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AbstratWe show how Donnelly and Kurtz' (modi�ed) lookdown onstrution for measure-valued proesses an beused to analyse the longterm- and saling properties of spatially stable generalised Λ-Fleming Viot proesses,exhibiting a rare �natural� example of a saling family onverging in f.d.d. sense, but not in any of Skorohod'stopologies on path spae. This ompletes results of Fleishmann and Wahtel (2004) about the spatial Neveuproess and omplements results of Dawson and Hohberg (1982) about the lassial Fleming Viot proess.The lookdown onstrution provides an elegant mahinery and lear intuition to desribe the path propertiesof the family in terms of a ��iker e�et�, larifying �what an go wrong.�1 Introdution1.1 Classial and generalized Fleming-Viot proessesIn 1979, Fleming and Viot introdued their now well-known probability-measure-valued stohasti proess asa model for the distribution of alleli frequenies in a seletively neutral geneti population with mutation(f. [FV79℄). More formally, they introdued a Markov proess {Y δ0,∆
t , t ≥ 0}, with values in M1(R

d) (denotingthe probability measures on R
d), suh that for funtions F of the form

F (ρ) :=

n
∏

i=1

〈φi, ρ〉, (1.1)where φi ∈ C2
c (Rd) and ρ ∈ M1(R

d), the generator of {Y δ0,∆
t , t ≥ 0} an be written as

LF (ρ) =

n
∑

i=1

〈∆φi, ρ〉
∏

j 6=i

〈φj , ρ〉 +
∑

1≤i<j≤n

[

〈φiφj , ρ〉 − 〈φi, ρ〉〈φj , ρ〉
]

∏

k 6=i,j

〈φk, ρ〉,with ∆ the Laplae operator. The meaning of the supersripts in {Y δ0,∆
t , t ≥ 0} will beome lear one weidentify this proess as a speial ase of a muh larger lass of proesses.It is well known (f. [DH82℄) that the lassial Fleming-Viot proess is dual to Kingman's oalesent (introduedin [K82℄) in the following (our desription being rather informal) sense. For t ≥ 0, if one takes a uniform sampleof n individuals from Y δ0,∆

t and forgets about the respetive spatial positions of the n partiles, then theirgenealogial tree bakwards in time an be viewed as a realisation of Kingman's n-oalesent. That means,at eah time t − s, where s ∈ [0, t] (hene bakwards in time), the anestral lineages of eah partile merge atin�nitesimal rate (

k
2

), where k ∈ {2, . . . , n} denotes the number of distint lineages present at time t − s(−).This an be made rigorous, for example, using Donnelly and Kurtz (1996) lookdown onstrution [DK96℄, andspatial information may also be inorporated, see e.g. [Eth00℄, Setion 1.12.Sine its introdution, the Fleming-Viot proess reeived a great deal of attention from both genetiists andprobabilists. One reason is that it is the natural limit of a large lass of exhangeable population models withonstant size and �nite-variane reprodution mehanism, in partiular the so-alled Moran-model, and an beviewed as the in�nite-dimensional analogue of the Wright-Fisher di�usion. See [Eth00℄ for a good overview.A orresponding limit population proess desribing situations where, from time to time, a single individualprodues a non-negligible fration of the total population, has been introdued somewhat impliitly in [DK99℄,and expliitly in [BLG03℄. The limits of the dual genealogial proesses have been lassi�ed in [Sa99℄, [MS01℄.1



See [BB07℄ for an overview. These are probability measure valued Markov proesses Y Λ,∆α whose generatorats on funtions F of the form (1.1) as
LF (ρ) =

n
∑

i=1

∆α〈φi, ρ〉
∏

j 6=i

〈φj , ρ〉 +
∑

J⊂{1,...,n}
|J|≥2

λn,|J|

[

〈
∏

j∈J

φj , ρ〉 −
∏

j∈J

〈φj , ρ〉
]

∏

k 6∈J

〈φk, ρ〉, (1.2)where
λn,k =

∫

[0,1]

xk−2(1 − x)n−kΛ(dx), n ≥ k ≥ 2, (1.3)with Λ a �nite measure on [0, 1], and ∆α = −(−∆)α/2 is the frational Laplaian of index α ∈ (0, 2], see e.g.[Y65℄, Chapter IX.11, or [Fe66℄, Chapter IX.6, i.e. ∆α is the generator of the semigroup (P
(α)
t )t≥0 of the d-dimensional standard symmetri stable proess {B(α)

t , t ≥ 0} of index α. Note that for notational onveniene,we denote by (P
(2)
t )t≥0 the semigroup of d-dimensional Brownian motion with ovariane matrix 2Id at time 1.We endow M1(R

d) with the topology of weak onvergene, whih we think of being indued the metri (seee.g. [DK96℄, Remark 2.5)
dM1(µ, ν) :=

∞
∑

k=1

1

2k

∣

∣〈fk, µ − ν〉
∣

∣ , µ, ν ∈ M1(R
d), (1.4)where (fk) ⊂ C2

c (Rd) is dense (w.r.t. the sup-norm of C2
c (Rd)). By [DK99℄, Thm. 3.2, the proesses {Y Λ,∆α

t , t ≥
0} take values in D[0,∞)(M1(R

d)), the spae of àdlàg paths, endowed with the usual Skorohod (J1-)topology(f. [S56℄, or [Bi68℄, Ch. 3).For a given Λ ∈ Mf ([0, 1]), the rates λn,k desribe the transitions of an exhangeable partition-valued proess
{ΠΛ

t , t ≥ 0}, the so-alledΛ-oalesent ([Pi99℄, [Sa99℄). While, for t ≥ 0, ΠΛ
t has n lasses, say, any k-tuple mergesto one at rate λn,k. Indeed, as shown in [BLG03℄, a Λ-Fleming-Viot proess is dual to a so-alled Λ-oalesent,similar to the duality between the standard Fleming-Viot proess and Kingman's oalesent established in[DH82℄. Note that Kingman's oalesent orresponds to the hoie Λ = δ0.1.2 Relation between generalised Fleming-Viot proesses and in�nitely divisible superproessesFleishmann and Wahtel ([FW06℄) have onsidered a probability measure valued proess {Yt, t ≥ 0} obtainedby renormalising a spatial version of Neveu's ontinuous mass branhing proess {Xt, t ≥ 0} with underlying

α-stable motion (as onstruted e.g. in [FS04℄ via approximation or impliitly in [DK99℄) with its total mass,i.e. 〈φ, Yt〉 = 〈φ, Xt〉/〈1, Xt〉, and have investigated its long-time behaviour.In [BBC05℄, the relation between stable ontinuous-mass branhing proesses {Zt, t ≥ 0} and Beta(2 − β, β)-Fleming Viot proesses, for β ∈ (0, 2], (with a �trivial� spatial motion) has been explored. Informally, Zt/〈1, Zt〉,time-hanged with the inverse of
∫ t

0

(Zt)
1−β dt, (1.5)is a Beta(2−β, β)-Fleming Viot proess. This an be viewed as an extension of Perkins' lassial disintegrationtheorem ([EM91℄, [Pe91℄) to the stable ase. It is in priniple easy to inlude a spatial motion omponent, butnote that then the orresponding Fleming-Viot proess uses a time-inhomogenous motion, namely an α-stableproess time-hanged by the inverse of (1.5). However, Neveu's branhing mehanism is stable of index β = 1,so that the time hange indued by (1.5) beomes trivial. Thus we obtainProposition 1.1.

{Xt/〈1, Xt〉, t ≥ 0}
d
= {Y U,∆α

t , t ≥ 0},where U = Beta(1, 1) is the uniform distribution on [0, 1].Note that in partiular in this situation, the (randomly) renormalised proess {Xt/〈1, Xt〉, t ≥ 0} is itselfa Markov proess. In fat, as observed in [BBC05℄, it is the only �superproess� with this property. Thisobservation was the starting point of our investigation.2



Remark 1.2 (First two moment measures). By onsidering F as in (1.1) with n = 1 and n = 2, it followsfrom the martingale problem for (1.2) that the �rst two moments of a generalised Λ-Fleming-Viot proess onlydepend on the underlying motion mehanism and the total mass Λ([0, 1]), namely
E
[

〈ϕ, Y Λ,∆α

t 〉
]

=

∫

P
(α)
t ϕ(x)µ(dx), (1.6)and for t1 ≤ t2, writing ρ := Λ([0, 1]),

E
[

〈ϕ1, Y
Λ,∆α

t1 〉〈ϕ2, Y
Λ,∆α

t2 〉
]

=

∫ t1

0

ρe−ρsP (α)
s

(

P
(α)
t1−sϕ1P

(α)
t2−sϕ2

)

(x)µ(dx)

+ e−ρt1

∫

P
(α)
t1 ϕ1(x)µ(dx)

∫

P
(α)
t2 ϕ2(x)µ(dx), (1.7)for ϕ, ϕ1, ϕ2 ∈ C2

c . In partiular, they agree with those of the lassial Fleming-Viot proess, whih explainsProposition 3 in [FW06℄.Remark 1.3 (Non-ompat support property). It is interesting to see that, unlike the lassial Fleming-Viotproess Y δ0,∆ ([DH82, Thm. 7.1℄), generalised Fleming-Viot proesses need not have the ompat supportproperty, even if the underlying motion is Brownian and the initial state has ompat support.Indeed, if the dual Λ-oalesent ΠΛ does not ome down from in�nity, i.e. if starting from ΠΛ
0 = {{1}, {2}, . . .},the number of lasses |ΠΛ

t | of ΠΛ
t is (a.s.) in�nite for any t > 0, then

supp
(

Y Λ,∆
t

)

= R
d a.s. for any t.Reall that if the standard Λ-oalesent does not ome down from in�nity (a neessary and su�ient onditionfor this an be found in [S00℄), it either has a positive fration of singleton lasses (so-alled �dust�), or ountablymany families with stritly positive asymptoti mass adding up to one (so alled �proper frequenies�), f. [Pi99℄,Lemma 25.Using the path-wise embedding of the standard Λ-oalesent in the Fleming-Viot proess provided by themodi�ed lookdown onstrution (see (2.7) below) we see that in the �rst ase, the positive fration of singletonsontributes an α-heat �ow omponent to Y Λ,∆α

t , wheres in the latter ase there are in�nitely many independentfamilies of stritly positive mass, so that by the Borel-Cantelli Lemma any given open ball in R
d will be hargedalmost surely.Combining this with Proposition 1.1, we reover Proposition 14 of [FS04℄.Remark 1.4 (Generalised Λ-Fleming Viot proesses as �wandering random measures�). In the terminology of[DH82℄, the lassial Fleming Viot proess is a (ompatly) oherent wandering random measure, meaning thatthere is a �entring proess� {x(t), t ≥ 0} with values in R

d and for eah ε > 0 a stationary �radius proess�
{Rε(t)} and an a.s. �nite T0, suh that

Y δ0,∆
t

(

Bx(t)(Rε(t))
)

≥ 1 − ε for t ≥ T0 a.s., (1.8)where Bx(r) is the losed ball of radius r around x ∈ R
d. One natural hoie for {x(t), t ≥ 0} is the entreof mass proess x(t) =

∫

xY δ0,∆
t (dx), see [DH82℄, Equation 3.10. However, in the ontext of the lookdownonstrution, a more onvenient hoie is x(t) = ξ1

t , the loation of the level-1 partile (see Setion 2). Withthis hoie, an obvious extension of [DK96℄, Thm. 2.9, shows that any Y Λ,∆α is a oherent wandering randommeasure. If the proess Y Λ,∆α has the ompat support property, this will also yield ompat oherene, i.e.one an hoose ε = 0 in (1.8).In Corollary 6 of [FW06℄, it is observed that for ontinuos test funtions ϕ with ompat support,
td/α

E

[

〈ϕ, Y U,∆α〉
]

→ p
(α)
1 (0)

∫

ϕ(x) dx as t → ∞, (1.9)3



where p
(α)
t (x) is the transition density of {B(α)

t , t ≥ 0}, and in the subsequent Remark 7, Fleishmann andWahtel ask about onvergene of td/α〈ϕ, Y U,∆α〉. With the lookdown onstrution in mind, (1.9) an be atleast qualitatively understood as follows: without loss of generality assume that ϕ has support in the unit ball,put Ct := 〈ϕ, Y Λ,∆α

t 〉. Consider the empirial proess {Y Λ,∆α

t , t ≥ 0} together with {ξ1
t , t ≥ 0}, the position ofthe level-1 partile. Then Y Λ,∆α

t (· − ξ1
t ) onverges to some stationary distribution. Thus if ξ1

t is �lose� to theorigin, an event of probability ≈ t−d/α, Ct is substantial, whereas otherwise it is essentially zero. The termsbalane exatly, so that the lefthand side of (1.9) onverges, but in fat as {B(α)
t , t ≥ 0} is not positive reurrent,

Ct onverges to zero in distribution (and even a.s. if α < d, i.e. if ξ1
t is transient).1.3 Statement of the main resultThe long-time behaviour of a generalised Fleming-Viot proess re�ets the interplay between motion and re-sampling mehanism. If one attempts to apture this via a spae-time resaling, the saling will be ditated bythe underlying (stable) motion proess.Theorem 1.5 (Saling). Let Λ ∈ Mf([0, 1]) − {0} and de�ne the resaled proess {Y Λ,∆α

t [k], t ≥ 0} via
〈

φ, Y Λ,∆α

t [k]
〉

:=
〈

φ(·/k1/α), Y Λ,∆α

kt

〉

, (1.10)for φ ∈ bB(Rd) and t ≥ 0. Let B(α), for α ∈ (0, 2], be the standard symmetri stable proess of index α, startingfrom B
(α)
0 = 0. Then,a)

{Y Λ,∆α

t [k], t ≥ 0} → {δ
B

(α)
t

, t ≥ 0} as k → ∞, (1.11)in the sense of the �nite-dimensional distributions (f.d.d.).b) (1.11) holds weakly on D[0,∞)(M1(R
d)) if and only if α = 2.Remark 1.6. For the lassial {Y δ0,∆

t , t ≥ 0}, this is Theorem 8.1 in [DH82℄. Combining Proposition 1.1and Theorem 1.5, we reover and extend Theorem 1 in [FW06℄. This in partiular omplements Part (b) ofTheorem 1 in [FW06℄ by larifying that tightness on path spae holds only in the Brownian ase. Our proof aswell as our intuition for Part b) rely heavily on Donnelly & Kurtz' lookdown onstrution, [DK99℄, irumventingmoment alulations as in [FW06℄, Set. 4.4. 2It is interesting to see why tightness on pathspae an fail. Consider a path ω = {ωt, t ≥ 0} in D[0,∞)(M1(R
d)).Let us say that ω exhibits an ε-δ-�iker (on the interval [0, T ]) if there exist time points 0 < t1 < t2 < t3 ≤ Tand x, y ∈ R

d suh that t3 − t1 ≤ δ, |x − y| ≥ 2ε and
dM1(ωt1 , ωt3) ≤ ε, dM1(ωt1 , ωt2) and dM1(ωt2 , ωt3) ≥ 2ε, (1.12)where dM1 denotes the metri (1.4) on M1(R

d).Lemma 1.7. If α < 2 and Λ((0, 1]) > 0, there exists ε > 0 suh that
lim inf
k→∞

P
{

Y Λ,∆α [k] exhibits an ε-(1/k)-�iker in [0, T ]
}

> 0.We will see below that the behaviour desribed by ondition (1.12) arises as follows: At times t1 and t3, Y Λ,∆α [k]is (almost) onentrated in a small ball with (random) entre x, say. At time t2, suddenly a fration ε of thetotal mass appears in a remote ball with entre y, where |x − y| ≥ 1, and vanishes almost instantaneously, i.e.,by time t3. Suh �sparks� make Y Λ,∆α [k] a proess of ��ikering random measures�. Tehnially, we see thatLemma 1.7 shows that the modulus of ontinuity w′(·, δ, T ) of the proesses Y Λ,∆α [k], see (3.4) below, does notbeome small as δ → 0, ontraditing tightness in D[0,∞)(M1(R
d)). Intuitively, at eah in�nitesimal �spark�, a4



limiting proess is neither left- nor right-ontinuous. We will see below how this intuition an be made preisein the framework of the (modi�ed) lookdown onstrution.The situation is di�erent if Λ = cδ0 (and α < 2). Here, eah Y cδ0,∆α [k] a.s. has ontinuous paths, so that anylimit in Skorohod's J1-topology would neessarily have ontinuous paths. However, the f.d.d. limit {δ
B

(α)
t

, t ≥ 0}has no ontinuous modi�ation. Intuitively, there is no ��ikering�, but an �afterglow� e�et: From time to time,a very fertile �in�nitesimal� partile jumps some distane, and then founds an extremely large family, so thatthe population quikly beomes essentially a Dira measure at this point, while at the same time the rest ofthe population (ontinuously) �fades away�. Note that this phenomenon is aptured by Skorohod's M1-topology([S56℄, Def. 2.2.5), whih is tailor-made to establish onvergene in situations in whih a disontinuous proessis approximated by a family of ontinuous proesses. However, in the situation of Lemma 1.7, Condition (1.12)implies that the distributions of the proesses Y Λ,∆α [k] annot onverge with respet to any of the topologiesonsidered in [S56℄.2 Donnelly and Kurtz' lookdown onstrution2.1 A ountable representation for generalised Fleming-Viot proessesWe onsider a ountably in�nite system of individuals, eah partile being identi�ed by a level j ∈ N. We equipthe levels with types ξj
t in R

d, j ∈ N. Initially, we require the types ξ0 = (ξj
0)j∈N to be an i.i.d. vetor (inpartiular exhangeable), so that

lim
N→∞

1

N

N
∑

j=1

δξj
0

= µ,for some �nite measure µ ∈ M1(R
d), whih will be the initial ondition of the generalised Fleming-Viot proessonstruted below via (2.6). The point is that the onstrution will preserve exhangeability.There are two �sets of ingredients� for the reprodution mehanism of these partiles, one orresponding to the��nite variane� part Λ({0}), and the other to the �extreme reprodutive events� desribed by Λ0 = Λ−Λ({0})δ0.Restrited to the �rst N levels, the dynamis is that of a very partiular permutation of a generalised Moranmodel with the property that always the partile with the highest level is the next to die.For the �rst part, let {Lij(t), t ≥ 0}, 1 ≤ i < j < ∞, be independent Poisson proesses with rate Λ({0}).Intuitively, at jump times t of Lij , the partile at level j �looks down� to level i and opies the type from there,orresponding to a single birth event in a(n approximating) Moran model. At jump times, types on levels above

j are shifted aordingly, in formulas
ξk
t =







ξk
t−, if k < j,

ξi
t−, if k = j,

ξk−1
t− , if k > j,

(2.1)if ∆Lij(t) = 1. This mehanism is well de�ned beause for eah k, there are only �nitely many proesses Lij ,
i < j ≤ k at whose jump times ξk has to be modi�ed.For the seond part, whih orresponds to multiple birth events, let n be a Poisson point proess on R

+×(0, 1]×

[0, 1]N with intensity measure dt ⊗ r−2Λ0(dr) ⊗ (du)
⊗N. Note that for almost all realisations {(ti, yi, (uij))} of

n, we have
∑

i : ti≤t

y2
i < ∞ for all t ≥ 0. (2.2)The jump times ti in our point on�guration n orrespond to reprodution events. De�ne for J ⊂ {1, . . . , l}with |J | ≥ 2,

Ll
J(t) :=

∑

i : ti≤t

∏

j∈J

1uij≤yi

∏

j∈{1,...,l}−J

1uij>yi
. (2.3)5
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1Figure 1: Relabelling after a birth event involving levels 2, 3 and 6.
Ll

J(t) ounts how many times, among the levels in {1, . . . , l}, exatly those in J were involved in a birth eventup to time t. Note that for any on�guration n satisfying (2.2), sine |J | ≥ 2, we have
E
[

Ll
J(t)

∣

∣ n|[0,t]×(0,1]

]

=
∑

i : ti≤t

y
|J|
i (1 − yi)

l−|J| ≤
∑

i : ti≤t

y2
i < ∞,so that Ll

J(t) is a.s. �nite.Intuitively, at a jump ti, eah level performs a uniform oin toss, and all the levels j with uij ≤ yi partiipate inthis birth event. Eah partiipating level adopts the type of the smallest level involved. All the other individualsare shifted upwards aordingly, keeping their original order with respet to their levels (see Figure 1). Moreformally, if t = ti is a jump time and j is the smallest level involved, i.e. uij ≤ yi and uik > yi for k < j, we put
ξk
t =











ξk
t−, for k ≤ j,

ξj
t−, for k > j with uik ≤ yi,

ξ
k−Jk

t

t− , otherwise, (2.4)where Jk
ti

= #{m < k : Uim ≤ yi} − 1. Let us de�ne G = (Gu,v)u<v, where for u ≤ v

Gu,v =σ
(

Lij(t) − Lij(s), u < s ≤ t ≤ v, i, j ∈ N
)

∨ σ
(

n([t, s) × A × B), u < s ≤ t ≤ u, A ⊂ (0, 1], B ⊂ [0, 1]N
) (2.5)is the σ-algebra desribing all �genealogial events� between times u and v.So far, we have treated the reprodutive mehanism of the partile system. Between reprodution events, allthe levels follow independent α-stable motions. For a rigorous formulation, all three mehanisms together anbe ast into a suitable ountable system of stohasti di�erential equations driven by Poisson proesses and

α-stable proesses, see [DK99℄, Setion 6.Then, for eah t > 0, (ξ1
t , ξ2

t , . . .) is an exhangeable random vetor and
Zt = lim

N→∞

1

N

N
∑

j=1

δξj
t
, t ≥ 0 (2.6)exists almost surely on D[0,∞)(M1(R

d)), and {Zt, t ≥ 0} is the Markov proess with generator (1.2) and initialondition Z0 = µ, see [DK99℄, Thm. 3.2. 6



2.2 Pathwise embedding of Λ-oalesents in generalised Λ-Fleming-Viot proessesNote that for eah t > 0 and s ≤ t, the modi�ed lookdown onstrution gives rise to the anestral partition ofthe levels at time t with respet to the anestors at time s before t by desribing
N t

i (s) = level of level i's anestor at time t − s.For �xed t, the vetor-valued proess {N t
i (s) : i ∈ N}0≤s≤t satis�es an �obvious� system of Poisson-proess drivenstohasti di�erential equations, see [DK99℄, p. 195, (note that we have indulged in a time re-parametrisation),and the partition-valued proess de�ned by
{

{i : N t
i (s) = j}, j = 1, 2, . . .

} (2.7)is a standard Λ-oalesent with time interval [0, t]. This implies in partiular by Kingman's theory of exhange-able partitions, [K82℄, see e.g. [Pi06℄ for an introdution, that the empirial family sizes
At

j(s) := lim
n→∞

1

n

n
∑

i=1

1{Nt
i
(s)=j}exist a.s. in [0, 1] for eah j and s ≤ t, desribing the relative frequeny at time t of desendants of the partileat level j at time t − s.3 Proof of Theorem 1.5Fix µ ∈ M1(R

d) as the initial ondition of the unsaled proess Y Λ,∆α . We begin with the useful observationthat, due to the saling properties of the underlying motion proess, for eah k, the proess {Y
(k)
t , t ≥ 0},de�ned by

Y
(k)
t = Y kΛ,∆α

t , t ≥ 0, (3.1)(and starting from the image measure of µ under x 7→ x/k1/α), has the same distribution as {Y Λ,∆α

t [k]} de�nedin (1.10). It will be onvenient to work in the following with a version of Y (k) whih is obtained from a lookdownonstrution with �parameter� kΛ, in partiular, we have
Y

(k)
t = lim

n→∞

1

N

N
∑

i=1

δξi
t
, t ≥ 0.Note that the family ξi, i ∈ N, used to onstrut Y (k) depends (impliitly) on k, but for the sake of readability,we suppress this in our notation.Proof of Part a)We have already noted that for Λ = δ0 and α = 2, this is Theorem 8.1 in [DH82℄, and that, for Λ = U =

Beta(1, 1), the uniform distribution on [0, 1], this is essentially Theorem 1 in [FW06℄, see Remark 1.6. UsingRemark 1.2, the proof of Fleishmann and Wahtel an easily be adapted, as it relies only on the �rst twomoments.Alternatively, sine the motion of the level-1 partile {ξ1
t , t ≥ 0} is a symmetri α-stable proess, it su�es tohek that

lim
k→∞

P
{

Y
(k)
t (Bξ1

t
(ε)) ≥ 1 − ε

}

= 1.for eah t and ε, whih will be implied by
lim

k→∞
E
[

Y
(k)
t (Bξ1

t
(ε)c)

]

= 0 for eah ε > 0. (3.2)7



In order to hek this, let Φε be a �molli�ed� (ontinuous) indiator of Bε(ξ
1
t )c, and note, by dominatedonvergene, that for any δ > 0

E
[

〈Φε, Y
(k)
t 〉

]

= lim
N→∞

E

[

1

N

N
∑

i=1

Φε(ξ
i
t)

]

≤ lim sup
N→∞

E

[

1

N

N
∑

i=1

Φε(ξ
i
t)1{Nt

i
(δ)=1}

]

+ E
[

1 − At
1(δ)

]

.The seond term in the last line, for eah δ > 0, onverges to 0 as k → ∞, f. [Pi99℄, Prop. 30. For the �rstterm note that, where Gt−δ,t desribes the genealogial information as de�ned in (2.5),
E
[ 1

N

N
∑

i=1

Φε(ξ
i
t)1{Nt

i
(δ)=1}

]

=
1

N

N
∑

i=1

E

[

1{Nt
i
(δ)=1}E

[

Φε(ξ
i
t)

∣

∣Gt−δ,t

]

]

≤ E

[
∫

Φε(y)p
(α)
δ

(

ξ1
t−δ, y

)

dy

]

≤ P
{

|ξ1
t − ξt

t−δ| ≥ ε/2
}

+ p
(α)
δ

(

0, B0(ε/2)c
)

,whih for �xed ε tends to 0 as δ → 0.3.1 Proof of Part b)In the ase α = 2, using Remark 1.2, tightness on the spae D[0,∞)(M1(R
d)) an be proved by inspetion,literally traing through the orresponding arguments of [FW06℄, Lemma 20 and 21 (note that even thoughEquations (133)�(137) in [FW06℄ estimate a fourth moment, this refers only to an inrement of a d-dimensionalBrownian motion).For the ase α < 2, let us reall the following lassial haraterisation of relative ompatness in

D[0,∞)(M1(R
d)), f. e.g. [Bi68℄, Theorem 15.2.Theorem 3.1 (Relative ompatness on path spae). Let {Y k} be a sequene of proesses taking values in

D[0,∞)(M1(R
d)). Then {Y k} is relatively ompat if and only if the following two onditions hold.

• For every ε > 0 and every (rational) t ≥ 0, there exists a ompat set γε,t ⊂ M1(R
d), suh that

lim inf
k→∞

P
{

Y k
t ∈ γε,t

}

≥ 1 − ε.

• For every ε > 0 and T > 0, there exists δ > 0, suh that
lim sup

k→∞
P

{

w′(Y k, δ, T ) ≥ ε
}

≤ ε, (3.3)where
w′(y, δ, T ) = inf

{ti}
max

i
sup

s,t∈[ti−1,ti)

d(y(s), y(t)), (3.4)and {ti} ranges over all �nite partitions of [0, T ] with ti − ti−1 > δ for all i.Then we obtain from Lemma 1.7 a ε > 0 suh that for k0 ∈ N and δ > 1/k0

P
{

w′(Y Λ,δα [k], δ, T ) ≥ ε
}

≥ P
{

Y Λ,∆α [k] exhibits an ε-(1/k)-�iker on [0, T ]
}is bounded away from 0 uniformly in k ≥ k0. 28



3.2 Proof of Lemma 1.7 The intuitive mehanism behind a ��iker� obtained from the lookdown ontrutionis as follows: Typially when k is large, most of the total mass of Y (k) as de�ned in (3.1) will be in the immediateviinity of the loation of the level-1 partile. A ��iker� arises if the level-2 partile jumps to a remote positionand shortly afterwards partiipates in an extreme reprodution event involving a positive fration of the urrentpopulation, but not the level-1 partile. In this situation, a new atom appears in the support of Y (k), whihis then removed very quikly, sine mass is attrated rapidly towards the position of the level-1 partile. Notethat orresponding phenomena will our on any level j ≥ 2.A tehnial obstale to turn this intuition into a rigorous proof stems from the fat that the metri d onM1(R
d),induing the weak topology, is insensitive to suh �ikers if they our far away. Hene, in what follows, werequire the level-1 partile to stay within a �xed ball around the origin. This fores us to disentangle σ{ξ1

t , t ≥ 0}and the information about the genealogy and the inrements of the other partiles relative to the position of ξ1at the time of their respetive most reent ommon anestor.First, we ollet some useful notation. Without loss of generality assume T = 1, hoose δ ∈ (0, 1] with
Λ((δ, 1]) > 0 and ε > 0 suh that for any µ, µ′ ∈ M1(R

d),
µ(B0(1)) ≥ 1 − δ/2 and µ′(B0(2)c) ≥ δ implies dM1(µ, µ′) > ε. (3.5)For k ∈ N, we split the time interval [0, 1] into k disjoint intervals (ai, ai+1], where ai = i/k, i = 0, . . . , k − 1.Moreover, we de�ne bi = ai + 1/(4k), ci = ai + 2/(4k), di = ai + 3/(4k). Let

σt
j := inf{s > 0 : N t

j (s) = 1}(with the usual onvention inf ∅ = +∞) be the bakwards time to the most reent ommon anestor of thepartiles at level j and at level 1 at time t, and let
Hs,t :=

{

L12(t) − L12(s) = 0
}

⋂

{

n
(

(s, t] × {(x, (um)) ∈ (0, 1] × [0, 1]N : u1, u2 ≤ x}
)

= 0
} (3.6)be the event that in the time interval (s, t], no lookdown event involving both levels 1 and 2 ours. Furthermore,let (δk) be suh that

lim
k→∞

δk = 0 and lim
k→∞

P

{

sup
0≤t≤1/k

|B
(α)
t | ≤ δk

}

= 1. (3.7)In order to ook up a ��iker� within (ai, ai+1], we ollet the following �ingredients�:
• Within the time-interval (ai, bi], onsider the event A(k)

i that at time bi most of the population (inludingthe level-2 partile) is su�iently losely related to the level-1 partile and has not moved too far away,more preisely
A

(k)
i :=

{

Abi

1 (1/(4k)) ≥ 1 −
δ

4

}

⋂

{

lim
n→∞

1

n

n
∑

j=1

1
{N

bi
j

(1/(4k))=1}
1{|ξj

bi
−ξ1

bi−σ
bi
j

|≤δk}
≥ 1 − δ/2

}

⋂

{

σbi

2 < 1/(4k)
}

⋂

{

|ξ2
bi
− ξ2

bi−σ
bi
2

| ≤ 1/2
}

.

• Within the time-interval (bi, ci], the event B
(k)
i requires that the level-2 partile jumps to a su�ientlyremote position and there is no subsequent lookdown-event involving level-1 and level-2, more preisely,

B
(k)
i := Hbi,ci

⋂

{

|ξ2
ci
− ξ2

bi
| > 4

}

.

• Within the time-interval (ci, di], the event C(k)
i requires that the level-2 partile does not travel very far,and that there is a lookdown event involving a su�iently large fration of the population, but not thelevel-1 partile:

C
(k)
i := Hci,di

⋂

{

sup
t∈(ci,di]

|ξ2
t − ξ2

ci
| < 1

}

⋂

{

n
(

[ci, di] × {(x, (um)) ∈ (0, 1] × [0, 1]N : x > δ, u2 < x ≤ u1}
)

≥ 1
}

.9



• Finally, let D
(k)
i be the event that most of the mass returns to the loation of the level-1 partile, andstays there, (whih essentially is the same behaviour as within (ai, bi]), namely,

D
(k)
i :=

{

A
ai+1

1 (1/(4k)) ≥ 1 −
δ

4

}

⋂

{

lim
n→∞

1

n

n
∑

j=1

1{N
ai+1
j

(1/(4k))=1}1{|ξ
j
ai+1

−ξ1

ai+1−σ
ai+1
j

|≤δk}
≥ 1 − δ/2

}

.Now let us introdue a family of σ-algebras ontaining our ingredients: Reall Gu,v from (2.5) and let H(k)
i bethe σ-algebra generated by Gai,ai+1 and the random variables

(

ξj
bi
− ξ1

bi−σ
bi
j

)

1
{σ

bi
j

≤1/(4k)}
,

(

ξj
ai+1

− ξ1
ai+1−σ

ai+1
j

)

1{σ
ai+1
j

≤1/(4k)}, j = 2, 3, . . . , and
(

ξ2
t − ξ2

bi

)

1Hbi,di
, bi ≤ t ≤ di.Note that for �xed k, the family H

(k)
i , i = 0, 1, . . . , k − 1 is independent and independent of σ{ξ1

t , t ≥ 0}, and
A

(k)
i ,B

(k)
i , C

(k)
i ,D

(k)
i ∈ H

(k)
i , i = 0, 1, . . . , k − 1.On the event

E
(k)
i :=

{

supt∈(ai,ai+1] |ξ
1
t − ξ1

ai
| ≤ δk

}

∩A
(k)
i ∩ B

(k)
i ∩ C

(k)
i ∩ D

(k)
i , (3.8)we see from (3.5) that there is a (random) time τ ∈ (ci, di] suh that

dM1(Y
Λ,∆α

bi
[k], Y Λ,∆α

ai+1
[k]) ≤ ε, dM1(Y

Λ,∆α

bi
[k], Y Λ,∆α

τ [k]) and dM1(Y
Λ,∆α

τ [k], Y Λ,∆α

ai+1
[k]) ≥ 2ε, (3.9)i.e. Y Λ,∆α [k] exhibits an ε-(1/k)-�iker in (ai, ai+1]. It is easy to see that

inf
k∈N

P

(

⋃k−1

i=0
E

(k)
i

∣

∣

∣

{

sup0≤t≤1 |ξ
1
t | ≤ 1/2

}

)

> 0, (3.10)whih yields the laim. In order to verify (3.10), note that
∀ k, i < k : P

(

A
(k)
i ∩ B

(k)
i ∩ C

(k)
i ∩ D

(k)
i

)

≥ C/kfor some C = C(α, Λ, δ, (δm)) > 0, whih basially omes from the fat that
P
{

|B
(α)
1/(4k)| > 4

}

∼ Const.× 1

k
.Furthermore, let

Ik :=
{

i ∈ {0, 1, . . . , k − 1} : supt∈(ai,ai+1] |ξ
1
t − ξ1

ai
| ≤ δk

}and observe that for eah k, Ik is independent of ∨k−1
i=0 H

(k)
i and we have

inf
k∈N

P

(

{

|Ik| ≥ k/2
}

∣

∣

∣

{

sup0≤t≤1 |ξ
1
t | ≤ 1/2

}

)

> 0.
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