=1. n-oo 

(2.13) 

(2.14) 

(2.15) 

Assume AO. Then in all relations of the Theorem we can take 2pn = unl112 • 

Remark 2.1. A similar result is valid for the problem of testing a simple 
hypothesis against twosided alternatives. Suppose a hypothesis 0 = t has 
to be tested versus the alternatives 0 = Ont = t +Un or 0 = t - Un. For 
any test Kn denote f3n(Kn) = sup{f3(Kn, Pon1 ), (3(Kn, Pon1 )} and put Pn = 
p"n = min{p(t, Bn1), p(t, Bn2)}. Then (2.14), (2.15) are valid under the same 
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assumptions. It is easy to see that this assertion is a direct consequence of 
Theorem 2.1. 
Remark 2.2. The lower bound for the Kallenberg intermediate efficiency 
follows easily from (2.14),(2.15). To obtain this bound it suffices to put 
(3(Kn, Pnun)= const < 1. 

Similarly to section 1 we say that a sequence of tests Kn satisfiing (2.10) is 
moderate large deviation or MLD-asymptotically efficient if the right hand-
side of (2.11) equals one. 

Indicate two important corollaries of Theorem 2.1. These corollaries are 
given in the terms of the Fisher information to emphasize their connection 
with the traditional results. 

Corollary 2.1. Assume AO. Let Kn(u), u E R1, be a sequence of tests for 
testing a hypothesis B = t against the alternatives B = t + un-1!2 such that 
an(Kn(u)) < C < 1 and (Iu 2t 1 I 2logan(Kn(u)) I< C < l. Then 

lim sup lim sup(uJ1! 2t 1(l 2logan(Kn(u)) 11/ 2 + 
u-oo n-oo 

(2.16) 

Remark 2.3. Corollary 2.1 shows that, under the natural assumptions, the 
LD efficiency turns into the Pitman efficiency. It is clear that (2.16) also 
follows directly from the lower bound for the Pitman efficiency. 

Corollary 2.2. Assume AO. Let Kn( v, u ), v, u E R 1 , be a sequence of tests 
for testing a hypothesis B = t + v against the alternative B = t + v + u. Let 
an(Kn(v,u)) < C < 1 and f3n(Kn(v,u)) < C < 1. Then 

limsuplim sup(nu2I)-1l2 (l 2logan(Kn(v,u)) 11/
2 + 

r-o n-+-oo 

(2.17) 

with r = lvl + lwl. 
If Kn( v, u) is a sequence of the likelihood ratio tests then the equality takes 

place in (2.17). . 

Remark 2.4. The lower bounds of the local Bahadur, Chernoff and Hodges-
Lehmann efficiencies are the particular cases of (2.17). To obtain these lower 
bounds it suffices to put in (2.17) f3n(Kn(v,u)) = f3=const, o:n(Kn(v,u)) = 
f3n(Kn(v, u)), an(Kn(v, u)) =a= const respectively. In such a way the MLD 
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efficiency implies the local Bahadur, Chernoff and Hodges-Lehmann ones. 
Corollaries 2.1, 2.2 indicate the direct relation of the local Bahadur, Chernoff, 
Hodges-Lehmann and Pitman efficiencies. Such relations have been studied 
by Wieand (1976) and Kourauklis (1989),(1990) under the more restricted 
assumptions. 
Remark 2.5. Assume A. Then (2.17) is valid if u2 I is replaced by 4p2(t + 
v, t + v + u). Note that under the Assumption AO and v = 0 Theorem 2.1 
and Corollary 2.2 has been proved in Ermakov (1990),(1993). 

Theorem 2.2. Assume A. Let Un> cn-112 , lvnl < Cun, nu~w(un) ~ 0 as 
n ~ oo . Then for any sequence of likelihood ratio tests Ln satisfiing (2.12) 

This implies that for any sequence of tests I<n satisfiing (2.10) 

There exists a sequence of events Un, Pt(Un) ~ 1 as n ~ oo , such that if 
the equality takes place in (2.19) then 

n 

Ji~ Etn1 {II<n - X(L(g(Xi, t + vn) + 1/2p~) > (np~t1/2<I>- 1 (an(Kn)))lx 
i=l 

n 

Ji~ Etn2{II<n - X(L(g(Xi, t + vn) + 1/2p!) > (np!t 1l 2 <I>-1 (a(I<n)))lx 
i=l . 

x(Bn)}(Pn(I<n))-1 = o, (2.21) 

lim Etni {I<n(l - x(Un))}/an(I<n) = 0, (2.22) n-+oo 

lim Et{(l - I<n)(l - x(Un))}/Pn(Kn) = 0. (2.23) 
n-+oo 

If Al-A3 are also valid then (2.18),(2.19) can be replaced by 

Ji~(nu~I)1l2 ((nu~I)1 l2 + <I>-1 (an(Ln)) + <I>-1 (fin(Ln))) = 0, (2.24) 

lim inf (nu~I)112 ((nu!I)112 + <I>-1(an(Kn)) + <I>-1 (fin(I<n))) ~ 0 (2.25) 
n-1-00 
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respectively. 
If A2,A4 holds then (2.20),(2.21) can be replaced by 

k 

J~~ Etn1 {IKn - x(I.: r.p(Xi)(f(Xi, t)/ !(Xi, t + Vn)) 1l 2 > 
i=l 

(nl /4)1l2 <P-1
( an(Kn)))lx(Bn)}( an(Kn))-1 = 0, (2.26) 

k 

n~~ Etn2 {IKn - x(Lg(Xi, t) > (nl /4)1
'

2 <P-1 (o:n(I<n)))I x 
i=l 

respectively. 

Theorems 2.1,2.2 will be proved in section 4. 

Remark 2.6. It follows from the proof of Theorem 2.2 that the set Un can be 
defined as follows 

Remark 2. 7. Since we do not assume in (2.18)-(2.23) the existence of the 
Fisher information these results are also of interest for the standard problem 
of hypothesis testing B = t+vn-1! 2 versus the alternatives B = t+(v+u)n-1!2 • 

Remark 2.8. It follows from the Hajek (1970) Theorem that if the regular 
sequence of estimators On is locally asymptoti.cally minimax then 

n 
nf112 (Bn - t) - 2(nl)-1l2 L r.p(Xi) ~ 0 

i=l 

in probability as n ~ oo. The relations (2.19)-(2.23),(2.26),(2.27) and the 
further relations (2.29)-(2.32),(2.37),(2.38) are the versions of this assertion 
for the strong large deviation efficiency. 
Example 2.1. Let Xi, ... , Xn be i.i.d.r.v.'s with p.m. P E A and let the 
function <.p satisfy (2.4) with Pt= P0 , P0 EA. Denote 

where En ~ 0 as n ~ oo . Define the probability measures Pn with the 
densities fn(x) = dPn/dPo(x) = 1 + 2unen(x). Suppose the problem is to 
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test a hypothesis P = P0 against alternatives P = Pn. It is easy to test that 
for this problem the assumptions Al,A3 are fulfilled and (2.18) is valid with 
p~ = 1/4 u~I. 
Theorem 2.3. Assume A. Let Un > cn-1!2' nu~w( Un) -+ 0 as n -+ 00 . 

Suppose the problem is to test a hypothesis Ho : fJ = t against the alternatives 
Hn : fJ = Bn1 = t +Un or() = Bn2 = t - Un . Then for any sequence of tests 
Kn such that an(Kn) < c < 1 and (np~t1 l2logan(Kn)I < 1 it holds 

lim inf (4np~) 112 (4n112Pn + 2~-1 (an(Kn)) + ~-1 (/3(Kn, Pneni)+ 
n-+oo 

~-1 (/3(Kn, Pnen2 )) ~ 0. (2.28) 

For any sequence an < C < 1, ( 4np~)-1 l2 log anl < 1 there exists a sequence 
of the likelihood ratio tests Ln, an = an(Ln), such that the left handside of 
(2.28) equals zero. 

Assume Al-A3. Then in (2.28) we can put 2pn = un/112 • 

Assume A2, A4. Then there exists a sequence of sets Un, Pt(Un) -+ 1 as 
n -+ oo , such that if in (2.28) the equality takes place then 

n 

Ji+~ Et{IKn - x(I l:<r>(Xi)I > (1/4n1) 1 !2 ~-1 (an(Kn)))lx 
i=l 

n 

Ji~ Een,.{ll - Kn - x(I I: cp(Xi)I < (1/4nJ)1l2 ~-1 (an(Kn)))I x 
i=l 

x( Un)} I /3( Kn, Penj) = 0, (2.30) 

lim Et{Kn(l - x(Un))}/an(Kn) = 0, (2.31) 
n-+oo 

Ji~ Etn3{(l - Kn)(l - x(Un))}/ ;J(Kn, Pen,.)= 0 (2.32) 

for j = 1,2. 
Here the assignment of Pn is the same as in Remark 2.2. 

The proof of Theorem 2.3 is similar to that of Theorem 2.2 and is omitted. 
We call the sequence of tests Kn satisfiing (2.12) strong large deviation or 

SLD-asymptotically efficient in the problem of hypothesis testing () = t + Vn 

against alternatives fJ = t + Vn + Wn (respectively twosided alternatives 
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I B - t - Vn I= wn) if the left hand-side of (2.18) (respectively (2.28)) 
equals zero. 

2.3. MLD and SLD asymptotic efficiencies in estimation prob-
lems. The lower bound of the MLD and SLD-asymptotic efficiencies in 
estimation problems are easy consequences of the similar lower bounds in 
hypothesis testing. Such a direct connection of the lower bounds of prob-
abilities of large deviations in hypothesis testing and estimation has been 
discovered by Bahadur (1960). 

Consider the problem of hypothesis testing()= t against the alternatives 
0 = tn = t+2un. On a sequence of estimators Bn = On(X1 , ••• , Xn) define the 
sequence of tests Kn= x(Bn-t >Un)· Let O:n(Kn) = Pt(Bn-t >Un)< c < 1 
and f3n(Kn) = Ptn (On - tn <Un) < C < 1 then by (2.14) we have 

(4np2(t,tn)t112(l2logPt(Bn-t > Un)l 112+l2logPtn(Bn-tn < Un)l 112):::; l+o(l) 

as n -t 00. Since Pt(Bn -t >Un):::; Pt(IBn -ti> Un) and Pt+2un(Bn -2un < 
Un) :::; Pt+2un(IBn - 2unl >Un) this implies as follows. 

Theorem 2.4. Assume A. Let Un > 0, Un -t 0, nu~ -t oo as n -t oo . Then 
for any sequence of estimators Bn of parameter() 

lim inf sup (2np2(t, t + 2un)t1 log Pe(IBn - OI >Un) 2:: -1. 
n-+oo 8=t,t+2un 

(2.33) 

It is easy to see that the traditional local asymptotical minimax lower 
bound (see Radavichius (1991) ) follows from Theorem 2.4. 

Corollary 2.3.( see Radavichius (1991)) Assume AO. Let Un > 0, Un -t 0, 
nu~ -t oo as n -too. Then for any 8 > 0 for any sequence of estimators o"n 

lim inf sup (nu~! /2t1 log Pe(IBn - OI > un) 2:: -1. 
n-+oo l8-tl<8 

(2.34) 

We say that a sequence of estimators Bn is Un-consistent if Pe(IBn - OI > 
8un) -t 0 as n -too for any 8 > 0 and all 0 , IB - ti < € , € > 0. 

Arguing similarly to the proof of Theorem 2.4 we obtain the following 
assertion. 

Theorem 2.5. Assume A. Let a sequence of estimators Bn is Un-consistent. 
Then 

lim sup (4np!t1! 2(12log Pt(IBn - ti> cun)l112+ n-+oo 
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l2logPt+un(IBn - t- Uni> (1- c)un)l112
):::; 1 

for any 0 < c < 1. 

(2.35) 

For the Cramer type large deviations of estimators we could not prove 
the direct analogues of (2.18),(2.19). Here the proof of the lower bound is 
also reduced to the problems of hypothesis testing. However the number of 
problems of hypothesis testing under consideration increases with increasing 
sample size. The Hellinger distance p( 81 , 82 ) can satisfy the assumption A and 
have as the function of two variables a rather irregular character. To take into 
account such a variation of the Hellinger distance the lower bound of the SLD 
efficiensy are given in the terms of the function R(t, C, u) = sup{p(B, 8 + u): 
IB - ul < Cu}. The values of R(t, C, u) used in the lower bound can be 
considered as the least favourable values of the Hellinger distance. 

Theorem 2.6. Assume A. Let Un > 0 , nu~w( un) ~ 0, nu~ ~ oo as n ~ oo. 
Then for any sequence of estimators Bn 

(2.36) 

for any sequence Cn ~ oo as n ~ oo. 
If Al-A3 is valid then (2.36) can be replaced by 

liminf sup Po(IBn - Bl> un)(2<I>(-(nl)112un))t1 2:: 1. 
n--+oo IO-tl<Cnun 

(2.37) 

Assume A2, A4. Then there exists a sequence events Un, P( Un) ~ 1 as 
n ~ oo , such that if in (2.37) the equality takes place for a sequence Cn, 
C~u~w( unCn) ~ 0 as n ~ oo then 

n 

x(I 2:9n(Xni, Bn)I > I/2nu~I)lx(Un)}(2<I>(-(nl) 112un))- 1 = 0, (2.38) 
i=l 

(2.39) 
for any sequence Bn, IBn - ti < Cnun. 

Similarly to the problems of hypothesis testing we say that a sequence of 
estimators Bn is MLD (SLD-respectively) asymptotically efficient if in (2.34) 
( (2.36) respectively) the equality takes place. 
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Remark 2.9. Theorems 2.1-2.6 are easily generalized on the k -sample case. 
Let X11, ... ,Xini' 1::; j::; k, be i.i.d.r.v.'s with p.m.'s P1r;, () E R1, n = 
ni + ... + nk and let n1/n---+ Vj as n---+ oo . Let the p.m.'s P18 , 1 ::; j ::; k, 
satisfy the assumption A. Then (2.11),(2.13),(2.33),(2.35) are valid with 

k 

P~ = L VJP2(PJtn1·, pitnJ 
j=l 

Let the p.m. 's P1e, 1 ::; j ::; k, satisfy Al-A3 and let 11 = lit be the 
Fisher information of Pje at the point () = t. Let vj, 1 ::; j ::; k satisfy the 
following assumption. 

AS. u~ max{ln1 - nvjl, 1 ::; j ::; k} ---+ 0 as n---+ oo . 

Then under this additional assumption (2.24),(2.25),(2.37) hold with I= 
L:j=1 v1Ii. For the brevity we om.it here the versions of Theorem 2.3 and 
(2.20)-(2.23),(2.26), (2.27),(2.38),(2.39). 

Remark 2.10. Let w(Pt) be the set of all maps <P : u ---+ Pt+u, u E (-8, 8), 
8 > 0, satisfiing (2.1) with a fixed constant C. Then it is easy to see 
from the proofs of Theorems 2.1,2.2,2.6 that the lower bounds given by 
(2.11),(2.14),(2.18),(2.25),(2.28),(2.33)-(2.37) are uniform on <P E w(Pt)· 
This implies that if we put inf<Pew{Pt) after lim infn-oo in (2.19),(2.25), (2.28), 
(2.33),(2.34),(2.36), (2.37) and sup<Pew{Pt) after limsupn-oo in (2.11),(2.14), 
(2.35) then these inequalities remain valid. It is easy to see that the conver-
gence in (2.13),(2.15) is also uniform on <P E w(Pt)· 

Remark 2.11. The proofs of Theorems 2.4 and 2.6 show the direct connection 
of the MLD and SLD asymptotic efficiencies in the problems of estimation 
and hypothesis testing. It follows from the proof of Theorem 2.6 that the 
SLD asymptotic efficiency of the sequence of estimates Bn is equivalent to the 
SLD asymptotic efficiency of the sequence of tests statistics Bn. At the same 
time the MLD asymptotic efficiency of tests statistics On for all sequencies 
un, nu~ ---+ oo as n ---+ oo , implies that the sequence of estimators Bn is MLD 
asymptotically efficient. 

Proof of Theorem 2.6. The proof will be given under the assumptions 
A2,A4. In the other cases the differences in the proof of (2.36) are insignif-
icant. For a sequence of parameters tn whose values will be defined later 
consider the [-problems of hypothesis testing Hnj : () = tni = tn + 2jun 
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versus the alternatives Hn,j+l : () = tn,j+l, 0 :=; j :=; 1 - 1. Define the se-
quences of tests Knj = x( Bn - tnj >Un)· Denote by O'.nj, f3nj respectively the 
type I and type II error probabilities of the tests Knj, 0 :=; j :=; 1 - 1. Put 
Tnj = O'.nj/<I>(-(nl)112un)) - 1, Snj = 1 - f3ni/<I>(-(nl) 112un)). 

Assume that (2.37) is not valid. Then there exist a sequence tn, ltn - ti < 
Cnun and € > 0 such that 

Tn,z-2-Sn,l-l < -€ and rn,j-1-Snj < o(l) 1:::; j:::; 1-2. (2.40) 

Note that r ni < 1 + o( 1) since otherwise implies 

P(IOn - ti >Un) ~ P(On - t >Un)= 2<I>(-(n/)112un)(l + o(l)). 

By (2.18) we.also have log(l + rni) + log(l - Snj) > o(l) 
Using (2.40), rno < 1 + o(l) and (1 + rnj)(l - Snj) > 1 + o(l) we obtain 

inductively Sno < 1/2 + o(l), rn1 < 1/2 + o(l), Sn1 < 1/3 + o(l), ... ,snj < 
1/(j +2)+o(l), rn,jH < 1/(j +2)+o(l) and so on. Since o(l) in all estimates 
does not depend on I the last inequalities contradict rn,l-2 - sn,l-l < -€ as 
l ~ 00. 

Assume that in (2.37) the equality takes place. Let I = Zn = o( Cn), 
Zn ~ oo as n ~ oo . Then, arguing similarly, we obtain that Snj < 1/j+o(1), 
rnj < 1/ j + o(l) as n ~ oo • By (2.20)-(2.23) this implies (2.38),(2.39) for 
Bn = tnin, in ~ oo as n ~ oo . Since here the choice of tn, ltn - ti < Cnun/2, 
is arbitrary we can take tnin = Bn, IBn - ti < Cnun/2. This completes the 
proof of Theorem 2.6. · 
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3. MLD and SLD asymptotically minimax lower bounds. 
In section we consider k-sample case in contrast to section 2. This caused 
the applications considered in the further papers. 

Section treats the following setting. Let (S, B) be a measurable space, 
let A be the set of all probability measures on (S, B), let Xji, ... , Xini be 
i.i.d.r.v.'s with probability measure Pi E A, 1 ~ j ~ k, and let the functional 
T : Ak -+ R1 be defined. Suppose the a priori information is given that 
P = P1 x ... x Pk E r ~ Ak. Denote n = n1 + ... + nk and assume 
ni / n -+ Vj, 1 ~ j ~ k, as n -+ oo . The problems under consideration 
are as follows. The estimation problem is to estimate a value of functional 
T(P) on the set r. The hypothesis testing problem is to test a hypothesis 
P E ft = ft(T) = {P : T(P) - t,P E f} against the alternatives P E 
I't(T,un) = {P: T(P) - t >Un' p E r},un > 0. 

Such an approach to the theory of nonparametric statistical inference has 
been proposed by C.Stein (1956) and developed by Levit (1974), Koshevnick 
and Levit (1976), Millar (1983), Phanzagl (1982), van der Vaart (1991 ), 
Ibragimov and Khasminskii (1991) and others. 

3.1. MLD asymptotic minimaxity. Introduce the standard terminol-
ogy arising in the problems of asymptotic statistical inference on a value of 
functional (see Phanzagl (1982), van der Vaart (1991) and Ermakov (1992)). 

For a fixed P = P1 x ... x Pk E r let II(r, P) be the set of all maps 
<I> : u -+ Pu from some interval (0, b') into r satisfiing for some function 
'P<P(xi, ... ,xk) = ('P1(x1), ... ,cpk(xk)), 'Pi E L2(Pj), 1 ~j ~ k, 

as u -+ 0. Here PJu and PJu , 1 ~ j ~ k, denote the absolutely continuous 
and singular components of p.m. Pju w.r.t. p.m. Pi. Let ..6.(f, P) be the 
set of all functions 'f'<P, <I> E II(r, P), thus defined and let L'.i(r, P) be the 
closure in L2 (P) of ..6.(r, P). Define the linear space L(r, P) as the closure 
in L2 (P) of the linear space generated by the functions 'P<P E ..6.(f, P). The 
linear space L(r, P) can be interpreted as a tangent space of r at a point P 
in the Hellinger metric. In the problems of asymptotic statistical inference 
the derivative of functional Tis natural to define as an element of the linear 
space L(r, P). 
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We say that the function ~P E L(f, P) is a gradient T on r at a point 
P E I' if it holds . 

T(Pu) - T(P) = uEetp<.p<f! + o(u), (3.2) 

for all <I> E IT(r, P). Here e1P'P<t! is the scalar product of eP = (6, ... , ek) 
and 'P<f!· 

The Fisher information of functional Ton rat a point P equals J(r, P) = 
(4v1Eei(X11) + ... + 4vkEeicxk1)t1. 

Denote !(ft)= sup{J(f, P) : PE ft}· 
Make the following assumption. 

B. For all P E rt there exists a gradient {p of the functional T on r and 
ep E A(r, P). 

For any sequence of tests Kn denote a(Kn) = sup{ a(Kn, P) : P E I't} 
and /3(Kn, Un) = sup{f3(Kn, P) : P E I't(T, Un)}. 
Theorem 3.1. Assume B. Let Un-+ 0, nu~-+ oo as n-+ oo . Then for any 
sequence of tests Kn such that 

it holds 

lim sup ( nu~I(I't) r 1
/ 2 I <I>-1 ( a( Kn)) + cp-1 ({3(Kn, Un)) 1::; 1. (3.4) 

n-+-oo 

Remark 3.1. It easy to see that a similar result holds for the sets of alter-
natives f:(T, Un) = {P : IT(P) - ti > Un, p E r} under the additional 
assumptions on the sequences of tests Kn 

a(Kn) < C < 1, 

Corollary 3.1. Assume B and let Un = u. Then for any sequences of tests 
Knu such that a(Knu) < C < 1, (nu 2 l(I't)t1l2 I 2 log a(Kn) 11/ 2< C < 1 it 
holds 

limsup lim sup (nu2 I(f t)t1l2(j 2 log a(Knu) 1
1/ 2 + 

tt.-+-0 n-+-oo 

I 2 log {3(Knu, U) j112 ) ::; 1. (3.5) 

The asymptotically minimax lower bounds for the local Bahadur, Hodges-
Lehmann and Chernoff efficiencies are the particular cases of (3.5)., 
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Indicate the similar lower bounds for the probabilities of the moderate 
large deviations of estimators. 

Theorem 3.2. Assume B. Let Un --;. 0, nu~ --;. oo as n __,. oo . Then for any 
sequence of estimators Bn for all 8 > 0 

lim inf inf (nu~J(ft)t1/2 log P(IOn - T(P)I > Un) ::; -L (3.6) 
n-+oo PEU(S,t) 

Here U(8, t) = {P: IT(P) - ti< 8, p Er}. 
The proofs of Theorems 3.1,3.2 are omitted. These proofs follow directly from 
Theorems 2.1,2.4 using the same arguments as the proof of the traditional 
asymptotically minimax lower bound for the problem of functional estima-
tion (see Koshevnick and Levit (1976) Theorem 2). Note that the proof of 
asymptotically minimax lower bound for the Pitman efficiency is also based 
on the same ideas (see Ermakov (1992)). 

We say that a sequence of tests Kn satisfiing (3.3) (estimators Bn) is mod-
erate large deviation or MLD asymptotically minimax if the left hand-side 
of (3.4) ( (3.6) respectively) equals one. Similarly the sequence of test statis-
tics Vn is called MLD asymptotically minimax if any sequence of tests Kn 
generated by the test statistics Vn and satisfiing (3.3) is MLD asymptotically 
rmmmax. 

3.2. SLD asymptotic minimaxity. Section treats the two settings. 
The first setting is the standard approach of the section 3.1. The second 
setting has the geometrical character and uses the Hellinger distance as a 
measure of asymptotic efficiency. The results are given in the case of w( u) = 
u'Y, 0 < / ::; 1. 

For the SLD asymptotically minimax inference the approach of section 3.1 
has the more complicated form. We were compelled to make the assumptions 
of uniform convergence similar to that used in Theorems 2.2,2.6. 

Define the space L2+'Y(P), P = P1 x ... x Pk, with the norm 

where ((xi, ... , xk) = ((1(x1), ... , (k(xk)). 
Fix C > 0 and introduce the set Ilc(r, P), P E r, of all maps q> : u __,.Pu 

from some interval (0, 8) into f satisfiing for some function 'P<f!(X1, ..• , Xk) = 
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k 
~ [ (P<: /dP· - 1 - u{/) ·)2dP· < Cu2+2.,, 
~ls Ju J rJ J ' 
J=l 

Pfu(S) < Cu2+.,, (3.7) 

for 1::; j::; k. Let ~c(r,P) be the set of all functions t.p<P, <I> E IIc(r,P), 
thus defined and Lic(r, P) denote the closure in L2+'Y(P) of ~c(r, P). 

Make the following assumptions 
B 1. There exists C such that eP E ~c (r, P). 
Here eP is a gradient T on r at the point P. 
B2. There exists C1 such that 

IT(Pu) - T(P) - uEetp<.pj < C1ui+.,, 

for all <I> E II0 (r,P). 
Theorem 3.3. Assume Bl,B2,A5. Let Un > cn-1!2 ' nu~+'I' -+ 0 as n -+ 00. 

Then for any sequence of tests Kn satisfiing (3.3) 

lim inf (nu~I(rt))1l2 ((nu!I(rt)) 1l2 + <I>-1 (a(Kn))+ 
n-oo 

Remark 3.2. Under the same assumptions the similar results are valid for the 
sets of alternatives f;(T, un)· For any sequence of tests Kn, a(Kn) < C < 
1, (nu~J(rt)}-1 j2loga(Kn)I < 1 it holds 

lim inf (nu~I(rt))1l2 ((nu~J(rt)) 1l2 + <I>-1(a(Kn))+ 
n-oo 

Theorem 3.4. Assume Bl,B2,A5 and let nu; -+ oo , nu~w( un) -+ 0 as 
n -+ oo . Then for any sequence of estimators On 

lim sup sup P(IBn-T(P)I > un)/(2<I>(-n-1l 2unf112(rt))) 2:: 1. (3.10) 
n-oo PEU(Gn,un,t) 

for all sequences Cn -+ oo as n -+ oo . 
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The main idea of the proofs of Theorems 3.3,3.4 is the same as in the 
proofs of Theorems 3.1,3.2. Let <I>n: u-+ Pm.t.' <I>n E Ilc(f, P) be a sequence 
of maps such that ll'Pn - ePll2+')' < Cu~, 'Pn = cp~n· Since Ilc(f, P) ~ w(P) 
then by Remark 2.10 we have 

sup Pne(IBn-BI > Un)/(2<I>(-2n112unE112cp~(X1))) ~ l+Sn(Cn) 
IBl<Cnun 

(3.11) 

where Sn(Cn)-+ 0 as n-+ oo for any sequence Cn-+ oo as n-+ oo and Sn(Cn) 
does not depend on the sequence of maps <I>n E Ilc(r, P). This implies (3.10). 
The proof of Theorem 3.3 is similar and is omitted. 

The second setting is as follows. For any p.m. 's P1 = P11 x ... x Plk, 
P2 = P21 x ... x P2k E Ak denote 

with Qi = 1/2 (Pii + P2i)· Put p')'(Pi, P2) = p')'o(Pi, P2). For any C > 0 
define the functions 

(3.12) 

If the p.m.'s P1 E ft, P2 E I't+u such that p')'(Pi, P2) <Cu do not exist then 
put R(t, u, C) = 0. For any C,Cn denote Rcn(t, u, C) = sup{R(B, u, C) 
IB - ti< Gnu}. 

Make the following assumption. 

B3. There exist A> 0, a> 0 such that R(t, u, A)> au, for all u, 0 < u < u0 • 

Note that in B3 we do not make any direct assumptions on the functional 
T. The essential role plays only the geometrical structure of the sets r t+u 
defined on T. 

Theorem 3.5. Assume B3,A5. Let Un > cn-1! 2 ' nu~+')' -+ 0 as n -+ 00 • 

Then for any sequence of tests Kn satisfiing (3.3) 

lim inf ( 4nR2
( t, Un, C) )112

( ( nR2
( t, Un, C) )1/ 2 + <I>-1 (an( Kn))+ 

n-+oo 
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for all C > 0. 

Theorem 3.6. Assume Bl. Let nu~ --7 oo , nu~+-r --7 0 as n --7 oo . Then 
for any sequence of estimators Bn 

1. . f P(IBn - T(P)j > Un) > l 
im m sup ( 112 ( C)) _ 

n--+oo PEU(Gn,un,t) 2~ -2n Ren T, Un, 
(3.14) 

for all sequences Cn --7 oo as n --7 oo . 

The proofs of Theorems 3.5,3.6 are based on the same arguments as the 
proofs of Theorems 3.3,3.4 and are omitted. The uniform convergence of the 
reminder term in the corresponding version of (3.11) is ensured here by the 
condition P-r(P1, P2) < Cu in (3.12). 

We say that a sequence of tests Kn satisfiing (3.3) (respectively estimators 
Bn) is strong large deviation or SLD-asymptotically minimax if (3.8) or (3.13) 
(respectively (3.10) or (3.14)) is valid. Similarly we call SLD asymptotically 
minimax a sequence of test statistics generating the SLD asymptotically min-
imax sequences of tests. 
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4. Proofs of Theorems 2.1,2.2. 
To simplify the notations we assume t = 0 and denote E( =Et(, P(D) = 

Pt(D) for any random variable (and event D. For any v E R1 put 

Ti = Ti(O), T/ni = T/ni(O), 1 :::; i :::; n. Since the relations are proved usually 
for the arbitrary value of index i, 1 :::; i :::; n, we shall omit in such cases 
the index i in notations assuming that the value i = 1 is considered, that is, 
T( v) = T1 ( v ), T/n = T/nt and so on. For a fixed € > 0 and all 1 :::; i :::; n define 
the events 

Denote Un = ni=t Bni. 
For fixed constants Cn , ICnl < Cn112pn, define the sequence of the like-

lihood ratio tests 
n 

Ln = x{Il f(Xi, Un+ Vn)/ f(Xi, Vn) > exp{-Cn}} 
i=l 

and the sequences of tests 

n 

Nn1 = x{ Un :E Ti > np~ - Cn/2}x(Un), 
i=l 

n 

Nn2 = X{L(T/ni + 1/2 p~) > np~ - Cn/2}x(Un1) 
i=l 

where the sets Uni will be defined later. 
The plan of the proof is as follows. First we find the asymptotics of 

an(Ln), f3n(Ln) and as a result obtain (2.10)-(2.15),(2.18),(2.19),(2.24),(2.25). 
Then we prove that the asymptotics of the type I and type II error probabil-
ities of the tests Nn1 and Nn2 coincide with the corresponding asymptotics 
of an(Ln), f3n(Ln)· A simple analysis of the proof of the Neyman-Pearson 
Lemma (see Lehmann (1986)) shows that this implies (2.20)-(2.23),(2.26),(2.27). 

For the sake of simplicity the estimates will be given under the assumption 
P0(S) = 0, IOI < 8 , 8 > 0. The additional addendums arising without this 
assumption are easily estimated and have the smaller order. 
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For the proof of Theorems 2.1,2.2 we shall use the following representation 
of the likelihood ratio 

n n 

ITf(Xi,Un + Vn)/f(Xi,vn) = exp{2L)7Jni(vn)-1/2 p~)- 2np! + (ni} 
i=l i=l 

with (n1 ~ 0 in probability as n ~ oo. 
This representation allow us to prove the results under Assumption A 

instead of the traditional assumptions assuming the existence of the finite 
Fisher information. Thus we refuse from the traditional representation of 
the likelyhood ratio (see Hajek (1970),(1972)) 

n n IT f(Xi, Un+ Vn)/ f(Xi, Vn) = exp{2un L Ti - nu!I /2 + (n2} 
i=l i=l 

with (n2 ~ 0 in probability as n ~ oo. 
The asymptotics of the type I and type II error probabilities of tests 

Ln, Nn1 and Nn2 will be obtained on the base of the following Theorem about 
the moderate and Cramer type large deviations of sums of independent iden-
tically distributed random variables. This Theorem is a version of Theorem 
3.2 in Saulis and Statuliavichius (1990). 

Let Yi, ... ,Yn be i.i.d.r.v.'s, EYJ. = 0, EYl = a2. Denote Sn= Yi+ .. . +Yn 
and put Fn(x) = P(Sn < xan112 ). 

Make the following assumption. 
P. There exist a constant C and a sequence of constants Dn, nD~ ~ oo as 
n ~ 00 ' such that 

llogEex_p{sYi}I < Cs2
, (4.1) 

Theorem 4.1. Assume P. Then there exists 8 > 0 such that 

(1 - Fn(x))/(1 - <P(x)) = 1 + o(l) (4.2) 

log(l - Fn(x)) = log(l - <P(x))(l + o(l)) (4.3) 

for 0 < x < min{n112 Dn, 8n112} as n ~ oo . The convergence in (4.2), (4.3) 
is uniform on the sets of all distributions satisfiing ( 4.1 ). 
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The next four Lemmas have the auxilliary character. 

Lemma 4.1. Assume A and let lvnl <Cun . Then 

for any r > 1. 

Proof. Denote 1fn(vn) =(!(Xi, Vn)/ f(X1, 0))112 -1. Since 17n(vn) = (11-n(Vn + 
Un) -1fn(vn))/(1+1fn(vn)) then l77n(vn)I > E/r implies 11fn(vn)I > E/(2r) or 
11fn(Vn + un)I > E/(2r). Therefore 

Evn17~(vn)X(l17n(vn)I > E/r) = 
E(1fn(vn +Un) -1fn(vn))2X(l17n(vn)I > E/r)::; 
4E1]~(vn + Un)X(l1Jn(Vn + Un)I > E/(2r))+ 

4E1J~(vn)X(l1Jn(vn)I > E/(2r))::; Cu~w(un/r). 
This completes the proof of Lemma 4.1. 

Lemma 4.2. Al,A2 imply A. 
Proof. We have 

E17~x(l11nl > E/r)::; 4E(17n - Unr) 2x(l11n- Unrl > E/(2r))+ 

4u!Er2x(lrl > E/(2r)u;,1
). 

By Al,A2 this implies A. 
Lemma 4.3. Assume A. Then 

P(An) = O(u!w(un)), 

Pun(An) = O(u!w(un)), 
El11nl3 x(Bn) = O(u!w(un)). 

Proof. By A and the Chebyshov inequality 
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Denote 7Jn = (!(Xi, 0)/ J(X1, un)1l2 - 1, 1 :S i :S k. Since l77nl > t implies 
l7Jnl > t/2 then, by Lemma 4.1, 

Pun(An) :S Pun(l7Jnl > t/2) :S 

t-2 Eun7J~x(l7Jnl > t/2) = O(u~w(un)). (4.9) 
Prove (4.7). Let k ~ 1/2llog(unw(un))l/log2. Then 

k 

El7Jnl 3 x(Bn) < Cu~w(un) + CE17~ I:2-ix(t2-i < l77nl < t21-i) < 
j=l 

. k 

Cu~w(un) + c2-kE17~ L x(t2-i < l77nl < t) < 
j=l 

k 
Cu~w( Un)+ c2-ku! L 2k-iw(2-kt) < Cu~w( Un) ( 4.10) 

j=l 

since w(2-it) < 2k-iw(2-kt) < c2k-iw(un)· 
Lemma 4.4. Assume A2, A4. Then 

IP! - u!II < Cu~w( Un), ( 4.11) 

1Evnr(vn)(7Jn(vn) - UnT(vn))I < Cunw(un)· (4.12) 

Proof. By the Schwartz inequality we have · 

Evnr(vn)(7Jn(vn) - UnT(vn)) :S 

(Evnr2 (vn)) 112(Evn(7Jn(vn)- UnT(vn)) 2
)

112 = O(unw(un)). (4.13) 

Hence we obtain 

Evn(17n(vn) - UnT(vn)) 2 = u~J + O(u!w(un))). (4.14) 

This completes the proof of Lemma 4.4. 
In that follows the proofs will be given in the case Vn = 0. The estimates 

in the general case are obtained similarly using ( 4.4) instead of ( 2.1). 
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Lemma 4.5.1. Assume A. Let Un -+ 0, nu~ -+ oo as n -+ oo . Then 

a( Ln) > exp{ -(2np! - Cn) 2 
/ (8np~)(l + o(l)) + o( np~)}, ( 4.15) 

f3n(Ln) > exp{-(2np! + Cn)/(8np~)(l + o(l)) + o(np~)} (4.16) 

as n-+ oo . 

Now (2.14) follows from (4.15),(4.16). 

Lemma 4.5.2. Assume A. Let Un > Cn-1! 2 , nu~w( un) -+ 0 as n -+ oo. 
Then 

an(Ln) ~ g_}(-(2np!- Cn)/(2n112 pn))(l + o(l)), (4.17) 

f3n(Ln) ~ g_}(-(2np! + Cn)/(2n112 pn))(l + o(l)) (4.18) 

as n-+ oo . 
Now ( 4.17),( 4.18) imply (2.18). 

Proof of Lemmas 4.5.1, 4.5.2. By the simmetry of the problem it suffices to 
prove only ( 4.15),( 4.17). 

Denote Yni = log(f(Xi, un)/ f(Xi, 0)), 1 ~ i ~ n. Define the random 
variables Yni( c), having the conditional distribution Yni under the condition 
Bni· Put 

By ( 4.5) we have 

n 

Sn= L:Yni' 
i=l 

n n 

n 

Sn( c) = LYni( c). 
i=l 

P(Bn) = IT(l-P(Ani)) ~exp{- L:P(Ani)) ~ exp{O(nu!w(un))}. (4.19) 
i=l i=l 

Hence we obtain 

as n-+ oo. 
Thus, for the proof of ( 4.15),( 4.17) it suffices to apply Theorem 4.1 to 

Sn(c). We have 

E(Yn I Bn) = 2Jnl - Jn2 + Jn3 ( 4.21) 
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where 

with 0 ::; I ::; 1. 
By ( 4. 7) we obtain 

By Al and ( 4.5),( 4.6) we obtain 

Jn2 = P! + 0( u!w( Un)), ( 4.23) 

Jn1 = -1/2 Jn2 + O(u~w(un)). (4.24) 

Now ( 4.21)-( 4.24) together imply 

E(Yn I Bn) = -2p~ + O(u~w(un)). (4.25) 

Arguing similarly we obtain 

E(Y; I Bn) = 4p! + 0( u~w( Un)). ( 4.26) 

Thus it remains to test (4.1). By the Taylor formular we have 

E(exp{8Yn}IBn) = 1+8E(YnlBn) + 82 /2 E(Y,?IBn) +Mn (4.27) 

with Mn = 83 /6 E(Y; exp{ /8Yn} IBn) and 0 ::; / ::; l. 
By ( 4. 7) we obtain 

Mn = 4/3 83 E{log3 (1+7/n)(l + 7ln)2"'8 1Bn) < 

083 E(log3 (1+1/n)IBn)::; 083 E(l77nl3 1Bn)::; C83u~w(un)· (4.28) 

Now ( 4.26)-( 4.28) together imply that 

logE(exp{8(Yn - E(YnlBn))}IBn) = 282p~ + 0(83u!w(un) + 82u~w(un)). 

Therefore the Assumption P of Theorem 4.1 is satisfied with Dn = un/w( un)· 
This completes the proof of Lemmas 4.5.1, 4.5.2. 
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Lemma 4.6.1. Assume A. Let nu~~ oo as n ~ oo . Then 

an(Ln) < exp{-(2np! - Cn) 2 /(8np!)(l + o(l)) + o(np~)}, 
f3n(Ln) < exp{-(2np! + Cn)2 /(8np~)(l + o(l)) + o(np~)} 

asn~oo. 

( 4.29) 

( 4.30) 

Lemma 4.6.2. Assume A. Let Un> cn-1! 2 , nu~w(un) ~ 0 as n ~ 00 . 

Then 

an(Ln) < <I>(-(2np~ - Cn)/(2n112pn))(l + o(l)), 

f3n(Ln) < <I>(-(2np~ + Cn)/(2n112Pn))(l + o(l)) 
as n ~ oo. 

( 4.31) 

( 4.32) 

Lemmas 4.5.1, 4.5.2 and 4.6.1, 4.6.2 together imply that the left and right 
handsides of ( 4.29)-( 4.32) equal. Thus we obtain the exact asymptotics of 
an(Ln), f3n(Ln) that implies (2.13),(2.18). 
Proof. Show that the asymptotics of an(Nn1), f3n(Nn1) are given by the 
right handsides of ( 4.29)-( 4.32). Then ( 4.29)-( 4.31) will follow from Lemmas 
4.5.1,4.5.2 and the Neyman-Pearson Lemma. We find only the asymptotics 
of an(Nn1). The estimates in the case of f3n(Nn1) are similar and are omitted. 

Similarly to (4.23),(4.24),(4.27) we have 

ETJnX(Bn) = -1/2 p~ + O(u~w(un)), (4.33) 

ETJ~x(Bn) = P! + O(u!w(un)), (4.34) 

E exp{STJnX(Bn)} = 1 + sETJnX(Bn) + s2 /2 ETJ!x(Bn) + Mn1 (4.35) 

with Mn1 = s3ETJ~exp{S/TJn}x(Bn) and 0 ~ / ~ 1. 
By ( 4. 7) we have 

Mn1 < Cs3 EITJnl3 x(Bn) < Cs3u!w(un)· (4.36) 

Now ( 4.33)-( 4.36) together imply that Assumption P of Theorem 4.1 is sat-
isfied with Dn = un/w( un)· Therefore an(Nni) has the required asymptotics. 
This completes the proof of Lemmas 4.6.1, 4.6.2. 

Since an(Nn1), f3n(Nn1) have the same asymptotics as an(Ln), f3n(Ln) then 
by the Neyman-Pearson Lemma this implies (2.20)-(2.23). 
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Prove (2.26),(2.27) and the corresponding versions of (2.22), (2.23). In 
this case we change the definitions of the sets Ani, Bni, 1 :::; i :::; n, and the 
set Un = Uni. Put 

Ani = {Xi : l77nil > €or !rd > rn;1 
}, 

Bni = {Xi : l77nil < €and lril < rn;1 
}. 

Denote Un= Uni= ni=i Bni· 
Lemma 4.7. Assume Al,A2. Then 

for all v, Iv - vnl < Cun. It also holds 

EvnT2(vn)X(lr(vn)I > rn;1
) < Cw(un), 

Pvn(lr(vn)I > Cu;1
) < Cu~w(un), 

UnEvn Ir( Vn) l3 X( Bn) <·Cw( Un), 

unEwJr(vn)l3 x(Bn) < Cw(un), 
UnEwnT 2 (vn)X(lr(vn)I > rn;1

) < Cw(un), 
Pwn(lr(vn)I > rn;1

) < Cu~w(un)· 
Here Wri =Un+ Vn· 

( 4.38) 

( 4.39) 

( 4.40) 

( 4.41) 

( 4.42) 

( 4.43) 

Note that ( 4.37),( 4.38) coincide with (2.3),(2.4) in the case Vn = 0, v = 0. 
Thus if we prove ( 4.37),( 4.38) then in the furher arguments it suffices to 
consider the case Vn = 0. · 

Proof. Since 

(Jlf2(x, Vn + v) - Jlf2(x, vn))2:::; 2(J1f2(x, Vn + v) - J1f2(x, 0))2+ 

2(Jlf2(x, vn) - J1f2(x, 0))2 

then ( 4.37) follows from Lemma 4.2. 
By A2 and Lemma 4.2 we have 
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Er2 x( Ir( Vn) I > w~1 , lrl < E/2 u;1
) + 0( w( un)) :::; 

Cu;2 P( Ir( vn) I > w;1, lrl < E/2 u;1 ) + 0( w( un)) = 
Cu;2P(jr(vn)I > w~1, lrl < E/2u;1, 11lnl < E) + O(w(un)). (4.44) 

Since r(vn) = r(l + 217n)/(l + 1}n) then the first addendum in the right 
handside of ( 4.44) equals zero that implies ( 4.38). 

The proof of ( 4.40) is similar to that of ( 4. 7). Let k > I log un/ log 21. 
Then we have 

k 

unElrl 3x(Bn) <Cun+ Er2 L 2-ix(2-iu;1 < lrl < 21-iu;1 ) < 
j=l 

k 

Cun+ c2-k Er2 L x(2-iu;1 < lrl < u~1 ) < 
j=l 

k 

Cun+ c2-k Lw(2iun) < Cw(un) 

since w(2iun) < 2iw( un)· 
We have 

j=l 

UnEun lrl3 x(Bn) = UnElrl 3(l + 1ln)-2x(Bn) < 

CunElrl3 x(Bn) < C~( Un)· 
This implies ( 4.41). 

The proof of ( 4.42) is similar to that of ( 4.41) and is omitted. 
By the Chebyshov inequality we obtain ( 4.39),( 4.43) from ( 4.38),( 4.42). 

This completes the proof of Lemma 4. 7 
Lemma 4.8. The asymptotics of an(Nn1), f3n(Nn1) are given by the right 
handsides of ( 4.31),(4.32) respectively. 

Proof. Using A2,A4,(4.39), Er = 0 and the Chebyshov and Schwartz 
inequalities we obtain 

Erx(Bn) = Erx(An) < 

Elrlx(l1ln - unrl > E/2 or lrl > t/2 u~1 ) < 
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Elrlx(l1Jn - unrl > E/2) + Elrlx(lrl > E/2 u;;_-1
) < 

2(Er2
)

1
/

2 P112 (117n - Un Tl > E/2)+ 
E112r 2x(lrl > E/2 u-;_1

) x 
P112(lrl > E/2 u;,1) < Cunw( Un)· ( 4.45) 

Estimate Er2 x(Bn)· By A2,A4 we obtain 

We have 

1Er2x(Bn) - Er2
1 < Er2x(lrl > E/4u;;_-1)+ 

Er2x(l1Jn - UnTI > E/4, lrl < E/4u;;_-1
) < 

Cw(un) + u;;,-2 P(l1Jn - Un Tl> E/4) < Cw(un)· (4.46) 

Eun rx(Bn) = Er(l + 1Jn)2x(Bn) = 
Er(l + (1Jn - UnT) + Unr)2x(Bn) = 

Erx(Bn) + 2unEr2x(Bn) + u~Er3x(Bn) + Rn1 + Rn2 + Rn3 (4.47) 
where, by A4, 

Rn1 = 2Er(1Jn - Unr)x(Bn) ::; 
2E112r2 E112 (1Jn - Un T )2 < Cunw( Un), ( 4.48) 

Rn2 = 2unEr~(1Jn - Unr)x(Bn) < 
CElr(1Jn - Unr)I < Cunw(un), (4.49) 

Rn3 = Er(1Jn - UnT) 2x(Bn) < 
CElr(1Jn - UnTn)I < Cunw(un)· (4.50) 

Now ( 4.47)-( 4.50) together imply that 

Eunrx(Bn) = l/2unl + O(unw(un)). (4.51) 

By ( 4.40),( 4.49) we have 

!Eun r 2x(Bn) - Er2x(Bn)I = Er2((l + 1Jn)2 
- I)x(Bn) < 

3Er2 117nlx(Bn) < 3unEr3x(Bn) + 3u;;_-1Rn2 < Cw(un)· (4.52) 

'.m: 
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Thus it remains to test (4.1) for the random variables Yi= UnTiX(Bni)· We 
have 

E exp{ sunrx(Bn)} = 1 + sunErx(Bn)+ 
1/2 s2u~Er2x(Bn) + Mn2 ( 4.53) 

where 
Mn2 = L l/k! sku~Erkx(Bn) 

k=l 

By ( 4.40) we obtain 
00 

IMn2I :::; L 1/k! sku~fk-3 Elrl3 x(Bn):::; 
k=3 

00 CE l/k! sku!€k-3w(un)· 
k=3 

This implies that 

for all Isl :::; An = un/w(un)· The estimates of Eun exp{sunrx(Bn)} are 
similar. This implies (2.26),(2.27). 

The proof of (2.22),(2.23) follows easily from ( 4.39),( 4.43) and Lemmas 
4.2,4.8. This completes the proof of Theorem 2.2. 
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