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EXISTENCE OF BOUNDED DISCRETE STEADY STATE
SOLUTIONS OF THE VAN ROOSBROECK SYSTEM ON

BOUNDARY CONFORMING DELAUNAY GRIDS

K. GÄRTNER ∗

Abstract. The classic van Roosbroeck system describes the carrier transport in semiconductors
in a drift diffusion approximation. Its analytic steady state solutions fulfill bounds for some mobility
and recombination/generation models. The main goal of this paper is to establish the identical
bounds for discrete in space, steady state solutions on 3d boundary conforming Delaunay grids and
the classical Scharfetter-Gummel-scheme. Together with a uniqueness proof for small applied voltages
and the known dissipativity (continuous as well as space and time discrete) these discretization
techniques carry over the essential analytic properties to the discrete case. The proofs are of interest
for deriving averaging schemes for space or state dependent material parameters, which are preserving
these qualitative properties, too. To illustrate the properties of the scheme 1, 4, 16 elementary cells
of a modified CoolMOS like structure are depleted by increasing the applied voltage until steady
state avalanche breakdown occurs.

2000 Mathematics Subject Classification. 65M12, 35K65.
Key words and phrases. Reaction-diffusion systems, discrete bounded solutions, Delaunay grids,
discrete weak maximum principle.

1. Introduction. The analytic problem is well known. It is treated with differ-
ent techniques and assumptions on data [1, 2, 3, 4, 5]. For the purpose of establishing
discrete bounds it is convenient to follow Markowich [4]. The central assumptions
made to introduce the finite volume space discretization are:
Gauss’s theorem holds and boundary conforming Delaunay meshes cover the bounded
polyhedral domain Ω = ∪iΩi, Ωi a subdomain containing one material.
The first assumption is met by the known analytical smoothness results, the second
one is a research topic in its own. It weakens assumptions like ’a mesh of acute type’,
on which the 2d results of Zlamal [6] are based. These results can be extended in
more detail to relevant 3d situations.
The van Roosbroeck system, supplemented with boundary conditions, is discretized
in the form

−∇ · ε∇w = C − n + p,(1.1)

∂n

∂t
−∇ · niµnew∇e−φn = R,(1.2)

∂p

∂t
−∇ · niµpe

−w∇eφp = R,(1.3)

where the symbols have the usual meaning (w - electrostatic potential, n = nie
w−φn

- electron density, p = nie
φp−w - hole density, φn, φp quasi-Fermi potentials), and

R = r(x, n, p)(n2
i − np) (recombination / generation rate) with r(x, n, p) > 0 is as-

sumed to hold. The intrinsic carrier densities (ni) are supposed to be constant on
each subdomain Ωi, hence density like functions are ’measured’ in ni. The dielectric
permittivity εi and the mobilities (µn,p > 0) are assumed to be bounded, sufficiently
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smooth functions in all arguments on each subdomain Ωi with discontinuities at sub-
domain boundaries. Potentials have the natural unit ’thermal voltage’. Einstein
relations and Boltzmann statistics are used and the time derivatives vanish.

A summary with respect to the used properties of Delaunay grids and Voronoi
diagrams follows in the next section together with the introduction of the discretiza-
tion scheme. Section three deals with the Scharfetter-Gummel-scheme on simplex
grids and establishes the existence of bounded discrete steady state solutions. Finally
an example with and without avalanche generation illustrates the problems regarding
unbounded solutions.

2. Delaunay grids, Voronoi diagrams, finite volume discretization. Let
xT

i = (x1,i, x2,i, . . . , xN,i) denote the vector of the space coordinates of the vertex i,
the N ×N matrix

Pl,k =


x1,k+1 − x1,k . . . x1,k+N − x1,k

x2,k+1 − x2,k . . . x2,k+N − x2,k

. . . . .
xN,k+1 − xN,k . . . xN,k+N − xN,k

 .

describes the lth N dimensional simplex EN
l with respect to is local origin at vertex

k (k is omitted often, E1
l denotes an edge, short em or eij). In a right handed

coordinate system the vertices are numbered such, that det(Pl) > 0 ∀ l holds. All
vertices are assumed to be in general position to avoid the discussion of non uniqueness
of Delaunay grids. Any Delaunay grid with vertices xi in a degenerate case coinciding
with one with vertices yi = xi + εi in general position for one special limεi∀i → 0 is
equivalent to any other one regarding unique solutions of a finite volume discretization
- non uniquely defined edges are associated with a zero geometric weight.
The domain is assumed to be constituted by subdomains Ωi, each Ωi is associated
with a single material.

Ω = ∪iΩi = ∪lEN
l .

Definition 1. A discretization by simplices EN
i is called a Delaunay grid

if the balls defined by the N + 1 vertices of EN
i ∀ i do not contain any vertex xk,

xk ∈ EN
j , xk 6∈ EN

i . [7].
Remark 1. Let additionally each simplex EN

l ∈ Ω̄i have its circum center in
Ω̄i, then the discretization is called boundary conforming Delaunay. (This definition
seems to be ’folklore’ in some finite volume communities but is not so popular in grid
generation circles – [8] gives an equivalent definition).

Definition 2. Let Vi = {x ∈ IRN : ‖x− xi‖ < ‖x− xj‖,∀ vertices xj ∈ Ω}
and ∂Vi = V̄i \ Vi. Vi is the Voronoi volume of vertex i and ∂Vi is the corresponding
Voronoi surface.
The Voronoi volume element Vij of the vertex i with respect to the simplex EN

j is the
intersection of the simplex EN

j and the Voronoi volume Vi of vertex i.
Vi is constructed by the intersection of half spaces, hence convex. The requirement
’boundary conforming Delaunay mesh’ results in simple properties of Vi∩Ωj and each
planar part of ∂Vi ∩ ∂Ωj . For vertex sets in general position ∂Vi related to each edge
in the Delaunay grid has a positive measure - hence the Delaunay grid has minimal
total edge length of all simplex tessellations of the given point set (especially in 2d
acute meshes are boundary conforming Delaunay meshes).
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The variant of finite volume schemes used here is characterized by ’integrating the
equations over Vij ’ and summation over j. It dates back at least to Macneal [9] (see
[10], too). ∂Vij is either a part of the Voronoi surface, hence orthogonal to an edge or
part of ∂EN

j - fluxes through these surfaces are compensated by neighbor simplices
or are described by third kind boundary conditions,

ξ1u + ξ2∂u/∂ν + ξ3 = 0

with ξ1(x, u, . . .) > 0, ξ2(x, u, . . .) > 0, and ν the outer normal unit vector. The
boundary conditions are integrated over the part of ∂Ωk ∩ ∂Vij , where u is assumed
to be spatially constant and approximated by ui.
To start with, the discretization procedure is applied on the equation

−∇ · ε∇u = f,

with a coefficient function ε constant in each subdomain (ε(x) = εl, x ∈ Ωl), and the
approximation ∇u|∂Vi,k(i) ≈ (uk(i) − ui)/|eik(i)|∫

Vij

−∇ · εl∇u dV = −εl

∑
k(i)

∫
∂Vi,k(i)

∇u · dSk

≈ −εl

∑
k

∂Vi,k(i)

|ei,k(i)|
(uk − ui) + BI = εl[γk(i)]G̃N (1,−1)u|EN

j
+ BI,(2.1)

where BI denotes boundary integrals due to the integration of the boundary con-
ditions. The argument of G̃(1,−1) should be understood as placeholder for special
functions and is often omitted.∫

Vij

fdV ≈ Vijf(xi), [V ]i =
∑

j

Vij ,

where [·] denotes a diagonal matrix. Integrals over Voronoi cells are replaced by local
integrand value times volume. G̃N (1,−1) denotes a difference matrix, mapping from
nodes to edges

(G̃T G̃)ii > 0, (G̃T G̃)i>j < 0, and 1T G̃T = 0T .(2.2)

γk(i) =
∂Vi,k(i)

|ei,k(i)|

denotes the elements of a diagonal matrix of geometric weights per simplex, k(i) is a
node connected to i by an edge eik ∈ EN

j . Summation over the nodes in the simplex
j yields ∑

Vij∈EN
j

∫
Vij

−∇ · ε∇udV ≈ εG̃T [γ]G̃u|EN
j

+ BI.(2.3)

The explicit form of the boundary integrals is given by∫
EN−1

j ∩Vi

−ε∇u · dS ≈ |EN−1
j ∩ Vi|

ε

ξ2j

(ξ1j
ui + ξ3j

),
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where EN−1
j denotes the d − 1 dimensional simplex opposite to j. The boundary

conditions yield non negative contributions to the diagonal entries and modify the
right hand side. Dirichlet boundary conditions follow by ξ2 → 0 and can be directly
eliminated or handled as properly chosen penalty with respect to the number represen-
tation used, resulting in fulfilled boundary conditions due to rounding. The notation
GT [·]Gu is used to indicate the global function including boundary conditions, too.
The summation over all simplices and its reordering over edges, nodes, etc. is not
indicated explicitly as long as the global or local meaning follows from the context.
Due to the the local current conservation with respect to each Voronoi volume Vi at
node i (2.1) it is possible to introduce discrete test functions in complete similarity
to integration by parts (compare 2.3) to evaluate contact currents. Definition of the
test functions by the related adjoint problem results in first order error cancellation
[11], compare Table 4.1. Accordingly a ’weak discrete maximum principle’ holds as
long as the Voronoi faces related to each edge and subdomain fulfill∑

EN
j 3eik,EN

j ∈Ωi

∂Vik ≥ 0.(2.4)

This is exactly the requirement fulfilled by a ’boundary conforming Delaunay grid’.
Summation over all simplices yields for connected grids an irreducible, weakly diago-
nally dominant matrix due to the third kind boundary conditions with some ξ1ξ2 > 0.
This matrix has a bounded, non negative inverse – due to maximum principle or
Perron-Frobenius theory (see [10]).
Hence Voronoi surface (short ’edge’) related, positivity preserving averaging schemes
of more general coefficient functions, ε̄eik

=
∑

EN
j 3eik,EN

j ∈Ωi
ε(x, u, |∇u|) resulting in∑

EN
j 3eik,EN

j ∈Ωi
ε̄eik

∂Vik ≥ 0, preserve the maximum principle, hence the existence of
a bounded, non negative inverse.
It is convenient to introduce Vij < 0, ∂Vij < 0 to establish local per element quan-
tities. This results in formally complex ’gradient’ matrices G =

√
[γ]G̃(1,−1) for

simplices not containing their circum center (functions and relations like
√

[x], x < y
should be understood in a per matrix element meaning). Summation rules of usual
expressions avoid any use of the complex quantities. The price paid is: in general
uT |EN

j
GT Gu|EN

j
does not introduce a discrete gradient seminorm on one simplex

only. A convenient way out in case of parameter evaluations is to take advantage of
the related finite element expression ||∇u||2|EN

j
:= |EN

j |uT P−T
j P−1

j u and to use these
gradients in edge related, positivity preserving averaging schemes.

3. Scharfetter-Gummel-scheme and bounded discrete solutions. With
these prerequisites bounds for the discrete steady state solutions on a fixed, boundary
conforming Delaunay grid can be derived by closely following the analytic results.
Application of the procedure on the continuity equations in so called Slotboom vari-
ables u := e−φn , v := eφp yields by solving a two point boundary problem along
each edge for piecewise linear w(x) (first integration yields µ̄ew(e−φn)′ = const, the
second one results in the used relation between wl, φn,l, l = i, k(i) for edge ei,k(i),
where w̄ := (wi + wk(i))/2, sh(s) := sinh(s)/s is related to the Bernoulli function
b(2s) = e−s/sh(s) = 2s/(e−2s − 1), sh(s) = sh(−s) ≥ 1, while const has the meaning
of a current and is substituted in Gauss’s theorem). The variation of µi is assumed to
be small compared with that of w(x), hence µ is averaged, like ε, on the edge related
part of the Voronoi surface and its intersection with each subdomain to preserve (2.4).
The average is denoted by µ̄. It is the well known Scharfetter-Gummel scheme [12] in
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symmetric form, the discrete variables are transformed by positive diagonal matrices.
The discrete problem reads:

GT εGw = [V ]g(C,n,p), g = C− n + p, Ω, n = [ew]u, p = [e−w]v,(3.1)

ASn
(µn,w)e−φn = GT [µ̄new̄/sh(G̃w/2)]Gu = [V ][r(x,n,p)](1− [v]u),(3.2)

ASp(µp,−w)eφp = GT [µ̄pe
−w̄/sh(G̃w/2)]Gv = [V ][r(x,n,p)](1− [u]v).(3.3)

Here r > 0 denotes a differentiable function, for further details and dissipativity,
which may be the strongest constraint for deriving averages, see [13].

On insulating boundary parts the normal derivatives of the quasi-Fermi-potentials
vanish ∂φk/∂ν = 0 (k = n, p, ν outer normal). The boundary conditions at Ohmic
contacts are (due to charge neutrality, infinite recombination velocity, and infinite
conductivity of a metallic contact)

w|ΓDk
= wk + wb,k, ewb,k − e−wb,k = C|ΓDk

, u|ΓDk
= e−φn,k , v|ΓDk

= eφp,k ,(3.4)

where wk = φn,k = φp,k is the ’applied potential’, zero in thermodynamic equilibrium,
while wb,k is the ’built-in voltage’. These boundary conditions fix one arbitrary con-
stant in φn and φp – due to np = 1, hence the thermodynamic equilibrium solution
is (w∗, u∗ = 1, v∗ = 1) and w∗ solution of (3.1) with u = u∗, v = v∗. If the doping
concentration C is not constant on a conducting boundary section ΓDk

, wb,k should
be understood as the constant on ΓDk

electrostatic potential difference, resulting in
zero electron and hole current at that contact. Third kind boundary conditions (Gate
and Schottky contacts) having the proper sign relations can be handled in a similar
way - here they are omitted.

Proposition 1. Suppose −∞ < w̌0 ≤ w ≤ ŵ0 < ∞. ASn
, ASp

are weakly
diagonally dominant matrices, hence have bounded positive inverses due to the positive
Dirichlet boundary measure.
PROOF: µ̄(EN

j , ei,k(i)) = µ̄(EN
j′ , ei,k(i)) > 0 ∀ EN

m ∈ Ωl,m = j, j′, and ei,k(i) ∈ EN
m

holds due to the assumed average. Hence 0 < [µ̄ew̄/sh(G̃w)] < ∞ holds, the sign
pattern and the sum relations (2.2) are not changed. �

Assume

ǔ ≤ u0
i ≤ û, v̌ ≤ v0

i ≤ v̂ ∀ xi ∈ Ω̄.(3.5)

The right hand side of the discrete Poisson equation gi(Ci, ni, pi) is with respect to wi

a strictly monotone mapping of IR onto IR ∀i. Let Č = min(C(x)) and Ĉ = max(C(x))
denote the minimum and maximum of the doping concentration. Hence the solution
w̆i of g(w̆i) = 0 at any vertex xi ∈ Ω fulfills the bounds

ew̌ :=
Č

2û
+

√
Č2

4û2
+

v̌

û
≤ ew̆i ≤ Ĉ

2ǔ
+

√
Ĉ2

4ǔ2
+

v̂

ǔ
=: eŵ.(3.6)

Proposition 2. The discrete electrostatic potential w0, the unique solution of
(3.1) with w replaced by w0, u, v by u0, v0, and fulfilled assumption (3.5) can be
estimated by

ẁ := min(w|ΓD
, w̌) ≤ w0

i ≤ max(w|ΓD
, ŵ) =: ẃ.(3.7)
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PROOF: Suppose w0
j > ẃ. Testing (3.1) with the positive part (w0 − ẃ)+ yields

(w0 − ẃ)+T GT εGw0 − (w0 − ẃ)+T [V ]g(C,w0,u0,v0) = 0.

Because signG(w0−ẃ)+ = signGw0 if G(w0−ẃ)+ 6= 0 is true, g(Ĉ, ŵ, ǔ, v̂) = 0 holds
by construction (3.1, 3.6), (w0−ẃ)+T GT εGw0 > 0 and (w0−ẃ)+T [V ]g(C,w0,u0,v0)
≤ 0 result in a contradiction. Similarly follows the lower bound by testing with the
negative part (w0 − ẁ)−. The mapping with respect w0 is continuous, differentiable,
and bounded and maps the convex domain ẁ ≤ w0

i ≤ ẃ onto itself. The linear prob-
lem with g = 0 has a unique solution (GT εG is weakly diagonally dominant) and
embedding with respect to g does not change the degree. Uniqueness follows directly
from maximum principle: let w0

1, w0
2 to be solutions of (3.1), assume (w0

1−w0
2)

+ > 0
for at least one xi ∈ Ω, testing

(w0
1 −w0

2)
+T GT εG(w0

1 −w0
2)− (w0

1 −w0
2)

+T [V ](g(w0
1)− g(w0

2)) = 0,

and using the monotonicity of g with respect to wi yields a contradiction. �
Proposition 3. Let w1 be a solution of

GT εGw1 = [V ]g(C,w1,u0,v0),(3.8)

where u0, v0 respect the bounds (3.5) and suppose u1, v1 to be solutions of the de-
coupled continuity equations

AS(µn,w1)u1 = [V ]r(x, ew1
u0, e−w1

v0)(1− [v0]u1),(3.9)

AS(µp,−w1)v1 = [V ]r(x, ew1
u0, e−w1

v0)(1− [u0]v1).(3.10)

Assume for some sufficiently large w+,
max(w|ΓD

)−min(w|ΓD
) ≤ w+ < ∞, that

e−w+
≤ u0, v0 ≤ ew+

is true. Then ew−
, ew+

is an lower, upper solution respectively for equations (3.9,
3.10).
PROOF: Assuming u1 > ew+

for at least one xi ∈ Ω and testing (3.9) with (u1 −
ew+

)+T yields (u1−ew+
)+T AS(µn,w1)u1 > 0 independently of µn, w1. On the other

hand (1 − [v0]ew+
) ≤ 0, and [r(x, ew1

u0, e−w1
v0)] > 0 hold, hence u ≤ ew+

follows,
and so do the other bounds. �

Remark 2. Choosing in (3.5) ǔ, û, v̌, v̂ accordingly u = v = e−w+
, u = v = ew+

yields

u ≤ u ≤ u,(3.11)

v ≤ v ≤ v,(3.12)

and with (3.7)

w= min(w|ΓD
, ln((Č +

√
Č2 + 4)/2)− w+) ≤ w(3.13)

w≤ max(w|ΓD
, ln((Ĉ +

√
Ĉ2 + 4)/2) + w+) = w.(3.14)
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These are the final bounds because Proposition 3 is true with (3.11, 3.12, 3.13, 3.14),
too.
The bounds are identical with the analytic ones (compare [4]).
The summary of the results is:

Theorem 3.1. On any connected, boundary conforming Delaunay grid with n
vertices, the problem (3.1, 3.2, 3.3) with positive Dirichlet boundary measure has at
least one solution. It fulfills the bounds (3.11, 3.12, 3.13,3.14).
PROOF: The established bounds form a convex set in IR3n and the two step mapping
(Proposition 2, 3.9, 3.10) is continuous, differentiable, and maps the convex set onto
itself, hence Brouwer’s fixed point theorem guarantees the existence of at least one
fixed point. �

Uniqueness for small applied voltages follows by showing the existence of a bounded
inverse of the Jacobian of the linearization of (3.1, 3.2, 3.3) (nonlinear boundary con-
ditions are linearized, too) at equilibrium. Due to the smooth dependence of all
functions on all variables involved in the discretization it is invertible in a sufficiently
small neighborhood of the equilibrium. The linearization at an approximate solution
(ũ, ṽ, w̃), ũ + δu ≈ u, ṽ + δv ≈ v, w̃ + δw ≈ w, ñ = [ew̃]ũ, p̃ = [e−w̃]ṽ reads:

(GT εG + [V ][ñ + p̃])δw + [V ew̃]δu− [V e−w̃]δv = −f1,

(GT Yn − [V ](I − [ṽ][ũ])
∂r

∂w̃
)δw + (ASn

(µn, w̃)− [V ][dn])δu− [V ][dp]δv = −f2,

(GT Yp − [V ](I − [ṽ][ũ])
∂r

∂w̃
)δw + [V ][dn]δu + (ASp

(µp,−w̃)− [V ][dp])δv = −f3.

fi are the function values, evaluated at an iterate or a guess with the boundary
conditions of (u, v, w) included by proper changes of ξ3 at the related parts of the
boundary and with or without homogenization and continuation by smooth functions
to xi ∈ Ω – the first iterate fulfills the boundary conditions used here in any case.
[dj ], Yj , j = n, p are defined by

[dn] = [
∂r

∂ũ
](I − [ũṽ])− [r][ṽ],

[dp] = [
∂r

∂ṽ
](I − [ũṽ])− [r][ũ],

Yn = [G̃ũ]
∂

∂w̃
[µ̄new̄/sh(G̃w̃/2)],

Yp = [G̃ṽ]
∂

∂w̃
[µ̄pe

−w̄/sh(G̃w̃/2)].

Choosing the thermodynamic equilibrium solution as the approximate one, the prob-
lem simplifies due to Gũ = Gṽ = G1 = 0, [ũṽ] = I, and [dn] = [dp] = −[r], hence it
is sufficient to show the existence of a bounded inverse for the linearized continuity
equations.
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Proposition 4. Suppose [dj ] < 0, ∀xi ∈ Ω, and [dj ]|ΓD
= 0, [Dj ] = −[V ][dj ],

j = n, p. Then the Schur complement

S = ASp
+ [Dp]− [Dn](ASn

+ [Dn])−1[Dp]

of

Ã =
(

ASn + [Dn] [Dp]
[Dn] ASp + [Dp]

)
,(3.15)

is a weakly diagonally dominant matrix with Sii > 0, Sij ≤ 0 and i 6= j.
PROOF: Solutions z with z|ΓD

= 0

(ASn + [Dn])z = ei, ei = 1 at one xi ∈ Ω

fulfill 0 ≤ z and DT
nz < 1 (1T [signDn]ASn = y ≥ 0, and yi > 0 ∀xi ∈ Ω and next

neighbors of ΓD). Hence for the column sum holds 1T (I− [Dn](ASn +[Dn])−1)[Dp] >
0, the off-diagonal elements fulfill eT

i (I − [Dn](ASn + [Dn])−1)[Dp]ej < 0, i 6= j
∀i, j ∈ Ω, and 0 on ΓD, hence sign pattern and column sum relation are fulfilled for
S, too. �
With [Dn] = [Dp] = [V ][r] the matrix S is symmetric positive definite.

4. Example. To give an example a modified CoolMOS like device is depleted
by an embedding process with respect to the applied voltage. An introduction to the
principles of operation of CoolMOS devices can be found for instance in [14]. The
very basic idea is to chose doping levels and the geometry in such a way, that the N
and the P doped regions are depleted together starting from the folded pn-junction
in the off-state and to use a MOSFET to control the on-state in such a way, that the
majority carriers don’t pass any pn-junction. The folded pn-junction is crucial for
the maximal switching voltage reached, which is limited by avalanche generation. 1,
4, and 16 elementary cells are computed exactly within the framework given above
and with the extension of an unbounded avalanche generation term. The avalanche
generation results in a blow up in finite time in the experimental setup, too. The
static embedding process is stopped at current and avalanche generation levels, that
clearly indicate: the major part of the current results from avalanche generation.

The modification of a CoolMOS device consists in a more complicated geome-
try: an infinite hexagonal array s formed by different intersecting cylinders defining
the N , N+, P , P+ regions and a SiO2 domain, which is not present in a typical
CoolMOS. This second material introduces edge singularities, which are influencing
the avalanche generation directly, and allows for the formation of boundary layers,
which move in dependence of the applied voltage in tangential direction along the
Si − SiO2 interface. These boundary layers influence the charge distribution, hence
the conductivity and the avalanche generation. They are used to add complexity to
the numerical solution and to illustrate the fact: these features are hardly to resolve
by the grid with smallness assumptions for the discretization like |G̃s| < c << 1 or
exp(c) < 1, s = w, φn, φp, hence discretization schemes with proven unconditional
stability are essential for solving these problems numerically.

The computation of more than one elementary cell is of interest, because
a) any real world device is finite in size and the perturbations of the infinite grid
introduced at the insulating structures forming the device boundary are often critical,
b) symmetric structures allow for numerical consistency tests - in the avalanche case
by systematically approaching a singular problem.
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Fig. 4.1. Top view of one elementary cell, the numbers indicate different regions (left). Material
distribution in the elementary cell: blue P+ (carries the TOP contact), light blue P , yellow SiO2,
red N (the lower triangle forms the BOTTOM contact).

Fig. 4.2. Material distribution in 16 elementary cells, the top most one is cut of in the figure.

Short description of the numerical solution methods: The basic algorithm is
an approximate Newton’s method with an exact Jacobian. Different preconditioning
methods are combined and used in dependence of the state and user settings. CGS
[15] is used to combine the solutions of scalar equations to one solution of the Newton
linearized system. Details will be published elsewhere, the essential step is to solve
very ill conditioned equations close to those of diffusion convection type in divergence
form. PARDISO (see [16] for instance) is used presently – it causes the practical size

9



Fig. 4.3. Typical grid, 1006791 nodes, 5824896 tetrahedra, shown is the surface and a cut
(z = const).

limitations but solves the equations with the necessary reliability and the algorithms
used reach a large number of solutions per factorization. The algorithms are suffi-
cient to differentiate the sensitivity to avalanche generation between different design
modifications without introducing an additional grid size dependence on top of that
one due to solving scalar degenerate elliptic problems in three space dimensions. This
range is roughly described by: the integrated generation rate of Schockley-Read-Hall
type is above that of avalanche processes (the Okuto-Crowell-model was used here
[17]). This is of course not any more the case close to the avalanche breakdown.

The following figures and Table 4.1 should give an impression regarding the cases
without avalanche (computed with numerical control parameters identical in all cases
- hence defined by those including avalanche). The cases with avalanche are charac-
terized essentially by how far one wants to follow the blow up along the nearly vertical
tangent (see Figure 4.5). The stopping criteria are: ||δw||∞ + ||δφn||∞ + ||δφp||∞ ≤
0.015UT for Newton’s method and an error reduction of 10−4 for CGS. In cases with-
out avalanche the latter can be relaxed and controlled depending on the non linear
iteration.

The three cases are recomputed with avalanche generation and an avalanche gen-
eration specific preconditioner, which does not remove the singularity of the problem
but allows to reach significant levels of avalanche generation using the same solution
techniques. The following Figures 4.7, 4.8 show the depleted state at 361.494V
without avalanche generation and details of solutions.

A comparison of the numerically computed results of the different geometrical
cases shows nearly identical results, a small symmetry breaking effect is present at
larger avalanche generation levels. It results in a small but almost equal reduction
of the avalanche generation levels for 4 and 16 elementary cells (see Fig. 4.5). The
number of CGS iterations increases with the diminishing distance to singularity and
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cells nodes tot. # of rejected tot. # of av. CGS it.
emb. steps emb. steps Newton it. per Newton it.

1 66462 306 18 1979 6.165
4 256386 315 20 2006 6.564

16 1006791 305 18 1961 6.151

av. # factoriz. tot. # scalar 3d av. solved lin. sys. memory max. rel. err.
per Newton it. problems solved per factorization used / MB current balance

3*0.3497 122010 58.77 272.5 10−13

3*0.3601 131680 70.91 1072.4 2 · 10−13

3*0.3187 120620 64.33 4357.6 4 · 10−12

Table 4.1
Some quantities characterizing the algorithms used to solve 3 depletion problems (CoolMOS

without avalanche, BOTTOM 0V → 400V , memory used: memory used without PARDISO).

Fig. 4.4. Depletion of 1, 4, 16 elementary cells without avalanche generation, scaled (by 4
respectively 1/4) contact currents (left, SRH stands for the integrated Schockley-Read-Hall recom-
bination/generation rate), the embedding process depends very weakly on the number of elementary
cells and the avalanche generation up to 357V (shown are all computed points, right).

Fig. 4.5. Avalanche breakdown ’CoolMOS’, 1, 4, and 16 elementary cells, detail right, shown
is the logarithm of the avalanche generation rate (normalized to 1A) for each embedding step, step
size limitations at low avalanche generation levels are often due to the tangential movement of the
boundary layers along the Si− SiO2 interfaces (compare Figure 4.7).
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Fig. 4.6. Avalanche breakdown ’CoolMOS’, 16 elementary cells, the typical increase of CGS
iterations with increasing avalanche generation, applied voltages 179V, 357V, 361.5V (left to right);
logarithm of the || · ||∞ of the preconditioned residuum (green), true residuum (blue), update (red).

the number of elementary cells. The symmetry breaking effect could be a combination
of at least any of the following reasons:
a) the grids fulfill symmetry conditions with respect to the vertices but a few edges
are flipped to construct a consistently extended grid, hence gradients are computed
on tetrahedra that fulfill symmetry conditions only with exceptions;
b) limited precision in solving the linear and nonlinear systems of equations (precision
limits are close: recomputation of the 1 elementary cell case on different computer
architectures with different numbers of processors shows deviations of the same size);
c) filamentation effects due to the physical model can not be excluded, but are not
seen as the favorite reason.
Without avalanche generation and its amplification effects the deviations in the so-
lutions and related integrals like contact currents (Figure 4.4) are negligible for the
three systematically extended test cases. Here the point symmetry is sufficient to
construct completely symmetric extensions.
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Fig. 4.7. Global
view on the solution
(no avalanche genera-
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Fig. 4.8. Solution details (top to bottom): avalanche generation influences the carrier density
distributions, logarithm of the avalanche generation rate due to electrons (left), due to holes (right);
logarithm of the electron density with one isosurface showing deformations due to the avalanche
generated electrons (left), without avalanche generation (right); moving boundary layers at the Si−
SiO2 interface, logarithm of the hole density, 16.0V (left), 21.37V (right); 3d graphics by gltools.
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