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Abstra
tIn this paper we present the new numeri
al algorithm GEOMS for the numer-i
al integration of the most general form of the equations of motion of multi-body systems, in
luding nonholonomi
 
onstraints and possible redundan
iesin the 
onstraints, as they may appear in industrial appli
ations. Besides thenumeri
al integration it o�ers some additional features like stabilization of themodel equations, use of di�erent de
omposition strategies, or 
he
king and
orre
tion of the initial values with respe
t to their 
onsisten
y. Furthermore,GEOMS preserves hidden 
onstraints and (possibly) existing solution invariantsif they are provided as equations.We will also demonstrate the performan
e and the appli
ability of GEOMS fortwo me
hani
al examples of di�erent degrees of 
omplexity.1 Introdu
tionThe multibody system (MBS) approa
h is frequently used in industrial simulationpa
kages in roboti
s, vehi
le system dynami
s, and biome
hani
s. A multibodysystem model 
onsists of a �nite number of rigid or elasti
 bodies and their in-ter
onne
tions like, e.g., joints, springs, dampers, and a
tuators. The equations ofmotion may be generated in a systemati
 way by multibody formalisms that arebased on the prin
iples of 
lassi
al me
hani
s [35℄.The e�
ient and robust numeri
al integration of these equations is a 
hallengingproblem in the development of simulation pa
kages, sin
e dynami
al simulation isfrequently used and one of the most time 
onsuming analysis methods for MBSmodels. The equations of motion with nonredundant 
onstraints form a nonlinearsystem of di�erential-algebrai
 equations (DAEs) of di�erentiation index (d-index)3, see [7, 10, 13, 18℄. It is well known that the numeri
al treatment of DAEs of highindex or higher index, i.e., d-index 2 or larger than 2, respe
tively, is nontrivial ingeneral. E�e
ts arising in the numeri
al treatment are, for example, drift, instabil-ities, 
onvergen
e problems, or in
onsisten
ies. These di�
ulties in the numeri
alsolution of su
h high index problems are dis
ussed in [4, 12, 14, 15, 17, 18, 24, 29, 30℄.However, the equations of motion are DAEs with a very spe
ial stru
ture that shouldbe exploited in the numeri
al solution [7, 18℄.In this report we will present the new software pa
kage GEOMS for the numeri
alintegration of general equations of motion of multibody systems in des
riptor form.In 
ontrast to standard textbook presentations like [18℄, we do not restri
t ourselvesto 
lassi
al 
onstrained me
hani
al systems but 
onsider the more 
omplex modelequations that are a
tually used in state-of-the-art MBS simulation pa
kages [7, 34℄.1



The software pa
kage GEOMS is suited for general equations of motion involving dy-nami
al for
e elements, 
onta
t 
onditions, and (possibly) redundant holonomi
 aswell as nonholonomi
 
onstraints. Furthermore, the pa
kage takes into a

ount pos-sibly existing information 
on
erning solution invariants, e.g., energy 
onservation.The 
ode is based on residual evaluations, i.e., the system need not be given 
om-pletely in expli
it form. It is su�
ient that the right-hand side of the equations ofmotion and the mass matrix are spe
i�ed.Although, the pa
kage GEOMS is able to treat also redundant 
onstraints, in thispaper we will restri
t our 
onsiderations to regular equations of motion, i.e., the
onstraints are assumed to be nonredundant. For more details on equations of mo-tion with redundant 
onstraints we refer to [26, 38℄.As base of the integration method GEOMS we will propose a remodeling of the equa-tions of motions. The aim of this remodeling is to determine an equivalent formula-tion, the so 
alled proje
ted-strangeness free form, whi
h has d-index 1 but has thesame set of solutions as the original equations of motion. Be
ause of the redu
edd-index, the numeri
al treatment of the proje
ted-strangeness free form by use ofimpli
it ODE methods is not a�e
ted by instabilities arising from the higher index.Furthermore, all (hidden) 
onstraints are preserved su
h that no drift-o� e�e
ts arisein the numeri
al treatment. The proposed remodeling 
an be seen as regularizationof the equations of motion. For more details on the regularization of equations ofmotion we refer to [38℄. The integration method implemented in GEOMS 
ombinesan impli
it Runge-Kutta-Method of order 5 with this regularization te
hnique.The report is organized as follows. In Se
tion 2 we introdu
e the equations of motionwhi
h we want to treat numeri
ally and we dis
uss the remodeling to the proje
ted-strangeness-free form whi
h will be used for the dis
retization in GEOMS. In Se
tion3 we introdu
e the 
ode GEOMS and we dis
uss its features and its appli
ability indetail. In Se
tion 4 we demonstrate the properties of the software pa
kage GEOMS bytwo numeri
al examples. For the usage and implementation of GEOMS the manual ispresented in Appendix A.2 The Equations of Motion and their RemodelingHere and in the following we will use the following notation.Notation 2.1 Let f be a di�erentiable fun
tion f : X → R
m, X ⊂ R

n, and let
x be a di�erentiable fun
tion x : I → X, where I is an open interval in R. The
ith (total) derivative of x(t) with respe
t to t is denoted by x(i)(t) = dix(t)/dti for
i ∈ N0. Note the 
onvention x(0)(t) = x(t), x(1)(t) = ẋ(t), and x(2)(t) = ẍ(t). The(partial) derivative of f(x) with respe
t to x is denoted by f,x(x) = ∂

∂x
f(x). Thesame notation is used for di�erentiable ve
tor and matrix fun
tions. The set of

l-times 
ontinuously di�erentiable fun
tions from X to Y is denoted by Cl(X, Y). ⊳In the following we investigate a spatial multibody system with holonomi
 as well asnonholonomi
 
onstraints [19, 33℄. More pre
isely we 
onsider the following initial2



value problem on the domain I = [t0, tf ] 
onsisting of the equations of motion in theform
ṗ = Z(p)v, (1a)

M(p, t)v̇ = f(p, v, r, w, s, λ, µ, t)− ZT (p)GT (p, s, t)λ − ZT (p)HT (p, s, t)µ, (1b)
ṙ = b(p, v, r, w, s, λ, µ, t), (1
)
0 = d(p, v, r, w, s, λ, µ, t), (1d)
0 = c(p, s, t), (1e)
0 = H(p, s, t)Z(p)v + h(p, s, t) (= h̆(p, v, s, t)), (1f)
0 = g(p, s, t) (1g)with the initial values

p(t0) = p0 ∈ R
np, v(t0) = v0 ∈ R

nv , r(t0) = r0 ∈ R
nr , w(t0) = w0 ∈ R

nw ,
s(t0) = s0 ∈ R

ns, λ(t0) = λ0 ∈ R
nλ , µ(t0) = µ0 ∈ R

nµ .
(2)Here, the position ve
tor p 
ontains arbitrary position 
oordinates of the multibodysystem. The Euler-Lagrange formalism for modeling multibody systems yields theequations of motion in se
ond order form. In order to transform the se
ond ordersystem to an equivalent �rst order system we introdu
e a velo
ity ve
tor v and getthe relation (1a) between the generalized velo
ities ṗ and the velo
ities v with amatrix Z(p), that determines the angular velo
ities. The equations (1a) are 
alledkinemati
 equations. The transformation matrix Z(p) o

urs only if there are ro-tations in three dimensional spa
e, it may be determined by Poisson's kinemati
alequations [1, 7℄. In the two dimensional 
ase we have Z(p) = I, ṗ = v.The equations (1b) are 
alled dynami
 equations of motion. They follow from theequilibrium of for
es and momenta and in
lude the mass matrix M(p), the ve
torof the applied and gyros
opi
 for
es f(p, v, r, w, s, λ, µ, t), the 
onstraint matri
es

G(p, s, t) and H(p, s, t) of the holonomi
 and nonholonomi
 
onstraints, respe
tively,whi
h 
ontain the ina

essible dire
tions of motion 
olumn-wise, the asso
iated 
on-straint for
es GT (p, s, t)λ and HT (p, s, t)µ, and the Lagrange multipliers λ and µ.The holonomi
 
onstraint matrix is de�ned as G(p, s, t) = d
dp

g(p, s(p, t), t). Themass matrix M(p) is positive semi-de�nite, sin
e the kineti
 energy is a nonnegativequadrati
 form, and in
ludes the inertia properties of the multibody system.In a real multibody system, there are often dynami
 for
e elements whi
h are de-s
ribed by the ve
tor r and determined by equations (1
), see [7℄.Furthermore, not all 
onstraints of a multibody system are dire
tly des
ribed bythe position variables p or the velo
ity variables v, but depend on 
ertain 
onta
tpoints with 
oordinates s on the surfa
e of some bodies. The relationship betweenthese 
onta
t point 
oordinates s and the position variables p are given by (1e).Furthermore, the equations of motion are a�e
ted by the nλ holonomi
 
onstraints(1g) and nµ nonholonomi
 
onstraints (1f). These 
onstraints are also 
alled theholonomi
 
onstraints on position level and the nonholonomi
 
onstraints on velo
-ity level, respe
tively. Sometimes, for
e laws and 
onstraints may be formulatedmore 
onveniently using auxiliary variables w that are impli
itly de�ned by the nw3



possibly nonlinear equation (1d).Here, n = np +nv +nr +nw +ns +nλ +nµ denotes the number of unknown variables.Furthermore, many motions of me
hani
al systems have known solution invariants,i.e., relations whi
h are satis�ed along any motion of the me
hani
al system, likethe invarian
e of the total energy, momentum, or impulse. Let us denote the meequations des
ribing su
h solution invariants by
0 = e(p, v, s, t). (3)In parti
ular, 
onservative multibody systems are energy 
onserving. In this 
asethe total energy is 
onstant along every motion of the system. For more details onsolution invariants we refer to [38℄.The theoreti
al basis of the 
ode GEOMS is based on the following assumptions.Assumption 2.2 Consider the equations of motion (1). Then the matri
es

a) d,w, (4a)
b) c,s, (4b)
c) M (4
)
d)

[

GZM−1Gλ GZM−1Hµ

HZM−1Gλ HZM−1Hµ

] (4d)are assumed to be nonsingular with a bounded inverse for all (p, v, r, w, s, λ, µ, t) ∈
M, see (10), where

Gλ = ZT GT − f,λ + f,wd−1
,w d,λ, (5)

Hµ = ZT HT − f,µ + f,wd−1
,w d,µ. (6)Furthermore, it is assumed that

d ∈ C1(M, Rnw), c ∈ C1(M, Rns), h̆ ∈ C2(M, Rnµ), g ∈ C3(M, Rnλ).Remark 2.3 a) The nonsingularity of the mass matrix M is assumed only forreasons of simpli
ity. It is not ne
essary for the su

essful numeri
al integrationwith GEOMS.b) Furthermore, note that in Assumption 2.2 redundant 
onstraints are ex
luded.Redundant 
onstraints may result in a nonuniqueness of the Lagrange multipliers.Nevertheless, GEOMS is able to deal with 
ertain types of redundant 
onstraints. Formore details on redundant 
onstraints see [26, 38℄. ⊳Using the equations of motion (1), the �rst and se
ond derivatives with respe
t to tof the holonomi
 
onstraints (1g) are given by
0 = gI(p, v, s, t) =

d

dt
g(p, s, t) (7a)

= GZv + g,t − g,sc
−1
,s c,t (7b)4



and
0 = gII(p, v, r, w, s, λ, µ, t) =

d2

dt2
g(p, s, t) (8a)

= (gI
,p − gI

,sc
−1
,s c,p)Zv + GZM−1(f − ZT GT λ − ZT HTµ) + gI

,t − gI
,sc

−1
,s c,t. (8b)They are 
alled holonomi
 
onstraints on velo
ity level (7a) and holonomi
 
on-straints on a

eleration level (8a), respe
tively. The �rst derivative with respe
t to

t of the nonholonomi
 
onstraints (1f) is given by
0 = hI(p, v, r, w, s, λ, µ, t) =

d

dt
(H(p, s, t)Z(p)v + h(p, s, t)) (9a)

= (h̆,p − h̆,sc
−1
,s c,p)Zv + HZM−1(f − ZT GT λ − ZT HTµ) + (h̆,t − h̆,sc

−1
,s c,t)(9b)whi
h are 
alled nonholonomi
 
onstraints on a

eleration level (9a).The holonomi
 
onstraints on velo
ity level and on a

eleration level in form (7b)and (8b), respe
tively, as well as the nonholonomi
 
onstraints on a

eleration levelin form (9b) turn out to be the hidden 
onstraints of the equations of motion, see[38℄. The 
hoi
e of values (p, v, r, w, s, λ, µ, t) ∈ R

n×I is restri
ted by all 
onstraintsin
luding the hidden 
onstraints, i.e., (1d)-(1g), (7b), (8b), and (9b). Values whi
hsatisfy all of these 
onstraints are 
alled 
onsistent and we get the set of 
onsisten
y
M = {(p, v, r, w, s, λ, µ, t) ∈ R

n × I : 0 = d(p, v, r, w, s, λ, µ, t), (10)
0 = c(p, s, t),

0 = H(p, s, t)Z(p)v + h(p, s, t),

0 = g(p, s, t),

0 = hI(p, v, r, w, s, λ, µ, t),

0 = gI(p, v, s, t),

0 = gII(p, v, r, w, s, λ, µ, t)}.Theorem 2.4 Let the equations of motion (1) satisfy Assumptions 2.2. Then thereexist matrix fun
tions Sp ∈ C0(M, Rnfp ,np) and Sv ∈ C0(M, Rnfv ,nv) with nfp
=

np − nλ and nfv
= nv − nλ − nµ su
h that the matrix fun
tions

[

Sp(p, t)
G(p, t)

] and 



Sv(p, t)M(p, t)
G(p, t)Z(p)
H(p, t)Z(p)



 are nonsingular (11)

5



for all (p, v, r, w, s, λ, µ, t) ∈ M. Then the di�erential-algebrai
 system
Sp(p, t)ṗ = Sp(p, t)Z(p)v, (12a)

Sv(p, t)M(p, t)v̇ = Sv(p, t)f(p, v, r, w, s, λ, µ, t) (12b)
−Sv(p, t)Z

T (p)GT (p, s, t)λ − Sv(p, t)Z
T (p)HT (p, s, t)µ,

ṙ = b(p, v, r, w, s, λ, µ, t), (12
)
0 = d(p, v, r, w, s, λ, µ, t), (12d)
0 = c(p, s, t), (12e)
0 = H(p, s, t)Z(p)v + h(p, s, t), (12f)
0 = g(p, s, t), (12g)
0 = hI(p, v, r, w, s, λ, µ, t), (12h)
0 = gI(p, v, s, t), (12i)
0 = gII(p, v, r, w, s, λ, µ, t) (12j)has d-index 1 and the same set of solutions as the equations of motion (1).Proof. The proof 
an be found in [38℄.Remark 2.5 a) The matrix fun
tions Sp and Sv are 
alled kinemati
 sele
tor anddynami
 sele
tor, respe
tively.b) We will 
all the DAE (12) the proje
ted-strangeness-free formulation of the equa-tions of motion. In [21, 22, 23, 24℄ the strangeness-
on
ept is introdu
ed as toolfor the 
lassi�
ation of general nonlinear DAEs in
luding over- and underdeter-mined DAEs. In parti
ular, so 
alled strangeness-free DAEs are introdu
ed. Apartfrom the over- or underdeterminedness strangeness-free DAEs behave like DAEswith d-index 1 while nonstrangeness-free DAEs behave like DAEs with d-index 2or larger. Strangeness-free DAEs do not 
ontain hidden 
onstraints. In parti
ular,in [21, 22, 23, 24℄ it is pointed out that strangeness-free DAEs and, therefore, theproje
ted-strangeness-free formulation of the equations of motion (12), are suitedand preferable for the numeri
al treatment using sti� ODE solvers like impli
itRunge-Kutta-Methods or BDF methods.
) The algorithm GEOMS is based on a proje
ted-strangeness-free from (12) of theequations of motion but it is not ne
essary that this form is provided by the user, i.e.,the user does not have to perform the regularization to the proje
ted-strangeness-freeform. It is su�
ient, if the user provides the 
onstraints on velo
ity level (7b) andon a

eleration level (8b) and (9b) in addition to the original equations of motion(1) and, if available, (3). By use of so 
alled order-n-formalisms for the evaluationof the equations of motion the 
onstraints on velo
ity level and on a

eleration levelare 
omputed automati
ally, see [8, 34℄. ⊳With these preparations we have presented all the tools to perform the 
onsisten
ypreserving index redu
tion of the equations of motion (1) as follows.6



Algorithm 2.6 (Consisten
y preserving index redu
tion)The equations of motion (1) are assumed to satisfy Assumptions 2.2. Furthermore,let M ∈ C0(Mp, R
nv,nv) and Z ∈ C0(Mp, R

np,nv), where Mp = M ∩ (Rnp × I) is theset of 
onsistent (p, t).Then the regularization via 
onsisten
y preserving index redu
tion is done by 
hoos-ing a sele
tor Sp ∈ C0(Mp, R
nfp ,np) and a sele
tor Sv ∈ C0(Mp, R

nfv ,nv) depending on
(p, u) with nfp

= np − nλ and nfv
= nv − nλ − nµ, in the following way.1. Determination of sele
tor Sp(a) DetermineKp ∈ C0(Mp, R

np,nfp ) depending on (p, t) su
h that the 
olumnsof Kp(p, t) span ker(G(p, s(p, t), t)) for all (p, t) ∈ Mp.(b) Determine the sele
tor Sp ∈ C0(Mp, R
nfp ,np) depending on (p, t) su
h that

Sp(p, t)Kp(p, t) is nonsingular for all (p, t) ∈ Mp.2. Determination of sele
tor Sv(a) DetermineKv ∈ C0(Mp, R
nv,nfv ) depending on (p, t) su
h that the 
olumnsof Kv(p, t) span

ker(

[

G(p, s(p, t), t)Z(p)
H(p, s(p, t), t)Z(p)

]

)for all (p, t) ∈ Mp.(b) Determine the sele
tor Sv ∈ C0(Mp, R
nfv ,nv) depending on (p, t) su
h that

Sv(p, t)M(p, t)Kv(p, t) is nonsingular for all (p, t) ∈ Mp.3. Proje
ted strangeness-free form of the equations of motionBy appending the 
onstraints on velo
ity level (7b) and the 
onstraints ona

eleration level (8b) and (9b), the proje
ted-strangeness-free form of theequations of motion is given by (12).With this algorithm we are able to determine a proje
ted-strangeness-free form (12)of the equations of motion whi
h 
ontains all information of the set of 
onsisten
y(10). The proje
ted-strangeness-free form (12) that is 
reated in this way is ana-lyti
ally equivalent to the original equations of motion in the sense that both havethe same set of solutions. Therefore and be
ause of Remark 2.5, the proje
ted-strangeness-free form (12) 
an be seen as a regularization te
hnique. In parti
ular,the semi-impli
it form of the proje
ted-strangeness-free form (12) is of great advan-tage, sin
e all 
onstraints are stated as purely algebrai
 equations, and there are noredundan
ies among the algebrai
 
onstraints and the di�erential equations.Remark 2.7 Note that Sele
tors Sp and Sv satisfying the rank 
onditions (11) arenot uniquely determined. Rather it is possible to 
hoose the sele
tors in a pie
ewise
onstant fashion. In prin
iple, the sele
tors may be kept 
onstant as long as theNewton iteration matrix N (see Page 15) remains nonsingular. But the 
hoi
e of7



the sele
tors in�uen
es the 
onditioning of the proje
ted-strangeness-free formula-tion. Therefore, with respe
t to the 
onditioning of the linear systems whi
h haveto be solved during the Newton iteration, the sele
tors should be re
omputed earlyenough and not just shortly before rea
hing a state, where the Newton iterationmatrix be
omes singular. This fa
t is treated in GEOMS by the re
omputation of thesele
tors if the 
olumn pivoting with respe
t to the algebrai
 
onstraints 
hanges or
onvergen
e problems of the Newton iteration o

ur. This is demonstrated in twosimulation s
enarios whi
h are depi
ted in Tables 3 and 4.Note that the pie
ewise 
onstant 
hoi
e of the sele
tors is of great advantage andimportan
e for the numeri
al integration, be
ause it o�ers the possibility to redu
ethe amount of 
omputational work for the 
omputation of the sele
tors. In par-ti
ular, this means, that the 
ondition number of the Newton iteration matrix Ndepends dire
tly on the 
hoi
e of the sele
tors. ⊳Example 2.8 The mathemati
al pendulum: Let us 
onsider a mathemati
alpendulum, of length L > 0 whi
h represents a point mass moving without fri
tionalong a verti
al 
ir
le of radius L under gravity denoted by the gravity a

eleration
g. For the des
ription of the 
on�guration of the pendulum we 
hoose Cartesian 
o-ordinates p =

[

x y
]T denoting the position of the mass m in the two dimensionalspa
e R

2. The equations of motion of �rst order have the form
[

ṗ1

ṗ2

]

=

[

v1

v2

]

, (13a)
[

m 0
0 m

] [

v̇1

v̇2

]

=

[

0
−mg

]

−
[

2p1

2p2

]

[

λ1

]

, (13b)
0 =

[

p2
1 + p2

2 − L2
]

. (13
)The holonomi
 
onstraints on velo
ity level and on a

eleration level are given by
0 =

[

2p1v1 + 2p2v2

]

, (13d)
0 =

[

2v2
1 + 2v2

2 − 2p2g − 4
m

(p2
1 + p2

2)λ1

]

, (13e)respe
tively. Following Algorithm 2.6 we have to 
onsider G =
[

2p1 2p2

]

. Thematrix fun
tion Kp 
an be determined as
Kp =

[

−p2

p1

]and, therefore, the sele
tor Sp 
an be 
hosen as
Sp =

[

−p2 p1

]su
h that
SpKp =

[

−p2 p1

]

[

−p2

p1

]

=
[

p2
2 + p2

1

]

=
[

L2
]

,8



see the 
onstraints (13
). Sin
e the mass matrix is given by M = mI, we 
an use
Sv = Sp and we get the proje
ted-strangeness-free formulation

−p2ṗ1 + p1ṗ2 = −p2v1 + p1v2, (14a)
−mp2v̇1 + mp1v̇2 = −mgp1, (14b)

0 = p2
1 + p2

2 − L2, (14
)
0 = 2p1v1 + 2p2v2, (14d)
0 = 2v2

1 + 2v2
2 − 2p2g − 4

m
(p2

1 + p2
2)λ1. (14e)As mentioned in Remark 2.7, the sele
tors Sp and Sv are not uniquely determined bythe 
onditions (11) or the Algorithm 2.6. In parti
ular, the sele
tors 
an be 
hosento be pie
ewise 
onstant.Let us 
onsider this fa
t for the pendulum with the initial state p1 = 0 and p2 = −L,i.e., the pendulum is hanging downwards. In this position the sele
tors 
an bedetermined as

Sp(p, u) = Sv(p, u) =
[

L 0
]

. (15)Keeping these sele
tors 
onstant, the leading matrix of the left-hand side of theunderlying ordinary di�erential equations, (obtained by substituting the algebrai
equations in (14) by their derivatives with respe
t to t) is












L 0 0 0 0
0 0 mL 0 0

2p1 2p2 0 0 0
× × 2p1 2p2 0
× × × × 4

m
(p2

1 + p2
2)













. (16)Obviously, the rank 
onditions (11) are ful�lled and the leading matrix (16) is non-singular, as long as p2 does not be
ome zero. In parti
ular, this means that as longas the pendulum does not rea
h one of the horizontal positions, i.e., p1 = ±L and
p2 = 0, the sele
tors 
an be 
hosen 
onstant as in (15). Otherwise, if the pendulumrea
hes or passes the horizontal position, the matrix (16) be
omes singular and the�rst and third as well as the se
ond and fourth equations are redundant su
h thatthe solution is not uniquely de�ned. Furthermore, the 
ondition number of matrix(16) goes to in�nity as p2 goes to zero.For these reasons, in the neighborhood of the horizontal position of the pendulumnew sele
tors have to be determined. See also the Example 4.1 for numeri
al results.
⊳3 GEOMSThe 
ode GEOMS is implemented in FORTRAN77 and furthermore, there exists aMATLAB [20℄ interfa
e via MEX �les for the dire
t usage of GEOMS in MATLAB.9



However, in the following we only dis
uss the in FORTRAN77 implementation ofGEOMS.In GEOMS the 3-stage impli
it Runge-Kutta Method Radau IIa of order 5, see [18℄,as dis
retization of the proje
ted-strangeness-free formulation (12) of the equationsof motion is implemented. Although, GEOMS bases on the presented stabilizationte
hnique developed in [38℄ and presented in Theorem 2.4, i.e., GEOMS uses theproje
ted-strangeness-free formulation (12) for the dis
retization, the user does nothave to provide the proje
ted-strangeness-free formulation. Instead the user hasto provide all ne
essary information, i.e., in parti
ular, the hidden 
onstraints inaddition to the original equations of motion (1) and , if available, (3).The Runge-Kutta matrix A, the weight ve
tor b, and the node ve
tor c are given bythe But
her tableau
c A

bT ⇔

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

, (17)see [17, 18℄. The algorithm GEOMS is designed to handle equations of motion of theform (1) with possible redundant 
onstraints as well as with possibly known solutioninvariants (3) whi
h may be provided as additional equations. If the mass matrix Mis nonsingular and the 
onstraints are nonredundant then the equations of motionhave to satisfy Assumption 2.2. If this is not the 
ase some further rank assumptionshave to be satis�ed. For more details see [38℄.Here and in the following we will use the typewriter style for obje
ts whi
h are partof the sour
e 
odes of the implemented numeri
al algorithms. In parti
ular, thisinvolves names of subroutines like GEOMS, GEERREST, IVCOND, and variables like T,X, NWTMAT, CALSEL.In the following we will dis
uss the features of GEOMS in detail. For the use andimplementation of GEOMS see the manual in Appendix A.The information of the equations of motion needed from the integration algorithmhas to be provided in the following form.The ve
tor of unknown variables has to be in the form
xT = X

T =
[

wT λT µT rT vT sT pT
]and the right-hand side in (1) and (3) of the hidden 
onstraints has to be spe
i�edin a user-supplied subroutine with a name given by the user. The di�erent parts

10



have to be given in the following order provided they o

ur.
RDA =







































d(p, v, r, w, s, λ, µ, t)
gII(p, v, r, w, s, λ, µ, t)
hI(p, v, r, w, s, λ, µ, t)

gI(p, v, s, t)
H(p, s, t)Z(p)v + h(p, s, t)

e(p, v, s, t)
c(p, s, t)
g(p, s, t)

b(p, v, r, w, s, λ, µ, t)
f(p, v, r, w, s, λ, µ, t)−ZT(p)GT (p, s, t)λ−ZT (p)HT (p, s, t)µ

Z(p)v













































(a)







(b)

}

(c)
}

(d)
}

(e)
}

(f)















































(A)







(D)

(18)
In parti
ular, the right-hand side has to be ordered su
h that the algebrai
 part,i.e., the upper part (18A), 
ontains the algebrai
 
onstraints ordered with respe
tto their dependen
ies, i.e., �rst (18a) , the 
onstraints whi
h restri
t the additionalvariables w as well as the Lagrange multipliers λ and µ, se
ond (18b), the 
onstraintson velo
ity level and the information 
on
erning solution invariants whi
h restri
tthe velo
ities v, and third (18
), the 
onstraints on position level, whi
h restri
t theposition p and the 
onta
t variables s. The spe
i�ed order leads to a Ja
obian of thealgebrai
 part with respe
t to x whi
h has already blo
k upper triangular stru
turethat will be exploited in GEOMS.The di�erential part, i.e., the se
ond part (18D), 
ontains the right-hand side ofthe di�erential equations also ordered in the same way as the algebrai
 part. We�rst (18d) have the equations that des
ribe the behavior of the dynami
al for
eelements followed by (18e) the dynami
al equations of motion and, �nally, (18f) thekinemati
al equations of motion.In some 
ases the 
onstraints of a

eleration level (8) and (9), i.e., 0 = gII and
0 = hI , are not expli
itly available or di�
ult to evaluate. In this 
ase GEOMS isalso appli
able. But one should note that only if all algebrai
 information, in
luding
0 = gI , 0 = gII , and 0 = hI are provided, instabilities and drift 
an be avoided byGEOMS. It is preferable to provide as mu
h information as possible. In the 
ase thatthe 
onstraints on a

eleration level are missing, the provided information is similarto a DAE that behaves like a DAE with d-index 2.This fa
t has to be 
ommuni
ated by the user to the 
ode GEOMS with help of theoption IOPT(5)=FORM. If IOPT(5)=0 then the proje
ted-strangeness-free form (12)of the equations of motion will be expe
ted as basis for the dis
retization. Thus,the user has to spe
ify all information of the hidden 
onstraints, i.e., up to a

eler-ation level. If IOPT(5)=1, then the dis
retization will be done without spe
ifyingthe 
onstraints on a

eleration level 0 = gII and 0 = hI . In the latter 
ase theused formulation of the equations of motion behaves like a system of d-index 2,i.e., it is not strangeness-free. Be
ause of the fa
t that the used formulation is notstrangeness-free, the su

ess of the numeri
al integration depends highly sensitivelyon the problem and on the 
onsisten
y of the initial values, in parti
ular, on the11



Option Name Feature Pagepreserving invariant solutions 4preserving hidden 
onstraints 5preserving nonholonomi
 
onstraints 2taking into a

ount of redundan
ies in the 
on-straints 19IOPT( 2) LUN optional output for integration informationIOPT( 3) NIT maximal number of Newton iterations 17IOPT( 4) STARTN starting values for the internal stages in the New-ton iteration 15IOPT( 5) FORM in
omplete regularization 11IOPT( 6) NMAX maximal number of integration steps 19IOPT( 8) PRED step size 
ontrol 18IOPT( 9) NWTMAT approximation of the Newton matrix at x0 or oneof the extrapolated stages possible 15IOPT(10) NWTUPD update of the Newton matrix 17IOPT(11) DECOMPC LU, QR, or SV de
omposition for the algebrai
part 17IOPT(12) DECOMPD LU or QR de
omposition for the di�erential part 17IOPT(13) SELCOMP sele
tor 
ontrol 18IOPT(14) AUTONOM exploitation of autonomous equations of motion 19IOPT(15) MASSTRCT exploitation of the stru
ture of the mass matrix 19IOPT(17) IVCNSST 
he
k and 
orre
tion of the initial values withrespe
t to its 
onsisten
y 14Table 1: Options and features of GEOMS
onsisten
y of the Lagrange multipliers λ and µ.An overview over the features of GEOMS is given in Table 1. Furthermore, in Table2 the subroutines belonging to GEOMS and their task are listed.The initial values are of great importan
e for the existen
e and the uniquenessof the solution. For the existen
e of a 
ontinuous solution the 
onsisten
y of theinitial values is ne
essary. In parti
ular, admissible initial values are restri
ted bythe (hidden) 
onstraints. On the other hand 
onsistent initial values, in parti
ular,
onsistent initial Lagrange multipliers, are not automati
ally given by the modelingpro
ess and their determination by solving a system of nonlinear algebrai
 equa-tions is di�
ult for 
omplex multibody systems with a large number of 
onstraints.Therefore, the algorithm GEOMS provides the possibility to determine 
onsistent ini-tial values.In addition to the algebrai
 equations determining the set of 
onsisten
y M, see(10), the user has to de�ne in a subroutine IVCOND additional 
onditions to deter-mine 
onsistent initial values. Su
h 
onditions o�er the possibility to determinesome of the freely 
hoosable variables or to give further relations whi
h allows aunique determination of 
onsistent initial values.12



Subroutines 
ontained in the 
ode GEOMSGEBSUBST ba
kward substitution of the algebrai
 partGECORE 
ore routineGEDECCLU de
omposition of the algebrai
 part with LU de
ompositionGEDECCQR de
omposition of the algebrai
 part with QR de
ompositionGEDECCSV de
omposition of the algebrai
 part with SV de
ompositionGEDECDLU LU de
omposition of the di�erential partGEELIMFXQ elimination in the di�erential part a

ording to QR de
ompositionof the algebrai
 partGEELIMFXS elimination in the di�erential part a

ording to SV de
ompositionof the algebrai
 partGEELIMMIQ elimination in the mass matrix and the identity of the kinemati-
al equations of motion a

ording to QR de
omposition of thealgebrai
 partGEELIMMIS elimination in the mass matrix and the identity of the kinemat-i
al equations of motion a

ording to SV de
omposition of thealgebrai
 partGEERREST error estimation, see Page 18GEFXNUM numeri
al approximation of the Ja
obian of the right-hand side ofthe equations of motionGEGREPEQ pi
king relevant 
olumns of the di�erential part a

ording to QRde
ompositionGEGREPES pi
king relevant 
olumns of the di�erential part a

ording to LUand SV de
ompositionGEINIVAL determination of 
onsistent initial values, see Page 14GEOMS main routineGESOLDLU solving the di�erential part by use of LU de
ompositionGESOLDQR solving the di�erential part by use of QR de
ompositionGETRFRHSC transformation of the right-hand side a

ording to the algebrai
partUser-supplied subroutinesEOM provides the redu
ed derivative array RDA (18)IVCOND provides additional initial 
onditions needed for the 
onsistent ini-tialization, see Page 12JAC provides the Ja
obian of the redu
ed derivative arrayMAS provides the mass matrixSOLOUT output of the numeri
al solution and additional information duringintegrationTable 2: Subroutines of GEOMSExample 3.1 The mathemati
al pendulum: In Example 2.8 we have intro-du
ed the mathemati
al pendulum. The position variables p are restri
ted to the
ir
le with radius L, i.e., the 
onstraint on position level is given by 0 = p2
1 +p2

2−L2.If one of the position variables is given, the other is uniquely determined up to the13



sign.By de�ning additional 
onditions via the subroutine IVCOND the user 
an for
e thependulum into a deviation of π/4 by setting p1 = L/
√

2 or by 0 = p1 + p2, forinstan
e. Furthermore, a 
ertain angular velo
ity ω 
an be pres
ribed by 0 =
√

v2
1 + v2

2/L − ω. ⊳The determination of 
onsistent initial values is done in the subroutine GEINIVALand is based on the 
olle
tion of all algebrai
 
onstraints (1d)-(1g) and (7), (8), and(9) together with the 
onditions de�ned in the subroutine IVCOND.The user has to de
ide if the given initial values are assumed to be 
onsistent or not.By setting IOPT(17)=IVCNSST=1, the initial values are assumed to be 
onsistentand no 
he
k of 
onsisten
y or 
orre
tion of the initial values is done during the runof GEOMS. Note that non
onsistent initial values 
ould lead to 
onvergen
e problemsin the integration pro
ess whi
h leads to an abort of the run of GEOMS. Otherwise,by setting IOPT(17)=0, the initial values are 
onsidered to be possibly in
onsistent.Thus, 
onsisten
y will be 
he
ked and the initial values will be 
orre
ted during therun of GEOMS, if ne
essary. If the user does not provide su�
iently many additional
onditions, only the 
onsisten
y is 
he
ked. If the initial values are 
onsistent, thenthe integration will be 
ontinued, otherwise the run of GEOMS will be stopped. Ifthe user provides more additional 
onditions than ne
essary, then the 
orre
tion (ifne
essary) is done regarding the overdetermined nonlinear system. If all 
onditionstogether are non
ontradi
tory, then 
onsistent initial values will be determined.Otherwise, the Newton iteration used in this pro
ess will diverge and the run ofGEOMS will be stopped.The solution of the nonlinear system of equations is obtained via a simpli�ed Newtonmethod with the possibility of a 
ertain number of updates of the iteration matrix,as des
ribed at Page 17. The stopping 
riterion is the same as that for the simpli�edNewton method during the integration pro
ess des
ribed at Page 16.Remark 3.2 Note the fa
t that the 
onditions provided to IVCOND by the userdominate the given initial guess, i.e., if the given initial guess is 
onsistent but doesnot satisfy the (possibly wrong) 
onditions provided by IVCOND, then the initialguess will be 
orre
ted in su
h a way that both, the 
onstraints (1d)-(1g) and (7),(8), and (9) and the initial 
onditions provided to IVCOND are satis�ed.In 
ase of an initial guess whi
h is 
onsistent to the 
onstraints, the option IOPT(17)
an be set to one to avoid su
h a 
orre
tion. Otherwise, the 
onditions provided toIVCOND should be adapted. ⊳If there is only interest in the 
omputation of 
onsistent initial values, the user hasto set T=TEND and IOPT(17)=0. Then the 
ode GEOMS determines 
onsistent initialvalues, will 
all the user-supplied subroutine SOLOUT, and �nally will return to the
alling subroutine.In the following we will dis
uss the approa
h whi
h is used in the algorithm GEOMSfor the numeri
al integration of the equations of motion (1) and, if available, (3) by14



use of the three stage Runge-Kutta method of type Radau IIa of order 5. Let s = 3denote the number of stages.As mentioned above, the 
ode GEOMS 
ombines the dis
retization method with theregularization te
hnique presented in Theorem 2.4. Therefore, the algorithm usesthe proje
ted-strangeness-free form (12) as basis for the dis
retization. For moredetails on the dis
retization we refer to [38℄. This dis
retization leads to a nonlinearstage equation for the determination of the three stages Xki ∈ R
n, i = 1, 2, 3 onthe 
urrent integration interval [tk, tk+1] with tk+1 = tk + hk. Here hk denotes the
urrent step size. The stages Xki ∈ R

n, i = 1, 2, 3 approximate the solution at thepoints tki = tk + cihk The nonlinear stage equation has to be solved by use of a(simpli�ed) Newton method.A good 
hoi
e of starting values X0
ki, i = 1, 2, 3 is very important for the 
on-vergen
e of the Newton iteration. In the 
ode GEOMS two di�erent possibilities forthe determination of starting values for the integration step from tk to tk+1 are im-plemented. The user has to de�ne in advan
e whi
h of both shall be used duringthe integration pro
ess.By setting IOPT(4)=STARTN=1 the starting values for the internal stages are 
hosenby X0

ki = xk, i = 1, 2, 3, where xk denotes the already known value whi
h approx-imates the solution at the point tk. This xk 
orresponds either to the initial valuein the �rst integration step, i.e., k = 0, or it 
orresponds to the value determined atthe end of the pre
eding integration step.On the other hand setting IOPT(4)=0 (whi
h is the default) the starting values
X0

ki, i = 1, 2, 3 for the Newton iteration are obtained by evaluating the interpolationpolynomial q(t) of degree s over the already passed integration interval [tk−1, tk] with
tk−1 = tk−hk−1 and with q(tk−1) = xk−1, q(tk−1+cihk−1) = Xk−1i, i = 1, 2, 3. In thisway we obtain the starting values for the Newton iteration as X0

ki = q(tk +cihk), i =
1, 2, 3, where xk−1 denotes the numeri
al solution at the point tk−1. In parti
ular,this means that the new starting values in the integration step from tk to tk+1 areobtained by extrapolation to the points tk + cihk, i = 1, 2, 3 based on the internalstages of the earlier integration step from tk−1 to tk. Of 
ourse, this is not possiblein the �rst step. For more details see [18℄.In GEOMS a simpli�ed Newton method is implemented. For more details on Newtonmethods we refer to [6℄. In parti
ular, this means that a 
onstant Newton iterationmatrix N is used during the whole or several parts of the Newton iteration insidethe 
urrent integration step [tk, tk+1]. We use the simpli�ed Newton method, sin
ea 
onstant Newton iteration matrix redu
es the amount of 
omputation be
ause ofthe saved evaluation of Ja
obians and saved de
ompositions of the Newton iterationmatrix in every ex
ept the �rst Newton iteration step. But the parti
ular 
hoi
e ofthe Newton iteration matrix in�uen
es the 
onvergen
e of the Newton iteration. Forthis reason, the 
ode GEOMS o�ers the possibility to 
hoose between several referen
epoints (X∗, t∗) for the determination of the Newton matrix. The 
hoi
e has to be de-termined by the user by setting the option IOPT(9)=NWTMAT. The range of possible
hoi
es is related to the stages during the integration step. As dis
ussed previously,15



there are two possibilities for the 
hoi
e of initial values for the Newton iteration forthe determination of the internal stages. In 
ase of IOPT(4)=0 the initial values areobtained by extrapolation of the solution 
omputed so far in the points tk + cihk,
i = 1, 2, 3. This o�ers the possibility to approximate the Newton iteration matrixat four di�erent referen
e points (X∗, t∗) = (X0

ki, tk + cihk) for i = 0, ..., 3, where
c0 = 0 and ci, i = 1, 2, 3 
orrespond to the node ve
tor of the Runge-Kutta method,see Table 17. Furthermore, X0

ki 
orresponds to the extrapolated starting values forthe internal stages at the times tk + cihk, i = 0, ..., 3, and, in parti
ular, X0
k0 = xk
orresponds to the initial state of the 
urrent integration interval. Note that thispossibility is only given if the initial values for the Newton iteration are extrapo-lated, i.e., if IOPT(4)=0. In the 
ase of initial values 
hosen su
h that X0
ki = xkfor all i = 1, 2, 3 this possibility is not given and the Newton iteration matrix willbe approximated at the initial point (xk, tk) with the initial state of the 
urrentintegration step [tk, tk+1].Several numeri
al experiments have shown that the 
onvergen
e of the Newton it-eration 
an be improved by use of extrapolated initial values, i.e., IOPT(4)=0 in
onne
tion with an approximation of the Newton iteration matrix at the se
ondinternal stage, i.e., (X∗, U∗) = (X0

k2, tk + c2hk) with IOPT(9)=2. But, if the Newtoniteration dete
ts 
onvergen
e problems, and the integration step has to be repeatedwith a smaller step size, then the Newton iteration matrix has to be re
omputedsu
h that the overall 
omputation time may in
rease if the number of times a 
on-vergen
e problems is dete
ted is large. This number is re�e
ted in the 
ounterNCRJCT=IWORK(11) whi
h 
orresponds to the number of step reje
tions 
aused by
onvergen
e test failures.It should be noted that the 
hoi
e of di�erent Newton iteration matri
es within theNewton iteration is not available in the 
ode RADAU5. Furthermore, the 
ode GEOMSo�ers the possibility of a 
ertain number of updates of the Newton iteration matrixduring the Newton iteration inside of one integration step, see the following.The 
onvergen
e rate of the simpli�ed Newton method is investigated in detail in[6℄, see also [17, 27℄. One important question in the use of an iterative method forsolving nonlinear systems inside an integration pro
ess is when to stop the iterationsu
h that the obtained a

ura
y of the 
omputed solution of the nonlinear systemis within the pres
ribed toleran
e without performing too many Newton iterationsteps.The 
onvergen
e estimation and the stopping 
riterion implemented in GEOMS is de-s
ribed in [18℄ and adopted from the 
ode RADAU5 [17, 18℄. The estimation of the
onvergen
e is based on the weighted root square norm || · ||sc whi
h is de�ned for a
ζ ∈ R

n by
||ζ ||sc =

√

√

√

√

1

n

n
∑

i=1

(

ζi

sci

)2 (19)with sci = ATOL(i) + max(|xki|, |xk+1i|)RTOL(i), see [18℄. This norm allows to pre-s
ribe that some solution 
omponents have to be more pre
isely approximated than16



other. This 
an be spe
i�ed in the ve
tors ATOL and RTOL pres
ribing the absoluteand relative toleran
e, respe
tively. For more details on the error estimation andthe stopping 
riterion of the Newton iteration we refer to [18, 38℄.In the 
ase of a very slow 
onvergen
e or, in parti
ular, in the 
ase of divergen
e,the number of Newton iteration steps has to be restri
ted by a maximal number
kmax = NIT = IOPT(3). Thus, the Newton iteration will stop unsu

essfully if a)the stopping 
riterion is not satis�ed within the maximal number kmax of allowedNewton iteration steps, or if b) the iteration diverges.In 
ase a) the user has to de
ide whether the whole integration step has to be re-je
ted be
ause of 
onvergen
e failures and to be repeated with a redu
ed step size,or if the Newton iteration should be 
ontinued with an updated Newton iterationmatrix. In GEOMS this de
ision is made by de�ning the maximal number of updatesin the option IOPT(10)=NWTUPD. However, several numeri
al results suggest thatthe number of allowed updates should not ex
eed 1.It should be noted that the possibility of an update of the Newton iteration matrixwithin the Newton iteration is not available in the 
ode RADAU5.During the Newton iteration a linear system has to be solved in ea
h step. This hasto be done in an e�
ient but stable way. The 
ode GEOMS o�ers the possibility tode
ompose the di�erential part and the algebrai
 part via di�erent de
ompositionmethods. The user has to spe
ify in the option IOPT(11)=DECOMPC if the algebrai
part, i.e., the Ja
obian of the 
onstraints, should be de
omposed by use of the LUde
omposition with full pivoting (IOPT(11)=1), by a QR de
omposition with pivot-ing (IOPT(11)=2), or by a SV de
omposition (IOPT(11)=3). Heuristi
ally seen, theLU de
omposition with (partial) pivoting is a good 
ompromise 
on
erning e�
ien
yand stability. Therefore, it is the default in GEOMS, although, the SV de
ompositiono�ers ex
ellent stability properties but is more expensive.Furthermore, with the option IOPT(12)=DECOMPD, the user 
an spe
ify how to de-
ompose the di�erential part. By setting IOPT(12)=0 the LU de
omposition withpartial pivoting is used and by setting IOPT(12)=1 the QR de
omposition is used.Remark 3.3 a) The separate de
omposition implemented in GEOMS has the advan-tage that the de
omposition of the algebrai
 part 
an be done independently of thestep size h. Only the de
omposition of the di�erential part has to be done separatelydepending on h. In parti
ular, if the Newton iteration has 
onvergen
e problems andthe algorithm interrupts the Newton for to redu
e the step size, then the informationwith respe
t to the algebrai
 part may be re
y
led whi
h saves 
omputational work.b) For the linear algebra 
omputations like QR de
ompositions and SV de
omposi-tions we use BLAS1 (Basi
 Linear Algebra Subprograms) [25℄ and LAPACK2 (LinearAlgebra PACKage) [2℄ subroutines. ⊳For strangeness-free di�erential-algebrai
 systems in semi-impli
it form like the pro-je
ted-strangeness-free form (12) the s
aling of the algebrai
 
onstraints with 1/h is1BLAS - http://www.netlib.org/blas/2LAPACK - http://www.netlib.org/lapa
k/17



re
ommended in [32℄, where h is the 
urrent step size. Sin
e the numeri
al integra-tion of the equations of motion in GEOMS is based on the proje
ted-strangeness-freeformulation of the equations of motion, the 
onstraints are s
aled by 1/h.The step size 
ontrol of the integration pro
ess is a very sensitive topi
 in the im-plementation of numeri
al algorithms for the integration of ODEs as well as forDAEs. An overview over several step size 
ontrol strategies is given in [37℄, see also[4, 5, 11, 18℄. The 
ode GEOMS works with two di�erent step size 
ontrol strategiesas used in the 
ode RADAU5, but adapted to the stru
ture of the equations of motion(1). The basis for a step size 
ontrol me
hanism is a lo
al error estimation. Formore details we refer to [18℄. The error estimation is implemented in the subrou-tine GEERREST. For the 
hoi
e of a new step size for the next integration step or arepeated integration step two possibilities are implemented in GEOMS whi
h have tobe sele
ted by use of the option IOPT(8)=PRED. With IOPT(8)=2 the 
lassi
al stepsize 
ontroller developed in [11℄ is used and with IOPT(8)=1 the predi
tive step size
ontroller, developed by Gustafsson in [16℄, is used. The predi
tive step size 
ontrolis not possible in the �rst step, so, the 
lassi
al step size 
ontroller will be usedinstead. The predi
tive step size 
ontroller needs slightly more work and storagethan the 
lassi
al step size 
ontroller but is more �exible in adaptating the stepsize. By use of the predi
tive step size 
ontroller a faster redu
tion of the step sizewithout step reje
tions is possible than by use of the 
lassi
al step size 
ontroller.This leads to a possible redu
tion of the overall amount of 
omputation by use ofthe predi
tive step size 
ontroller. Experiments suggest that the predi
tive step size
ontroller seems to produ
e safer results for simple problems. On the other hand,the 
hoi
e of the 
lassi
al 
ontroller often produ
es slightly faster runs, see also [18℄.The predi
tive step size 
ontroller will be used in GEOMS by default.Sin
e the 
ode GEOMS is based on the 
ombination of dis
retization and regulariza-tion to the proje
ted-strangeness-free formulation of the equations of motion whi
his in�uen
ed by the 
hoi
e of the sele
tors Sp and Sv, see Theorem 2.4, an e�
ient
omputation of these sele
tors is also important and will be dis
ussed in the follow-ing.In general, it is not ne
essary to re
ompute sele
tors in every integration step, seeRemark 2.7.If the LU de
omposition is used for the di�erential part then it is possible to de-
ide whether the determination of the sele
tors is done in ea
h integration step(IOPT(13)=SELCOMP=1) or the sele
tors are kept 
onstant for those integration stepswhere the pivoting in the algebrai
 part does not 
hange (IOPT(13)=0). The latter
ase is the default.The 
ode GEOMS o�ers the possibility to integrate the equations of motion of form(1) with possibly redundant 
onstraints. As dis
ussed in the literature [26℄, see alsoRemark 2.3, the solution may not be unique in this 
ase, but under 
ertain 
ondi-tions the nonuniqueness is only restri
ted to the Lagrange multipliers λ, µ, and w.For more details see [38℄. 18



Very important for the integration of equations of motion with redundant 
onstraintsis the dete
tion of the degree of redundan
y, i.e., the determination of the rank ofthe Ja
obian asso
iated with the 
onstraints. The reliable numeri
al determinationof the rank of a matrix is a deli
ate task and the SV de
omposition is a 
ommonlyused tool for doing this. Therefore, the numeri
al integration of equations of mo-tion with redundant 
onstraints is only allowed via the SV de
omposition for the
onstraints, i.e., IOPT(11)=DECOMPC=3.The rank of the 
onstraints will be determined in every integration step. If it isdete
ted in the �rst step that the 
onstraints are redundant, a reliable numeri
alintegration requires the use of the SV de
omposition at least for the de
ompositionof the 
onstraints. Furthermore, if a possibly 
hange of the rank from one step toanother is dete
ted, then the integration possibly has rea
hed a singular point andwill be stopped with an error message.If the equations of motion have solution invariants (3), then it is often desirableto preserve these solution invariants expli
itly. GEOMS is able to preserve solutioninvariants if they are provided by the user as equations (3) in the RDA (18). See theExample 4.1.The user may restri
t the maximal number of allowed integration steps by setting theoption IOPT(6)=NMAX. The default value of NMAX is 100000. Furthermore, the usermay for
e the 
ode to exploit some spe
ial stru
tures of the problem. If the prob-lem is autonomous the amount of 
omputational work for the numeri
al integrationmay be redu
ed. By setting IOPT(14)=AUTONOM=1 the user tells the 
ode that theproblem is autonomous and the 
ode GEOMS exploits this in the integration pro
ess.The default is IOPT(14)=0, i.e., the problem is not autonomous. In parti
ular, ifthe mass matrix is 
onstant and/or diagonal a large amount of 
omputational work
an be saved. Therefore, the user 
an spe
ify by use of IOPT(15)=MASSTRKT if themass matrix is diagonal and 
onstant IOPT(15)=4, full and 
onstant IOPT(15)=3,diagonal and time and/or state dependent IOPT(15)=2, or full and time and/orstate dependent IOPT(15)=1 (default).4 Numeri
al experimentsIn the following we will demonstrate the appli
ability and the performan
e of thenew solver GEOMS. The integration with GEOMS will be performed for three di�erentformulations of the regularized equations of motion. First, the numeri
al resultsobtained with GEOMS using the proje
ted-strangeness-free form (12) of the equationsof motion will be abbreviated by GEOMS(psfEoM). Se
ond, the numeri
al resultsobtained with GEOMS without providing the 
onstraints on a

eleration level, seeoption IOPT(5) on Page 11, will be abbreviated by GEOMS(pEoM1). Furthermore,if the solution of the 
onsidered example satis�es some solution invariants we will usethe proje
ted-strangeness-free form of the equations of motion with expli
it for
ingof the solution invariants in addition to the two formulations above, see Page 4. The19



numeri
al results in this 
ase are denoted by GEOMS(psfEoM+I).The numeri
al integrations are done on an AMD Athlon XP 1800+, 1533 MHz.Let us note that we will abstain from the use of physi
al units like meters or se
onds.Example 4.1 The mathemati
al pendulum: In Example 2.8 we introdu
edthe equations of motion of the mathemati
al pendulum and we did regularize them tothe proje
ted-strangeness-free form (14) whi
h is used for the numeri
al integrationvia GEOMS.For the numeri
al simulations of the movement we used the mass m = 1, the length
L = 1, and the gravitational a

eleration g = 13.75. Let us note that we didmodify the gravitational a

eleration to approximately g = 13.75 su
h that theexa
t solution has a period of 2 whi
h allows the 
omparison of the a

ura
y everyperiod.
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Figure 1: Mathemati
al Pendulum: Conservation of the total energy by the numer-i
al solutions for pres
ribed RTOL=ATOL=10−7 on the time domain I = [0, 1000]The mathemati
al pendulum modeled as in 13 represents a me
hani
al system whi
h
onserves the total energy. This total energy is given by
E(p, v) =

1

2
m(v2

1 + v2
2) + mgp2 (20)and is 
onserved su
h that

0 = E(p(t), v(t)) − E0 = e(p, v) with E0 = E(p0, v0) (21)for t ∈ I and every solution of the equations of motion (13).Let us 
onsider the holonomi
 
onstraints (13
) and their derivatives, whi
h restri
t20



the motion of the pendulum in a nonredundant way, in 
omparison to the 
onserva-tion of the total energy (21). We have
0 = p2

1 + p2
2 − L2, (22a)

0 = 2p1v1 + 2p2v2, (22b)
0 = 2v2

1 + 2v2
2 − 2p2g − 4

m
(p2

1 + p2
2)λ1, (22
)

0 =
1

2
m(v2

1 + v2
2) + mgp2 − E0. (22d)The 
onstraints (22) are nonredundant for all p, v, and λ satisfying (22). In par-ti
ular, in addition to the holonomi
 
onstraints and their derivatives the energy
onservation restri
ts the solution as well. The dimension of the solution manifoldwith the energy 
onservation is therefore smaller than without the energy 
onserva-tion.For 
omparison, in Figure 1 the total energy in the numeri
al solution is depi
ted. Inaddition to GEOMS, the numeri
al solution is 
omputed with RADAU5 [17, 18℄ for di�er-ent formulations, i.e., (EoM) the equations of motion (1) of d-index 3, (EoM2) the d-index 2 formulation (using the 
onstraints on velo
ity level instead of the holonomi

onstraints), (EoM1) the d-index 1 formulation (using the 
onstraints on a

elerationlevel instead of the holonomi
 
onstraints), and (GGL) the Gear-Gupta-Leimkuhlerformulation, see [13℄. Furthermore, the solution is 
omputed with ODASSL [9, 10℄,DASSL [4, 31℄, MEXAX [28℄, and HEDOP5 [3℄. Expe
ting GEOMS(psfEoM+I) the nu-meri
ally 
omputed total energy is far from being 
onstant. This 
an be expe
tedbe
ause the energy 
onservation is 
ontained as an equation in the used formulationand is therefore expli
itely for
ed during the numeri
al integration. However, eventhe other numeri
al results obtained with GEOMS satisfy the 
onservation of totalenergy very a

urately. The preserving of the total energy yields a stabilization ofthe solution.In the Figures 2 and 3 the e�
ien
y is depi
ted, i.e., the relation between theobtained a

ura
y and the 
onsumed 
omputation time of the di�erent used for-mulations. Obviously, the integration with use of GEOMS based on the proje
ted-strangeness-free formulation (14) plus solution invariants GEOMS(psfEoM+I) o�ersthe best performan
e for this example. Note that the approximation of the Lagrangemultipliers by GEOMS(psfEOM+I) is mu
h better than of the other results.A very important fa
t for the numeri
al integration and the stability of the numeri
alalgorithms regarding the integration of DAEs is the satisfa
tion of the 
onstraints,in
luding the hidden 
onstraints. In Figure 4 the residual of the 
onstraints ofposition level, of velo
ity level, and of a

eleration level depending on the simulationtime is depi
ted. As one 
an see, GEOMS satis�es all 
onstraints well.Above we dis
ussed the strategy for the determination of appropriate sele
tors,
on
erning IOPT(13), see Page 18. Furthermore, the proje
ted-strangeness-free for-mulation (14) of the pendulum has been developed in Example 2.8 and the 
hoi
e ofthe sele
tors Sp and Sv has been 
onsidered. We have stated above that, in prin
iplethe sele
tors may be kept 
onstant as long as the deviation of the pendulum does21
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Example 01_SimpPendIntegration with GEOMS(psfEoM)TSTART = 0.00 TEND = 5.00 H0 = 0.100E-01TOLMIN = 1.0D- 7 TOLMAX = 1.0D- 9Initial velo
ity 2.80 rad[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-06[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.254E-01 at T= 0.500E+01NACCPT = 187 | NEOM= 2167 | NPDEC = 187NERJCT = 16 | NJAC= 187 | NEDEC = 204NCRJCT = 1 | NMAS= 1 | NBSUB = 660CPUTIME= 0.060s | | NSEL = 2[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-07[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.176E-01 at T= 0.500E+01NACCPT = 270 | NEOM= 2961 | NPDEC = 270NERJCT = 13 | NJAC= 270 | NEDEC = 284NCRJCT = 1 | NMAS= 1 | NBSUB = 897CPUTIME= 0.060s | | NSEL = 2[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-08[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.118E-01 at T= 0.500E+01NACCPT = 391 | NEOM= 4141 | NPDEC = 391NERJCT = 9 | NJAC= 391 | NEDEC = 401NCRJCT = 1 | NMAS= 1 | NBSUB = 1250CPUTIME= 0.080s | | NSEL = 2Table 3: Mathemati
al Pendulum: Statisti
al results for the numeri
al simulationwith GEOMS using the psfEoM with initial velo
ity v10 = 2.8not rea
h 90 degrees with respe
t to the initial state. The strategy for 
hoosing thesele
tors is demonstrated in two simulation s
enarios whi
h are depi
ted in Tables3 and 4.Both s
enarios simulate the motion of the pendulum starting with the downwardhanging initial position p0 =
[

0 −1
]T and an initial velo
ity v0 =

[

v10 0
]Tover the time domain I = [0, 5]. In Table 3 the simulation starts with an ini-tial velo
ity of v10 = 2.8. This initial velo
ity leads to the highest deviation of

p =
[

±0.699 −0.715
] whi
h does not rea
h the deviation of 45 degrees. Be
ausethe 
onstraint matrix has the form G =

[

2p1 2p2

] and be
ause of |2p1| < |2p2| forall t ∈ I, a 
hange of the pivoting is not ne
essary su
h that a (re-)
omputation of thesele
tor is only ne
essary at the beginning of the integration pro
ess and after everydete
ted 
onvergen
e failure. Therefore, the number NSEL of (re-)
omputations ofthe sele
tor equals the number NCRJCT of reje
tions be
ause of 
onvergen
e failuresplus one initial 
omputation. The situation 
hanges 
ompletely if the pendulumpasses the deviation of 45 degrees with respe
t to the initial state. This happens ifthe initial velo
ity is in
reased to v10 = 2.9. The numeri
al results are depi
ted inTable 4. Obviously, the (re-)
omputations of the sele
tor NSEL happened 13 times24



Example 01_SimpPendIntegration with GEOMS(psfEoM)TSTART = 0.00 TEND = 5.00 H0 = 0.100E-01TOLMIN = 1.0D- 7 TOLMAX = 1.0D- 9Initial velo
ity 2.90 rad[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-06[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.236E-01 at T= 0.500E+01NACCPT = 207 | NEOM= 2730 | NPDEC = 207NERJCT = 7 | NJAC= 207 | NEDEC = 227NCRJCT = 13 | NMAS= 1 | NBSUB = 841CPUTIME= 0.060s | | NSEL = 26[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-07[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.121E-02 at T= 0.500E+01NACCPT = 303 | NEOM= 3729 | NPDEC = 303NERJCT = 12 | NJAC= 303 | NEDEC = 321NCRJCT = 6 | NMAS= 1 | NBSUB = 1142CPUTIME= 0.080s | | NSEL = 19[SimpPend℄ GEOMS(psfEoM) starts with IDID= 0 H= 0.100E-01 TOL = 0.100E-08[SimpPend℄ GEOMS(psfEoM) finished with IDID= 0 H= 0.109E-01 at T= 0.500E+01NACCPT = 441 | NEOM= 5208 | NPDEC = 441NERJCT = 12 | NJAC= 441 | NEDEC = 459NCRJCT = 6 | NMAS= 1 | NBSUB = 1589CPUTIME= 0.090s | | NSEL = 19Table 4: Mathemati
al Pendulum: Statisti
al results for the numeri
al simulationwith GEOMS using the psfEoM with initial velo
ity v10 = 2.9more often than 
onvergen
e problems NCRJCT are dete
ted. In Figure 6 the motionof the pendulum is depi
ted. One 
an see that the altitude of the pendulum passes12 times the altitude of a deviation of 45 degrees. Therefore, the number NSELof (re-)
omputations of the sele
tors ex
eeds the number NCRJCT of 
onvergen
eproblems by 13, i.e., 12 plus one initial 
omputations of the sele
tors. ⊳Example 4.2 The tru
k model: In [36℄ a planar nonlinear model of a tru
k isintrodu
ed as ben
hmark example. In Figure 7 the topology as well as the 
oordi-nates, bodies, joints, and for
e elements are depi
ted. The model 
onsists of eleven
oordinates pi, i = 1, ..., 11 des
ribing the motion of seven rigid bodies and oneLagrange multiplier λ1, see Table 5.We omit to spe
ify the equations of motion in detail and refer to [36℄ instead. Notethat the equations of motion of the tru
k model are badly s
aled, sin
e the solutionof the Lagrange multiplier λ1 is of magnitude 104 but the solution of the otherindependent variables p and v are of magnitude 10−2.25
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Body Coordinate1 rear wheel p1 verti
al motion2 front wheel p2 verti
al motion3 tru
k 
hassis p3 verti
al motion
p4 rotation about y-axis4 engine p5 verti
al motion
p6 rotation about y-axis5 driver 
abin p7 verti
al motion
p8 rotation about y-axis6 driver seat p9 verti
al motion7 loading area p10 verti
al motion
p11 rotation about y-axis
λ1 Lagrange multiplier with respe
t to the jointbetween loading area and tru
k 
hassisTable 5: Nonlinear tru
k model
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k: E�
ien
y of the solvers based on residual evaluations. Simulationsare done on the time domain I = [0, 20].The obtained a

ura
y of the numeri
al solutions is 
ompared with the numeri
alsolution RADAU5(GGL) obtained with a pres
ribed toleran
e RTOL=ATOL=10−15.The pre
ision of all results obtained by a pres
ribed toleran
e are of similar a

ura
ybut the 
onsumed 
omputation time di�ers, as seen in the Figure 8. By the use ofthe 
ode GEOMS no problem o

urred in the numeri
al integrations for any pres
ribed27



toleran
es RTOL=ATOL≥ 10−15. ⊳5 SummaryIn this paper we have presented the new numeri
al algorithm GEOMS for the numer-i
al integration of general equations of motion.In parti
ular, the algorithm GEOMS has been developed to 
arry out the numeri
alintegration of the most general form of the equations of motion, in
luding nonholo-nomi
 
onstraints and possible redundan
ies in the 
onstraints, as they may appearin industrial appli
ations. Besides the numeri
al integration it o�ers some additionalfeatures like preservation of invariant solutions, preservation of hidden 
onstraints,use of di�erent de
omposition strategies, use of an in
omplete regularization, andalso 
he
king and 
orre
tion of the initial values with respe
t to their 
onsisten
y.Subsequently, we have demonstrated the performan
e and the appli
ability of thealgorithm for two me
hani
al examples of di�erent degrees of 
omplexity. The ex-perien
e with these numeri
al examples and several other numeri
al tests suggestthat the 
ode GEOMS is an e�
ient and robust method for the numeri
al integrationof the equations of motion.A Manual of GEOMSSUBROUTINE GEOMS(# NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,# X,T,TEND,H,RTOL,ATOL,ITOL,IOPT,ROPT,# IVCOND,EOM,MAS,JAC,IJAC,# SOLOUT,IOUT,# LIWORK,IWORK,LRWORK,RWORK,# RPAR,IPAR,IERR,# IDID)C -----------------------------------------------------------------------------CC NAME : (G)eneral (E)quations (O)f (M)otion (S)olverCC PURPOSE : This subroutine performs the numeri
al simulationC of a multibody system whose state is des
ribed byCC p - position variables of dimension NP,C v - velo
ity variables of dimension NV,C r - dynami
al for
e element variables of dimension NR,C w - auxiliary variables of dimension NW,C s - 
onta
t point variables of dimension NS,C l - holonomi
 Lagrange multipliers of dimension NL,C m - nonholonomi
 Lagrange multipliers of dimension NMCC by numeri
al integration of the equations of motionC of the formC 28



C p'= Z(p)*v, (1) (f_kin)C M(p,t)*v'= f(p,v,r,w,s,l,m,t)-ZT(p)*GT(p,s,t)*lC -ZT(p)*HT(p,s,t)*m, (2) (f_dyn)C r'= b(p,v,r,w,s,l,m,t), (3)C 0 = d(p,v,r,w,s,l,m,t), (4)C 0 = 
(p,s,t), (5)C 0 = H(p,s,t)Z(p)v+h(p,s,t) (6)C 0 = g(p,s,t), (7)C 0 = e(p,v,s,t) (8)CC on the domain [t_0,t_f℄=[T,TEND℄.CC The prime denotes the time derivative, e.g., p'=dp/dt, and theC 'T' following a matrix or ve
tor denotes the transpose of thisC matrix or ve
tor, e.g.,GT is the transpose of G and ZT is theC transpose of Z. Furthermore, the equations 
orrespond toCC (1) Kinemati
al equations of motion of dimension NP,C (2) Dynami
al equations of motion of dimension NV,C (3) Dynami
al for
e element equations of dimension NR,C (4) Additional equations for variables w of dimension NW,C (5) Conta
t equations of dimension NS,C (6) Nonholonomi
 
onstraints of dimension NM,C Notation: h~(p,v,s,t)=H(p,s,t)Z(p)v+h(p,s,t)C (7) Holonomi
 
onstraints of dimension NL,C (8) Solution invariants of dimension NI.CC The System (1)-(8) has to satisfy the following.C a) G = dg/dp - dg/ds*(d
/ds)^{-1}*d
/dp.C b) [ GZM^{-1}Gl GZM^{-1}Hm℄C rank([ ℄)=rank(G)+rank(H)=
onstantC [ HZM^{-1}Gl HZM^{-1}Hm℄C with Gl=ZT*GT-df/dl+df/dw*(dd/dw)^{-1}*dd/dlC and Hm=ZT*HT-df/dm+df/dw*(dd/dw)^{-1}*dd/dmC for all t in [T,TEND℄.C Alternatively,C [ M Gl Gm ℄C rank([ GZ 0 0 ℄)=NV+rank(G)+rank(H)C [ HZ 0 0 ℄C has to be satisfied for all t in [T,TEND℄.C 
) d
/ds has to be nonsingular for all times t in [T,TEND℄.C d) dd/dw has to be nonsingular for all times t in [T,TEND℄.C e) de/dv has to have full rank for all times t in [T,TEND℄.CC The integration method used is the impli
it Runge-Kutta methodC (Radau IIa) of order 5 with step size 
ontrol, 
ontinuousC output, and 
onsistent initialization.CC METHOD : The equations of motion are integrated by the impli
itC Runge-Kutta method of type RADAU IIa of order 5 and using theC proje
ted-strangeness-free formulation or theC proje
ted-strangeness-index-1 formulation of the equations ofC motion.C 29



C VERSION : April 12, 2006CC REVISIONS : -CC AUTHORS : Address: A. Steinbre
herC Weierstrass Institute for Applied AnalysisC and Sto
hasti
sC Fors
hungsverbund Berlin e.V.C Mohrenstr. 39C 10117 BerlinC e-mail: steinbre
her�wias-berlin.deCC REFERENCES: This 
ode is part of the PhD thesis:C A.Steinbre
her. Numeri
al Solution of Quasi-Linear Differential-C Algebrai
 Equations and Industrial Simulation of MultibodyC Systems. PhD thesis, TU Berlin, Institut fuer Mathematik, 2006CC KEYWORDS : numeri
al simulation of me
hani
al systems, equations of motion,C differential-algebrai
 equations, proje
ted-strangeness-freeC formulation, proje
ted-strangeness-index-1 formulationCC NOTE : The (basi
) linear algebra routines are provided by theC libraries BLAS and LAPACKCC DISCLAIMER: Warranty dis
laimer: The software is supplied "as is" withoutC warranty of any kind. The 
opyright holder:C (1) dis
laim any warranties, express or implied, in
luding butC not limited to any implied warranties of mer
hantability,C fitness for a parti
ular purpose, title or non-infringement,C (2) do not assume any legal liability or responsibility for theC a

ura
y, 
ompleteness, or usefulness of the software,C (3) do not represent that use of the software would notC infringe privately owned rights,C (4) do not warrant that the software will fun
tionC uninterrupted, that it is error-free or that any errorsC will be 
orre
ted.C Limitation of liability: In no event will the 
opyright holder:C be liable for any indire
t, in
idental, 
onsequential, spe
ialC or punitive damages of any kind or nature, in
luding but notC limited to loss of profits or loss of data, for any reasonC whatsoever, whether su
h liability is asserted on the basisC of 
ontra
t, tort (in
luding negligen
e or stri
t liability),C or otherwise, even if any of said parties has been warned ofC the possibility of su
h loss or damages.CC -----------------------------------------------------------------------------CC CALLC ---------------------------CC SUBROUTINE GEOMS(C # NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,C # X,T,TEND,H,RTOL,ATOL,ITOL,IOPT,ROPT,C # IVCOND,EOM,MAS,JAC,IJAC, 30



C # SOLOUT,IOUT,C # LIWORK,IWORK,LRWORK,RWORK,C # RPAR,IPAR,IERR,C # IDID)C IMPLICIT NONEC INTEGER NP,NV,NR,NW,NS,NL,NM,NI,M,N,NIVCOND,C # ITOL,IJAC,IOUT,LIWORK,LRWORK,IERR,IDID,C # IOPT(40),IWORK(LIWORK),IPAR(*)C DOUBLE PRECISION T,TEND,H,C # X(N),RTOL(*),ATOL(*),ROPT(40),RWORK(LRWORK),C RPAR(*)C EXTERNAL IVCOND,EOM,MAS,JAC,SOLOUTCC INPUT- AND OUTPUT-ARGUMENTSC ---------------------------CC NP Input : integerC Number of position variables p.CC NV Input : integerC Number of velo
ity variables v.CC NR Input : integerC Number of dynami
al for
e element variables r.CC NW Input : integerC Number of auxiliary variables w.CC NS Input : integerC Number of 
onta
t point variables s.CC NL Input : integerC Number of Lagrange multipliers l=lambda for holonomi
C 
onstraints.CC NM Input : integerC Number of Lagrange multipliers m=mu for nonholonomi
C 
onstraints.CC NI Input : integerC Number of invariants, e.g., energy 
onservation.CC M Input : integerC Total number of provided equations (M.GE.N), i.e., dimension ofC RDA, see subroutine EOM. In the 
ase of the use of theC * proje
ted-strangeness-free formulation we haveC M=NP+NV+NR+NW+NS+3*NL+2*NM+NI,C * proje
ted-strangeness-index-1 formulation we haveC M=NP+NV+NR+NW+NS+2*NL+NM+NI.CC N Input : integerC Number of unknowns (M.GE.N), i.e., dimension of X. We haveC N=NP+NV+NR+NW+NS+NL+NM.C 31



C NIVCOND Input : integerC Number of initial value 
onditions, whi
h have to be satisfiedC in addition to the 
onstraints obtained from the provided equa-C tions of motion. See subroutine IVCOND.CC X Input : double pre
ision array X(N)C Initial values for X. The array X 
ontains the (initial) stateC of the me
hani
al system in the following orderCC X(1:NW) =wC X(NW+1:NW+NL) =l (=lambda)C X(NW+NL+1:NW+NL+NM) =m (=mu)C --------------------------------------------------------C X(NL+NM+NW+1:NL+NM+NW+NR) =rC --------------------------------------------------------C X(NL+NM+NW+NR+1:NL+NM+NW+NR+NV) =vC --------------------------------------------------------C X(NL+NM+NW+NR+NV+1:NL+NM+NW+NR+NV+NS) =sC X(NL+NM+NW+NR+NV+NS+1:NL+NM+NW+NR+NV+NS+NP) =pCC Output :C Numeri
al approximation of the solution at the last su

essfullyC rea
hed time T.CC T Input : double pre
isionC Initial time.C Output :C Last su

essfully rea
hed time. If the whole integration wasC su

essful then T=TEND.CC TEND Input : double pre
isionC Final time.CC H Input : double pre
isionC Initial step size.C Output :C Last used step size.CC RTOL Input : double pre
ision RTOL (or array RTOL(N))C ATOL Input : double pre
ision ATOL (or array ATOL(N))C Relative and absolute error toleran
es. They 
an be bothC s
alars or else both ve
tors of length N.C In the 
ase of a s
alar the pres
ribed relative and absoluteC toleran
es are valid for every 
omponent of the ve
tor ofC unknowns X. The 
ode keeps, roughly, the lo
al error of X(I)C below RTOL*ABS(X(I))+ATOL.C In the 
ase of a ve
tor of dimension N the pres
ribed relativeC toleran
es RTOL(I) and absolute toleran
es ATOL(I) are validC for the I-th 
omponent X(I) of the ve
tor of unknowns X.C The 
ode keeps, roughly, the lo
al error of X(I) belowC RTOL(I)*ABS(Y(I))+ATOL(I).CC ITOL Input : integerC Swit
h for RTOL and ATOL: 32



C ITOL=0 Both RTOL and ATOL are s
alars.C ITOL=1 Both RTOL and ATOL are ve
tors.CC IOPT Input : integer array IOPT(40)C Serve as parameters for the 
ode. For standard use of the 
odeC IOPT(2),..,IOPT(17) must be set to zero before 
alling.C See below for a more sophisti
ated use.CC IOPT( 2)=LUN output devi
eC 0 - no output (default)C 6 - output to the s
reenC >10 - other output devi
es (to define)C In the 
ase that the output of several messages is de-C sired, the user has to define an output devi
e and toC asso
iate this devi
e with IOPT(2), e.g.,C IOPT(2)=13C OPEN(UNIT=13,FILE='geoms.log')C Finally, the output devi
e has to be 
losed, e.g.,C CLOSE(13)C In the 
ase of an unsu

essful run of GEOMS it is re-C 
ommended to set IOPT(2) > 0 su
h that GEOMS is ableC to provide more detailed informations to the user.C Furthermore, it is re
ommended to setC IOPT(2)=0, 6, or >10.CC IOPT( 3)=NIT maximum number of Newton iterations for the solu-C tion of the impli
it system in ea
h step.C The default value (for IOPT(3)=0) is 10.CC IOPT( 4)=STARTN defines the 
hoi
e of starting values for theC Newton method solving the nonlinear stage equationsC 0 - The extrapolated 
ollo
ation solution is taken asC starting value for Newton method. (default)C 1 - Zero starting values are used as starting valueC forNewton method.C IOPT(4)=1 is re
ommended if the Newton method has 
on-C verging diffi
ulties (this is the 
ase when IWORK(11)C is very large in 
omparison to IWORK(1), see outputC parameters).CC IOPT( 5)=FORM Used formulation as basis of the numeri
alC integrationC 0 - proje
ted-strangeness-free formulation, i.e., theC user has to provide the equations (1)-(7) toge-C ther with the first and se
ond time derivativeC of the holonomi
 
onstraints, i.e.,C gI(p,v,t) = d/dt g(p,t),C gII(p,v,r,w,s,l,m,t)= d^2/dt^2 g(p,t),C and the first time derivative of the nonholonomi
C 
onstraints, i.e.,C hI(p,v,r,w,s,l,m,t)= d/dt(H(p,s,t)Z(p)v+h(p,s,t)).C If there exist some solution invariants (8) theC user should also provide them and set NI equalC to the number of the solution invariants. All33



C provided equations have to be defined in the sub-C routine EOM and the subroutine MAS in the 
orre
tC order, see the subroutines EOM and MAS for moreC details.C 1 - proje
ted-strangeness-index-1 formulation , i.e.,C the user has to provide the equations (1)-(7)C together with the first time derivative of theC holonomi
 
onstraints, i.e.,C gI(p,v,t) = d/dt g(p,t).C If there exist some solution invariants (8) theC user should also provide them and set NI equalC to the number of the solution invariants. AllC provided equations have to be defined in the sub-C routine EOM and the subroutine MAS in the 
orre
tC order, see the subroutines EOM and MAS for moreC detail.CC IOPT( 6)=NMAX Maximal number of allowed steps.C The default value (for IOPT(6)=0) is 100000.C If the 
ode stops with the error message IDID=-1117,C IOPT(6) has to be in
rease orC the integration 
an be 
ontinued by use of the obtainedC X and T as initial values for the 
ontinued integration.CC IOPT( 8)=PRED Step size strategyC 1 - predi
tive 
ontroller (Gustafsson)C 2 - 
lassi
al step size 
ontrolC The default value (for IOPT(8)=0) is 1.C The 
hoi
e IOPT(8)=1 seems to produ
e safer results;C for simple problems, the 
hoi
e IOPT(8)=2 produ
esC often slightly faster runs.CC IOPT( 9)=NWTMAT Approximation of the Newton iteration matrixC 0 - approximation at the initial point x_i of theC 
urrent integration interval [t_{i},t_{i+1}℄C i.e., at (t_{i},x_{i}) (default)C 1 - approximation at the first extrapolated stage ofC the 
urrent integration interval [t_{i},t_{i+1}℄C i.e., at (t_{i}+
_{1}*h,X_{i1})C 2 - approximation at the se
ond extrapolated stage ofC the 
urrent integration interval [t_{i},t_{i+1}℄C i.e., at (t_{i}+
_{2}*h,X_{i2})C 3 - approximation at the third extrapolated stage ofC the 
urrent integration interval [t_{i},t_{i+1}℄C i.e., at (t_{i}+
_{3}*h,X_{i3})C Several numeri
al experiments turned out that theC 
hoi
e IOPT(9)=2 is the fastest while theC 
hoi
e IOPT(9)=0 is theoreti
ally the safest.C IOPT(9).NE.0 is only possible if IOPT(4)=STARTN=0,C i.e., the extrapolated 
ollo
ation solution is takenC as starting value for Newton method.CC IOPT(10)=NWTUPD Update of the Newton iteration matrixC 0 - for the whole Newton iteration pro
ess in one34



C integration step the same Newton iteration matrixC is used, i.e., no update is allowed. (default)C >0 - during the Newton iteration pro
ess in the 
urrentC integration step IOPT(10) updates of the NewtonC iteration matrix are allowed.C If 
onvergen
e problems during the Newton iterationC pro
ess o

ur, often the Newton matrix is not suitable.C Therefore, in the 
ase of IOPT(10)=0 theC 
urrent integration step is reje
ted, the 
ounter NCRJCTC will be in
reased by one and the 
urrent integrationC step will be repeated with redu
ed step size.C The option IOPT(10)>0 allows the update of the NewtonC iteration matrix IOPT(10) times. The Newton iterationC matrix will be updated by use of the 
urrent iteratesC and the Newton iteration will be 
ontinued.C Several numeri
al experiments have shown that IOPT(10)C should not ex
eed 1.CC IOPT(11)=DECOMPC De
omposition of the algebrai
 partC 0 - LU de
omposition with full pivoting (default)C 1 - QR de
omposition with pivotingC 2 - SV de
ompositionC By use of IOPT(11)=1 the integration be
omes fastestC but the stability of the de
omposition 
an not beC guaranteed. In situations with isolated singularitiesC it may happen that the integrator does not dete
tC the singularity if the toleran
es RTOL or ATOL areC too large.C By use of IOPT(11)=2 or 3 the stability of theC de
omposition is guaranteed but the integrationC be
omes slower.C In 
ase of redundant 
onstraints only IOPT(11)=3 isC possible.CC IOPT(12)=DECOMPD De
omposition of differential partC 0 - LU de
omposition with partial pivoting (default)C 1 - QR de
ompositionC By use of IOPT(12)=0 the integration be
omes fastest.CC IOPT(13)=SELCOMP Re
omputation strategy for the sele
torsC 0 - situation adaptedC the re
omputation of the sele
tor will be doneC only if the row pivoting of the 
onstraints isC 
hanging or 
onvergen
e problems o

ur duringC the Newton iteration pro
ess (default)C 1 - in every integration stepC In 
ase of IOPT(13)=0 the amount of 
omputationsC is redu
ed and the integration be
omes faster.C This speed-up is only possible if DECOMPD=0.CC IOPT(14)=AUTONOM Autonomy of the equations of motionC 0 - the equations of motion are not autonomousC (default)C 1 - the equations of motion are autonomous35



C If the equations of motion are autonomous the amountC of 
omputations 
an be redu
ed and the integrationC be
omes faster.CC IOPT(15)=MASSTRKT Stru
ture of the mass matrixC 1 - full and time or/and state dependentC 2 - diagonal and time or/and state dependentC 3 - full and 
onstantC 4 - diagonal and 
onstantC The default value (for IOPT(15)=0) is 1.CC IOPT(17)=IVCNSST are the initial values 
onsistentC 0 - No, the initial values are assumed to be notC 
onsistent. A 
he
k of 
onsisten
y will beC done and if ne
essary a 
orre
tion will beC 
omputed. (default)C 1 - Yes, the initial values are assumed to beC 
onsistent. No 
he
k of 
onsisten
y will beC done.CC ROPT Input : double pre
ision array ROPT(40)C Serve as parameters for the 
ode. For standard use of the 
odeC ROPT(1),..,ROPT(40) must be set to zero before 
alling.C See below for a more sophisti
ated use.CC ROPT( 1)=UROUND The rounding unitC The default value (for ROPT(1)=0.0) is 1.D-16.CC ROPT( 2)=SAFE Safety fa
tor in step size predi
tionC The default value (for ROPT(2)=0.0) is 0.9.CC ROPT( 3)=THET Re
omputation of the Ja
obianC De
ides whether the Ja
obian should be re
omputed.C In
rease ROPT(3), to 0.1 say, when Ja
obian evaluationsC are 
ostly. for small systems ROPT(3) should be smallerC (say 0.001D0). Negative ROPT(3) for
es the 
ode toC 
ompute the Ja
obian after every a

epted step.C The default value (for ROPT(3)=0.0) is 0.001D0.CC ROPT( 4)=FNEWT Stopping 
riterion for Newton's methodC Smaller values of ROPT(4) make the 
ode slower, butC safer.C The default value (for ROPT(4)=0.0) isC MIN(0.03D0,RTOL(1)**0.5D0)CCC ROPT( 5)=QUOT1 Change of the step sizeC See ROPT(6).C The default value (for ROPT(5)=0.0) is 1.0D0CC ROPT( 6)=QUOT2 Change of the step sizeC If QUOT1 < HNEW/HOLD < QUOT2, then the step size is notC 
hanged. This saves, together with a large ROPT(3),C de
ompositions and the amount of 
omputations for36



C large systems. For small systems one may haveC ROPT(5)=1.00D0, ROPT(6)=1.2D0, for large full systemsC ROPT(5)=0.99D0, ROPT(6)=2.0D0 might be good 
hoi
es.C The default value (for ROPT(6)=0.0) is 1.2D0CC ROPT( 7)=HMAX Maximal step sizeC The default value (for ROPT(7)=0.0) is TEND-TCC ROPT( 8)=FACL PARAMETER FOR STEP SIZE SELECTIONC See ROPT(9).C The default value (for ROPT(9)=0.0) is 8.0D0CC ROPT( 9)=FACR Step size sele
tionC The new step size is 
hosen subje
t to the restri
tionC FACR <= HNEW/HOLD <= FACLC The default value (for ROPT(8)=0.0) is 0.2D0CC IVCOND User supplied subroutine whi
h provides initial 
onditions inC addition to the 
onstraints 
ontained in the equationsC of motion (in
luding hidden 
onstraints)CC SUBROUTINE IVCOND(N,T,X,NCOND,COND,IPAR,RPAR,IERR)C IMPLICIT NONEC INTEGER N,NCOND,IPAR(*),IERRC DOUBLE PRECISION T,X(N),COND(NCOND),RPAR(*)CC N Input : integerC Number of unknowns, i.e., dimension of XC X has to remain un
hanged.CC T Input : double pre
isionC Initial time t_0.C T has to remain un
hanged.CC X Input : double pre
ision array X(N)C Unknown variables, see above.C X has to remain un
hanged.CC NCOND Input : integerC Number of additional initial 
onditions provided in theC subroutine IVCOND.C NCOND has to remain un
hanged.CC COND Output : double pre
ision array COND(NCOND)C Residual of initial 
onditions, e.g. the 
onditionC COND(1)=X(4)-.5 for
es the initial state of X(4) toC be 0.5, i.e. X(4)=0.5D0.C Note the fa
t, that the 
onditions given in IVCONDC override the given initial values, i.e., if the givenC initial values are 
onsistent but do not satisfy theC (possibly wrong) 
onditions given in IVCOND theC initial values will be 
orre
ted su
h that both,C the 
onstraints and the initial 
onditions areC satisfied. 37



C In 
ase of initial values whi
h are 
onsistent toC the 
onstraints the option IOPT(17) 
ould be set to 1C to avoid su
h a 
orre
tion.CC IPAR Input/Output: integer array IPAR(*)C Integer parameters whi
h are only used by the user.C They are unused and un
hanged by GEOMS.CC RPAR Input/Output: double pre
ision array RPAR(*)C Double pre
ision parameters whi
h are only used by theC user. RPAR is unused and un
hanged by GEOMS.CC IERR Output : integerC Indi
ator of su

ess. IERR is only used byC user supplied subroutines. After every 
all of a userC supplied subroutine the status of IERR is 
he
ked. IfC IERR is negative the run of GEOMS will be interruptedC and GEOMS returns to the 
alling program. IERR isC un
hanged by GEOMS.CC EOM Name (EXTERNAL) of the user supplied subroutine whi
h providesC the right-hand side (RHS) of EoM (1)-(8) together with the firstC and se
ond time derivative of the holonomi
 
onstraints, i.e.,C gI(p,v,t) = d/dt g(p,t),C gII(p,v,r,w,s,l,m,t) = d^2/dt^2 g(p,t),C and the first time derivative of the nonholonomi
 
onstraints,C i.e.,C hI(p,v,r,w,s,l,m,t) = d/dt (H(p,s,t)Z(p)v+h(p,s,t)).C The order and the number of the provided right-hand sidesC depends on the used formulation, see IOPT(5) and above for moreC detail.CC SUBROUTINE EOM(M,N,T,X,RDA,IOPT,ROPT,IPAR,RPAR,IERR)C IMPLICIT NONEC INTEGER M,N,IOPT(*),IPAR(*),IERRC DOUBLE PRECISION T,X(N),RDA(M),ROPT(*),RPAR(*)CC M Input : integerC Total umber of provided equations (M.GE.N),C i.e., dimension of RDA, see below.C In the 
ase of use ofC * proje
ted-strangeness-free formulation we haveC M=NP+NV+NR+NW+NS+3*NL+2*NM+NI,C * proje
ted-strangeness-index-1 formulation we haveC M=NP+NV+NR+NW+NS+2*NL+NM+NI.C M has to remain un
hanged.CC N Input : integerC Number of unknowns (M.GE.N), i.e., dimension of X.C We have N=NP+NV+NR+NW+NS+NL+NM.C N has to remain un
hanged.CC T Input : double pre
isionC Evaluation of the right-hand side of the provided38



C equations at time T.C T has to remain un
hanged.CC X Input : double pre
ision array X(N)C Ve
tor of unknowns, see above.C X has to remain un
hanged.CC RDA Output : double pre
ision array RDA(M)C Right-hand side of the provided redu
ed derivativeC array. The order and the number of the providedC right-hand sides depends on the used formulation, seeC IOPT(5).C If IOPT( 5)=0 the numeri
al integration is based on theC proje
ted-strangeness-free formulation, i.e., theC user has to provide the equations (1)-(7) togetherC with the first and se
ond time derivative of theC holonomi
 
onstraints, i.e.,C gI(p,v,t) =d/dt g(p,t),C gII(p,v,r,w,s,l,m,t)=d^2/dt^2 g(p,t),C and the first time derivative of the nonholonomi
C 
onstraints, i.e.,C hI(p,v,r,w,s,l,m,t) =d/dt(H(p,s,t)Z(p)v+h(p,s,t)).C If there exist some solution invariants (8) the userC should also provide them and set NI equal to theC number of the solution invariants. The order is givenC byCC RDA(1:NW) =dC RDA(NW+1:NW+NL) =gIIC RDA(NW+NL+1:NW+NL+NM) =hIC ----------------------------------------------------C RDA(NW+NL+NM+1:NW+NL+NM+NL) =gIC RDA(NW+NL+NM+NL+1:NW+NL+NM+NL+NM) =hC RDA(NW+NL+NM+NL+NM+1:NW+NL+NM+NL+NM+NI) =eC ----------------------------------------------------C RDA(NW+NL+NM+NL+NM+NI+1:NW+NL+NM+NL+NM+NI+NS) =
C RDA(NW+NL+NM+NL+NM+NI+NS+1:...C NW+NL+NM+NL+NM+NI+NS+NL) =gC ----------------------------------------------------C RDA(NW+NL+NM+NL+NM+NI+NS+NL+1:...C NW+NL+NM+NL+NM+NI+NS+NL+NR) =bC ----------------------------------------------------C RDA(NW+NL+NM+NL+NM+NI+NS+NL+NR+1:...C NW+NL+NM+NL+NM+NI+NS+NL+NR+NV) =f_dynC ----------------------------------------------------C RDA(NW+NL+NM+NL+NM+NI+NS+NL+NR+NV+1:...C NW+NL+NM+NL+NM+NI+NS+NL+NR+NV+NP) =f_kinCC If IOPT( 5)=1 the numeri
al integration is based on theC proje
ted-strangeness-index-1 formulation , i.e., theC user has to provide the equations (1)-(7) togetherC with the first time derivative of the holonomi
C 
onstraints, i.e.,C gI(p,v,t) = d/dt g(p,t).39



C If there exist some solution invariants (8) the userC should also provide them and set NI equal to theC number of the solution invariants. The order is givenC byCC RDA(1:NW) =dC ----------------------------------------------------C RDA(NW+1:NW+NL) =gIC RDA(NW+NL+1:NW+NL+NM) =hC RDA(NW+NL+NM+1:NW+NL+NM+NI) =eC ----------------------------------------------------C RDA(NW+NL+NM+NI+1:NW+NL+NM+NI+NS) =
C RDA(NW+NL+NM+NI+NS+1:NW+NL+NM+NI+NS+NL) =gC ----------------------------------------------------C RDA(NW+NL+NM+NI+NS+NL+1:NW+NL+NM+NI+NS+NL+NR) =bC ----------------------------------------------------C RDA(NW+NL+NM+NI+NS+NL+NR+1:...C NW+NL+NM+NI+NS+NL+NR+NV) =f_dynC ----------------------------------------------------C RDA(NW+NL+NM+NI+NS+NL+NR+NV+1:...C NW+NL+NM+NI+NS+NL+NR+NV+NP) =f_kinCCC IOPT Input : integer array IOPT(40)C Serve as parameters for the 
ode.C IOPT has to remain un
hanged.CC ROPT Input : double pre
ision array ROPT(40)C Serve as parameters for the 
ode.C ROPT has to remain un
hanged.CC IPAR Input/Output: integer array IPAR(*)C Integer parameters whi
h are only used by the user.C They are unused and un
hanged by GEOMS.CC RPAR Input/Output: double pre
ision array RPAR(*)C Double pre
ision parameters whi
h are only used by theC user. They are unused and un
hanged by GEOMS.CC IERR Output : integerC Indi
ator of su

ess. IERR is only used byC user supplied subroutines. After every 
all of a userC supplied subroutine the status of IERR is 
he
ked. IfC IERR is negative the run of GEOMS will be interruptedC and GEOMS returns to the 
alling program. IERR isC un
hanged by GEOMS.CC MAS Name (EXTERNAL) of the user supplied subroutine whi
h providesC the mass matrix M(p,t) in equation (2) of the EoMCC SUBROUTINE MAS(T,NX,X,M,N,MA,IOPT,ROPT,IPAR,RPAR,IERR)C IMPLICIT NONEC INTEGER NX,M,N,IOPT(*),IPAR(*),IERRC DOUBLE PRECISION T,X(NX),MA(M,N),ROPT(*),RPAR(*)40



CC T Input : double pre
isionC Evaluation of the mass matrix MA at time T.C T has to remain un
hanged.CC NX Input : integerC Number of unknowns, i.e., dimension of X. We haveC NX=NP+NV+NR+NW+NS+NL+NM.C NX has to remain un
hanged.CC M Input : integerC Number of rows of the mass matrix MA. We have M=NV.C M has to remain un
hanged.CC N Input : integerC Number of rows of the mass matrix MA. We have N=NV.C N has to remain un
hanged.CC X Input : double pre
ision array X(NX)C Ve
tor of unknowns, see above.C X has to remain un
hanged.CC MA Output : double pre
ision array MA(M,N)C Mass matrix of the equations of motion. The mass matrixC has to be provided as a full M x N array,C also in the 
ase of diagonal stru
ture. Be
ause of theC used regularization te
hnique a sparse storage is notC possible and does not save time or memory.CC IOPT Input : integer array IOPT(40)C Serve as parameters for the 
ode.C IOPT has to remain un
hanged.CC ROPT Input : double pre
ision array ROPT(40)C Serve as parameters for the 
ode.C IOPT has to remain un
hanged.CC IPAR Input/Output: integer array IPAR(*)C Integer parameters whi
h are only used by the user.C They are unused and un
hanged by GEOMS.CC RPAR Input/Output: double pre
ision array RPAR(*)C Double pre
ision parameters whi
h are only used by theC user. They are unused and un
hanged by GEOMS.CC IERR Output : integerC Indi
ator of su

ess. IERR is only used byC user supplied subroutines. After every 
all of a userC supplied subroutine the status of IERR is 
he
ked. IfC IERR is negative the run of GEOMS will be interruptedC and GEOMS returns to the 
alling program. IERR isC un
hanged by GEOMS.CC JAC Name (EXTERNAL) of the user supplied subroutine whi
h 
omputes41



C the NEGATIVE partial derivatives of the right-hand side of theC equations of motion. (This routine is only 
alled if IJAC=1.C Supply a dummy subroutine in the 
ase IJAC=0).CC SUBROUTINE JAC(M1,M2,M3,M4,M5,M6,N1,N2,N3,N4,M,N,C # T,X,FX1,FX2,FX3,FX4,FX5,FX6,C # IOPT,ROPT,RPAR,IPAR,IERR)C IMPLICIT NONEC INTEGER M1,M2,M3,M4,M5,M6,N1,N2,N3,N4,M,N,C # IOPT(*),IPAR(*),IERRC DOUBLE PRECISION T,X(N),FX1,FX2,FX3,FX4,FX5,FX6,ROPT(*),RPAR(*)CC M1 Input : integerC Number of 
onstraints depending on all unknownC variables and restri
ting the Lagrange multipliers lC and m and the auxiliary variables w, i.e., 0=d,C 0=gII, 0=hI. IF IOPT(5)=0 we have M1=NW+NL+NM and ifC IOPT(5)=1 we have M1=NW (note that M1=0 is possible).C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM.C M1 has to remain un
hanged.CC M2 Input : integerC Number of 
onstraints only depending on the unknownC variables p, v, and s and restri
ting the velo
ityC variables v, i.e., 0=gI, 0=h, 0=e. We have M2=NL+NM+NI.C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM.C M2 has to remain un
hanged.CC M3 Input : integerC Number of 
onstraints only depending on the unknownC variables p and s and restri
ting the position p andC the 
onta
t variables s, i.e., 0=
, 0=g. We haveC M3=NS+NL.C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM.C M3 has to remain un
hanged.CC M4 Input : integerC Number of dynami
al for
e element equations (3), i.e.,C we have M4=NR.C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM.C M4 has to remain un
hanged.CC M5 Input : integerC Number of dynami
al equations of motion (2), i.e.,C we have M5=NV.C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM.C M5 has to remain un
hanged.CC M6 Input : integer42



C Number of kinemati
al equations of motion (1), i.e.,C we have M6=NP.C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM.C M6 has to remain un
hanged.CC N1 Input : integerC Number of auxiliary variables plus the number ofC Lagrange multipliers, i.e., we have N1=NW+NL+NM.C Compare with the blo
k row stru
ture of X above.C N1 has to remain un
hanged.CC N2 Input : integerC Number of dynami
al for
e element variables, i.e.,C we have N2=NR.C Compare with the blo
k row stru
ture of X above.C N2 has to remain un
hanged.CC N3 Input : integerC Number of velo
ity variables, i.e., we have N3=NV.C Compare with the blo
k row stru
ture of X above.C N3 has to remain un
hanged.CC N4 Input : integerC Number of 
onta
t point variables plus the number ofC position variables, i.e., we have N1=NS+NP.C Compare with the blo
k row stru
ture of X above.C N4 has to remain un
hanged.CC M Input : integerC Total number of provided equations,C i.e., dimension of RDA, see subroutine EOM and theC number of rows of the partial derivatives. We haveC M=M1+M2+M3+M4+M5+M6.C M has to remain un
hanged.CC N Input : integerC Number of unknowns, i.e., dimension of X.C We have N=NP+NV+NR+NW+NS+NL+NM=N1+N2+N3+N4.C N has to remain un
hanged.CC T Input : double pre
isionC Evaluation of the partial derivatives at time T.C T has to remain un
hanged.CC X Input : double pre
ision array X(NX)C Ve
tor of unknowns, see above.C X has to remain un
hanged.CC FX1 Output : double pre
ision array FX1(M1,N)C NEGATIVE partial derivatives of d, gII, hI withC respe
t to [w l m | r | v | s p ℄. We haveC [ d d /d[w l m | r | v | s p ℄ ℄C FX1=[ d gII/d[w l m | r | v | s p ℄ ℄ in R^(M1,N)43



C [ d hI /d[w l m | r | v | s p ℄ ℄C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM and with the blo
k row stru
ture of XC above.CC FX2 Output : double pre
ision array FX2(M2,N3+N4)C NEGATIVE partial derivatives of gI, h~, e withC respe
t to [v s p℄. We haveC [ d gI/d[v s p℄ ℄C FX2=[ d h~/d[v s p℄ ℄ in R^(M2,N3+N4)C [ d e /d[v s p℄ ℄C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM and with the blo
k row stru
ture of XC above.CC FX3 Output : double pre
ision array FX3(M3,N4)C NEGATIVE partial derivatives of 
 and g withC respe
t to [s p℄. We haveC [ d 
/d[s p℄ ℄C FX3=[ ℄ in R^(M3,N4)C [ d g/d[s p℄ ℄C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM and with the blo
k row stru
ture of XC above.CC FX4 Output : double pre
ision array FX4(M4,N)C NEGATIVE partial derivatives of the right-hand side ofC the dynami
al for
e element equations, i.e., of b withC respe
t to [w l m | r | v | s p ℄. We haveC FX4=d b/d[w l m | r | v | s p ℄ in R^(M4,N)C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM and with the blo
k row stru
ture of XC above.CC FX5 Output : double pre
ision array FX5(M5,N)C NEGATIVE partial derivatives of the right-hand side ofC the dynami
al equations of motion, i.e., of f_dyn withC respe
t to [w l m | r | v | s p ℄. We haveC FX5=d f_dyn/d[w l m | r | v | s p ℄ in R^(M5,N)C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM and with the blo
k row stru
ture of XC above.CCC FX6 Output : double pre
ision array FX6(M6,N3+N4)C NEGATIVE partial derivatives of the right-hand side ofC the kinemati
al equations of motion, i.e., of f_kinC with respe
t to [v | s p ℄. We haveC FX6=d f_kin/d[ v | s p ℄ in R^(M6,N3+N4)C Compare with the blo
k row stru
ture of RDA in theC subroutine EOM and with the blo
k row stru
ture of XC above.CC IOPT Input : integer array IOPT(40)C Serve as parameters for the 
ode.44



C IOPT has to remain un
hanged.CC ROPT Input : double pre
ision array ROPT(40)C Serve as parameters for the 
ode.C IOPT has to remain un
hanged.CC IPAR Input/Output: integer array IPAR(*)C Integer parameters whi
h are only used by the user.C They are unused and un
hanged by GEOMS.CC RPAR Input/Output: double pre
ision array RPAR(*)C Double pre
ision parameters whi
h are only used by theC user. They are unused and un
hanged by GEOMS.CC IERR Output : integerC Indi
ator of su

ess. IERR is only used byC user supplied subroutines. After every 
all of a userC supplied subroutine the status of IERR is 
he
ked. IfC IERR is negative the run of GEOMS will be interruptedC and GEOMS returns to the 
alling program. IERR isC un
hanged by GEOMS.CC IJAC Input : integerC Swit
h for the 
omputation of the partial derivatives of theC right-hand side of the equations of motionC IJAC=0 Partial derivatives are 
omputed internally by finite
 differen
es, subroutine JAC is never 
alled.C IJAC=1 Partial derivatives are supplied by subroutine JAC.CC SOLOUT Name (EXTERNAL) of subroutine providing the numeri
al solutionC during integration.C If IOUT=1, it is 
alled after every su

essful step. Supply aC dummy subroutine if IOUT=0.C SOLOUT furnishes the solution X at the nr-th grid-point TC (Thereby the initial value is the first grid-point).CC SUBROUTINE SOLOUT(NACCPT,TOLD,T,X,N,NN2,NN3,NN4,CONTX,H,C1M1,C # C2M1,RPAR,IPAR,IERR)C IMPLICIT NONEC INTEGER NACCPT,N,NN2,NN3,NN4,IPAR(*),IERRC DOUBLE PRECISION TOLD,T,H,X(N),CONTX(NN4),RPAR(*),C1M1,C2M1C DOUBLE PRECISION GEDENSOUTC EXTERNAL GEDENSOUTCC NACCPT Input : integerC Number of a

epted steps so far.C NACCPT has to remain un
hanged.CC TOLD Input : double pre
isionC The pre
eeding grid-point.C TOLD has to remain un
hanged.CC T Input : double pre
isionC Current simulation time T.45



C T has to remain un
hanged.CC X Input : double pre
ision array X(NX)C Ve
tor of unknowns, see above.C X has to remain un
hanged.CC N Input : integerC Number of unknowns, i.e., dimension of X.C We have N=NP+NV+NR+NW+NS+NL+NM=N1+N2+N3+N4.C N has to remain un
hanged.CC NN2,NN3,NN4,CONTX,H,C1M1,C2M1 Input: integer/double pre
isionC Internal 
ommuni
ation for the use by the subroutineC GEDENSOUT for dense output.C NN2,NN3,NN4,CONTX,H,C1M1,C2M1 have to remain un
hanged.CC IPAR Input/Output: integer array IPAR(*)C Integer parameters whi
h are only used by the user.C They are unused and un
hanged by GEOMS.CC RPAR Input/Output: double pre
ision array RPAR(*)C Double pre
ision parameters whi
h are only used by theC user. They are unused and un
hanged by GEOMS.CC IERR Output : integerC Indi
ator of su

ess. IERR is only used byC user supplied subroutines. After every 
all of a userC supplied subroutine the status of IERR is 
he
ked. IfC IERR is negative the run of GEOMS will be interruptedC and GEOMS returns to the 
alling program. IERR isC un
hanged by GEOMS.CC ----- Continuous output -----C During 
alls to "SOLOUT", a 
ontinuous solutionC for the interval [TOLD,T℄ is available throughC the fun
tionC GEDENSOUT(I,TOUT,N,NN2,NN3,NN4,T,H,CONTX,C1M1,C2M1)C whi
h provides an approximation to the I-thC 
omponent of the solution at the point TOUT, e.g.,C DO I=1,NC XOUT(I)=GEDENSOUT(I,TOUT,N,NN2,NN3,NN4,T,H,CONTX,C # C1M1,C2M1)C END DOC The value TOUT should lie in the interval [TOLD,T℄.C Do not 
hange the entries of N, NN2, NN3, NN4, T, H,C CONTX, C1M1, C2M1.C The fun
tion GEDENSOUT is adopted from the 
ode RADAU5,C see the book:C E. Hairer and G. Wanner, Solving Ordinary DifferentialC Equations II. Stiff and Differential-Algebrai
 ProblemsC Springer Series in Computational Mathemati
s 14,C Springer-Verlag 1991, Se
ond edition 1996.C The former name was CONTR5.C 46



C IOUT Input : integerC Swit
h for the 
alling of subroutine SOLOUT.C IOUT=0 Subroutine is never 
alled.C IOUT=1 Subroutine is available for output.CC LIWORK Input : integerC De
lares the length of the array IWORK. LIWORK has to be at leastC 20.CC IWORK Output: integer array IWORK(LIWORK)C Statisti
al informationC IWORK( 1) NACCPT - Number of a

epted integration stepsC IWORK( 2) NEOM - Number of evaluations of the right-hand sideC of the equations of motionC IWORK( 3) NMAS - Number of evaluations of the mass matrixC IWORK( 4) NJAC - Number of evaluations of the Ja
obian of theC right-hand side of the equations of motionC IWORK( 5) NSEL - Number of determinations of suitable sele
torsC IWORK( 6) NPDEC - Number of prede
ompositions, i.e., of FX, M,C and IKINC IWORK( 7) NEDEC - Number of E-de
ompositions, i.e., of E1 and E2C IWORK( 8) NBSUB - Number of ba
kward substitutionsC IWORK( 9) NSTEP - Number of stepsC IWORK(10) NERJCT - Number of reje
tions 
aused by error testC failuresC IWORK(11) NCRJCT - Number of reje
tions 
aused by 
onvergen
eC problems of the Newton pro
essCC LRWORK Input : integerC De
lares the length of the array RWORK.C A safe 
hoi
e for all possible setting in IOPT isC LRWORK at least 5*NC Depending on IOPT it is suffi
ient ...C If IOPT(17)=IVCNSST=0 then LRWORK has to be at least 5*NC If IOPT(11)=DECOMPC=3 then LRWORK has to be at leastC 5*MAX(M1,M2,M3,N1,N3,N4), see 
omments to subroutine JAC.C If IOPT(11)=DECOMPC=2 then LRWORK has to be at least NC If IOPT(12)=DECOMPD=1 then LRWORK has to be at least 2*NC For good performan
e, LRWORK should generally be larger.CC RWORK Intern : integer array IWORK(LIWORK)CC IPAR Input/Output : integer array IPAR(*)C Integer parameters whi
h are only used by the user. They areC unused and un
hanged by GEOMS.CC RPAR Input/Output: double pre
ision array RPAR(*)C Double pre
ision parameters whi
h are only used by the user.C RPAR is unused and un
hanged by GEOMS.CC IERR Input/Output : integerC Indi
ator of su

ess. IERR is only used by userC supplied subroutines. After every 
all of a user suppliedC subroutine the status of IERR is 
he
ked. If IERR is negative47



C the run of GEOMS will be interrupted and GEOMS returns to theC 
alling program. IERR is un
hanged by GEOMS.CC IDID Output : integerC Reports su

ess upon return. The first two digitsC indi
ate the subroutine whi
h 
auses trouble.CC IDID=-10.. An error o

urred in the subroutine GEOMSC -1001 Option array IOPT or ROPT or toleran
es RTOL or ATOLC 
ontains wrong dataC Che
k the output in UNIT=IOPT(2) for more informationC If the option IOPT(2) equals 0 turn on the output.C -1002 Initial IDID lower than 0CC IDID=-11.. An error o

urred in the subroutine GECORC -1101 Stop initialized by SOLOUTC -1102 Stop initialized by EOMC -1103 Stop initialized by MASC -1104 Stop initialized by JACC -1105 Initial 
onditions not 
onsistentC -1106 Final time TEND before initial time TC -1111 QR-De
omposition of FX1 not possibleC -1112 QR-De
omposition of FX2 not possibleC -1113 QR-De
omposition of FX3 not possibleC -1114 QR-De
omposition of E1 or E2 not possibleC -1115 Newton method repeatedly does not 
onverge NSING.GE.5C -1116 Newton method repeatedly does not 
onverge NSING.GE.5C -1117 More than NMAX steps are neededC -1118 Step size too smallC -1128 An error o

urred during use of DORMQRC -1129 An error o

urred during use of DORMQRCC IDID=-12.. An error o

urred in the subroutine GEFXNUMC -1201 Stop initialized by EOMCC IDID=-14.. An error o

urred in the subroutine GEDECCQRC -1401 Constraints redundant or dd/dw singularC (FX1 rank defi
ient).C Try the integration again with IOPT(11)=3 (SVD).C -1402 Constraints or the invariant equations are redundantC (FX2 rank defi
ient). Try the integration again withC IOPT(11)=3 (SVD).C -1403 Constraints redundant or d
/ds singularC (FX3 rank defi
ient).C Try the integration again with IOPT(11)=3 (SVD).CC IDID=-18.. An error o

urred in the subroutine GETRFRHSCC -1801 Multipli
ation with Q1 not possibleC -1802 Multipli
ation with Q2 not possibleC -1803 Multipli
ation with Q3 not possibleC -1804 Multipli
ation with Q4 not possibleCC IDID=-20.. An error o

urred in the subroutine GEERRESTC -2004 Multipli
ation with Q4 not possible48



CC IDID=-21.. An error o

urred in the subroutine GEINIVAL.C -2101 Stop initialized by EOM.C -2102 Stop initialized by IVCOND.C -2103 An error o

urred during SVD.C -2104 Divergen
e during determination of 
onsistent initialC values. The given 
onditions in IVCOND together withC all 
onstraints of the EoM form an overdetermined system.C Perhaps it is 
ontradi
tory.C => Che
k 
onsisten
y of all 
onstraints of the EoM inC relation to the 
onditions given in IVCOND!C => If you are sure that the initial values are 
onsistentC (at least variables P and V) you 
an set IOPT(17)=1.C -2105 No Convergen
e in the given limit of iterations.C (See the sour
e 
ode of GEINIVAL and in
rease NIT or/andC NNWTUPD.C -2106 Given 
onditions in IVCOND together with 
onstraints inC EoM are not suffi
ient to uniquely determine 
onsistentC initial values. Perhaps there are not enough 
onditionsC or they are redundant.C => Provide more (nonredundant) 
onditions in IVCOND!C => Che
k NIVCOND!C => Che
k redundan
y of all 
onstraints of the EoM inC relation to the 
onditions given in IVCOND!C => If you are sure that the initial values are 
onsistentC (at least variables P and V) you 
an set IOPT(17)=1.CC IDID=-24.. An error o

urred in the subroutine GEDECCSVC -2401 Constraints are not uniformly redundant, i.e., rank of FX1C was 
hangingC -2402 Constraints are not uniformly redundant, i.e., rankC defi
ien
y of FX1 not identi
al to rank defi
ien
y of FX2C -2403 Constraints are not uniformly redundant, i.e., rankC defi
ien
y of FX1 not identi
al to rank defi
ien
y of FX3C -2404 An error o

urred during SVD of FX1 or FX2 or FX3CC IDID=-26.. An error o

urred in the subroutine GEDECCLUC -2601 Constraints redundant or dd/dw singularC (FX1 rank defi
ient).C Try the integration again with IOPT(11)=3 (SVD).C -2602 Constraints or the invariant equations are redundantC (FX2 rank defi
ient). Try the integration again withC IOPT(11)=3 (SVD).C -2603 Constraints redundant or d
/ds singularC (FX3 rank defi
ient).C Try the integration again with IOPT(11)=3 (SVD).CC -----------------------------------------------------------------------------
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