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Abstract

We show how Donnelly and Kurtz’ (modified) lookdown construction for measure-valued processes can be
used to analyse the longterm- and scaling properties of spatially stable generalised A-Fleming Viot processes,
exhibiting a rare “natural” example of a scaling family converging in f.d.d. sense, but not in any of Skorohod’s
topologies on path space. This completes results of Fleischmann and Wachtel (2004) about the spatial Neveu
process and complements results of Dawson and Hochberg (1982) about the classical Fleming Viot process.
The lookdown construction provides an elegant machinery and clear intuition to describe the path properties
of the family in terms of a “flicker effect”; clarifying “what can go wrong.”

1 Introduction

1.1 Classical and generalized Fleming-Viot processes

In 1979, Fleming and Viot introduced their now well-known probability-measure-valued stochastic process as
a model for the distribution of allelic frequencies in a selectivelgf neutral genetic population with mutation
(cf. [FVT79]). More formally, they introduced a Markov process {Y; o4t >0}, with values in M; (R%) (denoting
the probability measures on RY), such that for functions F' of the form

n

F(p) =[] (®:0), (1.1)

=1

where ¢; € C2(R?) and p € M;(RY), the generator of {Y;?*' ¢ > 0} can be written as

n

LF(p) =Y (Aéu ) [[0s0)+ > [(6it.0) = (@ o)esnn)] TT (no0),

i=1 i 1<i<j<n ki,

with A the Laplace operator. The meaning of the superscripts in {Yt‘s"’A,t > 0} will become clear once we
identify this process as a special case of a much larger class of processes.

It is well known (cf. [DH82|) that the classical Fleming-Viot process is dual to Kingman’s coalescent (introduced
in [K82]) in the following (our description being rather informal) sense. For ¢ > 0, if one takes a uniform sample
of n individuals from on’A and forgets about the respective spatial positions of the n particles, then their
genealogical tree backwards in time can be viewed as a realisation of Kingman’s n-coalescent. That means,
at each time t — s, where s € [0,¢] (hence backwards in time), the ancestral lineages of each particle merge at
infinitesimal rate (g) where k € {2,...,n} denotes the number of distinct lineages present at time t — s(—).
This can be made rigorous, for example, using Donnelly and Kurtz (1996) lookdown construction [DK96], and

spatial information may also be incorporated, see e.g. [Eth00], Section 1.12.

Since its introduction, the Fleming-Viot process received a great deal of attention from both geneticists and
probabilists. One reason is that it is the natural limit of a large class of exchangeable population models with
constant size and finite-variance reproduction mechanism, in particular the so-called Moran-model, and can be
viewed as the infinite-dimensional analogue of the Wright-Fisher diffusion. See [Eth00] for a good overview.

A corresponding limit population process describing situations where, from time to time, a single individual
produces a non-negligible fraction of the total population, has been introduced somewhat implicitly in [DK99],
and explicitly in [BLGO03|. The limits of the dual genealogical processes have been classified in [Sa99], [MS01].
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See [BBO07] for an overview. These are probability measure valued Markov processes « whose generator

acts on functions F' of the form (1.1) as

n

LE(p) =) Aaldu ) [[50)+ D Auiy {(H b, p) — H<¢j7p>} 11 (¢ 0), (1.2)

i=1 i TE (L jeJ jeJ kgJ
where
Ank = / 2F72(1 —2)" A (dx), n>k>2, (1.3)
0,1]
with A a finite measure on [0,1], and A, = —(—=A)®/2 is the fractional Laplacian of index a € (0,2], see e.g.

[Y65], Chapter IX.11, or [Fe66], Chapter IX.6, i.e. A, is the generator of the semigroup (Pt(a))tzo of the d-
dimensional standard symmetric stable process {B,Ea),t > 0} of index «. Note that for notational convenience,
we denote by (Pt(z))tzo the semigroup of d-dimensional Brownian motion with covariance matrix 2Id at time 1.
We endow M (R?) with the topology of weak convergence, which we think of being induced the metric (see
e.g. [DK96|, Remark 2.5)

1

A, (p,v) = Z 2k‘<fk,u—u> . v € My(RY), (1.4)
k=1

where (f) € C2(R%) is dense (w.r.t. the sup-norm of C2(R%)). By [DK99|, Thm. 3.2, the processes {Y;"** ¢ >
0} take values in D[O)Oo)(Ml(Rd)), the space of cadlag paths, endowed with the usual Skorohod (J;i-)topology
(cf. [S56], or [Bi68], Ch. 3).

For a given A € M(([0,1]), the rates A\, describe the transitions of an exchangeable partition-valued process
{IT}, t > 0}, the so-called A-coalescent ([Pi99], [Sa99]). While, for ¢ > 0, IT* has n classes, say, any k-tuple merges
to one at rate Ay, k. Indeed, as shown in [BLGO03], a A-Fleming-Viot process is dual to a so-called A-coalescent,
similar to the duality between the standard Fleming-Viot process and Kingman’s coalescent established in
[DH82|. Note that Kingman’s coalescent corresponds to the choice A = dy.

1.2 Relation between generalised Fleming-Viot processes and infinitely divisible superprocesses

Fleischmann and Wachtel ([FWO06]) have considered a probability measure valued process {Y;,¢ > 0} obtained
by renormalising a spatial version of Neveu’s continuous mass branching process {X;,t > 0} with underlying
a-stable motion (as constructed e.g. in [FS04] via approximation or implicitly in [DK99]) with its total mass,
ie (9,Y;) = (¢, X¢)/(1, Xt), and have investigated its long-time behaviour.

In |[BBCO03], the relation between stable continuous-mass branching processes {Z;,t > 0} and Beta(2 — 3, §)-
Fleming Viot processes, for 5 € (0, 2], (with a “trivial” spatial motion) has been explored. Informally, Z;/(1, Z;),
time-changed with the inverse of

/t(Zt)l_B dt, (1.5)
0

is a Beta(2 — 3, 8)-Fleming Viot process. This can be viewed as an extension of Perkins’ classical disintegration
theorem ([EM91], [Pe91]) to the stable case. It is in principle easy to include a spatial motion component, but
note that then the corresponding Fleming-Viot process uses a time-inhomogenous motion, namely an a-stable
process time-changed by the inverse of (1.5). However, Neveu’s branching mechanism is stable of index 8 = 1,
so that the time change induced by (1.5) becomes trivial. Thus we obtain

Proposition 1.1.
{Xe/(1,X0), 0 > 0} (Y5 1 > 0},
where U = Beta(1, 1) is the uniform distribution on [0, 1].
Note that in particular in this situation, the (randomly) renormalised process {X./(1, X;),t > 0} is itself

a Markov process. In fact, as observed in [BBCO5], it is the only “superprocess” with this property. This
observation was the starting point of our investigation.



Remark 1.2 (First two moment measures). By considering F' as in (1.1) with n = 1 and n = 2, it follows
from the martingale problem for (1.2) that the first two moments of a generalised A-Fleming-Viot process only
depend on the underlying motion mechanism and the total mass A([0, 1]), namely

E[(p, Y] = / P () u(d), (1.6)

and for t; < to, writing p := A([0, 1])

ty
E[(p1, Y2 ) (oo, V4] = / pe= PP (PY) o1 P 02) () p(di)
e / P o () p(de) / Py () pu(d), (L.7)

for o, 01,2 € C2. In particular, they agree with those of the classical Fleming-Viot process, which explains
Proposition 3 in [FW06].

Remark 1.3 (Non-compact support property). It is interesting to see that, unlike the classical Fleming-Viot
process V%2 ([DH82, Thm. 7.1]), generalised Fleming-Viot processes need not have the compact support
property, even if the underlying motion is Brownian and the initial state has compact support.
Indeed, if the dual A-coalescent IT* does not come down from infinity, i.e. if starting from 113 = {{1},{2},...},
the number of classes |II}| of TI} is (a.s.) infinite for any ¢ > 0, then

supp (YtA’A) =R? as. for any ¢.
Recall that if the standard A-coalescent does not come down from infinity (a necessary and sufficient condition
for this can be found in [Sc00]), it either has a positive fraction of singleton classes (so-called “dust”), or countably
many families with strictly positive asymptotic mass adding up to one (so called “proper frequencies”), cf. [Pi99],
Lemma 25.

Using the path-wise embedding of the standard A-coalescent in the Fleming-Viot process provided by the
modified lookdown construction (see (2.7) below) we see that in the first case, the positive fraction of singletons
contributes an a-heat flow component to Y;A’A"‘7 wheres in the latter case there are infinitely many independent
families of strictly positive mass, so that by the Borel-Cantelli Lemma any given open ball in R? will be charged

almost surely.

Combining this with Proposition 1.1, we recover Proposition 14 of [FS04].

Remark 1.4 (Generalised A-Fleming Viot processes as “wandering random measures”). In the terminology of
[DHS82], the classical Fleming Viot process is a (compactly) coherent wandering random measure, meaning that
there is a “centring process” {z(t),t > 0} with values in R? and for each ¢ > 0 a stationary “radius process”
{R:(t)} and an a.s. finite Ty, such that

Y8 (Bagy (Be(1) = 1—¢ fort =Ty as. 9

where B, (r) is the closed ball of radius r around z € R?. One natural choice for {x(t),t > 0} is the centre
of mass process z(t) = fa;Yf”’A(d:c), see [DH82], Equation 3.10. However, in the context of the lookdown
construction, a more convenient choice is z(t) = &}, the location of the level-1 particle (see Section 2). With
this choice, an obvious extension of [DK96], Thm. 2.9, shows that any Y»?« is a coherent wandering random
measure. If the process YA« has the compact support property, this will also yield compact coherence, i.e.
one can choose € =0 in (1.8).

In Corollary 6 of [FWO06], it is observed that for continuos test functions ¢ with compact support,

td/o‘E{@a,YU’Aa}} — pga)(O)/gp(x) dr ast— oo, (1.9)



where pga) (x) is the transition density of {Bt(a),t > 0}, and in the subsequent Remark 7, Fleischmann and
Wachtel ask about convergence of t%/(p, YUA«). With the lookdown construction in mind, (1.9) can be at
least qualitatively understood as follows: without loss of generality assume that ¢ has support in the unit ball,
put Cy := {p, YtA’A‘]>. Counsider the empirical process {Y; ’A‘*,t > 0} together with {&},¢ > 0}, the position of
the level-1 particle. Then YtA’A‘”(- — &}) converges to some stationary distribution. Thus if & is “close” to the
origin, an event of probability ~ t~4/®, C, is substantial, whereas otherwise it is essentially zero. The terms
balance exactly, so that the lefthand side of (1.9) converges, but in fact as {Bt(a), t > 0} is not positive recurrent,
C; converges to zero in distribution (and even a.s. if o < d, i.e. if £ is transient).

1.3 Statement of the main result

The long-time behaviour of a generalised Fleming-Viot process reflects the interplay between motion and re-
sampling mechanism. If one attempts to capture this via a space-time rescaling, the scaling will be dictated by
the underlying (stable) motion process.

Theorem 1.5 (Scaling). Let A € M;([0,1]) — {0} and define the rescaled process {y 2 [k], t > 0} via

(0, Y2 Tk]) o= (o /Y ), Y2, (1.10)

for ¢ € bBB(RY) and t > 0. Let B, for o € (0,2], be the standard symmetric stable process of index «, starting
from Béa) =0. Then,

a)

(V2K t >0} = {6, t >0} as  k— oo, (1.11)

Béﬂ)u

in the sense of the finite-dimensional distributions (f.d.d.).
b) (1.11) holds weakly on Dig o0)(M1(RY)) if and only if a = 2.

Remark 1.6. For the classical {Y,’* ¢ > 0}, this is Theorem 8.1 in [DH82]. Combining Proposition 1.1
and Theorem 1.5, we recover and extend Theorem 1 in [FWO06]. This in particular complements Part (b) of
Theorem 1 in [FWO06] by clarifying that tightness on path space holds only in the Brownian case. Our proof as
well as our intuition for Part b) rely heavily on Donnelly & Kurtz’ lookdown construction, [DK99], circumventing
moment calculations as in [FW06], Sect. 4.4. O

Tt is interesting to see why tightness on pathspace can fail. Consider a path w = {w,t > 0} in D[Oﬁoo)(Ml(Rd)).
Let us say that w exhibits an e-§-flicker (on the interval [0,T]) if there exist time points 0 < t; < to <t3 < T
and x,y € R? such that t3 —t; < J, |2 — y| > 2¢ and

dMl(wtuwts) <e dMl(wt15wt2) and dMl(wtwwts) 2 2, (1'12)
where d, denotes the metric (1.4) on M;(R?).

Lemma 1.7. If o < 2 and A((0,1]) > 0, there exists € > 0 such that

likm inf P{Y"2 k] ezhibits an e-(1/k)-flicker in [0,T]} > 0.

We will see below that the behaviour described by condition (1.12) arises as follows: At times ¢; and t3, YA 2a k]
is (almost) concentrated in a small ball with (random) centre x, say. At time ¢35, suddenly a fraction ¢ of the
total mass appears in a remote ball with centre y, where | — y| > 1, and vanishes almost instantaneously, i.e.,
by time 3. Such “sparks” make Y“«[k] a process of “fickering random measures”. Technically, we see that
Lemma 1.7 shows that the modulus of continuity w’(-,d,T) of the processes Y42« k], see (3.4) below, does not
become small as § — 0, contradicting tightness in D[om)(./\/ll(Rd)). Intuitively, at each infinitesimal “spark”, a



limiting process is neither left- nor right-continuous. We will see below how this intuition can be made precise
in the framework of the (modified) lookdown construction.

The situation is different if A = ¢dp (and o < 2). Here, each YC‘;O’AQ[k] a.s. has continuous paths, so that any
limit in Skorohod’s Ji-topology would necessarily have continuous paths. However, the f.d.d. limit {5Bt<a) ,t >0}
has no continuous modification. Intuitively, there is no “flickering”, but an “afterglow” effect: From time to time,
a very fertile “infinitesimal” particle jumps some distance, and then founds an extremely large family, so that
the population quickly becomes essentially a Dirac measure at this point, while at the same time the rest of
the population (continuously) “fades away”. Note that this phenomenon is captured by Skorohod’s M;i-topology
([S56], Def. 2.2.5), which is tailor-made to establish convergence in situations in which a discontinuous process
is approximated by a family of continuous processes. However, in the situation of Lemma 1.7, Condition (1.12)
implies that the distributions of the processes Y2« [k] cannot converge with respect to any of the topologies
considered in [S56].

2 Donnelly and Kurtz’ lookdown construction

2.1 A countable representation for generalised Fleming-Viot processes

We consider a countably infinite system of individuals, each particle being identified by a level j € N. We equip
the levels with types & in R? j € N. Initially, we require the types & = (£))jen to be an ii.d. vector (in
particular exchangeable), so that

1 N
N@;N;%g =
J:

for some finite measure u € M;(R%), which will be the initial condition of the generalised Fleming-Viot process
constructed below via (2.6). The point is that the construction will preserve exchangeability.

There are two “sets of ingredients” for the reproduction mechanism of these particles, one corresponding to the
“finite variance” part A({0}), and the other to the “extreme reproductive events” described by Ag = A—A({0})do.
Restricted to the first N levels, the dynamics is that of a very particular permutation of a generalised Moran
model with the property that always the particle with the highest level is the next to die.

For the first part, let {L;;(¢),t > 0}, 1 < i < j < oo, be independent Poisson processes with rate A({0}).
Intuitively, at jump times ¢ of L;;, the particle at level j “looks down” to level ¢ and copies the type from there,
corresponding to a single birth event in a(n approximating) Moran model. At jump times, types on levels above
7 are shifted accordingly, in formulas

ekt k<,
=1 &G, if k=4, (2.1)
AL k> g,

if AL;;(t) = 1. This mechanism is well defined because for each k, there are only finitely many processes L;;,
i < j <k at whose jump times &* has to be modified.
For the second part, which corresponds to multiple birth events, let n be a Poisson point process on R x (0, 1] x

[0,1)N with intensity measure dt @ r—2Ag(dr) ® (du)®". Note that for almost all realisations {(t;, y;, (uij))} of
n, we have

Z y? < oo forallt>0. (2.2)
i:t; <t
The jump times ¢; in our point configuration n correspond to reproduction events. Define for J C {1,...,1}
with |J| > 2,
l
L;(t) == Z Hluijﬁyi H Lusj>y:- (2.3)
it <tjeJ je{l,. 1} —J



new particle

at level 6 N
post-birth types post-birth labels
g — 9
pre—birth labels pre—birth types 7 : 8
7 g ’///7 e ' 7
6 .7 b 6
5 e 7 = d 5
4 d - = c 4
3 c - b 3
N
2 b ----> b = 2
1 a ----= a 1
- new particle
at level 3

Figure 1: Relabelling after a birth event involving levels 2, 3 and 6.

L', (t) counts how many times, among the levels in {1,...,l}, exactly those in J were involved in a birth event
up to time ¢t. Note that for any configuration n satisfying (2.2), since |J| > 2, we have

J _
E[LY (1) [nlpgxon] = Y. w0 —u) V< > P <,
i:tigt i:tigt
so that LY (t) is a.s. finite.

Intuitively, at a jump ¢;, each level performs a uniform coin toss, and all the levels j with u;; < y; participate in
this birth event. Each participating level adopts the type of the smallest level involved. All the other individuals
are shifted upwards accordingly, keeping their original order with respect to their levels (see Figure 1). More
formally, if ¢ = t; is a jump time and j is the smallest level involved, i.e. u;; < y; and u;, > y; for k < j, we put

e, fork<j,
I3 &, for k> j with uy <y, (2.4)

k—JF .
&_ 7', otherwise,

where Jt’i =#{m <k :Uy, <y;} —1. Let us define G = (Gy v )u<v, where for u < v

guﬂ, :U(sz(t) — Lij(S),u <s<t< ’U,i,j S N)
o(n([t,s) x Ax B),u<s<t<uAc(0,1],Bc[0,1]") (2.5)

is the o-algebra describing all “genealogical events” between times v and v.

So far, we have treated the reproductive mechanism of the particle system. Between reproduction events, all
the levels follow independent a-stable motions. For a rigorous formulation, all three mechanisms together can
be cast into a suitable countable system of stochastic differential equations driven by Poisson processes and
a-stable processes, see [DK99], Section 6.

Then, for each t > 0, (&},£&2,...) is an exchangeable random vector and

N—oo

N
. 1
Zy = lim NZéd, t>0 (2.6)
j=1

exists almost surely on Djg o0)(M1(R?)), and {Z;, ¢ > 0} is the Markov process with generator (1.2) and initial
condition Zy = u, see [DK99], Thm. 3.2.



2.2 Pathwise embedding of A-coalescents in generalised A-Fleming-Viot processes

Note that for each ¢ > 0 and s < ¢, the modified lookdown construction gives rise to the ancestral partition of
the levels at time ¢ with respect to the ancestors at time s before ¢ by describing

N!(s) = level of level i’s ancestor at time t — s.

For fixed ¢, the vector-valued process {N}(s) : i € N}o<s<; satisfies an “obvious” system of Poisson-process driven
stochastic differential equations, see [DK99|, p. 195, (note that we have indulged in a time re-parametrisation),
and the partition-valued process defined by

{{i:Ni(s) =34}, i=12...} (2.7)

is a standard A-coalescent with time interval [0, ¢]. This implies in particular by Kingman’s theory of exchange-
able partitions, [K82], see e.g. [Pi06] for an introduction, that the empirical family sizes

1l
Aj(s) = Him = 1=
=1

exist a.s. in [0, 1] for each j and s < ¢, describing the relative frequency at time ¢ of descendants of the particle
at level j at time ¢ — s.

3 Proof of Theorem 1.5

Fix g € M;(R%) as the initial condition of the unscaled process Y*2«. We begin with the useful observation

that, due to the scaling properties of the underlying motion process, for each k, the process {Yt(k),t > 0},

defined b
Y Y(k) _ YkA,AQ
t t

. >0, (3.1)

(and starting from the image measure of x4 under z — x/k/®), has the same distribution as {YtA’A‘] [k]} defined
in (1.10). It will be convenient to work in the following with a version of Y'(*) which is obtained from a lookdown
construction with “parameter” kA, in particular, we have

N
® _ o 1 ,
Y, —nh_)rr;oﬁ25£;, t>0.

Note that the family £, i € N, used to construct Y %) depends (implicitly) on k, but for the sake of readability,
we suppress this in our notation.

Proof of Part a)

We have already noted that for A = §p and o = 2, this is Theorem 8.1 in [DH82], and that, for A = U =
Beta(1, 1), the uniform distribution on [0,1], this is essentially Theorem 1 in [FW06], see Remark 1.6. Using
Remark 1.2, the proof of Fleischmann and Wachtel can easily be adapted, as it relies only on the first two
moments.

Alternatively, since the motion of the level-1 particle {£},¢ > 0} is a symmetric a-stable process, it suffices to
check that "

lim P{Y,;"" (B >1—¢e}=1.

Jim P{Y™(Bg (¢)) = 1 - ¢}

for each ¢t and e, which will be implied by

lim IE[Yt(k) (Be (e))] =0 for each £ > 0. (3.2)

k—o0



In order to check this, let ®. be a “mollified” (continuous) indicator of B.(£})¢, and note, by dominated
convergence, that for any § > 0

1 & -
m@ﬂ%}hmﬂNZ@@ﬂ

N—oo

N
. 1 i
< limsupE [N ;:1 q)s(gt)l{Nf(5)_l}:| +E[1 - A1(9)].

N —o0

The second term in the last line, for each 6 > 0, converges to 0 as k — oo, cf. [Pi99], Prop. 30. For the first
term note that, where G;_s; describes the genealogical information as defined in (2.5),

N N
1 - 1 )
E[N Y "B (E) 1N s)=1y) = N > E[l{N;(a):u]E[‘I’a(fi)‘gt—&t”
=1 =1

<E [ / o (y)pS™ (€1 5.v) dy]

< P{lg} —&l_s| > ¢/2} + {7 (0, Bo(/2)°),

which for fixed ¢ tends to 0 as § — 0.

3.1 Proof of Part b)

In the case o = 2, using Remark 1.2, tightness on the space D[O)Oo)(./\/ll(]Rd)) can be proved by inspection,
literally tracing through the corresponding arguments of [FW06], Lemma 20 and 21 (note that even though
Equations (133)—(137) in [FWO06] estimate a fourth moment, this refers only to an increment of a d-dimensional
Brownian motion).

For the case a < 2, let us recall the following classical characterisation of relative compactness in
Dig,00) (M1 (R?)), cf. e.g. [Bi68], Theorem 15.2.
(

Theorem 3.1 (Relative compactness on path space). Let {Y’“} be a sequence of processes taking values in
D[O)Oo)(Ml(Rd) . Then {Y*} is relatively compact if and only if the following two conditions hold.

o For every € > 0 and every (rational) t > 0, there exists a compact set vz C M (R?), such that

liminf P {Y" €7z} > 1~

e For everye > 0 and T > 0, there exists § > 0, such that

limsupP {w'(Y*,5,T) > e} <, (3.3)
k—oo
where
w'(y,6,T) = inf max  sup  d(y(s), y(t)), (3.4)

{ti} t ste[tioq,ts)

and {t;} ranges over all finite partitions of [0,T] with t; — t;_1 > 0 for all .
Then we obtain from Lemma 1.7 a ¢ > 0 such that for kg € N and 6 > 1/kq
P {w' (Y*9[k],8,T) > e} > P{Y™2[k] exhibits an -(1/k)-flicker on [0, T}

is bounded away from 0 uniformly in k > k. O



3.2 Proof of Lemma 1.7 The intuitive mechanism behind a “flicker” obtained from the lookdown contruction
is as follows: Typically when k is large, most of the total mass of Y'*) as defined in (3.1) will be in the immediate
vicinity of the location of the level-1 particle. A “flicker” arises if the level-2 particle jumps to a remote position
and shortly afterwards participates in an extreme reproduction event involving a positive fraction of the current
population, but not the level-1 particle. In this situation, a new atom appears in the support of Y (*) which
is then removed very quickly, since mass is attracted rapidly towards the position of the level-1 particle. Note
that corresponding phenomena will occur on any level j > 2.

A technical obstacle to turn this intuition into a rigorous proof stems from the fact that the metric d on M (R?),
inducing the weak topology, is insensitive to such flickers if they occur far away. Hence, in what follows, we
require the level-1 particle to stay within a fixed ball around the origin. This forces us to disentangle o{&}, ¢ > 0}
and the information about the genealogy and the increments of the other particles relative to the position of &
at the time of their respective most recent common ancestor.

First, we collect some useful notation. Without loss of generality assume T = 1, choose 6 € (0,1] with
A((6,1]) > 0 and € > 0 such that for any p, u’ € M;(R9),

w(Bo(1)) >1—4/2 and p/(Bo(2)°) > implies dpq, (1, p1') > €. (3.5)
For k € N, we split the time interval [0,1] into k disjoint intervals (a;, a;11], where a; = i/k, i =0,...,k — 1.

Moreover, we define b; = a; + 1/(4k), ¢; = a; +2/(4k), d; = a; + 3/(4k). Let

of :=inf{s > 0: Ni(s) = 1}

(with the usual convention inf() = +o00) be the backwards time to the most recent common ancestor of the
particles at level j and at level 1 at time ¢, and let

Hyyp = {Lia(t) — Lia(s) = 0} ) {n((s,t] s {(, () € (0,1 x [0, 1] : ug, up < a}) = o} (3.6)
be the event that in the time interval (s, t], no lookdown event involving both levels 1 and 2 occurs. Furthermore,

let (dx) be such that

lim §, =0 and lim P{ sup |Bt(°‘)| < 5k} =1. (3.7)

In order to cook up a “flicker” within (a;, a;4+1], we collect the following “ingredients”:

e Within the time-interval (a;, b;], consider the event Agk) that at time b; most of the population (including
the level-2 particle) is sufficiently closely related to the level-1 particle and has not moved too far away,
more precisely

[ apn J N ,
A= {Al (1/(4k)) 2 1 - Z} M {nlinéo = Lt qyamy=nytog, - <00 =1 5/2}
=1 i

N {ob<van} N {1g-¢_.1<12}

e Within the time-interval (b;, ¢;], the event ng) requires that the level-2 particle jumps to a sufficiently
remote position and there is no subsequent lookdown-event involving level-1 and level-2, more precisely,

BY = . () I8 -1>4}.

e Within the time-interval (¢;, d;], the event Ci(k) requires that the level-2 particle does not travel very far,
and that there is a lookdown event involving a sufficiently large fraction of the population, but not the
level-1 particle:

Ci(k) = He, 4, m { sup [&f — &2] < 1}

te(ci,di)

N {n([ci,di] {2, (um)) € (0,1] x (0,17 12> 6, upg < 7 < uy}) > 1}.



e Finally, let Dz(k) be the event that most of the mass returns to the location of the level-1 particle, and
stays there, (which essentially is the same behaviour as within (a;, b;]), namely,

DY = {A‘fi“(l/(zxk)) > g}

1
N {nhféoﬁz;1{N;”“<1/<4k>>—1}1{|5z;i+1E;H 1+1<6}>1_5/2}
j= i

Now let us introduce a family of o-algebras containing our ingredients: Recall G, ,, from (2.5) and let Hz(k)

the o-algebra generated by G, 4,,, and the random variables

1 1 -
(gb & ) o<1y (galﬂ—gw L ) () J =23, and

(& =€ ) 1m0 i <t < di
Note that for fixed k, the family Hgk), i=0,1,...,k —1is independent and independent of o{¢},¢ > 0}, and
AP W e pk) cpy®) i —01, . k-1

On the event
& = { subre(a ) 16 — 611 S 0} N AP N BY e D, (3.8)
we see from (3.5) that there is a (random) time 7 € (¢;, d;] such that
dag, (V02 (R, Y A0 k) <6, da, (V02 KL, Y220 k) and dag, (Y2 [k], YA [k]) > 2¢,  (3.9)

YT a4 )T Q41

i.e. YAAa[k] exhibits an e-(1/k)-flicker in (a;, a;41]. It is easy to see that

mf]}»(u B ‘{Sup0<t<1 €l < 1/2}) >0, (3.10)

keN

which yields the claim. In order to verify (3.10), note that
Vki<k: P(AY 0B ne™ npM) > c/k
for some C = C(a, A, 0, (0,,)) > 0, which basically comes from the fact that
IE”{|B(O‘ 4k)| >4} ~ Const. x %

Furthermore, let
I = {’L € {0, 1,...,k— 1}  SUD¢e(ay,ai41] |§tl —§;Z| < 5k}

and observe that for each k, I is independent of \/f;olHEk) and we have

]ilelfNP({UH > k/2} ‘ {Supogtgl &4 < 1/2}) >0
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