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Abstra
tWe show how Donnelly and Kurtz' (modi�ed) lookdown 
onstru
tion for measure-valued pro
esses 
an beused to analyse the longterm- and s
aling properties of spatially stable generalised Λ-Fleming Viot pro
esses,exhibiting a rare �natural� example of a s
aling family 
onverging in f.d.d. sense, but not in any of Skorohod'stopologies on path spa
e. This 
ompletes results of Fleis
hmann and Wa
htel (2004) about the spatial Neveupro
ess and 
omplements results of Dawson and Ho
hberg (1982) about the 
lassi
al Fleming Viot pro
ess.The lookdown 
onstru
tion provides an elegant ma
hinery and 
lear intuition to des
ribe the path propertiesof the family in terms of a ��i
ker e�e
t�, 
larifying �what 
an go wrong.�1 Introdu
tion1.1 Classi
al and generalized Fleming-Viot pro
essesIn 1979, Fleming and Viot introdu
ed their now well-known probability-measure-valued sto
hasti
 pro
ess asa model for the distribution of alleli
 frequen
ies in a sele
tively neutral geneti
 population with mutation(
f. [FV79℄). More formally, they introdu
ed a Markov pro
ess {Y δ0,∆
t , t ≥ 0}, with values in M1(R

d) (denotingthe probability measures on R
d), su
h that for fun
tions F of the form

F (ρ) :=

n
∏

i=1

〈φi, ρ〉, (1.1)where φi ∈ C2
c (Rd) and ρ ∈ M1(R

d), the generator of {Y δ0,∆
t , t ≥ 0} 
an be written as

LF (ρ) =

n
∑

i=1

〈∆φi, ρ〉
∏

j 6=i

〈φj , ρ〉 +
∑

1≤i<j≤n

[

〈φiφj , ρ〉 − 〈φi, ρ〉〈φj , ρ〉
]

∏

k 6=i,j

〈φk, ρ〉,with ∆ the Lapla
e operator. The meaning of the supers
ripts in {Y δ0,∆
t , t ≥ 0} will be
ome 
lear on
e weidentify this pro
ess as a spe
ial 
ase of a mu
h larger 
lass of pro
esses.It is well known (
f. [DH82℄) that the 
lassi
al Fleming-Viot pro
ess is dual to Kingman's 
oales
ent (introdu
edin [K82℄) in the following (our des
ription being rather informal) sense. For t ≥ 0, if one takes a uniform sampleof n individuals from Y δ0,∆

t and forgets about the respe
tive spatial positions of the n parti
les, then theirgenealogi
al tree ba
kwards in time 
an be viewed as a realisation of Kingman's n-
oales
ent. That means,at ea
h time t − s, where s ∈ [0, t] (hen
e ba
kwards in time), the an
estral lineages of ea
h parti
le merge atin�nitesimal rate (

k
2

), where k ∈ {2, . . . , n} denotes the number of distin
t lineages present at time t − s(−).This 
an be made rigorous, for example, using Donnelly and Kurtz (1996) lookdown 
onstru
tion [DK96℄, andspatial information may also be in
orporated, see e.g. [Eth00℄, Se
tion 1.12.Sin
e its introdu
tion, the Fleming-Viot pro
ess re
eived a great deal of attention from both geneti
ists andprobabilists. One reason is that it is the natural limit of a large 
lass of ex
hangeable population models with
onstant size and �nite-varian
e reprodu
tion me
hanism, in parti
ular the so-
alled Moran-model, and 
an beviewed as the in�nite-dimensional analogue of the Wright-Fisher di�usion. See [Eth00℄ for a good overview.A 
orresponding limit population pro
ess des
ribing situations where, from time to time, a single individualprodu
es a non-negligible fra
tion of the total population, has been introdu
ed somewhat impli
itly in [DK99℄,and expli
itly in [BLG03℄. The limits of the dual genealogi
al pro
esses have been 
lassi�ed in [Sa99℄, [MS01℄.1



See [BB07℄ for an overview. These are probability measure valued Markov pro
esses Y Λ,∆α whose generatora
ts on fun
tions F of the form (1.1) as
LF (ρ) =

n
∑

i=1

∆α〈φi, ρ〉
∏

j 6=i

〈φj , ρ〉 +
∑

J⊂{1,...,n}
|J|≥2

λn,|J|

[

〈
∏

j∈J

φj , ρ〉 −
∏

j∈J

〈φj , ρ〉
]

∏

k 6∈J

〈φk, ρ〉, (1.2)where
λn,k =

∫

[0,1]

xk−2(1 − x)n−kΛ(dx), n ≥ k ≥ 2, (1.3)with Λ a �nite measure on [0, 1], and ∆α = −(−∆)α/2 is the fra
tional Lapla
ian of index α ∈ (0, 2], see e.g.[Y65℄, Chapter IX.11, or [Fe66℄, Chapter IX.6, i.e. ∆α is the generator of the semigroup (P
(α)
t )t≥0 of the d-dimensional standard symmetri
 stable pro
ess {B(α)

t , t ≥ 0} of index α. Note that for notational 
onvenien
e,we denote by (P
(2)
t )t≥0 the semigroup of d-dimensional Brownian motion with 
ovarian
e matrix 2Id at time 1.We endow M1(R

d) with the topology of weak 
onvergen
e, whi
h we think of being indu
ed the metri
 (seee.g. [DK96℄, Remark 2.5)
dM1(µ, ν) :=

∞
∑

k=1

1

2k

∣

∣〈fk, µ − ν〉
∣

∣ , µ, ν ∈ M1(R
d), (1.4)where (fk) ⊂ C2

c (Rd) is dense (w.r.t. the sup-norm of C2
c (Rd)). By [DK99℄, Thm. 3.2, the pro
esses {Y Λ,∆α

t , t ≥
0} take values in D[0,∞)(M1(R

d)), the spa
e of 
àdlàg paths, endowed with the usual Skorohod (J1-)topology(
f. [S56℄, or [Bi68℄, Ch. 3).For a given Λ ∈ Mf ([0, 1]), the rates λn,k des
ribe the transitions of an ex
hangeable partition-valued pro
ess
{ΠΛ

t , t ≥ 0}, the so-
alledΛ-
oales
ent ([Pi99℄, [Sa99℄). While, for t ≥ 0, ΠΛ
t has n 
lasses, say, any k-tuple mergesto one at rate λn,k. Indeed, as shown in [BLG03℄, a Λ-Fleming-Viot pro
ess is dual to a so-
alled Λ-
oales
ent,similar to the duality between the standard Fleming-Viot pro
ess and Kingman's 
oales
ent established in[DH82℄. Note that Kingman's 
oales
ent 
orresponds to the 
hoi
e Λ = δ0.1.2 Relation between generalised Fleming-Viot pro
esses and in�nitely divisible superpro
essesFleis
hmann and Wa
htel ([FW06℄) have 
onsidered a probability measure valued pro
ess {Yt, t ≥ 0} obtainedby renormalising a spatial version of Neveu's 
ontinuous mass bran
hing pro
ess {Xt, t ≥ 0} with underlying

α-stable motion (as 
onstru
ted e.g. in [FS04℄ via approximation or impli
itly in [DK99℄) with its total mass,i.e. 〈φ, Yt〉 = 〈φ, Xt〉/〈1, Xt〉, and have investigated its long-time behaviour.In [BBC05℄, the relation between stable 
ontinuous-mass bran
hing pro
esses {Zt, t ≥ 0} and Beta(2 − β, β)-Fleming Viot pro
esses, for β ∈ (0, 2], (with a �trivial� spatial motion) has been explored. Informally, Zt/〈1, Zt〉,time-
hanged with the inverse of
∫ t

0

(Zt)
1−β dt, (1.5)is a Beta(2−β, β)-Fleming Viot pro
ess. This 
an be viewed as an extension of Perkins' 
lassi
al disintegrationtheorem ([EM91℄, [Pe91℄) to the stable 
ase. It is in prin
iple easy to in
lude a spatial motion 
omponent, butnote that then the 
orresponding Fleming-Viot pro
ess uses a time-inhomogenous motion, namely an α-stablepro
ess time-
hanged by the inverse of (1.5). However, Neveu's bran
hing me
hanism is stable of index β = 1,so that the time 
hange indu
ed by (1.5) be
omes trivial. Thus we obtainProposition 1.1.

{Xt/〈1, Xt〉, t ≥ 0}
d
= {Y U,∆α

t , t ≥ 0},where U = Beta(1, 1) is the uniform distribution on [0, 1].Note that in parti
ular in this situation, the (randomly) renormalised pro
ess {Xt/〈1, Xt〉, t ≥ 0} is itselfa Markov pro
ess. In fa
t, as observed in [BBC05℄, it is the only �superpro
ess� with this property. Thisobservation was the starting point of our investigation.2



Remark 1.2 (First two moment measures). By 
onsidering F as in (1.1) with n = 1 and n = 2, it followsfrom the martingale problem for (1.2) that the �rst two moments of a generalised Λ-Fleming-Viot pro
ess onlydepend on the underlying motion me
hanism and the total mass Λ([0, 1]), namely
E
[

〈ϕ, Y Λ,∆α

t 〉
]

=

∫

P
(α)
t ϕ(x)µ(dx), (1.6)and for t1 ≤ t2, writing ρ := Λ([0, 1]),

E
[

〈ϕ1, Y
Λ,∆α

t1 〉〈ϕ2, Y
Λ,∆α

t2 〉
]

=

∫ t1

0

ρe−ρsP (α)
s

(

P
(α)
t1−sϕ1P

(α)
t2−sϕ2

)

(x)µ(dx)

+ e−ρt1

∫

P
(α)
t1 ϕ1(x)µ(dx)

∫

P
(α)
t2 ϕ2(x)µ(dx), (1.7)for ϕ, ϕ1, ϕ2 ∈ C2

c . In parti
ular, they agree with those of the 
lassi
al Fleming-Viot pro
ess, whi
h explainsProposition 3 in [FW06℄.Remark 1.3 (Non-
ompa
t support property). It is interesting to see that, unlike the 
lassi
al Fleming-Viotpro
ess Y δ0,∆ ([DH82, Thm. 7.1℄), generalised Fleming-Viot pro
esses need not have the 
ompa
t supportproperty, even if the underlying motion is Brownian and the initial state has 
ompa
t support.Indeed, if the dual Λ-
oales
ent ΠΛ does not 
ome down from in�nity, i.e. if starting from ΠΛ
0 = {{1}, {2}, . . .},the number of 
lasses |ΠΛ

t | of ΠΛ
t is (a.s.) in�nite for any t > 0, then

supp
(

Y Λ,∆
t

)

= R
d a.s. for any t.Re
all that if the standard Λ-
oales
ent does not 
ome down from in�nity (a ne
essary and su�
ient 
onditionfor this 
an be found in [S
00℄), it either has a positive fra
tion of singleton 
lasses (so-
alled �dust�), or 
ountablymany families with stri
tly positive asymptoti
 mass adding up to one (so 
alled �proper frequen
ies�), 
f. [Pi99℄,Lemma 25.Using the path-wise embedding of the standard Λ-
oales
ent in the Fleming-Viot pro
ess provided by themodi�ed lookdown 
onstru
tion (see (2.7) below) we see that in the �rst 
ase, the positive fra
tion of singletons
ontributes an α-heat �ow 
omponent to Y Λ,∆α

t , wheres in the latter 
ase there are in�nitely many independentfamilies of stri
tly positive mass, so that by the Borel-Cantelli Lemma any given open ball in R
d will be 
hargedalmost surely.Combining this with Proposition 1.1, we re
over Proposition 14 of [FS04℄.Remark 1.4 (Generalised Λ-Fleming Viot pro
esses as �wandering random measures�). In the terminology of[DH82℄, the 
lassi
al Fleming Viot pro
ess is a (
ompa
tly) 
oherent wandering random measure, meaning thatthere is a �
entring pro
ess� {x(t), t ≥ 0} with values in R

d and for ea
h ε > 0 a stationary �radius pro
ess�
{Rε(t)} and an a.s. �nite T0, su
h that

Y δ0,∆
t

(

Bx(t)(Rε(t))
)

≥ 1 − ε for t ≥ T0 a.s., (1.8)where Bx(r) is the 
losed ball of radius r around x ∈ R
d. One natural 
hoi
e for {x(t), t ≥ 0} is the 
entreof mass pro
ess x(t) =

∫

xY δ0,∆
t (dx), see [DH82℄, Equation 3.10. However, in the 
ontext of the lookdown
onstru
tion, a more 
onvenient 
hoi
e is x(t) = ξ1

t , the lo
ation of the level-1 parti
le (see Se
tion 2). Withthis 
hoi
e, an obvious extension of [DK96℄, Thm. 2.9, shows that any Y Λ,∆α is a 
oherent wandering randommeasure. If the pro
ess Y Λ,∆α has the 
ompa
t support property, this will also yield 
ompa
t 
oheren
e, i.e.one 
an 
hoose ε = 0 in (1.8).In Corollary 6 of [FW06℄, it is observed that for 
ontinuos test fun
tions ϕ with 
ompa
t support,
td/α

E

[

〈ϕ, Y U,∆α〉
]

→ p
(α)
1 (0)

∫

ϕ(x) dx as t → ∞, (1.9)3



where p
(α)
t (x) is the transition density of {B(α)

t , t ≥ 0}, and in the subsequent Remark 7, Fleis
hmann andWa
htel ask about 
onvergen
e of td/α〈ϕ, Y U,∆α〉. With the lookdown 
onstru
tion in mind, (1.9) 
an be atleast qualitatively understood as follows: without loss of generality assume that ϕ has support in the unit ball,put Ct := 〈ϕ, Y Λ,∆α

t 〉. Consider the empiri
al pro
ess {Y Λ,∆α

t , t ≥ 0} together with {ξ1
t , t ≥ 0}, the position ofthe level-1 parti
le. Then Y Λ,∆α

t (· − ξ1
t ) 
onverges to some stationary distribution. Thus if ξ1

t is �
lose� to theorigin, an event of probability ≈ t−d/α, Ct is substantial, whereas otherwise it is essentially zero. The termsbalan
e exa
tly, so that the lefthand side of (1.9) 
onverges, but in fa
t as {B(α)
t , t ≥ 0} is not positive re
urrent,

Ct 
onverges to zero in distribution (and even a.s. if α < d, i.e. if ξ1
t is transient).1.3 Statement of the main resultThe long-time behaviour of a generalised Fleming-Viot pro
ess re�e
ts the interplay between motion and re-sampling me
hanism. If one attempts to 
apture this via a spa
e-time res
aling, the s
aling will be di
tated bythe underlying (stable) motion pro
ess.Theorem 1.5 (S
aling). Let Λ ∈ Mf([0, 1]) − {0} and de�ne the res
aled pro
ess {Y Λ,∆α

t [k], t ≥ 0} via
〈

φ, Y Λ,∆α

t [k]
〉

:=
〈

φ(·/k1/α), Y Λ,∆α

kt

〉

, (1.10)for φ ∈ bB(Rd) and t ≥ 0. Let B(α), for α ∈ (0, 2], be the standard symmetri
 stable pro
ess of index α, startingfrom B
(α)
0 = 0. Then,a)

{Y Λ,∆α

t [k], t ≥ 0} → {δ
B

(α)
t

, t ≥ 0} as k → ∞, (1.11)in the sense of the �nite-dimensional distributions (f.d.d.).b) (1.11) holds weakly on D[0,∞)(M1(R
d)) if and only if α = 2.Remark 1.6. For the 
lassi
al {Y δ0,∆

t , t ≥ 0}, this is Theorem 8.1 in [DH82℄. Combining Proposition 1.1and Theorem 1.5, we re
over and extend Theorem 1 in [FW06℄. This in parti
ular 
omplements Part (b) ofTheorem 1 in [FW06℄ by 
larifying that tightness on path spa
e holds only in the Brownian 
ase. Our proof aswell as our intuition for Part b) rely heavily on Donnelly & Kurtz' lookdown 
onstru
tion, [DK99℄, 
ir
umventingmoment 
al
ulations as in [FW06℄, Se
t. 4.4. 2It is interesting to see why tightness on pathspa
e 
an fail. Consider a path ω = {ωt, t ≥ 0} in D[0,∞)(M1(R
d)).Let us say that ω exhibits an ε-δ-�i
ker (on the interval [0, T ]) if there exist time points 0 < t1 < t2 < t3 ≤ Tand x, y ∈ R

d su
h that t3 − t1 ≤ δ, |x − y| ≥ 2ε and
dM1(ωt1 , ωt3) ≤ ε, dM1(ωt1 , ωt2) and dM1(ωt2 , ωt3) ≥ 2ε, (1.12)where dM1 denotes the metri
 (1.4) on M1(R

d).Lemma 1.7. If α < 2 and Λ((0, 1]) > 0, there exists ε > 0 su
h that
lim inf
k→∞

P
{

Y Λ,∆α [k] exhibits an ε-(1/k)-�i
ker in [0, T ]
}

> 0.We will see below that the behaviour des
ribed by 
ondition (1.12) arises as follows: At times t1 and t3, Y Λ,∆α [k]is (almost) 
on
entrated in a small ball with (random) 
entre x, say. At time t2, suddenly a fra
tion ε of thetotal mass appears in a remote ball with 
entre y, where |x − y| ≥ 1, and vanishes almost instantaneously, i.e.,by time t3. Su
h �sparks� make Y Λ,∆α [k] a pro
ess of ��i
kering random measures�. Te
hni
ally, we see thatLemma 1.7 shows that the modulus of 
ontinuity w′(·, δ, T ) of the pro
esses Y Λ,∆α [k], see (3.4) below, does notbe
ome small as δ → 0, 
ontradi
ting tightness in D[0,∞)(M1(R
d)). Intuitively, at ea
h in�nitesimal �spark�, a4



limiting pro
ess is neither left- nor right-
ontinuous. We will see below how this intuition 
an be made pre
isein the framework of the (modi�ed) lookdown 
onstru
tion.The situation is di�erent if Λ = cδ0 (and α < 2). Here, ea
h Y cδ0,∆α [k] a.s. has 
ontinuous paths, so that anylimit in Skorohod's J1-topology would ne
essarily have 
ontinuous paths. However, the f.d.d. limit {δ
B

(α)
t

, t ≥ 0}has no 
ontinuous modi�
ation. Intuitively, there is no ��i
kering�, but an �afterglow� e�e
t: From time to time,a very fertile �in�nitesimal� parti
le jumps some distan
e, and then founds an extremely large family, so thatthe population qui
kly be
omes essentially a Dira
 measure at this point, while at the same time the rest ofthe population (
ontinuously) �fades away�. Note that this phenomenon is 
aptured by Skorohod's M1-topology([S56℄, Def. 2.2.5), whi
h is tailor-made to establish 
onvergen
e in situations in whi
h a dis
ontinuous pro
essis approximated by a family of 
ontinuous pro
esses. However, in the situation of Lemma 1.7, Condition (1.12)implies that the distributions of the pro
esses Y Λ,∆α [k] 
annot 
onverge with respe
t to any of the topologies
onsidered in [S56℄.2 Donnelly and Kurtz' lookdown 
onstru
tion2.1 A 
ountable representation for generalised Fleming-Viot pro
essesWe 
onsider a 
ountably in�nite system of individuals, ea
h parti
le being identi�ed by a level j ∈ N. We equipthe levels with types ξj
t in R

d, j ∈ N. Initially, we require the types ξ0 = (ξj
0)j∈N to be an i.i.d. ve
tor (inparti
ular ex
hangeable), so that

lim
N→∞

1

N

N
∑

j=1

δξj
0

= µ,for some �nite measure µ ∈ M1(R
d), whi
h will be the initial 
ondition of the generalised Fleming-Viot pro
ess
onstru
ted below via (2.6). The point is that the 
onstru
tion will preserve ex
hangeability.There are two �sets of ingredients� for the reprodu
tion me
hanism of these parti
les, one 
orresponding to the��nite varian
e� part Λ({0}), and the other to the �extreme reprodu
tive events� des
ribed by Λ0 = Λ−Λ({0})δ0.Restri
ted to the �rst N levels, the dynami
s is that of a very parti
ular permutation of a generalised Moranmodel with the property that always the parti
le with the highest level is the next to die.For the �rst part, let {Lij(t), t ≥ 0}, 1 ≤ i < j < ∞, be independent Poisson pro
esses with rate Λ({0}).Intuitively, at jump times t of Lij , the parti
le at level j �looks down� to level i and 
opies the type from there,
orresponding to a single birth event in a(n approximating) Moran model. At jump times, types on levels above

j are shifted a

ordingly, in formulas
ξk
t =







ξk
t−, if k < j,

ξi
t−, if k = j,

ξk−1
t− , if k > j,

(2.1)if ∆Lij(t) = 1. This me
hanism is well de�ned be
ause for ea
h k, there are only �nitely many pro
esses Lij ,
i < j ≤ k at whose jump times ξk has to be modi�ed.For the se
ond part, whi
h 
orresponds to multiple birth events, let n be a Poisson point pro
ess on R

+×(0, 1]×

[0, 1]N with intensity measure dt ⊗ r−2Λ0(dr) ⊗ (du)
⊗N. Note that for almost all realisations {(ti, yi, (uij))} of

n, we have
∑

i : ti≤t

y2
i < ∞ for all t ≥ 0. (2.2)The jump times ti in our point 
on�guration n 
orrespond to reprodu
tion events. De�ne for J ⊂ {1, . . . , l}with |J | ≥ 2,

Ll
J(t) :=

∑

i : ti≤t

∏

j∈J

1uij≤yi

∏

j∈{1,...,l}−J

1uij>yi
. (2.3)5
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Ll

J(t) 
ounts how many times, among the levels in {1, . . . , l}, exa
tly those in J were involved in a birth eventup to time t. Note that for any 
on�guration n satisfying (2.2), sin
e |J | ≥ 2, we have
E
[

Ll
J(t)

∣

∣ n|[0,t]×(0,1]

]

=
∑

i : ti≤t

y
|J|
i (1 − yi)

l−|J| ≤
∑

i : ti≤t

y2
i < ∞,so that Ll

J(t) is a.s. �nite.Intuitively, at a jump ti, ea
h level performs a uniform 
oin toss, and all the levels j with uij ≤ yi parti
ipate inthis birth event. Ea
h parti
ipating level adopts the type of the smallest level involved. All the other individualsare shifted upwards a

ordingly, keeping their original order with respe
t to their levels (see Figure 1). Moreformally, if t = ti is a jump time and j is the smallest level involved, i.e. uij ≤ yi and uik > yi for k < j, we put
ξk
t =











ξk
t−, for k ≤ j,

ξj
t−, for k > j with uik ≤ yi,

ξ
k−Jk

t

t− , otherwise, (2.4)where Jk
ti

= #{m < k : Uim ≤ yi} − 1. Let us de�ne G = (Gu,v)u<v, where for u ≤ v

Gu,v =σ
(

Lij(t) − Lij(s), u < s ≤ t ≤ v, i, j ∈ N
)

∨ σ
(

n([t, s) × A × B), u < s ≤ t ≤ u, A ⊂ (0, 1], B ⊂ [0, 1]N
) (2.5)is the σ-algebra des
ribing all �genealogi
al events� between times u and v.So far, we have treated the reprodu
tive me
hanism of the parti
le system. Between reprodu
tion events, allthe levels follow independent α-stable motions. For a rigorous formulation, all three me
hanisms together 
anbe 
ast into a suitable 
ountable system of sto
hasti
 di�erential equations driven by Poisson pro
esses and

α-stable pro
esses, see [DK99℄, Se
tion 6.Then, for ea
h t > 0, (ξ1
t , ξ2

t , . . .) is an ex
hangeable random ve
tor and
Zt = lim

N→∞

1

N

N
∑

j=1

δξj
t
, t ≥ 0 (2.6)exists almost surely on D[0,∞)(M1(R

d)), and {Zt, t ≥ 0} is the Markov pro
ess with generator (1.2) and initial
ondition Z0 = µ, see [DK99℄, Thm. 3.2. 6



2.2 Pathwise embedding of Λ-
oales
ents in generalised Λ-Fleming-Viot pro
essesNote that for ea
h t > 0 and s ≤ t, the modi�ed lookdown 
onstru
tion gives rise to the an
estral partition ofthe levels at time t with respe
t to the an
estors at time s before t by des
ribing
N t

i (s) = level of level i's an
estor at time t − s.For �xed t, the ve
tor-valued pro
ess {N t
i (s) : i ∈ N}0≤s≤t satis�es an �obvious� system of Poisson-pro
ess drivensto
hasti
 di�erential equations, see [DK99℄, p. 195, (note that we have indulged in a time re-parametrisation),and the partition-valued pro
ess de�ned by
{

{i : N t
i (s) = j}, j = 1, 2, . . .

} (2.7)is a standard Λ-
oales
ent with time interval [0, t]. This implies in parti
ular by Kingman's theory of ex
hange-able partitions, [K82℄, see e.g. [Pi06℄ for an introdu
tion, that the empiri
al family sizes
At

j(s) := lim
n→∞

1

n

n
∑

i=1

1{Nt
i
(s)=j}exist a.s. in [0, 1] for ea
h j and s ≤ t, des
ribing the relative frequen
y at time t of des
endants of the parti
leat level j at time t − s.3 Proof of Theorem 1.5Fix µ ∈ M1(R

d) as the initial 
ondition of the uns
aled pro
ess Y Λ,∆α . We begin with the useful observationthat, due to the s
aling properties of the underlying motion pro
ess, for ea
h k, the pro
ess {Y
(k)
t , t ≥ 0},de�ned by

Y
(k)
t = Y kΛ,∆α

t , t ≥ 0, (3.1)(and starting from the image measure of µ under x 7→ x/k1/α), has the same distribution as {Y Λ,∆α

t [k]} de�nedin (1.10). It will be 
onvenient to work in the following with a version of Y (k) whi
h is obtained from a lookdown
onstru
tion with �parameter� kΛ, in parti
ular, we have
Y

(k)
t = lim

n→∞

1

N

N
∑

i=1

δξi
t
, t ≥ 0.Note that the family ξi, i ∈ N, used to 
onstru
t Y (k) depends (impli
itly) on k, but for the sake of readability,we suppress this in our notation.Proof of Part a)We have already noted that for Λ = δ0 and α = 2, this is Theorem 8.1 in [DH82℄, and that, for Λ = U =

Beta(1, 1), the uniform distribution on [0, 1], this is essentially Theorem 1 in [FW06℄, see Remark 1.6. UsingRemark 1.2, the proof of Fleis
hmann and Wa
htel 
an easily be adapted, as it relies only on the �rst twomoments.Alternatively, sin
e the motion of the level-1 parti
le {ξ1
t , t ≥ 0} is a symmetri
 α-stable pro
ess, it su�
es to
he
k that

lim
k→∞

P
{

Y
(k)
t (Bξ1

t
(ε)) ≥ 1 − ε

}

= 1.for ea
h t and ε, whi
h will be implied by
lim

k→∞
E
[

Y
(k)
t (Bξ1

t
(ε)c)

]

= 0 for ea
h ε > 0. (3.2)7



In order to 
he
k this, let Φε be a �molli�ed� (
ontinuous) indi
ator of Bε(ξ
1
t )c, and note, by dominated
onvergen
e, that for any δ > 0

E
[

〈Φε, Y
(k)
t 〉

]

= lim
N→∞

E

[

1

N

N
∑

i=1

Φε(ξ
i
t)

]

≤ lim sup
N→∞

E

[

1

N

N
∑

i=1

Φε(ξ
i
t)1{Nt

i
(δ)=1}

]

+ E
[

1 − At
1(δ)

]

.The se
ond term in the last line, for ea
h δ > 0, 
onverges to 0 as k → ∞, 
f. [Pi99℄, Prop. 30. For the �rstterm note that, where Gt−δ,t des
ribes the genealogi
al information as de�ned in (2.5),
E
[ 1

N

N
∑

i=1

Φε(ξ
i
t)1{Nt

i
(δ)=1}

]

=
1

N

N
∑

i=1

E

[

1{Nt
i
(δ)=1}E

[

Φε(ξ
i
t)

∣

∣Gt−δ,t

]

]

≤ E

[
∫

Φε(y)p
(α)
δ

(

ξ1
t−δ, y

)

dy

]

≤ P
{

|ξ1
t − ξt

t−δ| ≥ ε/2
}

+ p
(α)
δ

(

0, B0(ε/2)c
)

,whi
h for �xed ε tends to 0 as δ → 0.3.1 Proof of Part b)In the 
ase α = 2, using Remark 1.2, tightness on the spa
e D[0,∞)(M1(R
d)) 
an be proved by inspe
tion,literally tra
ing through the 
orresponding arguments of [FW06℄, Lemma 20 and 21 (note that even thoughEquations (133)�(137) in [FW06℄ estimate a fourth moment, this refers only to an in
rement of a d-dimensionalBrownian motion).For the 
ase α < 2, let us re
all the following 
lassi
al 
hara
terisation of relative 
ompa
tness in

D[0,∞)(M1(R
d)), 
f. e.g. [Bi68℄, Theorem 15.2.Theorem 3.1 (Relative 
ompa
tness on path spa
e). Let {Y k} be a sequen
e of pro
esses taking values in

D[0,∞)(M1(R
d)). Then {Y k} is relatively 
ompa
t if and only if the following two 
onditions hold.

• For every ε > 0 and every (rational) t ≥ 0, there exists a 
ompa
t set γε,t ⊂ M1(R
d), su
h that

lim inf
k→∞

P
{

Y k
t ∈ γε,t

}

≥ 1 − ε.

• For every ε > 0 and T > 0, there exists δ > 0, su
h that
lim sup

k→∞
P

{

w′(Y k, δ, T ) ≥ ε
}

≤ ε, (3.3)where
w′(y, δ, T ) = inf

{ti}
max

i
sup

s,t∈[ti−1,ti)

d(y(s), y(t)), (3.4)and {ti} ranges over all �nite partitions of [0, T ] with ti − ti−1 > δ for all i.Then we obtain from Lemma 1.7 a ε > 0 su
h that for k0 ∈ N and δ > 1/k0

P
{

w′(Y Λ,δα [k], δ, T ) ≥ ε
}

≥ P
{

Y Λ,∆α [k] exhibits an ε-(1/k)-�i
ker on [0, T ]
}is bounded away from 0 uniformly in k ≥ k0. 28



3.2 Proof of Lemma 1.7 The intuitive me
hanism behind a ��i
ker� obtained from the lookdown 
ontru
tionis as follows: Typi
ally when k is large, most of the total mass of Y (k) as de�ned in (3.1) will be in the immediatevi
inity of the lo
ation of the level-1 parti
le. A ��i
ker� arises if the level-2 parti
le jumps to a remote positionand shortly afterwards parti
ipates in an extreme reprodu
tion event involving a positive fra
tion of the 
urrentpopulation, but not the level-1 parti
le. In this situation, a new atom appears in the support of Y (k), whi
his then removed very qui
kly, sin
e mass is attra
ted rapidly towards the position of the level-1 parti
le. Notethat 
orresponding phenomena will o

ur on any level j ≥ 2.A te
hni
al obsta
le to turn this intuition into a rigorous proof stems from the fa
t that the metri
 d onM1(R
d),indu
ing the weak topology, is insensitive to su
h �i
kers if they o

ur far away. Hen
e, in what follows, werequire the level-1 parti
le to stay within a �xed ball around the origin. This for
es us to disentangle σ{ξ1

t , t ≥ 0}and the information about the genealogy and the in
rements of the other parti
les relative to the position of ξ1at the time of their respe
tive most re
ent 
ommon an
estor.First, we 
olle
t some useful notation. Without loss of generality assume T = 1, 
hoose δ ∈ (0, 1] with
Λ((δ, 1]) > 0 and ε > 0 su
h that for any µ, µ′ ∈ M1(R

d),
µ(B0(1)) ≥ 1 − δ/2 and µ′(B0(2)c) ≥ δ implies dM1(µ, µ′) > ε. (3.5)For k ∈ N, we split the time interval [0, 1] into k disjoint intervals (ai, ai+1], where ai = i/k, i = 0, . . . , k − 1.Moreover, we de�ne bi = ai + 1/(4k), ci = ai + 2/(4k), di = ai + 3/(4k). Let

σt
j := inf{s > 0 : N t

j (s) = 1}(with the usual 
onvention inf ∅ = +∞) be the ba
kwards time to the most re
ent 
ommon an
estor of theparti
les at level j and at level 1 at time t, and let
Hs,t :=

{

L12(t) − L12(s) = 0
}

⋂

{

n
(

(s, t] × {(x, (um)) ∈ (0, 1] × [0, 1]N : u1, u2 ≤ x}
)

= 0
} (3.6)be the event that in the time interval (s, t], no lookdown event involving both levels 1 and 2 o

urs. Furthermore,let (δk) be su
h that

lim
k→∞

δk = 0 and lim
k→∞

P

{

sup
0≤t≤1/k

|B
(α)
t | ≤ δk

}

= 1. (3.7)In order to 
ook up a ��i
ker� within (ai, ai+1], we 
olle
t the following �ingredients�:
• Within the time-interval (ai, bi], 
onsider the event A(k)

i that at time bi most of the population (in
ludingthe level-2 parti
le) is su�
iently 
losely related to the level-1 parti
le and has not moved too far away,more pre
isely
A

(k)
i :=

{

Abi

1 (1/(4k)) ≥ 1 −
δ

4

}

⋂

{

lim
n→∞

1

n

n
∑

j=1

1
{N

bi
j

(1/(4k))=1}
1{|ξj

bi
−ξ1

bi−σ
bi
j

|≤δk}
≥ 1 − δ/2

}

⋂

{

σbi

2 < 1/(4k)
}

⋂

{

|ξ2
bi
− ξ2

bi−σ
bi
2

| ≤ 1/2
}

.

• Within the time-interval (bi, ci], the event B
(k)
i requires that the level-2 parti
le jumps to a su�
ientlyremote position and there is no subsequent lookdown-event involving level-1 and level-2, more pre
isely,

B
(k)
i := Hbi,ci

⋂

{

|ξ2
ci
− ξ2

bi
| > 4

}

.

• Within the time-interval (ci, di], the event C(k)
i requires that the level-2 parti
le does not travel very far,and that there is a lookdown event involving a su�
iently large fra
tion of the population, but not thelevel-1 parti
le:

C
(k)
i := Hci,di

⋂

{

sup
t∈(ci,di]

|ξ2
t − ξ2

ci
| < 1

}

⋂

{

n
(

[ci, di] × {(x, (um)) ∈ (0, 1] × [0, 1]N : x > δ, u2 < x ≤ u1}
)

≥ 1
}

.9



• Finally, let D
(k)
i be the event that most of the mass returns to the lo
ation of the level-1 parti
le, andstays there, (whi
h essentially is the same behaviour as within (ai, bi]), namely,

D
(k)
i :=

{

A
ai+1

1 (1/(4k)) ≥ 1 −
δ

4

}

⋂

{

lim
n→∞

1

n

n
∑

j=1

1{N
ai+1
j

(1/(4k))=1}1{|ξ
j
ai+1

−ξ1

ai+1−σ
ai+1
j

|≤δk}
≥ 1 − δ/2

}

.Now let us introdu
e a family of σ-algebras 
ontaining our ingredients: Re
all Gu,v from (2.5) and let H(k)
i bethe σ-algebra generated by Gai,ai+1 and the random variables

(

ξj
bi
− ξ1

bi−σ
bi
j

)

1
{σ

bi
j

≤1/(4k)}
,

(

ξj
ai+1

− ξ1
ai+1−σ

ai+1
j

)

1{σ
ai+1
j

≤1/(4k)}, j = 2, 3, . . . , and
(

ξ2
t − ξ2

bi

)

1Hbi,di
, bi ≤ t ≤ di.Note that for �xed k, the family H

(k)
i , i = 0, 1, . . . , k − 1 is independent and independent of σ{ξ1

t , t ≥ 0}, and
A

(k)
i ,B

(k)
i , C

(k)
i ,D

(k)
i ∈ H

(k)
i , i = 0, 1, . . . , k − 1.On the event

E
(k)
i :=

{

supt∈(ai,ai+1] |ξ
1
t − ξ1

ai
| ≤ δk

}

∩A
(k)
i ∩ B

(k)
i ∩ C

(k)
i ∩ D

(k)
i , (3.8)we see from (3.5) that there is a (random) time τ ∈ (ci, di] su
h that

dM1(Y
Λ,∆α

bi
[k], Y Λ,∆α

ai+1
[k]) ≤ ε, dM1(Y

Λ,∆α

bi
[k], Y Λ,∆α

τ [k]) and dM1(Y
Λ,∆α

τ [k], Y Λ,∆α

ai+1
[k]) ≥ 2ε, (3.9)i.e. Y Λ,∆α [k] exhibits an ε-(1/k)-�i
ker in (ai, ai+1]. It is easy to see that

inf
k∈N

P

(

⋃k−1

i=0
E

(k)
i

∣

∣

∣

{

sup0≤t≤1 |ξ
1
t | ≤ 1/2

}

)

> 0, (3.10)whi
h yields the 
laim. In order to verify (3.10), note that
∀ k, i < k : P

(

A
(k)
i ∩ B

(k)
i ∩ C

(k)
i ∩ D

(k)
i

)

≥ C/kfor some C = C(α, Λ, δ, (δm)) > 0, whi
h basi
ally 
omes from the fa
t that
P
{

|B
(α)
1/(4k)| > 4

}

∼ Const.× 1

k
.Furthermore, let

Ik :=
{

i ∈ {0, 1, . . . , k − 1} : supt∈(ai,ai+1] |ξ
1
t − ξ1

ai
| ≤ δk

}and observe that for ea
h k, Ik is independent of ∨k−1
i=0 H

(k)
i and we have

inf
k∈N

P

(

{

|Ik| ≥ k/2
}

∣

∣

∣

{

sup0≤t≤1 |ξ
1
t | ≤ 1/2

}

)

> 0.
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