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Abstract

We consider a model for transient conductive-radiative heat transfer in grey ma-
terials. Since the domain contains an enclosed cavity, nonlocal radiation boundary
conditions for the conductive heat-flux are taken into account. We generalize known
existence and uniqueness results to the practically relevant case of lower integrable
heat-sources, and of nonsmooth interfaces. The purpose of the paper is to obtain
energy estimates that involve only the L-p norm of the heat sources for some expo-
nent p close to one. Such estimates are important for the investigation of models in
which the heat equation is coupled to Maxwell’s equations or to the Navier-Stokes
equations (dissipative heating), with many applications such as crystal growth.

Introduction

Heat transfer processes that take place at high temperatures can neither be modeled nor
simulated accurately without taking into account the phenomenon of heat radiation. A
typical industrial field where radiation models are needed is crystal growth (see [Phi03],
[KPS04], [KP05], [MPT06], [Mey06], [Voi01]).

In the present paper, we study from the analytical viewpoint a time-dependent heat
transfer problem involving nonlocal radiation. The problem consists in computing the
temperature distribution in several different opaque materials Ωi (i = 1, . . . , m) that are
separated from each other by an enclosed transparent medium Ω0, as in the following
picture:
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Radiation occurs at the surface Σ := ∂Ω0, which is the boundary of a transparent cavity.

We denote by R the outgoing radiation (radiosity), and by J is the incoming radiation at
each point of Σ. Then, R and J are connected by the simple relation

R = ǫ σ |θ|3 θ + (1 − ǫ) J , on [0, T ] × Σ , (1)
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where the emissivity ǫ is a given material function that takes values in [0, 1], and σ denotes
the Stefan-Boltzmann constant. The relation (1) simply states that the outgoing radiation
has to be the sum of the radiation emitted according to Stefan-Boltzmann’s law and of
the reflected part of the incoming radiation.

A second constitutive relation between R and J is needed. The incoming radiation J(z)
at the point z ∈ Σ is the weighted sum of the radiation outgoing at all points of the
surface that are in the range of vision of z. One introduces for points pairs (z, y) ∈ Σ×Σ
a view factor w : Σ × Σ −→ R by setting

w(z, y) :=







~n(z)·(y−z) ~n(y)·(z−y)
π|y−z|4

Θ(z, y) if z 6= y ,

0 if z = y ,
(2)

where the Θ is a visibility factor that penalizes the presence of opaque obstacles

Θ(z, y) =

{

1 if ]z, y[⊂ Ω0 ,

0 else .
(3)

Here, we have used the notation ]z, y[:= conv{z, y}\{z, y}, and ~n is the outward-pointing
unit normal to Σ.

The second constitutive relation between R and J is then given by

J = K(R) , on [0, T ] × Σ , (4)

where for diffuse grey materials (see [KPS04]), one can use the model

(K(R))(t, z) =

∫

Σ

w(z, y)R(t, y) dSy for (t, z) ∈ [0, T ] × Σ , (5)

which we consider throughout the paper. Observe that the view factor w is obviously
well defined if the surface Σ has C1−regularity. This can be generalized to the case of a
Lipschitz continuous boundary (see for example [Dru07]).

We introduce a bounded domain, the computation domain Ω ⊂ R
3, with the representa-

tion Ω =
⋃m

i=1 Ωi. The set Ω is the union of the opaque materials. Note the important
feature that Ω is disconnected. The equations that we consider are

(P )











∂θ

∂t
− div(κ(θ)∇θ) = f in [0, T ] × Ωi, for i = 1, . . . , m ,

−κ(θ)
∂θ

∂ ~n
= R − J on [0, T ] × Σ ,

where κ = κi (i = 1, . . . , m) denotes the temperature-dependent heat conductivity of the
medium Ωi.

We introduce the notation Γ := ∂Ω \ Σ for the part of the boundary where no radiative
interactions take place. On the boundary part [0, T ] × Γ, one, or a combination, of the
following conditions would make sense:

θ = θg , − κ(θ)
∂θ

∂ ~n
= α (θ − θExt) , −κ(θ)

∂θ

∂ ~n
= σ ǫ (θ4 − θ4

Ext) , (6)
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where the imposed temperature θg and the external temperature θExt are given. In
[Dru07], the decomposition Γ = Γ1 ∪ Γ2 ∪ Γ3 was assumed and the general bound-
ary condition (4) was considered in the context of the stationary problem. However, one
can readily see that the two last conditions in (6) lead to operators that are monotone,
and do not complicate the analysis fundamentally. In order to keep the presentation as
simple as possible, but at the same time still treating the essential difficulties, we will
choose throughout this paper the Dirichlet condition

θ = θg on [0, T ] × Γ .

The problem (P ) has to be complemented by an initial condition.

Another similar problem arises if we do not neglect the heat conduction in the transparent
medium Ω0. In this case, we set Ω :=

⋃m
i=0 Ωi, and consider the boundary condition

−

[

κ(θ)
∂θ

∂ ~n

]

= R− J on [0, T ] × Σ ,

where [·] denotes the jump of a quantity across Σ. The main difference to (P ) is that the
domain of computation Ω is connected, which also makes the problem simpler.

We now proceed to the weak formulation of the problem (P ). It was shown in [Tii97b],
[Tii97a], that one can eliminate R and J from (P ) by introducing the operator

G := (I −K) (I − (1 − ǫ)K)−1ǫ , (7)

where the symbol I denotes the identity mapping, and the functions ǫ, (1−ǫ) in connection
with integral operators simply imply multiplication. One can show that the operator
(I − (1 − ǫ)K)−1 is invertible in suitable Banach spaces, as will be made precise below.
The condition (1), (4) on the boundary part [0, T ] × Σ can then be rewritten as

−κ(θ)
∂θ

∂ ~n
= G(σ |θ|3 θ) on [0, T ] × Σ . (8)

Weak solution. We use the notations

Qt :=]0 , t[×Ω , St := ]0 , t[×Σ Ct := ]0 , t[×Γ .

We write Q instead of QT , S instead of ST , etc.

For 1 ≤ p , q <∞, we use the notation

Lp,q(Q) :=

{

u ∈ L1(Q)

∣

∣

∣

∣

∣

(

∫ T

0

(
∫

Ω

|u|q dx

)
p
q

dt

)

<∞

}

,

and for p = ∞,

L∞,q(Q) :=

{

u ∈ L1(Q)

∣

∣

∣

∣

∣

ess sup
t∈]0,T [

(
∫

Ω

|u|q dx

)
1
q

<∞

}

.
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Analogously, one can define the spaces Lp,q(S). We use also the notations Lp(Q), Lp(S)
instead of Lp,p(Q), Lp,p(S).

For 1 ≤ p <∞, we use the spaces

W 1,0
p (Q) :=

{

u ∈ Lp(Q)
∣

∣

∣
∃uxi

∈ Lp(Q) for i = 1, 2, 3
}

,

and

W 1
p (Q) :=

{

u ∈ W 1,0
p (Q)

∣

∣

∣
∃ut ∈ Lp(Q)

}

,

where all partial derivatives are intended in the weak sense.

The space V 1,0
2 (Q) consists of all u ∈W 1,0

2 (Q) such that ess sup
t∈]0,T [

∫

Ω
u2(t, x) dx <∞.

Let Ω =
⋃m

i=1 Ωi, where Ωi are disjoint domains, such that ∂Ωi ∈ C0,1. Taking into account
that we expect that the set Σ will be at least Lipschitzian, we set

V p,q(Ω) :=
{

u ∈W 1,p(Ω)
∣

∣

∣
γ(u) ∈ Lq(Σ)

}

,

where γ is the trace operator. The subscript Γ will denote subspaces of functions that
vanish on the surface Γ. We set

V
p,q(Q) :=

{

u ∈W 1
p (Q)

∣

∣

∣
γ(u) ∈ Lq(S)

}

,

V
p,q
0 (Q) :=

{

u ∈W 1,0
p (Q)

∣

∣

∣
γ(u) ∈ Lq(S)

}

.

Using the subscript C , we will denote subspaces of functions that vanish on the surface
]0 , T [×Γ. Throughout the paper, we will assume that there exists positive constants
κl, κu such that

0 < κl ≤ κi(s) ≤ κu <∞ for all s ∈ R , for i = 1, . . . , m . (9)

We indicate that for a real number s > 1, we denote by s′ the conjugated exponent s/s−1
to s. With these preliminaries, we can show that the following definition is meaningful:

Definition 0.1. A weak solution of (P ) is a function θ ∈ V
s,4
0 (Q) such that θ = θg on C,

and such that the integral relation

−

∫

Q

θ
∂ψ

∂t
+

∫

Q

κ(θ)∇θ · ∇ψ +

∫

S

G(σ |θ|3 θ)ψ =

∫

Ω

θ0 ψ(0) +

∫

Q

f ψ ,

is valid for all ψ ∈ V
s′,∞
C

(Q) , such that ψ(T ) = 0 almost everywhere in Ω.

Situation of the paper. The papers [Tii97b], [Tii97a] were devoted to the stationary
equations corresponding to the problem (P ). The existence of weak solutions was proved
for enclosure-free systems. In [Met99], a similar result was stated for the time-dependent
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case under the same geometrical restriction. The crucial point of the existence proof
consists in ensuring coercivity for the nonlinear operator A

〈Aθ, ψ〉 :=

∫

Ω

κ∇θ · ∇ψ +

∫

Σ

G(σ |θ|3 θ)ψ ,

on a suitable Banach space. This point turns out to have an elementary solution in
enclosure-free systems (see [Met99]).

In [LT01], new coercivity properties were established for the operatorA, allowing to extend
previous results concerning the stationary problem to enclosures. Since the coercivity
inequality proved in [LT01] relies on smoothing properties (compactness) of the integral
operatorK, the surface Σ has at least to be of class C1,α for some α > 0. In the same paper
[LT01], a paragraph was also devoted to the time-dependent problem, and an existence
result was stated for f ∈ L2(Q) in the case of a C1,α boundary.

In the present paper, using the tools developed in [Dru07], we will generalize these results
in two directions. First, we prove the existence of weak solutions to (P ), for f ∈ Lp(Q)
with arbitrary 1 ≤ p ≤ ∞. Second, we propose a new method for proving the result in
the case that f ∈ L2(Q), and that the surface Σ is only Lipschitzian.

The paper is organized as follows. The first section is devoted to existence results for the
case that f ∈ Lp(Q) with p > 1 arbitrary. We then briefly address the question of L∞

regularity of weak solutions. The last section is devoted to the proof of existence in the
case that f ∈ L1(Q). In the appendix, we have gathered some auxiliary results needed
throughout the paper.

For the seek of completeness, we cite a uniqueness result.

Remark 0.2. For i = 0, . . . , m, let κi : R −→ R denote the heat conductivity of Ωi, and
assume that κi is a globally Lipschitz continuous function such that (9) is valid. Then,
there exists at most one weak solution of (P ) in the class V

2,4
0 (Q) ∩ C(0, T ;L1(Ω)).

Proof. The comparison method of the paper [LT01] can be extended to the case of
temperature-dependent heat-conductivities. In the case that κi ≡ const for i = 1, . . . , m,
the more elementary proof of [Dru07] may also be used in the time-dependent case.

1 Existence of solutions

As in the stationary case, we can discuss the question of the existence of weak solutions
with or without supposing C1,α regularity of the boundary Σ. In the latter case, we can
only prove existence assuming a certain regularity for the data.

In the remainder of the paper, we suppose that the imposed temperature θg on ]0 , T [×Γ
has an extension to Q. Still denoting by θg this extension, we suppose that θg(0) is a
well-defined function and that it satisfies

θg(0, x) = θ0(x) almost everywhere in Ω . (10)
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For real numbers 1 < r <∞, we will use the notation r′ := r
r−1

.

In this section, we prove the following results.

Theorem 1.1. Let f ∈ Ls1(0, T ;Ls2(Ω)) and θ0 ∈ Ls1(Ω) with s1 > 3 and s2 >
9
7
. Let

θg ∈W 1,0
2 (Q) satisfy (10), and let κ satisfy (9). Define

q :=







min
{

3(s2−1)
3−2s2

, s1 − 1
}

if s2 <
3
2
,

s1 − 1 else .

Then, there exists a weak solution θ ∈ V
2 ,

4(q+1)
3

0 (Q) of (P ) such that

θ , |θ|
q+1
2 ∈ V 1,0

2 (Q) , θ′ ∈ L
q+1
3 (0, T ; [V 2,

4 (q+1)
3 (Ω)]∗) .

Under the assumption that θg ∈ W 1
2 (Q), we also have

θ ∈ C(0, T ;L2(Ω)) if q ≥ 2 +
3

4
.

We obtain more general results if we assume that Σ ∈ C1,α.

Theorem 1.2. Let Σ in C1,α. Let f ∈ Ls1(0, T ;Ls2(Ω)) and θ0 ∈ Ls1(Ω) for any 1 <
s1, s2 ≤ ∞. Define

q :=







min
{

3(s2−1)
3−2s2

, s1 − 1
}

if s2 <
3
2
,

s1 − 1 if s2 ≥
3
2
,

s := min

{

2,
5 (q + 1)

q + 4

}

.

If θg ∈ W 1,0
s′ (Q) satisfies (10), and if κ satisfies (9), then there exists a weak solution

θ ∈ V
s,q+4
0 (Q) of (P ) such that

|θ|
q+1
2 ∈ V 1,0

2 (Q) , θ′ ∈ L
q+4
4 (0, T ; [V 2,q+4(Ω)]∗) .

Under the assumption that θg ∈ W 1
2 (Q), we also have

θ ∈ C(0, T ;L2(Ω)) , if q ≥ 1 .

Remark 1.3. Making a systematical use of the embedding relations of Lemma 4.5, we
can optimize the statements of Theorem 1.1, resp. 1.2, as follows. Suppose that f ∈
Ls1(0, T ;Ls2(Ω)), where s1, s2 ∈ [1,+∞] are such that

s1 ∈







]

2 s2

3 (s2−1)
,∞
]

if s2 ≤
3
2
,

]

2 s2

3 (s2−1)
, 2 s2

2 s2−3

]

if s2 >
3
2
.

Define q̄ := 5 s1 s2−(3 s1+2 s2)
3 s1+2 s2−2 s1 s2

, and assume that θ0 ∈ Lq̄+1(Ω). Then, under the assumptions

of Theorem 1.1, one can prove the existence of a weak solution θ such that |θ|
q̄+1
2 ∈ V 1,0

2 (Q).

Note that our choice of s1, s2 ensures that (q̄+1)
3

≥ 1. For example, in the case that
f ∈ L2(Q) and θ0 ∈ L6(Ω), we immediately get that the weak solution θ belongs to L8(S).
The proof of the remark involving a lot of extensive algebraic computations of suitable
exponents, we will restrict ourselves to proving the two theorems stated.
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We start the proof of the theorems 1.1 and 1.2 by constructing suitable approximate
solutions. We first introduce some notations. For p ≥ 5 fixed, we define

V := Lp(0, T ;W 1,p
Γ (Ω)) , L θ := θ′ ,

D(L) :=
{

θ ∈ Lp(0, T ;W 1,p
Γ (Ω))

∣

∣

∣
∃ θ′ ∈ Lp′(0, T ; [W 1,p

Γ (Ω)]∗) ; θ(0) = 0
}

,

The symbol θ′ denotes the distributional time derivative of θ. By classical results that
can be found, for example, in [Lio69] (see Ch. 3, Lem. 1.1), the operator L is a densely
defined, maximal monotone linear operator from the linear subspace D(L) of V into the
dual V∗.

For δ > 0 arbitrary and for s defined as in Theorem 1.2, we choose some sequence
{θg,δ} ⊂W 1

p (Q) such that

θg,δ −→ θg in W 1,0
s′ (Q) , θ0,δ := θg,δ(0) −→ θ0 in Ls1(Ω) ,

as δ → 0. Defining for θ ∈ Lp(0, T ;W 1,p
Γ (Ω)) θ̂ := θ + θg,δ, we introduce an operator

〈

A θ , ψ
〉

:= δ

∫ T

0

∫

Ω

(

|∇θ̂|p−2∇θ̂ · ∇ψ + |θ̂|p−2 θ̂ ψ
)

+

∫ T

0

∫

Ω

κ(θ̂)∇θ̂ · ∇ψ

+

∫ T

0

∫

Σ

G(σ |θ̂|3 θ̂)ψ ,

where the symbol 〈·, ·〉 denotes the duality pairing between V and its dual V∗.

We easily see that A is a well-defined, bounded operator from V into V∗. As a matter of
fact, for p ≥ 5 the embedding W 1,p(Ω) →֒ C(Ω) is continuous. Using also the property
‖G‖L(L∞(Σ),L∞(Σ)) ≤ 1, we can estimate

∣

∣

∣

∣

∫ T

0

∫

Σ

G(σ |θ̂|3 θ̂)ψ

∣

∣

∣

∣

≤ σ meas(Σ)

∫ T

0

max
Σ

|θ̂(t)|4 max
Σ

|ψ(t)|

≤ c̄

∫ T

0

‖ θ̂(t) ‖4
W 1,p(Ω) ‖ ψ(t) ‖W 1,p

Γ (Ω)≤ c̄

(
∫ T

0

‖ θ̂(t) ‖4p′

W 1,p(Ω)

)

1

p
′

‖ ψ ‖V

≤ c̄ T
p−5

p (‖ θ ‖4
V + ‖ θg,δ ‖

4
W 1,0

p (Q)
) ‖ ψ ‖V .

We estimate the other terms in A by the Hölder inequality to obtain that

‖ A θ ‖V∗ ≤ cδ (1+ ‖ θ ‖p−1
V ) .

Now, we can construct approximate solutions.

Proposition 1.4. Let the assumptions of Theorem 1.1 be satisfied. If p ≥ max{s′1, 5},
then for all δ > 0, there exists a θ ∈ D(L) such that for all ψ in V

〈

θ
′

, ψ
〉

+
〈

A θ , ψ
〉

=

∫ T

0

∫

Ω

f ψ −

∫ T

0

∫

Ω

∂θg,δ

∂t
ψ . (11)
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Proof. Consider the estimate

∣

∣

∣

∣

∫ T

0

∫

Ω

f ψ

∣

∣

∣

∣

≤

∫ T

0

max
Ω

|ψ(t)| ‖ f(t) ‖L1(Ω) ≤ c

∫ T

0

‖ ψ(t) ‖W 1,p
Γ (Ω) ‖ f(t) ‖L1(Ω)

≤ c ‖ f ‖Ls1 (0,T ;L1(Ω)) ‖ ψ ‖Lp(0,T ;W 1,p
Γ (Ω)) .

We have also that
∣

∣

∣

∣

∫ T

0

∫

Ω

∂θg,δ

∂t
ψ

∣

∣

∣

∣

≤ cδ ‖ ψ ‖Lp(0,T ;W 1,p
Γ (Ω)) .

Therefore, the mapping F given by

〈

F , ψ
〉

:=

∫ T

0

∫

Ω

f ψ −

∫ T

0

∫

Ω

∂θg,δ

∂t
ψ ,

is a well-defined element of V∗. We observe that θ ∈ D(L) satisfies the statement of
Proposition 1.4 if and only if the equation

(

L + A
)

θ = F takes place in V∗. In order to
establish the existence of the solution θ, it is therefore sufficient to prove that the operator
L + A is surjective from D(L) into V∗. In turn, if we can prove that A is coercive and
pseudomonotone with respect to D(L), then the theory of elliptic regularization (see
[Lio69], Ch. 3, Th. 1.2) ensures the surjectivity of the operator L+ A.

We at first discuss the coercivity. Making use of Lemma 4.1, (4), we can easily prove that

∫

S

G(σ |θ̂|3 θ̂) θ̂ ≥ (1 − ‖H‖L(L5/4(S),L5/4(S)))

∫

S

|θ̂|5 ≥ 0 .

Therefore, we can write that

〈

A θ , θ
〉

=
〈

A θ , θ̂ − θg,δ

〉

= δ ‖ θ̂ ‖p
Lp(0,T ;W 1,p(Ω)) +

∫

Q

κ(θ̂)|∇θ̂|2 +

∫

S

G(σ |θ̂|3 θ̂) θ̂

−
〈

A θ , θg,δ

〉

≥ δ ‖ θ̂ ‖p
Lp(0,T ;W 1,p(Ω)) −

∣

∣

∣

〈

A θ , θg,δ

〉

∣

∣

∣
.

Using Hölder’s and Young’s inequality, it follows that

〈

A θ , θ
〉

≥ δ ‖ θ̂ ‖p
Lp(0,T ;W 1,p(Ω)) −c ‖ θg,δ ‖Lp(0,T ;W 1,p(Ω))

×

(
∫ T

0

‖ θ̂(t) ‖p−1
W 1,p(Ω) + ‖ θ̂(t) ‖4

W 1,p(Ω) + ‖ θ̂(t) ‖W 1,p′(Ω)

)

≥
δ

2
‖ θ̂ ‖p

Lp(0,T ;W 1,p(Ω)) −Cδ ,

with a constant Cδ that depends on δ, but whose precise value is not needed.

We now prove that A is pseudomonotone. Let θk ⇀ θ in D(L). We assume that
lim supk→∞

〈

A θk , θk − θ
〉

≤ 0. The weak convergence in D(L) means that

θk ⇀ θ in V , θ′k ⇀ θ′ in V∗ . (12)
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Applying the well-known compactness result of [Lio69], Ch. 1, Th. 5.1, we can find a
subsequence, still denoted by {θk}, such that

θk −→ θ in Lp(0, T ;Lp(Ω)) . (13)

Using the inequality

‖u‖Lp(Σ) ≤ γ ‖u‖W 1,p(Ω) + cγ ‖u‖Lp(Ω) , (14)

which holds for any u in W 1,p(Ω) and arbitrary small γ > 0, we obtain from (12) and (13)
the existence of a (not relabelled) subsequence such that

θk −→ θ in Lp(0, T ;Lp(Σ)) .

Using the monotonicity of the p−Laplace terms, it is then easy to verify that

lim inf
k→∞

〈

A θk , θk − φ
〉

≥
〈

A θ , θ − φ
〉

,

for all φ in V. The pseudomonotonicity, and with it the proposition, is proved.

The next point consists in obtaining uniform estimates for the sequence of approximate
solutions.

Proposition 1.5. Let f ∈ Ls1(0, T ;Ls2(Ω)) and θ0 ∈ Ls1(Ω). Define

q :=







min
{

3(s2−1)
3−2s2

, s1 − 1
}

if 3
2
< s2 ,

s1 − 1 else ,
s := min

{

2,
5(q + 1)

q + 4

}

.

Let θg ∈W 1,0
s′ (Q), and let κ satisfy (9). For the sequence of solutions {θδ} of Proposition

1.4, we have the following a priori estimates:

(1) If s1 ≥ 3 and s2 ≥
9
7

we have

‖ θδ ‖V 1,0
2 (Q) + ‖ |θδ|

q+1
2 ‖V 1,0

2 (Q) + ‖ θδ ‖
L

4(q+1)
3 (S)

≤ C + Cδ . (15)

(2) Let Σ ∈ C1,α. Then, for any 1 < s1, s2 ≤ ∞, we have

‖ |θδ|
q+1
2 ‖V 1,0

2 (Q) + ‖ θδ ‖W 1,0
s (Q) + ‖ θδ ‖Lq+4(S)≤ C + Cδ . (16)

The constant C depends continuously on ‖ f ‖Ls1(0,T ;Ls2 (Ω)), on ‖ u0 ‖Ls1 (Ω), and on
‖θg‖W 1,0

s′
(Q). The sequence {Cδ} depends on our approximation method, and we have

Cδ → 0 as δ → 0.
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Proof. In the following we write for convenience θ instead of θδ. We will prove the claim
in the homogeneous case θg = 0 on C. The result in the general case can be obtained by
making only slight modifications to this proof.

The method that we use is quite straightforward. For the family of parameters 0 < q <∞,
we would like to test the approximate equation (11) with the signed powers |θ|q−1 θ, and
obtain for t1 ∈]0, T [ the inequality

1

q + 1

∫

Ω

|θ(t1)|
q+1 +

∫

Qt1

4q

(q + 1)2
κ(θ)

∣

∣

∣
∇|θ|

q+1
2

∣

∣

∣

2

+

∫

St1

σ G(|θ|3 θ) |θ|q−1 θ

≤

∫

Qt1

f |θ|q−1θ +
1

q + 1

∫

Ω

|θ0,δ|
q+1 , (17)

with the notation θ0,δ := θg,δ(0). However, testing with |θ|q−1 θ is not directly possible
since this function may not belong to Lp(0, T ;W 1,p(Ω)). Therefore, we have to construct
diverse regularizations of the test functions. That is the only reason why our estimates
may look somewhat technical.

First step: For a number q ≥ 1, and a parameter k > 0, we consider the function
g = gq,k, F = Fq,k ∈ C(R) given by

g(s) :=











kq if s > k ,

|s|q−1 s if |s| ≤ k ,

−kq if s < −k .

F (s) =



















kq s+
(

1
q+1

− 1
)

kq+1 if s > k ,

1
q+1

|s|q+1 if − k ≤ s ≤ k ,

−kq s +
(

1
q+1

− 1
)

kq+1 if s < −k .

The function F is the primitive function of g that vanishes at zero. We introduce the
notation s(k) := sign(s) min{|s|, k}, and observe that F (s) ≥ 1

q+1
|s(k)|q+1. Applying

Lemma 4.6, we can for all t1 < T produce the inequality

1

q + 1

∫

Ω

∣

∣

∣
θ(k)(t1)

∣

∣

∣

q+1

+

∫

Qt1

δ
[

|∇θ|p−2 ∇θ · ∇(|θ(k)|q−1 θ(k)) + |θ|p−2 θ |θ(k)|q−1 θ(k)
]

+

∫

Qt1

κ(θ)∇θ · ∇(|θ(k)(t)|q−1 θ(k)) +

∫

St1

G(σ |θ|3 θ) |θ(k)|q−1 θ(k)

≤

∫

Qt1

f |θ(k)|q−1 θ(k) +

∫

Ω

F
(

θ(k)(0)
)

.

Now we can use the following facts

∇θ · ∇(|θ(k)|q−1 θ(k)) =
4q

(q + 1)2

∣

∣

∣
∇|θ(k)|

q+1
2

∣

∣

∣

2

, |θ|p−2 θ
(

|θ(k)|q−1 θ(k)
)

≥ 0 . (18)

By the fact that G is selfadjoint (see Lemma 4.1, (4) below), we also have that
∫

St1

G(σ |θ|3 θ) |θ(k)|q−1 θ(k) =

∫

St1

σ |θ|3 θ G(|θ(k)|q−1 θ(k))

=

∫

St1

σ
(

|θ|3 θ − |θ(k)|3 θ(k)
)

G(|θ(k)|q−1 θ(k)) +

∫

St1

σ |θ(k)|3 θ(k) G(|θ(k)|q−1 θ(k)) .

10



Now, using Lemma 4.1, (4), we have in the sets {(t, z) ∈ S : θ(t, z) > k} the inequality

G(|θ(k)|q−1 θ(k)) = kq −H(|θ(k)|q−1 θ(k)) ≥ (1− ‖ H ‖L(∞,∞)) k
q ≥ 0 .

By an analogous consideration concerning the sets {(t, z) ∈ S : θ < −k}, we obtain that
∫

St1

σ
(

|θ|3 θ − |θ(k)|3 θ(k)
)

G(|θ(k)|q−1 θ(k)) ≥ 0 . (19)

The facts (18) and (19) yield the relation

1

q + 1

∫

Ω

∣

∣

∣
θ(k)(t1)

∣

∣

∣

q+1

+

∫

Qt1

4q

(q + 1)2
κ(θ)

∣

∣

∣
∇|θ(k)|

q+1
2

∣

∣

∣

2

+

∫

St1

σ |θ(k)|3 θ(k)G(|θ(k)|q−1 θ(k))

≤

∫

Qt1

f |θ(k)|q−1 θ(k) +

∫

Ω

F
(

θ(k)(0)
)

.

We easily can see that for k −→ ∞, ∇|θ(k)|
q+1
2 ⇀ ∇|θ|

q+1
2 in W 1,0

2 (Q). Hence, by using
the lower semicontinuity of the norm and monotone convergence, we can pass to the limit
k → ∞ in the last relation and finally obtain the inequality (17). Now, define

w := |θ|
q+1
2 . (20)

Since G = I −H with a positive operator H , we have
∫

St1

G(σ |θ|3 θ) |θ|q−1 θ ≥

∫

St1

G(σ |θ|4) |θ|q =

∫

St1

G(σ w
8

q+1 )w
2q

q+1 .

Rewriting (17), we obtain that

∫

Ω

w2(t1) +

∫

Qt1

|∇w|2 +

∫

St1

G(σ w
8

q+1 )w
2q

q+1 ≤ cq

(

∫

Ω

|θ0,δ|
q+1 +

∫

Qt1

|f |w
2q

q+1

)

.

Using Sobolev’s embedding relations and Young’s inequality, we can write
∫ t1

0

∫

Ω

|f |w
2q

q+1 ≤

∫ t1

0

‖ f(t) ‖
L

3(q+1)
2q+3 (Ω)

‖ w(t) ‖
2q

q+1

L6(Ω)

≤ c

∫ t1

0

‖ f(t) ‖
L

3(q+1)
2q+3 (Ω)

‖ w(t) ‖
2q

q+1

W 1,2
Γ (Ω)

≤ γ

∫ t1

0

‖ w(t) ‖2
W 1,2

Γ (Ω)
+cγ

∫ t1

0

‖ f(t) ‖q+1

L
3(q+1)
2q+3 (Ω)

.

Choosing γ > 0 sufficiently small, we can achieve
∫

Ω

w(t1)
2 +

∫

Qt1

|∇w|2 +

∫

St1

G(σ w
8

q+1 )w
2q

q+1

≤ c

(

∫

Ω

|θ0,δ|
q+1 +

∫

Qt1

w2 +

∫ t1

0

‖ f(t) ‖q+1

L
3(q+1)
2q+3 (Ω)

)

. (21)

11



By the Gronwall inequality, we first obtain that w = |θδ|
q+1
2 remains bounded in L∞,2(Q).

This implies immediately a bound in the norm of W 1,0
2,C(Q) . More precisely, we find

positive constants C1, C2 such that

‖ |θ|
q+1
2 ‖L∞,2(Q)≤ C1 , ‖ |θ|

q+1
2 ‖W 1,0

2,C(Q)≤ C2 , (22)

where C1, C2 depend continuously on q, ‖ f ‖
Lq+1(0,T ;L

3(q+1)
2q+3 (Ω))

, ‖ θ0 ‖Lq+1(Ω). Note that

this provides already an estimate of θ on the boundary S. In view of Lemma 4.5, the

embedding V 1,0
2 (Q) →֒ L8/3(S) is continuous. By (20), we can write

∫

S
|θ|

4 (q+1)
3 =

∫

S
w

8
3 .

With the help of estimate (22), we obtain that

‖θ‖
4 (q+1)

3

L
4 (q+1)

3 (S)
= ‖w‖

8
3

L
8
3 (S)

≤ c ‖w‖
8/3

V 1,0
2 (Q)

≤ C3 . (23)

If Σ ∈ C1,α, we can apply Lemma 4.3, and we have in addition the inequality

∫ t1

0

∫

Σ

G(σ w
8

q+1 )w
2q

q+1 ≥ c1,q

∫ t1

0

∫

Σ

w
2(q+4)

q+1 − c2,q

∫ t1

0

(
∫

Σ

w

)

2(q+4)
q+1

,

where we chose ψ := w
2q

q+1 , r := 4
q
, s := q+1

2q
. By Lemma 4.5, the embedding V 1,0

2 (Q) →֒

L∞,4/3(S) is continuous. Taking (22) into account, we obtain that

∫ T

0

(
∫

Σ

w

)

2(q+4)
q+1

≤ T ‖ w ‖
2(q+4)

q+1

L∞,1(S) ≤ T c ‖ w ‖
2(q+4)

q+1

V 1,0
2 (Q)

≤ C3 .

Reconsidering (21), we now obtain for arbitrary t1 < T that

∫ t1

0

∫

Σ

w
2(q+4)

q+1 ≤ C4 =⇒ ‖ θδ ‖
q+4
Lq+4(S) ≤ C4 . (24)

Second step: An easy calculation shows us that the estimates obtained in the first step
involve at least the norms ‖ f ‖L2(0,T ;L6/5(Ω)) and ‖ θ0 ‖L2(Ω). Next we search for estimates
in the case that f is less regular. For an arbitrary small parameter α > 0 and 0 < q < 1,
we consider functions g = gα,q, F = Fα,q ∈ C(R) given by

g(s) := (|s| + α)q−1 s, F (t) :=







− (α−t)q t
q

− (α−t)q+1

q (q+1)
+ αq+1

q (q+1)
if t ≤ 0 ,

(α+t)q t
q

− (α+t)q+1

q (q+1)
+ αq+1

q (q+1)
if t > 0 .

.

Observe that g vanishes at zero and that

g′(s) = (|s| + α)q−2 (q |s| + α) .

Clearly, F is the primitive function of g that vanishes at zero. Observe that the function

F is positive and that for all t ∈ R, Fα,q(t) −→
|t|q+1

q+1
for α→ 0. Using again Lemma 4.6,

12



we obtain that
∫

Ω

F
(

θ(t1)
)

+

∫

Qt1

δ
[

|∇θ|p−2 ∇θ ·
(

(α + |θ|)q−2 (α + q|θ|)∇θ
)

+ |θ|p(α + |θ|)q−1
]

+

∫

Qt1

κ(θ)∇θ ·
(

(α + |θ|)q−2 (α + q|θ|)∇θ
)

+

∫

St1

G(σ |θ|3 θ) θ(α+ |θ|)q−1

=

∫

Qt1

f θ(α + |θ|)q−1 +

∫

Ω

F
(

θ0,δ

)

.

Since the terms involving the p−power are positive, we can drop them without changing
the sense of the inequality. Letting α→ 0 in the last relation, we obtain by Fatou’s lemma
the relation (17), this time with 0 < q < 1. Repeating the argumentation that follows
(17), we obtain estimate (22) also in this case; we obtain (24) if Σ ∈ C1,α.

Third step:

The next step consist in obtaining estimates on ∇θ. By the separability of W 1,p
Γ (Ω), we

can conclude from Proposition 1.4 that

〈

θ′δ(t) , ψ
〉

+

∫

Ω

δ
[

|∇θδ(t)|
p−2 ∇θδ(t) · ∇ψ + |θδ(t)|

p−2 θ(t)ψ
]

+

∫

Ω

κ(θδ(t))∇θδ(t) · ∇ψ

+

∫

Σ

G(σ|θδ(t)|
3 θδ(t))ψ =

∫

Ω

f(t)ψ , (25)

for all ψ in W 1,p
Γ (Ω), and for almost all t ∈ [0, T ]. The null set where this relation fails

depends neither on δ, nor on ψ. Here, the symbol
〈

·, ·
〉

stands for the duality product of
W 1,p(Ω).

We first suppose that f ∈ L2(0, T ;L
6
5 (Ω)) and θ0 ∈ L2(Ω). Choosing ψ = θ(t) in (25),

and integrating on [0, t1], we obtain for almost all t1 ∈ [0, T ] that

1

2

∫

Ω

|θ(t1)|
2 +

∫ t1

0

∫

Ω

κ(θ(t)) |∇θ(t)|2 ≤
1

2

∫

Ω

|θ0,δ|
2 +

∫ t1

0

∫

Ω

f(t) θ(t)

≤

∫

Ω

|θ0,δ|
2 + c

∫ t1

0

‖ f(t) ‖
L

6
5 (Ω)

‖ θ(t) ‖W 1,2(Ω)

≤
1

2

∫

Ω

|θ0,δ|
2 +

∫ t1

0

cγ ‖ f(t) ‖2

L
6
5 (Ω)

+γ ‖ θ(t) ‖2
W 1,2(Ω) . (26)

The Gronwall inequality implies that

ess sup
t1∈]0,T [

∫

Ω

|θ(t1)|
2 ≤ C5 , ‖ ∇θ ‖L2(0,T ;L2(Ω))≤ C6 , (27)

with constants C5, C6 independent of δ. If the regularity of θ0 and f does not allow to
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argue in this way, we write

∫

Q

|∇θ|r =

∫

Q

|∇θ|r

|θ|
(1−q)r

2

|θ|
(1−q)r

2 ≤

(
∫

Q

|∇θ|2

|θ|1−q

)
r
2
(
∫

Q

|θ|
(1−q)r
2−r

)
2−r
2

≤ c ‖ ∇|θ|
q+1
2 ‖r

L2(Q) ‖ |θ|
q+1
2 ‖

(1−q)r
q+1

L
2(1−q)r

(2−r)(q+1) (Q)

.

Now, in view of estimate (22) and of Lemma 4.5, we see that if the relation

2(1 − q)r ≤
10

3
(2 − r) (q + 1) ,

is satisfied, then ∇θ will be uniformely bounded in Lr(Q). This is true exactly for the

range 1 ≤ r ≤ 5 (q+1)
q+4

. In order to finish the proof of the proposition, we must determine,
according to the regularity of f, θ0, for which range of q we will obtain estimates with
this method. In other words, we look at the values of q for which q + 1 ≤ s1 and
3 (q+1)
2q+3

≤ s2. The result of this elementary calculation exactly proves the statement of the
proposition.

In order to pass to the limit, we state in the following lemma some technical estimates.

Lemma 1.6. Let the hypothesis of Proposition 1.5 be satisfied, and define the number q
as in this proposition.

(1) If s1 ≥ 3 and s2 ≥
9
7
, we have ‖ θ′δ ‖L

q+1
3 (0,T ;[W 1,p

Γ (Ω)]∗)
≤ C.

(2) Let Σ ∈ C1,α. Then, for any 1 < s1, s2 ≤ ∞, we have ‖ θ′δ ‖L
q+4
4 (0,T ;[W 1,p

Γ (Ω)]∗)
≤ C.

Proof. For the sake of notational simplicity, we write θ instead of θδ. We prove the claim
in the case of homogeneous boundary conditions. In (25), we test with θ(t), and by usual
considerations, we obtain the inequality

〈

θ′(t) , θ(t)
〉

+ δ ‖θ(t)‖p
W 1,p(Ω) ≤

∫

Ω

f(t) θ(t) .

We integrate this inequality on ]0, t1[, and since p > s′1, we get

‖θ(t1)‖
2
L2(Ω) + δ

∫ t1

0

‖θ(t)‖p
W 1,p(Ω) ≤ ‖θg,δ(0)‖2

L2(Ω) + c ‖f‖Ls1(0,T ;L1(Ω)) ‖θ‖Lp(0,T ;W 1,p(Ω)) .

Therefore,

δ ‖θ‖p
Lp(0,T ;W 1,p(Ω)) ≤ ‖θg,δ(0)‖2

L2(Ω) + c ‖f‖Ls1(0,T ;L1(Ω)) ‖θ‖Lp(0,T ;W 1,p(Ω)) .

If ‖θ‖Lp(0,T ;W 1,p(Ω)) ≥ 1, it then follows that

δ ‖θ‖p−1
Lp(0,T ;W 1,p(Ω)) ≤ ‖θg,δ(0)‖2

L2(Ω) + c ‖f‖Ls1(0,T ;L1(Ω)) .
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Thus, we get that

∥

∥

∥
δ

1
p−1 θ

∥

∥

∥

p−1

Lp(0,T ;W 1,p(Ω))
≤ max

{

δ , ‖θg,δ(0)‖2
L2(Ω) + c ‖f‖Ls1(0,T ;L1(Ω))

}

. (28)

Starting again from (25), we can write for ψ ∈W 1,p
Γ (Ω),

∣

∣

∣

〈

θ′(t) , ψ
〉

∣

∣

∣
≤

∫

Ω

[

δ |∇θ(t)|p−1 + κ(θ(t)) |∇θ(t)|
]

|∇ψ|

+

∫

Ω

(

δ |θ(t)|p−1 + |f(t)|
)

|ψ| +

∫

Σ

∣

∣

∣
G(σ|θ(t)|3 θ(t))

∣

∣

∣
|ψ|

≤ δ ‖ θ(t) ‖
p
p′

W 1,p(Ω) ‖ ψ ‖W 1,p
Γ (Ω) +κu ‖ ∇θ(t) ‖Lp′(Ω) ‖ ∇ψ ‖Lp(Ω)

+ ‖ f(t) ‖L1(Ω) max
Ω

|ψ| + c ‖ θ(t) ‖4
L4(Σ) max

Ω
|ψ| .

Using one more time the continuity of the embedding W 1,p(Ω) →֒ C(Ω), we get

‖ θ′(t) ‖[W 1,p
Γ (Ω)]∗≤ c

(

δ ‖ θ(t) ‖
p
p′

W 1,p(Ω) + ‖ ∇θ(t) ‖Lp′(Ω) + ‖ f(t) ‖L1(Ω) + ‖ θ(t) ‖4
L4(Σ)

)

.

(29)

We have δ ‖ θ(t) ‖
p
p′

W 1,p(Ω)= ‖ δ
1

p−1 θ(t) ‖p−1
W 1,p(Ω), which, in view of (28), is uniformly

bounded in the space Lp′(0, T ).

With the notations of Proposition 1.5, we find for q ≥ 2 that the sequence {‖ θδ ‖4
L4(Σ)}

is bounded in the space L
q+1
3 (0, T ). If Σ ∈ C1,α, then {‖ θδ ‖

4
L4(Σ)} is even bounded in the

space L
q+4
4 (0, T ).

Thus, by means of (22), we get

‖ θ′δ ‖Lp1(0,T ;[W 1,p
Γ (Ω)]∗)≤ C , (30)

with p1 = min
{

q+1
3
, p′ , s1

}

≥ 1. If we assume that Σ ∈ C1,α, we see in view of (24), that

the right-hand side in (29) is bounded in the space Lp1(0, T ) with p1 = min
{

p′ , s1 ,
q+4
4

}

>
1.

Proof of Theorem 1.1 and 1.2. We start from Propostion 1.5, (1), where we made no
assumption on the regularity of the surface Σ.

Thanks to the a priori estimates (15) and the compactness theorems of [Lio69] generalized
in [Sim86], we can find a sequence δ → 0 and a function θ such that

θδ ⇀ θ in W 1,0
2 (Q) , θδ −→ θ in L2(Q) , θδ −→ θ a. e. in Q . (31)

By means of the inequality (14), we also find subsequences such that

θδ −→ θ in L2(S) , θδ −→ θ a. e. on S . (32)
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In addition, we see that there must exists some w , u such that

|θδ|
q+1
2 ⇀ w in W 1,0

2 (Q) , θδ |θδ|
3 ⇀ u in L

q+1
3 (S) . (33)

But then, the convergence properties (31) and (32) imply that

w = |θ|
q+1
2 , u = θ |θ|3 .

If we start from Proposition 1.5, (2), which corresponds to the supposition that Σ ∈ C1,α,
we find, by the same arguments, sequences with the properties

θδ ⇀ θ in W 1,0
s (Q) , θδ −→ θ in L2(Q) and in L2(S) ,

θδ −→ θ a. e. in Q and a. e. on S . (34)

In addition, we see that there must exists some w, u such that

|θδ|
q+1
2 ⇀ w in W 1,0

2 (Q) , θδ |θδ|
3 ⇀ u in L

q+4
4 (S) . (35)

But then, the convergence properties (34) imply that

w = |θ|
q+1
2 , u = θ |θ|3 .

Now, testing in (11) with an arbitrary ψ in C∞(Q) which vanishes in {0} × Ω and on C,
we can write

−

∫ T

0

(

θδ(t), ψ
′(t)
)

L2(Ω)
+ . . .+

∫ T

0

∫

Ω

κ(θδ)∇θδ · ∇ψ +

∫ T

0

∫

Σ

G(σ |θδ|
3 θδ)ψ

= (θδ(0), ψ(0))L2 +

∫ T

0

∫

Ω

f ψ ,

where the (. . .) represents the terms involving the p−power. Passing to the limit in the
last relation, we easily can show that

−

∫ T

0

(

θ(t), ψ′(t)
)

L2(Ω)
+

∫ T

0

∫

Ω

κ(θ)∇θ · ∇ψ +

∫ T

0

∫

Σ

G(σ |θ|3 θ)ψ

= (θ0, ψ(0))L2 +

∫ T

0

∫

Ω

f ψ . (36)

In addition, we have, almost everywhere on C, that

θ(t, z) = lim
δ→0

θδ(t, z) = lim
δ→0

θg,δ(t, z) = θg(t, z) .

The result stated on the existence on θ′ follows easily from the estimates of Proposition
1.5. We now prove the continuity assumption. First we note that θ ∈ L5(S), is true if
4(q+1)

3
≥ 5 in the case that Σ ∈ C0,1, and if q + 4 ≥ 5 in the case that Σ ∈ C1,α. We easily

verify that these conditions are exactly satisfied when f has the regularity stated by the
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theorem. For any φ ∈ C∞(Ω), that vanishes on Γ, and ζ ∈ C∞
c (0, t1), where t1 < T − h,

we can consider the test function (φ(x) ζ(t))(h) and use it in (36). Observe that

−

∫ T

0

(

θ(t) , ψ′(t)
)

L2(Ω)
= −

∫ T

0

(

θ(h)(t) , φ
)

L2(Ω)
ζ ′(t) .

This implies the relation

∂

∂t

(

θ(h) , φ
)

L2(Ω)
= −

∫

Ω

{κ(θ)∇θ}(h) · ∇φ−

∫

Σ

{G(σ |θ|3 θ)}(h) φ+

∫

Ω

f(h) φ .

But since θ(h) ∈W 1,1
2 (Q), we can even write

(

∂

∂t
θ(h) , φ

)

L2(Ω)

= −

∫

Ω

{κ(θ)∇θ}(h) · ∇φ−

∫

Σ

{G(σ |θ|3 θ)}(h) φ+

∫

Ω

f(h) φ .

We recall that θ̃ := θ − θg vanishes on C. For 0 < h1 < h2 < T − t1, it is possible to
choose

φ = (θ − θg)(h1) − (θ − θg)(h2) .

Subtracting the respective integral identities, we get

1

2

∂

∂t

∥

∥

∥
θ̃(h1)(t) − θ̃(h2)(t)

∥

∥

∥

2

L2(Ω)
= −

∫

Ω

[

{κ(θ)∇θ}(h1) − {κ(θ)∇θ}(h2)

]

· ∇(θ̃(h1) − θ̃(h2))

−

∫

Σ

[

{G(σ |θ|3 θ)}(h1) − {G(σ |θ|3 θ)}(h2)

]

(θ̃(h1) − θ̃(h2)) +

∫

Ω

(f(h1) − f(h2)) (θ̃(h1) − θ̃(h2))

−

(

∂

∂t

(

(θg)(h1) − (θg)(h2)

)

, θ̃(h1) − θ̃(h2)

)

L2(Ω)

,

where we did not indicate the dependence of the right-hand side on t for the sake of
notational commodity. Integrating this relation on ]0 , t[ for any t ≤ t1, we get by our
assumptions on θg that

max
t∈[0,t1]

‖ θ̃(h1)(t) − θ̃(h2)(t) ‖L2(Ω) −→ 0 as h1, h2 → 0 .

Thus, θ̃ is equal to a continuous function from [0, t1] into L2(Ω). Since t1 was arbitrary,
and θ̃ ∈ L∞,2(Q), we can conclude that θ̃ ∈ C([0, T ];L2(Ω)). By the regularity of θg, we
see that also θ satisfies this continuity assumption.

2 Boundedness of Solutions

Lemma 2.1. Let f ∈ Lr(Q) for a r > 5
2
, and θ0 ∈ L∞(Ω), as well as θg ∈ L∞(C). Then

the weak solution of (P ) is bounded in Q, and we have

‖θ‖L∞(Q) ≤ max
{

‖θg‖L∞(S) , ‖θ0‖L∞(Ω)

}

+ C ‖f‖Lr(Q) .
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Proof. We define k0 := max
{

ess sup
C

θg , ess sup
Ω

θ0

}

. Observe that if f ∈ Lr(Q), r > 5/2,

then we obtain by Theorem 1.1 or by Theorem 1.2 in all cases that the weak solution
θ belongs to C([0, T ];L2(Ω)) ∩ W 1,0

2 (Q). For an arbitrary k > k0, we can therefore
apply Lemma 4.6 with u = θ and g(θ) = (θ − k)+. Since our choice of k implies that
(θ − k)+(0) = (θg(0) − k)+ = 0 almost everywhere in Ω, we obtain for all t1 < T the
relation

1

2

∫

Ω

(θ − k)+2

(t1) +

∫

Qt1

κ(θ)
∣

∣

∣
∇([θ − k]+)

∣

∣

∣

2

+

∫

St1

G(σ |θ|3 θ) (θ − k)+ =

∫

Qt1

f (θ − k)+ .

In view of Lemma 4.4 we have
∫

St1
G(σ |θ|3 θ) (θ − k)+ ≥ 0, which implies that

max
t1∈[0,T ]

∫

Ω

[(θ − k)+(t1)]
2 +

∫

Q

κ(θ)
∣

∣

∣
∇([θ − k]+)

∣

∣

∣

2

≤

∫

Q

f (θ − k)+ .

We recall the continuity of the embedding V 1,0
2 (Q) →֒ L10/3(Q), and we write

∣

∣

∣

∣

∫

Q

f (θ − k)+

∣

∣

∣

∣

≤‖ f ‖Lr(Q) ‖ (θ − k)+ ‖
L

10
3 (Q)

|A(k)|
7
10

− 1
r ,

where A(k) := {(t, x) : θ(t, x) > k}. It follows that

(

max
t1∈[0,T ]

∫

Ω

[(θ − k)+(t1)]
2 +

∫

Q

κ(θ)
∣

∣

∣
∇([θ − k]+)

∣

∣

∣

2
)

1
2

≤ C |A(k)|
7
10

− 1
r . (37)

On the other hand we have, for h > k > k0,

(h− k) |A(h)|
3
10 ≤ ‖[θ − k]+‖L10/3(Q)

≤ c

(

max
t1∈[0,T ]

∫

Ω

[(θ − k)+(t1)]
2 +

∫

Q

κ(θ) |∇([θ − k]+)|2
)

1
2

.

This combined with (37) yields

|A(h)| ≤
K

(h− k)
10
3

|A(k)|
7
3
− 10

3r .

Obviously, 7
3
− 10

3r
> 1 ⇐⇒ r > 5

2
. We can repeat these considerations for the test functions

(θ + k)−, where k > − inf
{

ess inf
C

θg , ess inf
Ω

θ0

}

. By the classical results of [Sta65], this

proves the lemma.

3 L1-Estimates

We want to prove an existence result for the case that the heat-sources have poor regu-
larity. Throughout this section, we require only that Σ ∈ C0,1.
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Theorem 3.1. Let Ω satisfy (68). Let f ∈ L1(Q), θ0 ∈ L1(Ω) and θg ∈ W 1,0
2 (Q) satisfy

(10). Then, there exists

θ ∈
⋂

1≤p< 5
4

W 1,0
p (Q) ∩ L∞,1(Q) ,

such that θ = θg on C and

−

∫

Q

θ
∂ψ

∂t
+

∫

Q

κ(θ)∇θ · ∇ψ +

∫

S

σ |θ|3 θ G(ψ) =

∫

Ω

θ0 ψ(0, x) +

∫

Q

f ψ ,

for all ψ ∈ C∞(Q) , such that ψ = 0 on ] 0 , T [×Γ, and ψ(T ) = 0.

As to the proof of this theorem, we start by constructing approximate solutions. For δ > 0,
we define f [δ] := sign(f) min

{

|f | , 1
δ

}

. Then, by Theorem 1.2, we find a θδ ∈ V
2 , 5
0 (Q)

such that θ = θg on C , and

−

∫

Q

θδ
∂ ψ

∂t
+

∫

Q

κ(θ)∇θδ · ∇ψ +

∫

S

G(σ|θδ|
3 θδ)ψ =

∫

Ω

θ
[δ]
0 ψ(0) +

∫

Q

f [δ] ψ ,

for all ψ ∈ V
2 , 5
1,C (Q) such that ψ(T ) = 0. From Theorem 1.2, we also obtain the existence

of θ′δ ∈ L2(0, T ; [V 2,5
Γ (Ω)]∗) such that the relation

〈

θ′δ , ψ
〉

+

∫

Q

κ(θ)∇θδ · ∇ψ +

∫

S

G(σ|θδ|
3 θδ)ψ =

∫

Q

f [δ] ψ . (38)

is valid for the same class of test functions.

We cannot get a priori -estimates with the method of Proposition 1.5.

Proposition 3.2. For any sequence of approximate solutions {θδ} that satisfy (38), the
following uniform estimates are valid:

(1) There exists a positive constant C1 independent of δ such that ‖ θδ ‖L∞,1(Q)≤ C1.

(2) For all 1 ≤ r < 5
4
, there exists a positive constant C2 = C2(r) independent of δ such

that ‖ θδ ‖W 1,0
r (Q)≤ C2.

(3) There exists a positive constant C3 and a number 1 < q < ∞ such that for all
i = 0, . . . , m , ‖ θ′δ ‖L1(0,T ;[W 1,q

0 (Ωi)]∗)≤ C3.

The constants Cj (j = 1, . . . , 3) depend continuously on ‖f‖L1(Q), on ‖θ0‖L1(Ω) and on
‖θg‖W 1,0

2 (Q).

Proof. For the sake of notational simplicity, we write θ instead of θδ. Again, we prove the
proposition for the homogeneous case θg = 0 on ]0 , T [×Γ. The general case follows by
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similar arguments. For a parameter γ > 0, we consider functions g = gγ, F = Fγ ∈ C(R)
given by

gγ(s) :=
1

γ
sign(s) min{|s|, γ}, Fγ(s) =











−s+ γ2

2
− γ if s < −γ ,

s2

2
if − γ ≤ s ≤ γ ,

s+ γ2

2
− γ if s > γ .

.

Clearly, F is the primitive function of g that vanishes at zero. Applying Lemma 4.6, we
get the relation

∫

Ω

Fγ(θ)(t1) +

∫

Qt1

κ(θ)∇θ · ∇gγ(θ) +

∫

St1

G(σ|θ|3 θ ) gγ(θ) =

∫

Ω

Fγ(θ
[δ]
0 ) +

∫

Qt1

f [δ] gγ(θ) .

Since gγ is nondecreasing, we have ∇θ · ∇gγ(θ) ≥ 0. Letting γ → 0 in the previous
relation, we obtain the inequality

∫

Ω

|θ(t1)| +

∫

St1

G(σ|θ|3 θ) sign(θ) ≤‖ θ0 ‖L1(Ω) + ‖ f ‖L1(Q) . (39)

Now, use Lemma 4.1, (4) to show that

∫

S

G(σ|θ|3 θ) sign(θ) ≥ (1 − ‖H‖L(∞,∞)

∫

S

|θ|4 ≥ 0 .

This proves the estimate (1).

For the next estimate, we follow the techniques of [Lew97]. For n ∈ N, we consider the
functions

gn(t) :=































−1 for t < −(n+ 1) ,

t+ n for t ∈ [−(n + 1),−n[ ,

0 for t ∈ [−n, n[ ,

t− n for t ∈ [n, n + 1[ ,

1 for t ≥ n + 1 .

, Fn(t) =











0 for t ∈ [0, n[ ,
1
2
t2 − n t+ n2

2
if t ∈ [n, n+ 1[ ,

t− n− 1
2

if t ≥ n+ 1 ,

where Fn is extended to the negative axis such as to be an even function. Observe that
gn is continuous, nondecreasing and bounded and that Fn is the primitive function of gn

that vanishes at zero. Applying Lemma 4.6, we obtain that

∫

Ω

Fn(θ(t1)) +

∫ t1

0

∫

Ω

κ(θ) |∇θ|2 g′n(θ) +

∫

St1

G(σ |θ|3 θ) gn(θ) =

∫

Ω

Fn(θ
[δ]
0 ) +

∫

Qt1

f [δ] gn(θ)

Recalling Lemma 4.4, we know that
∫

St1
G(σ |θ|3 θ) gn(θ) ≥ 0. Letting t1 → T yields the

inequality

∫ T

0

∫

Ω

g′n(θ) κ(θ) |∇θ|2 ≤

∫

Ω

Fn(θ0,δ) +

∫

Q

f [δ] gn(θ) ≤

∫

Ω

|θ0| +
1

2
meas(Ω)+ ‖ f ‖L1(Q) .(40)
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As in Proposition 4.7, we introduce

Bn :=
{

(t, x) ∈ Q
∣

∣

∣
n ≤ |θ(t, x)| < n+ 1

}

.

Relation (40) amounts to say that
∫

Bn

κ(θ) |∇θ|2 ≤

∫

Ω

|θ0| +
1

2
meas(Ω)+ ‖ f ‖L1(Q)

Now, Proposition 4.7 applies. Combined to (1), it gives (2).

Finally we want to estimate the time derivatives. The relation (38) is equivalent to

〈

θ′(t) , ψ
〉

= −

∫

Ω

κ(θ(t))∇θ(t) · ∇ψ −

∫

Σ

G(σ|θ|3 θ(t))ψ +

∫

Ω

f [δ](t)ψ . (41)

for almost all t ∈]0, T [ and all ψ ∈ V 2,5
Γ (Ω). Here, 〈·, ·〉 is the duality pairing in V 2,5(Ω).

We recall that Ω =
⋃m

i=1 Ωi. In (41), we can choose any test function ψ ∈ W 1,q
0 (Ωi) (q ≥

3) if we extend it by zero to the rest of Ω. For such a ψ, it follows that

〈

θ′(t) , ψ
〉

= −

∫

Ωi

κ(θ(t))∇θ(t) · ∇ψ +

∫

Ωi

f [δ](t)ψ .

We obtain that
∣

∣

∣

〈

θ′(t) , ψ
〉

∣

∣

∣
≤ c

(

‖ ∇θ(t) ‖Lq′ (Ωi)
+ ‖ f(t) ‖L1(Ωi)

)

‖ ψ ‖W 1,q
0 (Ωi)

.

Thus,

‖ θ′(t) ‖[W 1,q
0 (Ωi)]∗

≤ c
(

‖ ∇θ(t) ‖Lq′(Ωi)
+ ‖ f(t) ‖L1(Ωi)

)

,

the right-hand side being bounded uniformly in L1(0, T ) by the previous results. This
was the last claim that we had to prove.

Proof of Theorem 3.1. Applying Proposition 3.2, we first find a sequence such that

θδ ⇀ θ in W 1,0
r (Q) for 1 ≤ r <

5

4
. (42)

We now want to prove additional convergence properties. We have the situation

W 1,r(Ωi) →֒ Lr(Ωi) →֒ [W 1,q
0 (Ωi)]

∗ .

We introduce the notations Qi := ]0, T [×Ωi, and Si := ]0, T [×∂Ωi. From Proposition 3.2,
(3), and the generalized Lemma of Aubin-Lions, we get for all i = 0, . . . , m that θδ −→ θ
in Lr(Qi). By the inequality (14), we now find a subsequence such that θδ −→ θ in Lr(Si)
and, after extracting subsequences, even

θδ −→ θ in Lr(Q) , θδ −→ θ in Lr(S) , θδ −→ θ pointwise a. e. in Q and on S .
(43)
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Taking the limit δ → 0 in (38), we get

−

∫

Q

θ
∂ψ

∂t
+

∫

Q

κ(θ)∇θ · ∇ψ + lim
δ→0

∫

S

G(σ |θδ|
3 θδ)ψ =

∫

Ω

θ0 ψ +

∫

Q

f ψ , (44)

for all ψ ∈ C∞(Q) such that ψ = 0 on ]0 , T [×Γ and ψ(T ) = 0.

Now, we turn our attention to the main challenge of the proof, which consists in computing
the value of limδ→0

∫

S
G(σ |θδ|

3 θδ)ψ. For γ > 0, consider the function

gγ(s) :=

{

1 if s < 0 ,
1

1+γ s4 if s ≥ 0 .

As usual, we denote by Fγ the primitive of gγ that vanishes at zero. In (38), we use
Steklov averagings and can prove, with the same method as in the proof of Lemma 4.6,
that

∫ t1

0

(

∂θ(h)

∂t
, ψ

)

L2(Ω)

+

∫

Qt1

{δ |∇θ|p−2 ∇θ}(h).∇ψ

+

∫

Qt1

{κ(θ)∇θ}(h) · ∇ψ +

∫

St1

{G(σ|θ|3 θ )}(h) ψ =

∫

Qt1

{f [δ]}(h) ψ , (45)

for all t1 ∈]0 , T [. We now consider an arbitrary ψ̃ ∈ C∞(0, t1;C
∞(Ω)), such that ψ̃ = 0

on ]0 , t1[×Γ, ψ̃ ≥ 0 in Qt1 , and ψ̃(t1) = 0.

We extend ψ̃ by zero, and we choose in (45) the test function ψ := gγ(θ(h)) ψ̃. Using
integration by parts and observing that ψ(t1) = 0, we find that

−

∫

Qt1

Fγ(θ(h))
∂ψ̃

∂t
+

∫

Qt1

{κ(θ)∇θ}h · ∇ψ̃ gγ(θ(h)) +

∫

St1

{G(σ |θδ|
3 θδ )}(h) ψ̃ gγ(θ(h)) +Rh

=

∫

Ω

Fγ(θ(h)(0)) ψ̃(0) +

∫

Qt1

{f [δ]}(h) ψ̃ gγ(θ(h)) , (46)

with the notation

Rh :=

∫

Qt1

{κ(θ)∇θ}h · ∇θ(h) ψ̃ g
′
γ(θ(h)) ,

Note that, as h→ 0,

Rh −→

∫

Qt1

κ(θ) |∇θ|2ψ̃ g′γ(θ) ≤ 0 ,

because gγ is decreasing for every fixed γ. Thus, taking the limes h → 0 in (46), and
writing again the indices δ, we find the inequality

−

∫

Qt1

Fγ(θδ)
∂ψ̃

∂t
+

∫

Qt1

κ(θδ)∇θδ · ∇ψ̃ gγ(θδ) +

∫

St1

G(σ |θδ|
3 θδ ) ψ̃ gγ(θδ)

≥

∫

Ω

Fγ(θ
[δ]
0 ) ψ̃(0) +

∫

Qt1

f [δ] ψ̃ gγ(θδ) . (47)
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By the absolute continuity of the integral, we can also write t1 = T in the last inequality.
By an approximation argument, we can, as well, suppose that ψ̃ is an arbitrary C∞-
function, which vanishes on ]0 , T [×Γ and in {T} × Ω, and is positive in Q.

We now want to pass to the limit δ → 0 in (47). This is easily done, apart from terms on
the boundary S. We observe that

∫

S

G(σ |θδ|
3 θδ) ψ̃ gγ(θδ) =

∫

S

σ |θδ|
3 θδ ψ̃ gγ(θδ) −

∫

S

σ |θδ|
3 θδ H(ψ̃ gγ(θδ))

=

∫

S

σ
θ+4

δ

1 + γ θ+4

δ

ψ̃ −

∫

S

σ θ+4

δ H(ψ̃ gγ(θδ)) +

∫

S

σ |θδ|
3 θ−δ ψ̃ −

∫

S

σ|θδ|
3 θ−δ H(ψ̃ gγ(θδ))

≤

∫

S

σ
θ+4

δ

1 + γ θ+4

δ

ψ̃ −

∫

S

σ θ+4

δ H(ψ̃ gγ(θδ)) +

∫

S

σ |θδ|
3 θ−δ ψ̃ −

∫

S

σ|θδ|
3 θ−δ H(ψ̃ ) .

We justify the last inequality by the fact that gγ ≤ 1, and by the positivity of the operator
H . This implies that

lim
δ→0

∫

S

G(σ |θδ|
3 θδ) ψ̃ gγ(θδ)

≤

∫

S

σ θ+4

1 + γ θ+4 ψ̃ − lim inf
δ→0

∫

S

σ θ+4

δ H(ψ̃ gγ(θδ)) + lim
δ→0

∫

S

σ G(|θδ|
3 θ−δ ) ψ̃ , (48)

where we made use of the facts that G is selfadjoint (see Lemma 4.1, and of the dominated
convergence theorem.

On the other hand, by Fatou’s lemma, and by the fact that gγ(θδ) → g(θ) in L1(S), we
have

lim inf
δ→0

∫

S

σ θ+4

δ H(ψ̃ gγ(θδ)) ≥

∫

S

σ lim inf
δ→0

{θ+4

δ H(ψ̃ gγ(θδ))}

≥

∫

S

σ θ+4

lim inf
δ→0

H(ψ̃ gγ(θδ)) =

∫

S

σ θ+4

H(ψ̃ gγ(θ)) . (49)

Returning to (48), we can write

lim
δ→0

∫

S

G(σ θ+4

δ ) ψ̃ gγ(θδ) ≤

∫

S

σ θ+4

gγ(θ) ψ̃ −

∫

S

σθ+4

H(ψ̃ gγ(θ)) + lim
δ→0

∫

S

σG(|θδ|
3 θ−δ ) ψ̃ .

Passing to the limit δ → 0 in (47), the inequality is preserved, and we obtain

−

∫

Q

Fγ(θ)
∂ψ̃

∂t
+

∫

Q

κ(θ)∇θ · ∇ψ̃ gγ(θ) +

∫

S

σ θ+4

gγ(θ) ψ̃ −

∫

S

σ θ+4

H(ψ̃ gγ(θ))

+ lim
δ→0

∫

S

σ G(|θδ|
3 θ−δ ) ψ̃ ≥

∫

Ω

Fγ(θ0) ψ̃(0) +

∫

Q

f ψ̃ gγ(θ) . (50)
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We easily verify that Fγ monotonely increases to the identity, and that gγ monotonely
increases to 1. This last property makes it possible to write

∫

S

σ θ+4

gγ(θ) ψ̃ −→

∫

S

σ θ+4

ψ̃ ,

for γ → 0. By the same argument that led to (49), we also have

lim inf
γ→0

∫

S

σ θ+4

H(ψ̃ gγ(θ)) ≥

∫

S

σθ+4

H(ψ̃) .

In the limit γ → 0 of (50), we then obtain the inequality

−

∫

Q

θ
∂ψ̃

∂t
+

∫

Q

κ(θ)∇θ · ∇ψ̃ +

∫

S

σ θ+4

G(ψ̃) + lim
δ→0

∫

S

σ G(|θδ|
3 θ−δ ) ψ̃

≥

∫

Ω

θ0 ψ̃(0) +

∫

Q

f ψ̃ . (51)

We compare (44), where we choose ψ = ψ̃, with (51), and we get

lim
δ→0

∫

S

σ θ+4

δ G(ψ) = lim
δ→0

∫

S

G(σ θ+4

δ )ψ ≤

∫

S

σ θ+4

G(ψ) , (52)

for all ψ in C∞(Q) such that ψ ≥ 0 in [0 , T ] × Ω, ψ = 0 on ]0 , T [×Γ, and ψ(T ) = 0.
Elementarily, the inequality

lim
δ→0

∫

S

σ θ+4

δ G(ψ) ≥

∫

S

σ θ+4

G(ψ) , (53)

is valid for all ψ in C∞(Q) such that ψ ≤ 0 in [0 , T ] × Ω, ψ = 0 on ]0 , T [×Γ, and
ψ(T ) = 0.

Now, we use the construction of Lemma 4.8. For an arbitrary ψ in C∞(Q) such that
ψ ≥ 0 in [0 , T ] × Ω, ψ = 0 on ]0 , T [×Γ, and ψ(T ) = 0, we denote by ψ̄ the negative
function given by Lemma 4.8.

With the help of (52) and (53), we get
∫

S

σ θ+4

G(ψ) =

∫

S

σ θ+4

G(ψ̄) ≤ lim
δ→0

∫

S

σ θ+4

δ G(ψ̄) = lim
δ→0

∫

S

σ θ+4

δ G(ψ) ≤

∫

S

σ θ+4

G(ψ) ,

which shows that

lim
δ→0

∫

S

σ θ+4

δ G(ψ) =

∫

S

σ θ+4

G(ψ) (54)

for all ψ in C∞(Q) such that ψ = 0 on ]0 , T [×Γ, and ψ(T ) = 0.

If for γ > 0, we consider the function

gγ(s) :=

{

−1
1+γ s4 if s < 0 ,

−1 if s ≥ 0 ,
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and test with gγ(θ(h))ψ, we will find by similar considerations that

lim
δ→0

∫

S

σ θ−
4

δ G(ψ) =

∫

S

σ θ−
4

G(ψ) . (55)

Therefore, we finally have found that

lim
δ→0

∫

S

G(σ |θδ|
3 θδ)ψ =

∫

S

σ |θ|3 θ G(ψ) .

Returning to (44) with these informations, we find the relation

−

∫

Q

θ
∂ψ

∂t
+

∫

Q

κ(θ)∇θ · ∇ψ +

∫

S

σ |θ|3 θ G(ψ) =

∫

Ω

θ0 ψ +

∫

Q

f ψ , (56)

for all ψ in C∞(Q) such that ψ = 0 on ]0 , T [×Γ, and ψ(T ) = 0. This is what we wanted
to prove.

Remark 3.3. In comparison to the results obtained in [Dru07] for the stationary problem,
we do not obtain a continuous estimate for the radiation energy ‖θ4‖L1(S) in terms of the
heating power ‖f‖L1(Q). We finish this section by proving that in the case of a C1,α

boundary, we can in some sense control θ4 if we pass to a weaker norm.

For the remainder of the section, we need to assume that the approximate solutions {θδ}
according to (38) satisfy

ess inf
Q

θδ ≥ k0 > 0 . (57)

This condition is for example satisfied when the right-hand side f is a positive function.
By the maximum principle, we then choose k0 := inf {ess inf

C

θg,δ, ess inf
Ω

θ0,δ}. In addition

to the estimates of Proposition 3.2, we have the following lemma.

Lemma 3.4. We consider any sequence {θδ} of approximations according to Proposition
3.2. Assume that (57) is satisfied. Then for all 0 < γ < 1

2
, the uniform estimate

∥

∥

∥
∇θγ

δ

∥

∥

∥

[L2(Q)]3
≤ C4 ,

is valid, with a constant C4 = C4(γ) that depends continuously on ‖θ0,δ‖L1(Ω), on ‖f‖L1(Q)

and on ‖θg,δ‖W 1,0
2 (Q).

Proof. For the sake of simplicity, we prove the claim in the case that θg,δ = k0 on C. The
general claim follows by similar ideas. In this proof, we do not indicate the indices δ.
Under the assumptions of the lemma, we first see that the integral

Iγ :=

∫ +∞

k0

1

τ 2 (1−γ)
d τ (58)
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is finite. For t ∈ R, we then define

g(t) = gγ(t) :=







∫ t

k0

1
τ2 (1−γ) d τ if t ≥ k0 ,

0 otherwise,

and we denote by F = Fγ the primitive function of g that vanishes at zero.

Observe that the function g is globally bounded by the number Iγ given in (58) and that
the function g(θ) vanishes on the boundary C.

With the help of (38) and of Lemma 4.6, we can prove, for all t1 ∈ [0, T ], the relation

∫

Ω

F (θ(t1)) +

∫

Qt1

κ(θ) g′(θ) |∇θ|2 +

∫

St1

G(σ θ4) g(θ) =

∫

Ω

F (θ0,δ) +

∫

Qt1

f [δ] g(θ) .

Clearly, we have

∣

∣

∣

∣

∣

∫

Ω

F (θ0,δ) +

∫

Qt1

f [δ] g(θ)

∣

∣

∣

∣

∣

≤ Iγ

(

‖θ0,δ‖L1(Ω) + ‖f‖L1(Q)

)

.

On the other hand, g′(θ) |∇θ|2 = |∇θ|2/θ2 (1−γ) = 1/γ2 |∇θγ|2. Since in view of Lemma
4.4, the integrals

∫

St1
G(σ θ4) g(θ) are positive, we therefore obtain for all t1 ∈]0, T that

∫

Qt1

κ(θ) |∇θγ|2 ≤ γ2 Iγ

(

‖θ0‖L1(Ω) + ‖f‖L1(Q)

)

,

and the claim follows.

We now recall the definition of the weak Lp spaces.

Definition 3.5. Let (X, A, µ) denote a measurable space. Let 1 ≤ p < ∞. Then, the
space Lp

w(X, A, µ) consists of all µ−measurable functions u : X → R such that

sup
λ≥0

{

λµ

(

{

x ∈ X
∣

∣

∣
|u(x)| > λ

}1/p
)}

<∞ .

Proposition 3.6. Assume that Σ ∈ C1,α. Under the assumptions of Lemma 3.4, the
estimate

‖θδ‖L4
w(S) ≤ P

(

‖θ0‖L1(Ω), ‖f‖L1(Q), ‖θg‖W 1,0
2 (Q)

)

,

is valid with a continuous function P of the data.

Proof. For simplicity, we skip the indices δ. For arbitrary λ > k0, we consider the function
gλ : R → R given by g(t) = gλ(t) := sign(t) min{|t|, λ}. We denote by F = Fλ the
primitive function of g that vanishes at k0.
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We write for the sake of commodity θ(λ) instead of gλ(θ). Testing in (38) with θ(λ) − k0,
we obtain with the help of Lemma 4.6 that

∫

Ω

(F (θ(t1)) − k0 θ(t1)) +

∫

Qt1

κ(θ) |∇θ(λ)|2 +

∫

St1

G(σ θ4) θ(λ)

=

∫

Ω

(F (θ0,δ) − k0 θ0,δ) +

∫

Qt1

f [δ] (θ(λ) − k0) .

Obviously, since λ > k0 we have
∣

∣

∣

∣

∣

∫

Ω

(F (θ0,δ) − k0 θ0,δ) +

∫

Qt1

f [δ] (θ(λ) − k0)

∣

∣

∣

∣

∣

≤ 2 λ
(

‖θ0‖L1(Ω) + ‖f‖L1(Q)

)

.

On the other hand, we observe that by Lemma 4.1
∫

St1
G(σ θ4) θ(λ) =

∫

St1
σ θ4G(θ(λ)).

In the set {(t, z) ∈ St1 : θ > λ}, we have G(θ(λ)) = λ − H(θ(λ)) ≥ 0. We therefore can
write that

∫

St1

σ θ4 G(θ(λ)) ≥

∫

St1

σ
(

θ(λ)
)4
G(θ(λ)) =

∫

St1

σ G
((

θ(λ)
)4)

θ(λ) ,

where we again made use of Lemma 4.1, (4). Now, using the inequality of Lemma 4.3
with r = 4, we obtain for arbitrary 0 < s ≤ 5 that

∫

St1

σ G
((

θ(λ)
)4)

θ(λ) ≥ cs

∫

St1

∣

∣θ(λ)
∣

∣

5
−

∫ t1

0

(
∫

Σ

∣

∣θ(λ)
∣

∣

s
)5/s

.

The latter inequalities now give the estimate

∫

St1

∣

∣θ(λ)
∣

∣

5
≤ Cs λ

(

‖θ0‖L1(Ω) + ‖f‖L1(Q) +

∫ t1

0

(
∫

Σ

∣

∣θ(λ)
∣

∣

4s
5

)5/s
)

. (59)

Now, define β := 4s
5
. In view of inequality of Lemma 4.9 below, we can write for q in the

range ]4/3, 4[ that

∫

Σ

∣

∣θ(λ)
∣

∣

β
=
∥

∥

∥

∣

∣θ(λ)
∣

∣

β/q
∥

∥

∥

q

Lq(Σ)
≤ cq

(

∥

∥

∥

∣

∣θ(λ)
∣

∣

β/q
∥

∥

∥

1−α

L2(Ω)

∥

∥

∥
∇
(

θ(λ)
)β/q

∥

∥

∥

α

[L2(Ω)]3

)q

, (60)

with α = 3/2 − 2/q. Under the condition β/q ≤ 1/2, we have

∥

∥

∥

∣

∣θ(λ)
∣

∣

β/q
∥

∥

∥

q (1−α)

L2(Ω)
=
∥

∥

∥

∣

∣θ(λ)
∣

∣

∥

∥

∥

β (1−α)

L2 β/q(Ω)
≤ c

∥

∥

∥
θ(λ)
∥

∥

∥

β (1−α)

L1(Ω)
.

Now, we recall the estimate of Proposition 3.2, (1), and obtain

∥

∥

∥

∣

∣θ(λ)
∣

∣

β/q
∥

∥

∥

q (1−α)

L2(Ω)
≤ c ‖θ‖

β (1−α)

L∞,1(Q) ≤ c C
β (1−α)
1 .
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Therefore, by (60), we will obtain that
∫

Σ

∣

∣θ(λ)
∣

∣

β
≤ c̃q C

β (1−α)
1

∥

∥

∥
∇
(

θ(λ)
)β/q

∥

∥

∥

q α

[L2(Ω)]3
,

which leads to
∫ t1

0

(
∫

Σ

∣

∣θ(λ)
∣

∣

β
)5/s

≤ c̄q C
5 β (1−α)

s
1

∫ t1

0

∥

∥

∥
∇
(

θ(λ)
)β/q

∥

∥

∥

5 q α
s

[L2(Ω)]3
. (61)

Now, assume that the condition

γ :=
β

q
<

1

2
,

5 q α

s
≤ 2 , (62)

are satisfied. Then, by Hölder’s inequality
∫ t1

0

∥

∥

∥
∇θβ/q

∥

∥

∥

5 q α
s

[L2(Ω)]3
≤ c

∫ t1

0

∥

∥

∥
∇
(

θ(λ)
)γ
∥

∥

∥

2

[L2(Ω)]3
,

with some γ < 1/2. Now Lemma 3.4 gives that
∫ t1

0

∥

∥

∥
∇θβ/q

∥

∥

∥

5 q α
s

[L2(Ω)]3
≤ c C2

4 .

Observing that 5β/s = 4 and getting back to (61), we thus have

∫ t1

0

(
∫

Σ

∣

∣θ(λ)
∣

∣

β
)5/s

≤ cq C
4 (1−α)
1 C2

4 . (63)

Now, we have to ensure that a choice of parameters s, q with the property (62) is possible.
In order to satisfy the first condition of (62), we choose s = 5/8 q − δ, where δ is an
arbitrary small positive parameter.

The second condition of (62) will be satisfied if

5 q

(

3

2
−

2

q

)

≤ 2

(

5 q

8
− δ

)

=
5 q

4
− δ̃ .

We easily satisfy the last relation by choosing the number q in the range q ∈]4/3, 8/5− δ̄],
where δ̄ is arbitrary small. Since (63) is valid, the relation (59) now reads

∫

St1

∣

∣θ(λ)
∣

∣

5
≤ C̃q λ

(

‖θ0‖L1(Ω) + ‖f‖L1(Q) + C
4 (1−α)
1 C2

4

)

. (64)

It follows that

λ4 meas
({

(t, z) ∈ S

∣

∣

∣
θ > λ

})

≤ C̃q

(

‖θ0‖L1(Ω) + ‖f‖L1(Q) + C
4 (1−α)
1 C2

4

)

,

Thus,

sup
λ>0

{

λ meas
({

(t, z) ∈ S

∣

∣

∣
θ > λ

})
1
4

}

≤ C
(

‖θ0‖L1(Ω) + ‖f‖L1(Q) + C
4 (1−α)
1 C2

4

)
1
4
,

proving the claim.
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4 Appendix: auxiliary results

For 1 ≤ p, q ≤ ∞, we introduce

L(p, q) := L
(

Lp,q(S) , Lp,q(S)
)

,

the space of all linear continuous maps from Lp,q(S) into itself. For working with the
operators K and G in the time-dependent case, we need the following properties:

Lemma 4.1. (1) For each 1 ≤ p, q ≤ ∞ the operator K extends to a bounded linear
operator from Lp,q(S) into itself, and we have the norm estimate ‖ K ‖L(p,q)≤ 1.

(2) The operator K is positive, in the sense that K(f) ≥ 0 almost everywhere on S,
whenever f ≥ 0 almost everywhere on S. Moreover, K is positive semi-definite and
selfadjoint in L2(S).

(3) If ǫ : S → R is such that

0 < ǫl ≤ ǫ(t, z) ≤ 1 on ]0, T [×Σ ,

then the operator [I − (1 − ǫ)K]−1 has an inverse in L(Lp,q(S), Lp,q(S)) having the
representation

[I − (1 − ǫ)K]−1 =

∞
∑

i=0

(1 − ǫ)iKi .

(4) The operator G is positive semi-definite and selfadjoint in L2(S). It has the represen-
tation G = I−H , where the operator H is positive, selfadjoint in L2(S), and satisfies
for all 1 ≤ p, q ≤ ∞ the norm estimate ‖ H ‖L(p,q)≤ 1 .

Proof. Denote by S the surface measure on Σ. We can prove that the mapping (z, y) 7−→
w(z, y) is S × S−measurable on Σ × Σ, provided that Σ is a Lipschitz surface. This will
ensure, for f ∈ L1(S), that the mapping

(t, z, y) 7−→ w(z, y) f(t, y) ,

is λ1 × S × S−measurable on [0, T ] × Σ × Σ. Thus, by Fubini’s theorem, we can easily
derive the assertions of the lemma from the properties that were established in [Tii97b],
[Met99], [Dru07] for the stationary operators.

We recall the definition

Definition 4.2. (1) We say that two points z, y ∈ Σ see each other if and only if
w(z, y) 6= 0.

(2) We call Ω an enclosure if and only if for S−almost all z ∈ Σ we have
∫

Σ
w(z, y) dSy =

1.
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We now need to recall a few auxiliary lemmas that we will use in the following.

Lemma 4.3. Let Σ ∈ C1,α. Let r, s > 0 be two real numbers such that s ≤ r + 1. There
exists a positive constant cr,s such that for all ψ ∈ Lr+1(Σ),

∫

Σ

G(|ψ|r−1 ψ)ψ +

(
∫

Σ

|ψ|s
)

r+1
s

≥ c ‖ ψ ‖r+1
Lr+1(Σ) .

Proof. See [Dru07], Lemma 2.4.

Lemma 4.4. Let Ω be an enclosure. Let F : R → R be a nondecreasing continuous
function such that F (0) = 0 and |F (t)| ≤ C0 (1 + |t|s) as |t| → ∞ (0 ≤ s < ∞). Let
0 ≤ r <∞ be an arbitrary number. Then, for all ψ ∈ Lr+s(Σ),

∫

Σ

G(|ψ|r−1 ψ)F (ψ) ≥ 0 .

Proof. See [Dru07], Lemma 2.6.

The following embedding result is well known.

Lemma 4.5. Let Ω ⊂ R
3 be such that ∂Ω ∈ C0,1. For T > 0, let Q :=]0, T [×Ω.

If r, q satisfy

r ∈ [2,∞] , q ∈ [2, 6] ,
1

r
+

3

2q
=

3

4
,

then there exists a positive constant cr,q such that

‖ u ‖Lr,q(Q) ≤ c ‖ u ‖V 1,0
2 (Q) .

If r̃, q̃ satisfy

r̃ ∈ [2 , ∞] , q̃ ∈

[

4

3
, 4

]

,
1

r̃
+

1

q̃
=

3

4
,

then there exists a positive constant c̃r̃,q̃ such that

‖ u ‖Lr̃,q̃(]0 ,T [×∂Ω) ≤ c̃ ‖ u ‖V 1,0
2 (Q) .

Proof. See [LSU68], Chapter II, paragraph 3.

Finally we recall that for functions defined on Q, we can introduce for all h ∈]0, T [

u(h)(x, t) :=
1

h

∫ t+h

t

u(x, τ) dτ .
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The function u(h) is called the Steklov averaging of u and it belongs to W 1,1
2 (QT−h),

whenever u belongs to W 1,0
2 (Q). Its fundamental properties are listed in [LSU68], Chapter

II, paragraph 4.

The notation

u(h)(x, t) :=
1

h

∫ t

t−h

u(x, τ) dτ ,

will make sense if we extend u, for instance by zero, to the interval [−h, 0].

For functions u, η : Q → R, such that η vanishes in the intervals [−h, 0] and [T − h, T ],
and such that

∫

Q
u η dx dt <∞, it holds that

∫

Q

u η(h) dx dt =

∫

Q

u(h) η dx dt . (65)

We now prove a lemma that will help us to shorten some technical arguments.

Lemma 4.6. Let ξ1, ξ2 ∈ L1(Q), and suppose that ξ3 ∈ [Lp(Q)]3 for some p > 1.

Denoting as usual by p′ the conjugated exponent to p, suppose that u ∈ W 1,0
p′,C(Q) ∩

C(0, T ;L1(Ω)) satisfies

−

∫

Q

u
∂ψ

∂t
=

∫

Q

ξ1 ψ + ξ3 · ∇ψ +

∫

S

ξ2 ψ (66)

for all ψ ∈ C∞
c (0, T ;C∞(Ω)) that vanish on C.

Let g : R → R be a globally Lipschitz continuous and bounded function that satisfies
g(0) = 0, and let F denote the primitive function of g that vanishes at zero.

Then for all t1 < T , it holds that
∫

Ω

F (u(t1)) =

∫

Ω

F (u(0)) +

∫

Qt1

ξ1 g(u) +

∫

Qt1

ξ3 · ∇g(u) +

∫

St1

ξ2 g(u) .

Proof. We denote by C∞
Γ (Ω) the set of all smooth functions in Ω that vanish on Γ.

We consider t1 < T arbitrary, and choose some positive number h < T − t1.

For an arbitrary ψ̃ ∈ C∞
c (0, t1;C

∞
Γ (Ω)) that we extend by zero to [t1, T ] and [−h, 0], the

test function ψ := ψ̃(h) can be used in (66). Observe that by definition

−

∫

Q

u
∂ψ̃(h)

∂t
= −

∫

Q

u(t, ·)
1

h

(

ψ̃(t, ·) − ψ̃(t− h, ·)
)

d t

=
1

h

∫

Q

u(t, ·) ψ̃(t− h, ·) d t−
1

h

∫

Q

u(t, ·) ψ̃(t, ·) d t .

Using the translation τ := t− h, we obtain that

1

h

∫

Q

u(t, ·) ψ̃(t− h, ·) d t =
1

h

∫

Q

u(τ + h, ·) ψ̃(τ, ·) d τ ,
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so that

−

∫

Q

u
∂ψ̃(h)

∂t
=

1

h

∫

Q

(

u(τ + h, ·) ψ̃(τ, ·) −

∫

Q

u(τ, ·) ψ̃(τ, ·)

)

d τ =

∫

Q

∂u(h)

∂t
ψ̃ .

Using also the fact that the Steklov averaging operator commutes with derivation with
respect to space, we transfer for each integral the Steklov averaging according to (65),
and we obtain that

∫

Q

∂u(h)

∂t
ψ̃ =

∫

Q

(ξ1)(h) ψ̃ +

∫

Q

(ξ3)(h) · ∇ψ̃ +

∫

S

(ξ2)(h) ψ̃ , (67)

for all ψ̃ ∈ C∞
c (0, t1;C

∞
Γ (Ω)).

Now, note that by assumption, the function g(u(h)) belongs to the space W 1,1
p′,C(Qt1).

Therefore, it is possible to approximate the function g(u(h)) in the norm of W 1,0
p′,C(Qt1) by

a sequence {ψ̃k} ⊂ C∞
c (0, t1;C

∞
Γ (Ω)). We insert ψ̃k in (67).

Passing to the limit k → ∞, we obtain that
∫

Qt1

∂u(h)

∂t
g(u(h)) =

∫

Qt1

(ξ1)(h) g(u(h)) +

∫

Qt1

(ξ3)(h) · ∇g(u(h)) +

∫

St1

(ξ2)(h) g(u(h)) .

Now, we observe that
∂u(h)

∂t
g(u(h)) = ∂

∂t
F
(

u(h)

)

, so that the last relation is equivalent to
the equation
∫

Ω

F (u(h)(t1))

=

∫

Ω

F (u(h)(0)) +

∫

Qt1

(ξ1)(h) g(u(h)) +

∫

Qt1

(ξ3)(h) · ∇g(u(h)) +

∫

St1

(ξ2)(h) g(u(h)) .

Since u ∈ C([0, T ];L1(Ω)), we have for all t ∈ [0, T ] and h → 0 that u(h)(t) −→ u(t) in
L1(Ω). Since the function g is globally bounded, its primitive F has at most linear growth
at infinity, which implies that

F (u(h)(t)) −→ F (u(t)) in L1(Ω) ,

for all t ∈ [0, T ].

Now, we check the convergence of the other integral terms. We know that

u(h) −→ u in L1(Qt1) and in L1(St1) .

Therefore, we can extract a subsequence such that

u(h) −→ u almost everywhere in Qt1 and on St1 .

Since (ξ1)(h) −→ ξ1 in L1(Qt1), and (ξ2)(h) −→ ξ2 in L1(St1), we easily verify that, as
h→ 0,

∫

Qt1

(ξ1)(h) g(u(h)) −→

∫

Qt1

ξ1 g(u) ,

∫

St1

(ξ2)(h) g(u(h)) −→

∫

St1

ξ2 g(u) .

By similar arguments,
∫

Qt1
(ξ3)(h) ·∇g(u(h)) −→

∫

Qt1
ξ3 ·∇g(u) for h→ 0. This proves the

claim.
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For obtaining a-priori estimates in the L1−case, we will need two further auxiliary results.

Proposition 4.7. For n ∈ N and u ∈W 1,0
p (Q) ∩ L∞,1(Q), define

Bn :=
{

(t, x) ∈ [0, T ] × Ω
∣

∣

∣
n ≤ |u(t, x)| < n+ 1

}

.

Suppose that there exists a positive constant C∗ such that supn∈N

∫

Bn
|∇u|p dx dt ≤ C∗.

If p < 15
4
, then for all 1 ≤ q < p − 3

4
, we can find positive constants c1 , c2 that depends

only on Ω , q , p, such that for s = p− q/3 q

‖ ∇u ‖Lq(Q)≤ c1 + c2 ‖ u ‖s
L∞,1(Q) C

1/q
∗ .

Proof. Similar results were proved in [BG92]. We can also follow the argumentation of
[Lew97].

Lemma 4.8. Let Ω be an enclosure with the property

dist(Γ , Σ) > 0 . (68)

Then for an arbitrary ψ in C∞(Q) such that ψ ≥ 0 in [0 , T ] × Ω , ψ = 0 on [ 0 , T ] × Γ ,
and ψ(T ) = 0, there exists

ψ̄ ∈ C∞(Q) ,



















ψ̄ ≤ 0 in [ 0 , T ] × Ω ,

ψ̄ = 0 on [ 0 , T ] × Γ ,

ψ̄ = 0 on {T} × Ω ,

such that G(ψ) = G(ψ̄) on [0, T ] × Σ. In addition, ‖ψ̄‖L∞(Q) ≤ ‖ψ‖L∞(Q).

Proof. Consider an arbritrary ψ in C∞(Q) such that ψ ≥ 0 in [ 0 , T ] × Ω , ψ = 0 on
[ 0 , T ] × Γ , and ψ(T ) = 0. Defining

φ(x) := max
t∈[0,T ]

ψ(x, t)

max
y∈Ω

ψ(t, y)
,

we see that φ is continuous, that 0 ≤ φ ≤ 1 in Ω and that φ = 0 on Γ. Now, in view of
assumption (68), we can choose a function φ̄ ∈ C∞(Ω) that vanishes on Γ and such that

φ̄ ≥ φ in Ω , φ̄ ≡ 1 on Σ .

Note that the function t 7→ maxy∈Ω ψ(t, y) is continuous on [0, T ] and vanishes at time T .
Therefore, we can choose ζ ∈ C∞([0, T ]) such that ζ(T ) = 0 and

ζ(t) ≥ max
y∈Ω

ψ(t, y) on [0, T ] .
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Let ψ̄(t, x) := ψ(t, x)−ζ(t) φ̄(x). Then, ψ̄ belongs to C∞(Q), it is nonpositive in [ 0 , T ]×
Ω , and it vanishes at time T , as well as on [0 , T ] × Γ. Obviously, ψ̄(t, x) ≥ −‖ψ‖L∞(Q)

for all (t, x) ∈ Q.

Since Ω is an enclosure in the sense of Definition 4.2, observe that G(1) ≡ 0. Thus, we
can write for all t ∈ [ 0 , T ] that

G(ψ̄(t)) = G(ψ(t)) − ζ(t)G(φ̄) = G(ψ(t)) − ζ(t)G(1) = G(ψ(t)) .

Lemma 4.9. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Then for each q ∈]4/3, 4[ there

exists a positive constant c = c(q) such that

‖u‖Lq(∂Ω) ≤ c ‖u‖1−α
L2(Ω) ‖∇u‖

α
[L2(Ω)]3 ,

for all u ∈W 1,2(Ω). Here, the number 0 < α < 1 is given by

α =
3

2
−

2

q
.

Proof. See [LSU68],Ch. II, paragraph 2, equation 2.21.
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