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Abstract. 
In this paper we consider a quadrature method for the numerical solution of a sec-
ond kind integral equation over the interval, where the integral operator is a compact 
perturbation of a Mellin convolution operator. This quadrature method relies upon sin-
gularity subtraction and transformation technique. Stability and convergence order of 
the approximate solution are well known. We shall derive the first term in the asymp-
totics of the error which shows that, in the interior of the interval, the approximate 
solution converges with higher order than over the whole interval. This implies higher 
orders of convergence for the numerical calculation of smooth functionals to the exact 
solution. Moreover, the asymptotics allows us to define a new approximate solution 
extrapolated from the dilated solutions of the quadrature method over meshes with dif-
ferent mesh sizes. This extrapolated solution is designed to improve the low convergence 
order caused by the non-smoothness of the exact solution even when the transformation 
technique corresponds to slightly graded meshes. Finally, we discuss the application to 
the double layer integral equation over the boundary of polygonal domains and report 
numerical results. 
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0 INTRODUCTION 

It is well known that the convergence of various numerical methods can be improved by 
extrapolation, i.e., the combination of approximate solutions obtained for different values 
of discretization parameters is closer to the exact solution than the approximate solutions 
themselves. A review of this topic is given e.g. in the works by Marchuk/Shaidurov [19] 
and Khoromski/Zhidkov [14]. The application of extrapolation to second kind integral 
equations with smooth kernel functions is described e.g. in the books of Baker [2] and 
Hackbusch [11] or in the papers by McLean [22] and Lin/Sloan/Xie [17]. The case of 
one-dimensional boundary integral operators over smooth curves is considered e.g. by 
Heise [12] and Saranen [28]. However, it seems to us that the theory of extrapolation 
techniques for boundary integral operators over non-smooth boundaries is rather incom-
plete. The only results in this direction we know about are those of Lin/Xie [18], Shi [29], 
and Graham/Lin/Xie [10], where Mellin convolution equations and double layer poten-
tial operators over polygonal curves are considered. The extrapolation in these papers 
improves the low order convergence which is caused by the low order of the implemented 
discretization scheme, i.e., caused by the low degree of the trial functions in the Galerkin 
scheme or by the low order quadrature rules used for discretization. The price for the 
faster convergence rate is that a stronger mesh grading near the points of singularity of 
the Mellin convolution kernels is required. Note that the use of strongly graded meshes 
is, in some sense, equivalent to the application of a transformation of variables with a 
large number of vanishing derivatives at the points of singularity. Finally, we remark 
that there are also other methods improving the numerical convergence in the case of 
these equations. We refer the reader to results on superconvergence and on p- and h-p-
methods by Amini, Chandler, Elschner, Graham, Jeon, Kress, Mastroianni, Monegato, 
McLean, and Sloan [23, 1, 3, 16, 7, 13, 8, 21, 24]. 

In the present paper we also consider Mellin convolution equations. We shall estab-
lish the first term of an asymptotic error expansion and define an extrapolation method 
which is different from that in [18, 29, 10]. This extrapolation does not improve the 
convergence rate due to the low order discretization scheme. Instead, it improves the 
low order caused by the non-smoothness of the exact solution. In order to describe the 
nature of the asymptotics and the extrapolation, let us consider a Mellin convolution 
equation of the second kind on the interval [O, 1] ( cf. Equ. (1.1) ), where the singularity 
of the kernel function is located at 0. Roughly speaking, for the approximate solution 
of the quadrature method, we shall derive an error expansion of the type ( cf. Theorem 
1.3) 

eh(i) = x(i) - xh(i) = h'"f f(i/h) + O(h'Y1 
), o < i < 1, 

where r and 11 are positive reals with r < 11 and h is the mesh size of the grid used 
for the quadratures. For the function J, we shall show If( r )I = 0( r-,Bi ), r ~ oo with 
f31 > 0. If J admits the asymptotic expansion j( r) ~ :E:1 CiT-,ai, {31 < {32 < {33 ... for 
r ~ oo, then we arrive at 

00 

eh(l) ~ L: h'"f+,ai h(l) + O(h'"f1 ), o < l < 1. (0.1) 
i=l 

The functions h, however, are singular, i.e., we get h(l) = Cif-,6i for h ~ l < 1. Hence, 
the supremum norm error llehllLoo[o,1] is of order h'"f only. Fixing an e > 0 and considering 

2 



t~e suprem~mnorm error over the interval[€, 1], we get the better estimate llehllLoo[e,l]"' 
h1nfhi,-y+,8p=l,2, ••• }. If we apply the usual Richardson extrapolation algorithm to our 
quadrature process and denote the extrapolated solution by. xh, then some of the first 
terms in {0.1) cancel out, i.e., the extrapolation error e;: satisfies 

00 

eh:= x(i) - xh(i)"' I: h-Y+f3i fi(i) + O(h..,1 ), o < i < 1 . 
i=R 

This gives the better convergence order 7. := inf { 71, 7 + /3i : i = R, R + 1 ... } for the 
supremum norm error llehllLoo[e,1] "'h-Y• but no improvement of the overall error. 

However, one often seeks a good error estimate over the whole of [O, 1]. To get this, 
we observe . 

Thus eh(t) has the sam~ error exp~nsion as 2-..,e2h(2t) and lleh(t) - 2-..,e2h(2t)llLoo[o,11"' 
h-Y1 • Unfortunately, x(t) and eh(t) are unknown. However, using the previous kind 
of argument for the expansion of the "discrete" error x2h( t) - xh( i) instead of eh -
x(t) - xh(i), we shall observe (cf. Theorem 1.6) jjx(t) - xh(i)llLoo[o,l]"' h-Y1 , where 

L 
xh(t) := x2h(t) + 2:: 2-(l-lh { xh(2z-1t) - x2h(2z-1t)}, 

l=l 

and L denotes the largest integer such that 2L-1£ ::; 1/2. Moreover, if we seek a lin-
ear functional J xg of the exact solution x with a smooth function g, then the asymp-
totics (0.2) implies new orders for the convergence of the quadrature approximation 
h L,' x( ti)Y( ti) to f xg ( cf. Corollary 1.5) without any extrapolation. These new orders 
improve those obtained by estimating the error for the functional by the LP-errors for 
the function x. 

The plan of this paper is as follows. In Sects. 1.1-1.2 we introduce the equation 
together with the necessary assumptions. The quadrature method including singularity 
subtraction and transformation technique will be derived in Sect. 1.3. A stability and 
convergence theorem follows. This theorem is perhaps new for the space LP[O, 1], (1 ::; 
p < oo) and for the special kind of singularity subtraction. However, it should also be 
possible to prove this result by extending the arguments of [3, 16, 7, 5, 21, 25] to the LP 
setting. We shall present some details of the proof here only to prepare the derivation 
of an error expansion. In Sect. 1.4 we give this asymptotic error expansion and derive 
the corresponding extrapolation process. Sects. 2 and 3 are devoted to the proof of the 
error expansion. To this end, we first prove an error estimate for the quadrature rule 
analogous to the Euler-Maclaurin summation formula in Sect. 2.1. Then we show the 
stability of the quadrature method for the case of the half-axis in Sect.2.2. From this and 
well-known localization ;Principles the stability for the equation over the interval follows. 
In Sect. 2.3 we analyse the solution of the quadrature method when the right-hand side 
is of the type y(t) = Yh(t) := f(t/h). Since functions of the type t ~ f(t/h) appear 
in the asymptotic expansion of the quadrature error ( cf. Sect. 3.2), the structure of 
these special solutions is crucial for the proof of the asymptotic error expansion for the 
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quadrature method. In Sect. 3.1 we split the error of the approximate solution into 
several terms, and we estimate these terms in Sect. 3.2. Finally, in Sect. 3.3 all previous 
results are combined to prove the error expansion of Theorem 1.3. The last section is 
devoted to the application of Theorems 1.1-1.6 to the special case of the double layer 
equation over polygonal boundaries. The presented numerical computations confirm our 
results or show even better results. 

1 QUADRATURE METHOD AND EXTRAPOLATION 

1.1 The equation 

Let us consider an equation of the type 

X(l) + t k(i, S)X(S)dS = jj(i), 0 < i < 1, (1.1) 

where 

-- - ( t) 1 - - -k( t, s) = kM ~ ~ + ks( t, s), o < t, :s < 1. (1.2) 

We shall formulate necessary assumptions on kM, ks in Sect.1.2. Here we mention only 
that the double layer equation over polygonal boundaries is equivalent to a system of 
equations of the form (1.1). Namely, for the double layer kernel over a curve with angle 
(), we get equations including the kernel functions ( cf. e.g. [4, 3]) 

k- - _ ± 1 l sin B k- 1 o- sin B (t,s)= - - , M(o-):=± · 
7r t2 + :s2 - 2t:s cos B 7r 0-2 + 1 - 20- cos e (1.3) 

The application of our quadrature method to (1.1) requires first a singularity sub-
traction and then a substitution of variables corresponding to a transformation of the 
interval [O, 1]. Let us start with the singularity subtraction (cf.[26] and also the 
slightly different techniques in [3, 16, 5]). We introduce 

ii( l) := 1 + l k( i, S)dS, 0 < i < 1 

and write (1.1) in the form 

ii(l)X(i) + l k(i, S)[X(S) - X(l)]dS = jj(l), 0 < i < 1. (1.4) 

The new integrand k(t, s)[x(s) - x(t)] of (1.4) is smoother than k(i, s)x(s) in (1.1). 
Consequently, the quadrature for the integral in ( 1.4) converges faster. 

For the transformation of variables, we choose a positive integer q and substitute 
l = tq, s = sq in (1.4). Since there holds llxllLP = llxllLP, 1 ~ p ~ oo for x(t) 
x(tq)V'qtq-1, we multiply our equation (1.4) by V'qtq-i and get 

{1 [ (s) (q-1)/p] a(t)x(t) +lo k(t, s) x(s) - x(t) t ds = y(t), 0 < t < 1, (1.5) 

where 
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a(t) .- a(tq), x(t) := x(tq)?jqtq-l, y(t) := fJ(tq)?jqtq-1, (1.6) 

k(t, s) .- ?jqtq-1k(tq, sq) <jqsq-1. 

Here we define p' by~+}, = 1 and set l/p := 0 for p = oo. The n~w solution x of (1.5) 
is smoother in the neighbourhood of 0 than x. For instance, if x(l) ~ t"f for l--+ O with 
1 > 0, then x(t) ~ tq"f+(q-l)/p with q1 + (q - 1)/p ~I· 

1.2 Assumptions on the kernel, the right-hand side, and the solution 

In view of (1.6) and (1.2) we get 

k( t, s) kM (; H + ks ( t, s ), ( 1. 7) 

kM(r) .- qkM(rq)~, ks(t,s) := ?jqtq-1k5 (tq,sq) \jqsq-1. 

However, we formulate the assumptions in terms of the original kernels. Here and 
in the following C stands for a generic constant the value of which varies from instance 
to instance. Even, if C appears twice at one line, the values may be different. 

(Al) The kernel function ks : [O, 1] x [O, 1] --+ 1R is smooth, i.e., it is infinitely differen-
tiable. 

(A2) The kernel function kM : JR+ :== (0, oo) --+ 1R is infinitely differentiable and there 
exists constants C and real numbers a, a 1 with 1/p < a < a 1 such that 

( a8 / 8a )m kM( a) -
( a8 / 8a)mkM( a) 

for m = 0, 1, 2, .... 

c (Ja.+ 0( aa.1 ), (J --+ 0, 
ea-a.+ O(a-a.1 ), a--+ oo 

Note that the exponents could have been different for a --+ oo and for a --+ 0. For 
simplicity we choose them to be equal. Furthermore, we note that the condition on the 
differentiability can be relaxed. A fourth order continuous derivative should be enough 
for our considerations. 

Now we observe that, for ks = 0, the operator A on the right-hand side of (1.1) is 
the restriction ("Wiener-Hopf'' operator) of the Mellin convolution operator IH + kH, 
where IH E £(LP(JR+)) is the identity and 

- - [
00 

- ( t) 1 - + KHf(t) := 10 k ~ if(s)ds, t E 1R . 

The operator IH + kH is invertible if and only if its symbol does not vanish, i.e., if the 
Mellin transform of its kernel function 
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is different from -1 over JR. By (A2) the function e ~ (MkM )(e) is continuous and 
vanishes at e = ±oo. Our next assumption (A3) is nothing else then the invertibility 
of the operator A. Using the theory of Wiener-Hopf operators, this assumption can be 
formulated as 

(A3) i) For any e E JR, there holds 1 + (MkM)(e) # 0. 
ii) The winding number of the curve {[1 + (MkM)(e)], e E JR} is zero. 
iii) The homogeneous equation (1.1) (i.e., (1.1) with fj = 0) has only the trivial 

solution. 

Next we need some assumptions on the resolvent kernel. It is a well-known 
fact that the inverse (IH + kH )-1 takes the form IH + LH, where 

- - rJO - ( £) 1 - + L H f ( t) : = j 
0 

l ~ "°if ( :S) d:S, t E lR . 

Note that the resolvent kernel ~ is the solution of (IH + kH )ZM = -kM. Thus the 
regularity theory of Mellin type equations implies the regularity of the resolvent kernel 
lM. We require 

(A4) The kernel function lM : JR+ ---+ lR is infinitely differentiable and there exists 
constants C and real numbers;, ; 1 with 1/p <; < ; 1 such that 

( ua I au )mlM( u) 
(ua/au)mfM(u) 

for m = 0, 1, 2, .... 

Cu-Y + O(u-Y1 ), u---+ 0, 
cu--y + O(u--Y1 ), u---+ oo 

For the right-hand side and the solution, we assume the following. 

(A5) The function y : [O, 1] ---+ lR is infinitely differentiable. 

(A6) The solution x of (1.1) is continuous on [O, 1] and infinitely differentiable on (0, 1) 
such that 

x(t) - C + Ci-Y + O(i-Y1 ), l---+ o, 
(la/ al)mx( l) - Cl-Y + O( f-Y1 ), l ---+ o 

form= 1, 2, .... Here;, ; 1 are the same as in (A4). 

Finally, we shall need the following technical assumption. 

(A7) Suppose q(; + l/p) < min{4, qa}. 
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1.3 The quadrature method 

First we need a quadrature formula. For this purpose we take the trapezoidal rule 
with end point correction. Thus we set 

(1.8) 

where h := l/N, t; := j/N for j E Zand 

127 59 39 31 N-4 

.- -T1 - -T2 + -T3 + -T4 + L T· 
48 48 16 48 j=5 

3 
j 

49 43 59 17 + 48 TN-3 + 48 TN-2 + 48 TN-1 + 48 TN. 

Note that this quadrature will be derived in part a) of the proof to Lemma 2.1 and has 
convergence order four (cf. Corollary 2.2). Using (1.8) for the integral in (1.5), we arrive 
at the following quadrature method: 

I [ (t ·) (q-1)/p] a(t;)xN(t;) + h;;= k(t;, t;) XN(t;) - XN(t;) t~ = y(t;), i = 1, ... , N. (1.9) 

To force stability we also introduce a slight modification (cf. [3, 16, 7, 26, 21]). We 
note, however, that in numerical computations this modification has often turned out to 
be not necessary ( cf. also [5], where stability is proved without this modification under 
additional assumptions). So we only recommend to work with the modified method 
if a numerical instability has been observed in the unmodified version. Let us fix a 
non-negative integer j. and set 

"'""' I "'""'' * * { T; !--! T; := ~ T; , T; := O 
1>1· 3 

Then the modified method looks like 

Clearly, (1.10) coincides with (1.9) if j. = 0. 

if j > j. 
if j ~ j •. 

The solution XN of (1.10) is given on a set of discrete points. To get an approxi-
mate function XN, we introduce the interpolation XN := :Ef=1 xN( t; )cp'f, where cp'f is 
a continuous and piecewise cubic function with minimal support such that cpf ( tm) = 
6;,m, m = 1, 2, ... N. More exactly, the basis function cpf is defined as the unique func-
tion whose restriction to (ti, ti+i), i E Z is the cubic polynomial P;,i which satisfies 
P;,i(tm) = 6m,j form= mi, mi+ l,mi + 2,mi + 3 with 

{ 

1 if i = 1 
mi := i - 1 if 2 ~ i ~ N - 2 

N - 3 if i = N - 1, N 
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It is not hard to see that supp r.pf ~ [t;_2 , t;+2] and that 

(1.11) 

where II · llLP denotes the norm in the N-dimensional discrete lP-space lP(N). 
Let A E .C(LP(O, 1)) be the operator defined by the left-hand side of (1.5) and let 

AN be the operator given by the left-hand side of (1.9) or (1.10). In view of (1.11), we 
consider AN in .C(lP(N)). Let us recall that the method (1.10) or the sequence {AN}N 
is called stable if the AN are invertible for sufficiently large N and if the norms of 
their inverses llAif111.c(lP(N)) are uniformly bounded with respect to N. The stability is 
an important prerequisite for the proof of error estimates and for the estimates of the 
condition numbers of the arising linear systems of equations. 
THEOREM 1.1 Suppose that the assumptions {A1}-{A6} together with the technical con-
dition {AB} of Sect.2.2 are satisfied. Then the quadrature method {1.10} is stable. In 
particular, {1.9} is stable if condition {AB} holds for j. = 0. If x is the exact solution of 
{1.5} and XN that of the quadrature method, then we get 

II _ II < Chmin{q("Y+l/p),4,qa} { 1 if min{4, qa} > q(/ + 1/p) 
x XN LP(0,1) _ (log h-1 )ll22 else, 

where {!22 will be defined in Sect. 3.3. Especially, the number e22 is zero if 

qa =I= 4, q/ =I= 2, 1 
=I= a, 1--

q(l + 1) =I= 4, q (1 - ~) =I= 4, q (11 + ~) =I= 4, 
a-l =I= /i, ±q(a ± 1) =I= 4, 2, =I= a, (1.12) 

p 

a =I= ,, q(/1 - a) =I= 4, I =I= 1, 
a-1 =I= 1. 

REMARK 1.2 If the operator A of {1.5} corresponds to the double layer operator or 
llKHll.ccLco(R+)) < 1 and if j. is large enough, then condition {AB) is always satisfied for 
{1.10} {cf. {26}). For an arbitrary but invertible Mellin convolution operator, we do not 
know whether {A 8} holds even for large j *. However, if another singularity subtraction 
step is performed {cf. {3, 16}}, then the corresponding condition {AB) for (1.10) with 
large j. can be derived from the theory of finite section methods (cf. {21}}. In particular, 
this condition {AB} holds even for {1.9) in the case of the double layer operator and for 
llKHll.c(Lco(R+)) < 1 {cf. {5}). We feel that, similarly to the assumption of a second kind 
Fredholm integral operator to be invertible, it would be a rare accident if ( AB) is not 
satisfied. · 

The proof of the stability will be given in Sect.2. The error estimate follows from 
the stability and from (3.22). Results like that of Theorem 1.1 have already been proved 
in [3, 16, 7, 25, 26] ( cf. also [1, 23, 21, 5, 13]). 

1.4 Asymptotic expansion of the numerical error and extrapolation 

In view of (1.11), we shall consider the discrete LP-error </hE1/:1 lx(t;)- xN(t;)IP. To 
demonstrate the usefulness of this norm, let us suppose that we have to compute a linear 
functional of the solution x, i.e., we seek Jg xg, where g E LP'(O, 1). We get 
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l X(S)g(S)dS = l x(s)g(s)ds, g(s) := g(t•) ~- (1.13) 

Note that ll9llLP' = ll9llLP'· Replacing x by the approximate solution XN and the inte-
gration by the quadrature, we get an approximation for f~ xg: 

l X§ ~ h'£1
xN(t;)g(t;). 

1 

We remark that this approximate value for f0
1 xg is independent of the numbers p and 

p' used in (1.5), (1.10) and (1.13). For the error of this approximation, we obtain 

l X§ - h'£1
xN(t;)g(t;) 

1 

< l x(s)g(s)ds - h'£1x(t;)g(t;) 
1 

+h L:'lx(t;) - xN(t;)l lg(t;)I. 
j 

(1.14) 

If g is sufficiently smooth (e.g. if g is infinitely differentiable), then assumption (A6) for 
x implies 

(t8 / 8t)m( xg )(t) Gtq-r+q-i + 0( tq(-r+i)+q-1 ) + 0( tq-ri +q-1 ) 

{ 
0 if m > 1 

+ go( t) if m = 0 ' m = O' l, · · · ' 

where g0 is smooth. Hence, we get ( cf. Corollaries 2.2 and 2.3) 

1 { h4 if q(t + 1) > 4 la x(s )g(s )ds - h1:1x(t;)g(t;) ~ G h4 log h-1 if q( 1' + 1) = 4 
0 j hq(-y+l) if q(( + 1) < 4 

(1.15) 

Consequently, using the Cauchy-Schwarz inequality as well as the boundedness of the 
discrete If-norm of our smooth test functional g, we arrive at 

l xg - h'£1x(t;)g(t;) 
1 

N 
< G h L lx(t;) - xN(t;)IP (1.16) 

j=l 

+G hmin{4,q(-y+l)} { 1 if q( 1' + 1) # 4 
log h-1 if q( 1' + 1) = 4 . 

In other words we have to estimate the error x(t;)- XN(t;) in the discrete LP-norm. 
Moreover, we seek an extrapolation xj., of the approximate solutions XN and x2N such 
that the discrete LP-norm of x(t;) - xi.J-(t;) is smaller than that of x(t;) - xN(t;). Let 
us express the dependence of ti on N by writing tf := ti in the rest of this section. The 
error expansion which is fundamental for our extrapolation looks as follows. 

9 



THEOREM 1.3 Suppose that the assumptions (Al}-( A 7) hold, that the quadrature meth-
od {1.9} or {1.10} is stable (cf. Theorem 1.1), and that x is the exact solution of {1.5). 
Then there exists a function f : JR+ --> IR with 

If( i) I ~ Ci-min{4-q('Y+l/p),q('Y-1/p),q(o:--y-1/p)}-1/p(log i)e29 (1.17) 

such that, for the solution XN of the quadrature method, we get 

x( tf) - XN( tf) - hq('Y+l/p)-l/p f ( i) + rN,i , 

N 
h L lrN,ilP < Chll(log h-1 )'127 (1.18) 

j=l 

with {! : = min{ q( 11 + 1 / p), q( r + 1), q21, 4, q, qa}. The non-negative integers {!29 and {!21 
will be defined in Sect. 3.3. In particular, e 29 = e 27 = 0 if {1.12) holds. 
REMARK 1.4 For many applications the convergence order min{q(1+1/p), 4, qa} of 
Theorem 1.1 is equal to q(1+1/p). In this case the error term rN,i is of higher order 
and hq('Y+l/p)-l/p f ( i) is the main part of the error x( tf) - xN( tf). 
The proof of this theorem will be given in Sect.3. 
COROLLARY 1.5 Let p = oo, fix an e > 0 and a smooth function g: (0, 1] --> IR, and 
suppose the assumptions of Theorem 1.3 are satisfied. Then there holds 

sup lx(t) - XN(t)I ~ Che(log h-1)e3e , 
f:.9.9 

f 1 I lo xg - h~ XN(tj)g(tj) ~ ChU(log h-1)e35 
' 

1 

(1.19) 

where {! is as in Theorem 1.3 and the integers e3s and e36 will be defined below. In 
particular, e35 = e3s = 0 if { 1.12} holds. 
PROOF: Setting 

{ 
{!21 if {! < min{ 4, q21, qa} 

{!36 := max{e21, {!29} else , 

the first assertion is obvious. Let us turn to the second. In view of (1.14) and (1.15), we 
have to estimate h:E/lx(ti) - XN(t;)l lg(t;)I. Let us set f3 := min{4 - q(1 + l/p), q(1 -
l/p), q(a - r - l/p)} + 1/p. Using Theorem 1.3 and the smoothness of g, we conclude 
lg(t;)I = l9(t]) \ftFI ~ C \ftF as well as 

j 

+c hll(log h-1 )'121 
< C hmin{q('Y+l), q(-y+l/p)-1/p+,8}(log h-1 )ll33 + C hU(log h-1 )'127 
< Chmin{4,q('Y+l),q2-y,qo:}(log h-l)ll33 + Chll(log h-1)'121, 

{ 
e29 if f3 - 1 =I ( q - 1) Ip' 

e
33 

• - 1 + e29 if f3 - 1 = ( q - 1) / p' . 
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In other words, 

j 

{ 
{!21 . if min{ 4, q("Y + 1 ), q27, qa} > e 

e34 := max{e21, g33} else. 

This and (1.14),(1.15) lead to (1.19), where 

·- { max{l, g34} if 4 = q(1+1):::; e 
e35 · - g34 else . 

I 
Theorem 1.3 allows us to derive an extrapolation result. We conclude from (1.18) 

(1.20) 

(1.21) 
+r2L-1N,2L-li - T2LN,2li, 

9+(i) {f(i) - 2-cn-(q-l)/P f(2i)}. 

Equation (1.21) with l = 1 yields 

Hence, we obtain 

x( tf) X2LN( tf) + T2LN,2Li + (2£ Ntq-y-(q-l)/p f(2Li) 
L 

XN(tf) + ~)x2iN(tf) - x2i-1N(tf)] + r2LN,2Li + (2£ Ntq-r-(q-l)/P f(2Li) 
Z=l 
L 

- xN(tf) + L: { (2'-1 Ntcn-(q-l)/Pg+(21- 1i) + r 2z-1N12i-1i - r2iN,2ii} 
l=l 

+r2LN12Li + (2£ Ntcn-(q-l)/p f(2Li) 
L 

XN(tf) + L: 2-(.l-l)[q-y+(q-l)/p] { X2N(tfi-1i) - XN(tfi-1J + T2N,2li - TN,2l-li} 
l=l 

+rN,i + (2£ Ntq-r-(q-l)/P f(2Li) 
L 

XN(tf) + L: 2-(l-l)[q-r+(q-l)/p] { X2N(tfi-1J - XN(tfi-1J} 
l=l 

L + L: 2-(Z-l)[cn+(q-l)/p] {r2N,2Li - rN,2L-li} 
l=l 

+rN,i + (2£ Ntq-r-(q-l)/P f(2Li). (1.22) 
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We define the extrapolated solution xiv by 

Li 
xf.r(tf) := XN(tf) + :E 2-(Z-l)[in+(q-l)/p] { X2N(tfz-1J - XN(tfi-1i)}, (1.23) 

l=l 

where Li is the largest non-negative integer such that t'Ji-Li ::; 1/2, i.e., i ::; 2-Li N. 
THEOREM 1.6 Suppose that the assumptions (At)-( A 7) hold, that the quadrature meth-
od {1.9) or {1.10) is stable (cf. Theorem 1.1), that x is the exact solution of {1.5), and 
that xf.r is the approximate solution extrapolated from x N. and x2N by ( 1. 23). Then there 
holds 

N 
P h L Ix( ti) - xjy( ti) IP ::; C h"(log h-1 )"36 (1.24) 

i=l 

with e and e36 as in Theorem 1. 3 and Corollary 1. 5. 
PROOF: Let us assume, for simplicity, that N = 2n. From (1.22) we conclude 

n 

~ll{x(tf) - xN(tf)}f:1lllP ::; c~ {ll{r2N,i}f:1lllP + l1{rN,i}f:1llzp} L 2-[q"f+(q-l)/p]l 
l=O 

N + P h L[(2LiN)-q"f-(q-1)/p f(2Lii)]P . (1.25) 
i=l 

First we estimate the last term. We set e := q"f + (q - 1)/p and ( := min{4 - q('Y + 
l/p),q('Y -1/p),q(a -'Y -1/p)} + l/p. Then (1.17) implies lf(i)I::; i-C(log i)P29. We 
get Li= n - L for i = 2£-l + l,2L-l + 2, ... ,2L and 

N n 2L 
p h 2:[(2Li N)-e f(2Lii)]P < c h I: L [(2n-L N)-e(2n-Li)-C(log(2n-Li))e29 ]P 

i=l 

n 2L 
< C V'h(log N)P29 N-2e-C L 2LP(e+C) :E i-Cp 

L=l i=2L-1+1 
n 

< ov'h(log N)P29 N- 2e-C p L 2LP(e+c)-L(Cp-1) 
L=l 

< C v'h(log N)P29 N-e-C+l/P ::; he+c (log h-1 )P29 • 

Together with (1.18) and (1.25), this implies (1.24). I 

2 PROOF OF STABILITY AND SOME CONSEQUENCES 

2.1 Euler-Maclaurin formula for the quadrature 

Analogously to the Euler-Maclaurin summation formula we get the following. 
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LEMMA 2.1 For any function f : (0, N) ~ 1R which has an integrable fourth order 
derivative, we get 

{N 1 {N Jo f(a)da - ~ f(j) =Jo H(a)j<4)(a)da, 
J 

where H = HN: (0, N) ~ 1R is uniformly bounded with respect to a and N. Moreover, 
H(a) = 2

1
4 a 4 ifO <a< 1. 

PROOF: a) Let us first derive our fourth order rule (1.8) as a sum of quadratures over 
the subintervals. Clearly, Simpson's rule 

(2.1) 

is of order four. To get fourth order interpolatory rules over (0, 1) and (1, 2), we denote 
the unique cubic polynomial with P( i) = f( i), i = 1, 2, 3, 4 by P and get 

l f(a)da 

l f(a)da 

Similarly, we obtain 

[1 55 59 37 9 
f'.J Jo P( a )da = 24 f (l) - 24 f (2) + 24 f (3) - 24 f (4) , 

r2 9 19 5 1 
f'.J Ji P( a )da = 24 f (l) + 24 f (2) - 24 f (3) + 

24 
f ( 4) . 

{N 9 19 5 1 
lN-l f(a)da f'.J 24 f(N) + 24f(N -1)- 24 f(N - 2) + 24 J(N - 3). 

Using (2.1)-(2.4) as well as 

N 1 1 { 2 N-1 {j+l {N } la f(a)da =la f(a)da + 2 1 f(a)da + ~ 11_
1 

f(a)da + lN-l f(a)da 

we get the rule J: f( a )da f'.J E/ f(j). The substitution s = ah yields (1.8). 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

b) Now let P be as in part a) of the present proof and let T stand for the cubic Taylor 
polynomial of f at 1. For the quadrature error, we obtain 

E [1 f(a)da -{
55 

f(l)-
59 

f(2) + 37 
f(3)- ~ f(4)} .- lo 24 24 24 24 

l {! - P}(a)da = l {(! -T) - (P - T)}(a)da 

l (! - T)(a)da -

g~ (! - T)(l)- ~: (! -T)(2) + ~! (! -T)(3) - ; 4 (! -T)(4)} . 

Now the formula for the remainder of the Taylor series expansion implies 

. !0
1 
(f - T)( a )da = r1 [CT ( (}" - r )

3 
j<4)( T )drda = - r1 r ( (}" - T )

3 
da j<4)( r )dr Jo lo 11 3! Jo Jo 3! 
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Hence, we get 

E = /1 T4 j(4)(r)dr -{-59 {2 (2 - cr)3 j(4)(cr)dcr + 37 [3 (3 - cr)3 f(4)(cr)dcr 
lo 4! 24 11 3! 24 Ji 3! 

_ _! [4 (4 - cr)3 f(4)(cr)dcr} 
2411 3! 

Similar formulas hold for the quadrature errors of the other integrals in (2.5). Summing 
up these errors, we get the assertion of the lemma. I 

COROLLARY 2.2 For any f which has an integrable fourth order derivative over (0, 1), 
we get 

l f(s)ds - hl:,
1
f(t;) S Ch4 l lf(4l(s)lds, 

J 

where G is independent off and N. 
The proof is straightforward. 

COROLLARY 2.3 Suppose the function x satisfies {A6}. Then 

f1 x(s)ds - h°L1x(ti) :::; G h4 logh-1 if / = 3 
{ 

h-Y+ 1 if / < 3 

lo j h4 if I> 3 

PROOF: We get 

l X(s)ds - h"f'X(t;) - h { t X(uh)du - "f'X(jh)} 

h laN H(u)(8/8u)4{°x(hu)}du, 

l X( s )ds - h "f'X(t;) < Ch { t u4 1x<4i(hu)lh4du + 1N 1x<4l(hu)lh4du} 

< Ch { t ( hu )4 IX(4l(hu )ldu + J,N ( hu )4 IXC4l( hu )lu-4du} 

Using (A6), we arrive at 

r1 I lo x(s)ds - h~ x(tj) 
J 

I 
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Analogously to the quadrature (1.8) over the finite interval, we introduce the cor-
responding rule over the half-axis. 

{" f(s)ds ~ (2.6) 
j 

127 59 39 31 00 

.- -Ti - -T2 + -T3 +-T4 + :l:T· 
48 48 16 48 j=S 

3 

Similarly to Lemma 2.1 we get 
LEMMA 2.4 For any f: JR+ ~ IR which has an integrable fourth order derivative, we 
get 

where G: JR+ ~ IR is bounded and G(a) = 2
1
4 a 4 if 0 <a< 1. 

2.2 The quadrature method over the half-axis and the stability proof 

It is well known that localization principles apply to the stability analysis of numerical 
methods for Mellin convolution operators ( cf. [24, 25, 26]). In other words, the quadra-
ture method (1.10) is stable if and only if the corresponding methods for the "locally 
equivalent" operators over the "tangent spaces" are stable. Since the kernel is smooth 
fort =J. 0 and s =J. 0, the only non-trivial localized method is that over the half-axis which 
we shall introduce next ( cf. (2. 7) ). If the stability of this method is proved ( cf. Theorem 
2.5), then the localization technique implies Theorem 1.1. For the details, we refer to 
[15, 30, 24, 25, 26]. 

The equation (1.5) over (0, 1) is "locally equivalent" at t = 0 to the equation (IH + 
KH )xH = YH over the half-axis JR+, where IH is the identity and 

KHf(t) := f kM G) ~f(s)ds, 0 < t < oo. 

Writing equation (IH + KH )xH = YH with singularity subtraction, we get 

[
00 (t) 1 [ (s)(q-1)/p] (1 + x; )xH(t) +lo kM -,; -,; XH(s) - XH(t) t ds = YH(t), O<t<oo, 

where 

[
00 (t) 1 (s)(q-l)/p ('° -

x; :=lo kM -,; -,; t ds =lo kM (a) a-(q-l)/P-1da = (MkM)(O). 

The corresponding modified quadrature method for the equation over the axis is defined 
as follows ( cf. (2.6) ). 
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(2.7) 

i = 1,2, .... 
In particular, we set j. = 0 in (2.7) if we consider the quadrature method (1.9) without 
modification. The operator defined by the left-hand side of (2. 7) will be denoted by 
AH,N· In view of (1.11) we consider AH,N in £(lP). Having defined AH,N, we are in 
position to formulate our last technical assumption of Theorems 1.1 and 2.5. 

(A8) The null space of AH,l E £(lP) (i.e., of AH,N for N = 1) is trivial. 
For the validity of (A8), we refer to Remark 1.2. 
THEOREM 2.5 Suppose the assumptions {A1)-{A6) and {AB) are satisfied. Then the 
quadrature method (2. 7) is stable. 
PROOF: The approximate operator AH,N takes the form 

AHN , 
Id{f(ti)}:1 

KH,N{f ( ti)} :1 

Of course, we have 

µH,N( ti) = µ(ii/ h) = µ( i), µ( T) := K, - ?; 11 kM (~) ~ ( ~) (q-l)/p 
J>J• J J 

(2.9) 

We observe that the matrix operator AH,N is independent of N. Hence, the AH,N are 
invertible and their inverses are uniformly bounded with respect to N if and only if AH,l 
is invertible. The null space of this operator is trivial by assumption. To finish our proof 
it is sufficient to show the next lemma. I 

LEMMA 2.6 The operator AH,l is Fredholm and its index is zero. 
PROOF: a) First we shall estimate the functionµ for large values of T. By Lemma 2.4 
we get 

µ(r) - K - L 11kM (~); (i)(q-l)/p + 'L'kM (~); (i)(q-l)/p 
j J J T j~j. J J T 

laoo kM (~) ~ (~) (q-l)/p da - 'L" kM (~) ; (i) (q-l)/p 
0 O" O" T j J J T 

+LI kM (~) ; (i) (q-1)/p 

j~j. J J T 

f G(u)(8/8u)4 { kM (;;); m (q-l)/p} du+ jf;_'kM G) Im (q-l)/p 
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Using 

4 { ( T) 1 ( (]') (q-l)/p} (a/ a(]') kM --; --; -:;: (8/8a)4 
{ qkM ( (;) q) ~} 

= to ck<;;> ( m q) m qm ~a-4 

as well as (A2), we arrive at 

Jµ(r)I ::; c fo1G)-aqa- 1da+c [(;r"'qa-5da+c f Gra-5 da 
+cr-aq::; cr-min{aq,4} { iogr ~s:q = 4 (2.10) 

for T ----? oo. This estimate implies that µH,N Id E £( lP) is a compact operator and 
we are left with showing the Fredholmness of (Id+ KH,N ). Moreover, we may suppose 
j. = 0 since the difference between KH,N for j. > 0 and KH,N for j .. = 0 is a finite rank 
operator. 
b) In order to prove that (Id+ KH,N) is Fredholm, we shall construct a left regularizer. 
This will be done in such a manner that with the same technique the existence of a 
left regularizer for (.:\Id+ KH,N), Ar/. {MkM(e), e E JR} can be shown. He~ce, (.:\Id+ 
KH,N) E .C(lP) is a ~+-operator (semi Fredholm operator) for any A ~ fC\ {MkM(e), e E 
JR}. Since 1 is contained in the unbounded component of fC\ {MkM(e), e E JR} (cf. 
assumptions (A3)i) and ii)) and since (.:\Id+ KH,N) is invertible for large l.:\I, we conclude 
that (Id+ KH,N) is a Fredholm operator with index zero. 
To construct a left regularizer of (ld+KH,N ), we consider the Mellin convolution operator 
with the resolvent kernel lM. More precisely, analogously to (IH + kH t 1 = (IH + LH) 
(cf. Sect.1.2) we get (JH + KHt1 = (JH + LH) with 

LHf(t) := f IM (D ~f(s)ds, 0 < t < oo 

lM(r) := qZM(rq)~. 

It is natural to seek the regularizer of (Id+ KH,N) in the form (Id+ LH,N) with 

{ 

II ( ti ) 1 } oo { II ( i ) 1 } oo LH,N{f(ti)}~l := h~ IM t. t.f(tj) = ~ lM ~ ~J(tj) 
3 3 3 i=l 3 J J i=l 

Indeed, we get (Id+ LH,N )(Id+ KH,N) =Id+ RH,N with 

Ti,j := 

(2.11) 

It remains to show that RH,N E .C(lP) is compact. From (IH + LH )(IH + KH) = IH we 
conclude LH + KH + LHKH = 0, i.e., 

17 



lM G) ~ + kM G) ~ + f lM m ~kM m ~du= 0. 

Consequently, we obtain 

r·. i,J 

In view of Lemma 2.4, we arrive at 

r;,; = - f G(a)(8/8a)4 { lM G) ~kM (I)} da}, 

where (cf. (1.7) and (2.11)) 

(8/8a)4 { /Mm ! kM (T) } 
(8/8a)4 { q/M ( (~)") m (q-l)/p ~qkM ( (T) q) (T) (q-l)/p} 

q2i<o-1>1P(a/aa)4 { q (~) •) ~kM ((I)•)} r<o-1J/p 

q2i(q-1)/pL+m~m.=4 czt'·l wn (~r· a-m·~ 
. a-m2ki;» ((ff) (ffm' a-m, }r(q-1)/p 

q
2
i(q-l)/p L+m~m.=4 czt'·l wn (~r· ~ 

. ki;» ((ff) (T r· a-4 }r(q-1)/p . 

It remains to apply the properties of Gin Lemma 2.4 and the assumptions (A2), (A4). 
For i ~ j, this yields 

lr· ·I i,J 

< Ci-q-y+(q-1)/pj-qa-(q-1)/p-1 

+ci-q-y+(q-1)/p ·q-y-(q-1)/p-5 { log j if q( 'Y ±a) = 4 
J 1 else 
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+ci-qa+(q-1)/p-4jqa-(q-1)/p-l { 1
1
og i if q(r - a) = 4 

else. 

For i :::; j, we arrive at 

(2.12) 

l r· ·I < i,J - { 
1 ( · )-q-y 1 ( ) qa · · -q-y 1 ( ) qa 

Ci(q-1)/pj-(q-1)/p-1 la ; -;; I du+ l (;) -;; I u-4du+ 

t (~ r ~ (ff a u-4du+ f Gr~ (I)-qa u-4du} 

< ci-q-r+(q-1)/pj-qa-(q-1)/p-1 + 
Giqa-4+(q-1)/p ·-qa-(q-1)/p-'-l { log i if q( a± 1') = 4 + 1 1 else 

Giq-r+(q-1)/p ·-q-y-(q-1)/p-5 { log j if q( a - 1') = 4 
1 1 else . (2.13) 

From these estimates and the inequalities 1/p < 1' and 1/p - 4/ q < a ( cf. assumptions 
(A2) and (A4)) we conclude {E:i[E~1 lri,ilP']P/P'}1/P < oo. Hence, RH,N is compact. 
I 

2.3 Special solutions of the quadrature equation 

For the derivation of the asymptotic expansion in Theorem 1.3, we need the following 
property of the quadrature method. 
THEOREM 2.7 Suppose we are given a real number (3 > 1/p, an integer w ~ 0, and a 
function g : JR+ --7 1R such that lg( T) I :::; o-r-l'(log T )"' for T --7 00. Let us consider 
the right-hand side y(t) := YN(t) := g(t/h), 0 < t < 1 and let {xN(ti)}~1 stand for the 
solution of {1.10}, i.e., of AN{xN(ti)}~1 = {yN(ti)}~1 := {g(i)}~1 . Then there exists 
a function f : JR+ --7 1R such that 

lf(i)I < Oi-e1 (log i)U2, i --7 oo , (2.14) 
e1 .- min{q(a - l/p) + 1/p, q(1 - 1/p) + 1/p, (3, 4 + 1/p}, 

{!2 .- { e~ if f15. q(a -1/p) + 1/p 
e~ if f3 > q( a - 1 IP) + 1 IP , 

II { XN( ti)}f:1 {f(ti/h)}f:1llzP:::; Oh"3 (log h-1 )ei (2.15) 
{!3 .- min{q(1 - 1/p), q(a - 1/p), {3 - 1/p, 4, q(l - l/p)}, 

where the integers {!~, {!~, and {!4 are defined as in the following proof. 

PROOF: a) Consider YN(t) := g(t/h). First we shall show that there is a function f such 
that the solution { XN( ti)}i:1 of AH,N{ XN( ti)}i:1 = {YN( ti) }i:1 satisfies { XN( ti)}i:1 = 
{f(tif h)}:1 = {f(i)}:1 and that f satisfies (2.14). Since the matrix of the operator 
AH,N is independent of N and the right-hand side {YN(ti)}:1 := {g(i)}:1 is independent 
of N too, it is clear that {xN(ti)}f:1 takes the form {xN(ti)}f:1 = {f(i)}f:1 . It remains 
to prove (2.14). Let us start with the special case j. = 0. Using the notation of the 
proofs to Theorem 2.5 and Lemma 2.6, we get 
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(Id+ µH,Nid + KH,N) {f(i)}i~l - {g(i)}:1, 
(Id+ KH,N) {f(i)}:1 - {g(i) - µ(i)f(i)}:1' 
(Id+ RH,N) {f(i)}:1 - (Id+ LH,N) {g(i) - µ(i)f(i)}:l, 

{f(i)}:l - {g(i) - µ(i)f(i)}:1 - RH,N{f(i)}:l + 
LH,N{g(i) - µ(i)f(i)}:1, 

{[1 + µ(i)]f(i)}:l - {g(i)}:l + LH,N{g(i)}:1 - RH,N{f(i)}:1 
-LH,N{µ(i)f(i)}:1 . (2.16) 

Using (A4), for the i-th component [LH,N{g(j)}~1 ]i of the sequence LH,N{g(j)}~1 , we 
get 

- E" zM (~) ~ g(j) 
j J J 

< C L ~ j-,8-l(log j)w + ( 
. )-q-y+(q-1)/p 

j:j5;i J 

( 

. ) q-y+(q-1)/p 
C .~. ~ j-.8-1(log it 

3:3>t. J 

{ 

i-.B(logi)w if q(1-l/p)+l/p>{3 
< C i-.B(log i)l+w if q(1- l/p) + 1/p = {3 (2.17) 

i-q("Y-l/p)-l/P(log i)w if q(1 - 1/p) + 1/p < {3. 

Furthermore, by the Cauchy-Schwarz inequality, by (A4), and by (2.10) we conclude 

< c E (~)-<rt+(•-l)/p JU) rmin{qa,4}-1 { log i ~f qa = 4 
i=i5;i J 1 1f qa -:f. 4 

+ c E (~) <rt+(•-l)/p !(il rmin{qa,4}-1 { log i ~f qa = 4 
. . . J 1 1f q a -:f. 4 

:i::i>i 

< Cll{f(j)}~1llLP. (2.18) 

. {i-q-y+(q-1)/p [ L j[q-y-(q-1)/p-1-min{qa,4}]p' { (log j)P' 
.. <. 1 ]:J_t. 

1/p' 
if qa = 4 ] 
if qa -:f. 4 

+ iq"'f+(q-1)/p [ L j[-q"'f-(q-1)/p-l-min{qa, 4}]p' { (log j)P' 
. . . 1 

i::i>i 

if qa = 4 
if qa -:f. 4 

::; Ci-{}9 (log i)"10 , 

i 
1 if qa == 4 and q(1 -1/p) > 4 

·- 1/p' if .qa -:f. 4 and q(1 -1/p) = min{qa,4} 
e10 

.- 1+1/p' if qa == 4 = q(r - l/p) · 
0 else, 

gg := min{qa + l/p, q(1 - 1/p) + 1/p, 4 + 1/p}. 
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Using (2.12),(2.13) and p > 1/a from (A2) as well asp> l/'y from (A4), we conclude 

l[RH,N{/(j)}~1Jil ~ Ci(q-l)/p-<rf { ~jl-(q-l)/p-qa-l]p'} 1fp' 

+C { iog i ~s:( 'Y - a) = 4 i(q-1)/p-qa-4{i~i j[-(q-1)/p+qa-1]p'}1/P' 

+ C { iog i ~s:( a ± 'Y) = 4 i( q-1 )/p+qa-4 { j~i j [-( q-1 )/p-qa-1]p'}1/p' 

+Ci(q-l)/p-q-y { log i if q( /±a) = 4 { L j[-(q-l)/p+q-y-S]p'}l/p' 
1 else .. <. 1:3_1. 

{ 

1/p' 
+Ci(q-1)/p+q-y E j[-(q-1)/p-q-y-s]p' { (log i)P' if q( a - 'Y) = 4 } 

.. >. 1 else 
1:3 " 

~ Ci-min{4,q('Y-l/p)}-l/p (log i)11P' if q(/ - l/p) = 4 and ± q('Y ±a)# 4 (2.19) 
{ 

1 if q('Y-1/p) # 4 and ± q('Y ±a)# 4 

log i else. 

Let us set g5 := min{qa, 4} and g6 := 1 if qa = 4 and g6 := 0 if qa # 4. Then (2.10) 
yields Iµ( i) I ~ Gi-es (log i)es. Applying the assumptions on the right-hand side {g( i) }~1 
and (2.16)-(2.19), we get that 

lf(i)I < Gi-e1 (log i)ea + Oi-e9 (log i)e10 , 

g7 .- min{B, q('Y- l/p) + 1/p, 4 + 1/p} , 

{!a .-

0 if 4+l/p<min{q(1-l/p)+l/p,f3} 

1 

w 
w 

w 

and ± q( a ± 'Y) # 4 
if 4 + l/p < min{q(/ - l/p) +l/p, ,B} 

and q( a - 'Y) = 4 or q( 'Y - a) = 4 
if f3 < min{4 + l/p, q('Y- l/p) + l/p} 
if q( 'Y - l/p) + l/p < min{,B, 4 + l/p} 

and ± q( a ± 'Y) # 4 
if 4 < q( 1 - 1 IP) , f3 = 4 + 1 IP , 

and ± q( a ± 'Y) # 4 
max{w, l/p'} if 4 + l/p = q(/ - 1/p) + 1/p < f3 

max{w, 1} 

max{w, 1} 

w+l 

and ± q( a ± 'Y) # 4 
if f3 > q('Y- l/p) + l/p ' 4?:. q('Y- l/p) 

and q(a - 1) = 4 or q(a + 1) = 4 
if 4 < q('Y- l/p) , f3 = 4 + l/p , and 

q( a - 'Y) = 4 or q( a + 'Y) = 4 
if q( 'Y - l/p) + l/p = f3 ~ 4 + l/p 

This proves the estimate (2.14) for j. = 0 and for {!2 replaced by 

{ 

{!a if f3 < g9 

{!~ := {!10 if qa + l/p < {!1 

max{ea, {!10} else . 
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To treat the case j. > 0, we express the dependence on j. in the notation KH,N =: KJ.;,N. 
We get 

(Id+ µH,Nid + K1;,N) {f(i)}:1 {g(i)}:1' 

(Id+ µH,Nid + KJ;,N) {f(i)}:l {g(i)}:1, (2.21) 
{g(i)}:1 .- {g(i)}:1 + (KJ;,N - KJ.;,N ){f(i)}:1 . 

Note that µH,N depends also on j.. However, µ fulfills (2.10) for any choice of j. 
and, therefore, (2.14) with e2 replaced by e~ holds for {f(i)}~1 = (Id+ µH,N]d + 
K~,Nt1 {g(i)}~1 including µH,N with j. > 0. Using the definition of KH,N and (A2), 
we get the estimate 

[(KJ;,N - Kii,N){f(j)}~1]i L: 1

kM (~) ;f(j)' 
j~j. J J 

l[(KJ;,N - K1;,N){f(j)};1]il < Oll{f(j)};1llz11 sup lkM (~) ;, 
j~j. J J 

< Oll{f(j)};111lP i-q(a.-l/p)-l/p' 
19( i) I < ci-min{/3, q(a.-l/p)+l/p)}(log i)U• ' 

{ 
o if q( a - 1 IP) + 1 IP < /3 

e. .- w else. 

If q(a - 1/p) + l/p ~ /3, then g satisfies the same estimate as g and the just proved 
estimate (2.14) with e2 replaced by e~ applies to the solution of (2.21 ). This yields 
(2.14) for q( a - 1/p) + l/p ~ /3 and j. > 0. If q( a - 1/p) + l/p < /3, then g satisfies 
a similar estimate as g, where /3 is to be replaced by /3" := q( a - l/p) + l/p and w by 
w" := 0. Let us define e~ analogously to es but with /3", w" instead of /3, w, i.e., we set 

0 if 4 < q( I - 1 Ip) '4 ~ q( Ct - 1 Ip) ' 
and ± q( a - r) # 4 

0 if q(a - 1/p) < min{4, q(1- l/p)} 
0 if q(1- l/p) < min{q(a - l/p), 4} and 

q(a ± 1) # 4 
II l/p' if 4 = q(1- l/p) < q(a - l/p) es := and q( a - r) # 4 , 

1 if 4 < q( I - 1 Ip) ' 4 ~ q( Ct - 1 Ip) , and 
q( a - r) = 4 or q(r - a) = 4 

1 if a > r , 4 ~ q( r - 1 / p) , and 
q( a - r) = 4 or q( a + r) = 4 

1 if 4~q(1-l/p)=q(a-l/p). 

Using this e~ instead of es and e~ := min{/3", q(1- l/p) + l/p, 4 + 1/p} instead of e7 , 

we define e~ analogously to e~. . 

{ 
e~ if /3 11 < U9 

e~ .- e10 if qa + 1/p < e~ 
max { e~' e10} else 
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_ { e~ if q(a -1/p) < min{4, q(1- 1/p)} 
- max{e~, tho} if q(a - l/p) ~ min{4, q(1- 1/p)}. 

Now, for the solution of (2.21), the estimate (2.14) holds with e2 , f3 replaced by e~, {3 11 • 

This yields (2.14) for q(a - l/p) + 1/p < /3 and j. > 0. 
b) Let us suppose that ks = 0. We observe that the equation AN{xN(ti)}~1 = {g(i)}~1 
is just the finite section of AH,N{f(i)}~1 = {g(i)}~1 . Let IIN denote the restriction 
operator 

II {h( ")}oo {h- ( ")}oo h- ( ') { h( i) if i :::; N N i i=l = N i i=l' N i := 0 1 e se. 

Since our finite section method is stable ( cf. Theorem 1.1), we get 

ll{xN(ti)}f::1 - {f(i)}f::1llzP:::; Oll(J - IIN){f(i)}:1llzp. 
This and the estimate (2.14) together with h = N-1 yield (2.15) with e4 replaced by g2 • 

c) Now consider ks ";/= 0, set 

TN{f(i)}f::1 = {h ~'ks(ti, t;)f(t;)}N , JN{f(i)}f:,1 = {f(i)}f:,1 , 

1>1. i=l 
and let A~ denote the approximate operator on the left-hand side of (1.10) for ks = 0. 
Then AN= A~+ TN and AN-1 =(A~ t 1 - AN-1 TN(A~ t 1. To estimate AN-1{YN(ti)}f::1, 
we first apply TN to the solution {/N(ti)}f::1 of A~{fN(ti)}~1 = {YN(ti)}f::1 which 
satisfies (2.15) with e4 replaced by e2 ( cf. part b) of the present proof). Moreover, since 
llAN-1TNll is bounded and since (2.15) is true for {/N(ti)}f::1, without loss of generality 
we may assume that fN(ti) = f(ti/h) and that f satisfies the estimate (2.14). We obtain 

N 
l(TN{f(j)}f=1]il < Ght~q-l)/p L: t~q-l)/p'j-u1 (log j)U2, 

j=j.+1 

< Gi(q-l)/phmin{u1 +(q-1)/p, q}(log h-1 )L><i , 

{ 
e2 + 1 if e1 = ( q - 1) / p' + 1 

e4 .- {!2 else. 

Hence, we get 

II A:N1TN{f (j)}f:1 llz,, ::=; G llTN{f (j)}f:1 llzP :::; G hmin{ei-l/p,q(l-l/p)}(log h-1 )ll<i . 

In other words, AN-1{YN(t;)}f=1 =(A~ t 1{yN(t;)}f=1 +AN-
1TN(A~ )-1{yN(t;)}f=1 , where 

(A~ t 1{yN(t;)}f=1 is bounded by the right-hand side of (2.15) with e4 replaced by {!2 ( cf. 
part b) of the present proof) and AN-1TN(A~)-1 {yN(t;)}f=1 is bounded by the right-hand 
side of (2.15) plus Ohmin{ei-l/p,q(l-l/p)}(log h-1)"-i. This proves (2.15) forks";/= 0. I 
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3 PROOF OF THE ASYMPTOTIC ERROR EXPANSION 

3.1 Structure of the approximate operator and the corresponding splitting 
of the error 

Let us introduce the restriction operator RNY .- {y( ti)}f::i · Then the error eN := 
{x(ti) - XN(ti)}f:i is equal to 

(3.1) 
Since we have defined AN by singularity subtraction, we get ANRNxo - RNAx0 = 0 for 
x0(t) := -?f qtq-i. In other words, without loss of generality we may suppose that the 
exact solution of Ax= y admits the asymptotic expansion ( cf. (A6) and (1.6)) 

x( t) rv Ctq"Y+(q-i)/p + 0( tq"Yl +(q-i)f P) . (3.2) 

Analogously to (2.8) the approximate operator AN takes the form 

(3.3) 
where 

Clearly, the operators KN and TN are approximate operators for the operators Kand T 
defined by 

Kf(t) := l kM G) ~f(s)ds and Tf(t) := l ks(t,s)f(s)ds, 

respectively. 
In accordance to (3.3), we arrive at the following splitting of the error eN: 

eN .- { AN-i[T3 - Ti -T2]x (ti) }:i , (3.4) 
Ti .- (RNK - KNRN)x, T2 := (RNT-TNRN)x, T3 := µN!Nx. 
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3.2 Consistency estimates 

To estimate the consistency error (AN RN - RN A )x we have to consider the terms Tj, 
j = 1, 2, 3. 
LEMMA 3.1 i) There exists a function f: JR+ --t lR such that 

lf(i)I < oi-e12 { log i if q(a + i) = 4 (3.5) 
1 else, 

e12 .- min{q(a - 1/p) + l/p, 4 - q(1+1/p) + 1/p} ' 

llT1 hq('"f+l/p)-l/P{f( i)}f:1 llzP ::; G he13 (log h-1 )ea , (3.6) 

e13 ·- min{q(11 + l/p) - l/p, 4- l/p}' 

( 

1 if q(r1 - a) = 4 
1 if q(r - a) = 4 

ei4 
.- l/p if q(r1 + l/p) = 4 

0 else. 

The function f is equal to zero if q( r - a) 2:: 4. 

ii) There holds 

iii} There exists a function f : JR+ --t lR such that 

lf(i)I < Ci-•» { iog i ~s!a = 4 , (3.8) 

e1s .- min{q(a - r -1/p) + 1/p, 4 - q(1+1/p) + l/p}, 

llT3 hq('Y+l/p)-l/P{f(i)}f:1 llLP::; Ohe16 (log h-1 )e17 , (3.9) 

eis .- min{q-1/p, qa -1/p,4 - l/p, q(11 + l/p) - l/p}' 

( 

1 if qa = 4 and 11 -j. a - 1 / p 
1/p if min{ a, 4/ q} - l/p = 11 and qa -j. 4 

ei7 .- 1+1/p if a -1/p = 11 and qa = 4 
0 else. 

PROOF OF LEMMA 3.1 i): Set L, ·"'g(j) := E/'g(j) - E/g(j) and x(t) = x+(t) + 
Gtq('"f+l/p)-l/p with lx+(t)I ::; Gtq(·n+ifp)-l/p (cf.(3.2)). Then we get Ti = Tu+ Ti2 -
T13 - T14, where T1j := {T1;,i}f:u l = 1, 2, 3 and 

Tn,i 
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T13,i 

T14i := I 

Since G(a) = H(a) over [O, N - 4], Lemmata 2.1 and 2.4 imply 

IT13,il 

Using (A2) and (ah)q('Y+l/p)-l/p ~ (ah)q(w+l/p)-l/p with min{a + 4/q, 1'} > w > 0, we 
get 

IT13,il < c r _: (ah )q(w+l/p)-l/p a-5 da 
oo ( · )qa+(q-1)/p 

lN-4 O" 

< Ciqa+(q-1)fphq(w+1/p)-1/p r'° aq(w-a.)-5 da 
l N-4 

< Ciq(a.+i/p)-1/phq(a+i/p)-1/pH . 

In other words, we get 

For T14 , we conclude 

T14,i 

I (t·) 1 h L kM ~ -x+(t;) 
j5_j. t; t; ( )

-q(a-1/p)-1/p 
< c h LI ti ..!.t~h1 +1/p)-1/p 

"<. t,· t,· 1 ,_,. 
< ci-q<a.-1/p)-1/phq<-n +i/p)-1/p . 

This and assumption (A2) yield 
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llT14 - hq('Y+l/p)-l/p { ~ 1kM (~) ;Cjq(..,+1/p)-l/p}N Iii· < Ch•<-ri+l/p)-l/p '(3.11) 
J5:J• J J i=l 

L: 'kM (~) ;c jqh+1/p)-l/p < ci-q<a.-lfp)-lfp. (3.12) 
i5:i· J J 

Now consider T11 • From Lemma 2.4 we get 

Tn,i - hq('Y+l/p)-l/p !( i) ' (3.13) 

f(i) ·- f 00 

kM (i) .!. c (J'q('Y+l/p)-lfpdO" - h E" kM (~) ; c jq(-y+l/p)-l/p ' 
lo O" O" i J J 

- la00 

G(a)(8/8a)4 
{ kM (~) ~Ca•<-r+1/p)-l/p} da . 

In view of G(O") = 2
1
40"4 (cf. Lemma 2.4) and assumption (A2), we get 

{1 ( . )-qa.+(q-1)/p 1 If ( i) I < c 
10 

~ -;;.(J'q("f+ifp)-1!Pd0" 

fi ( . )-qa.+(q-1)/p 1 
+c Ji ~ -;;.(J'q('Y+ifp)-1fp(J'-4d(J' 

roo ( . ) qa.+(q-1)/p 1 
+c Ji ~ -;.(J'q('Y+11p)-1/p(J'-4dO" 

< Ci-min{q(a.-1/p)+l/p,4-q("f+l/p)+l/p} { log i if 4 = q( a+ 1') 
1 else, (3.14) 

where we have assumed q({ - a) - 5 < -1. 
Let us turn to T12 • Analogously to the estimation off( i), we obtain 

IT12,;I - { H(a)(8/8a)4 
{ kM (~) ~x+(a)} da 

r1 ( . )-qa.+(q-1)/p 1 < c lo ~ -;;. ( hO" r(1'1 +l/p)-1/p dO" 

fi ( . )-qa.+(q-1)/p 1 
+c 11 ~ -;;. ( hO" )q(·n +1/p)-1/p (J'-4dO" 

IN ( . )qa.+(q-1)/p 1 
+c Ji ~ -;. ( hO" )q("Y1 +ifp)-1/p (J'::.4d0" 

< C hq(·n +1/p)-1/pi-q(a.-1/p)-t/p 

{ 

i-q(a.-l/p)-l/p if q( a+ 1'1) < 4 
+c hq("fi +l/p)-l/p i-q(a.-l/p)-l/p log i if q( a+ {1) = 4 

iq(-.,1 H/p)-l/p-4 if q( a+ 1'1) > 4 

{ 

hq(·n +1/p)-l/piq(1'1 +1/p)-1/p-4 if q(r1 - a) < 4 
+C hq("Yi+l/p)-l/Plog h-liq('Yi+l/p)-l/p-4 if q({1 - a)= 4 

h4+q(a.+1/p)-l/piq(a.+1/p)-l/p if q( 1'1 - a) > 4 . 
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Hence, we obtain 

llT12llzP ::; Chmin{4-l/p,q(·n+l/p)-l/p} (log h-1 ) 1/P if q(r1 + l/p) = 4 (3.15) 
{ 

log h-1 if q(11 - a)== 4 

1 else . 

Now (3.5) and (3.6) follow from the Eqs. (3.10)-(3.15) if q(1-a) < 4. For q(r-a) ~ 
4, we can repeat the arguments leading to (3.15) to obtain 

{ 

log h-1 

< Chmin{4-1/p,q('Y+l/p)-1/p} ~log h-1 )1/P 
if q(r- a)= 4 
if q( T + l Ip) = 4 
else 

< Ch4_1 /~ { log h-1 if q(r - a)= 4 
- 1 else. 

This proves Lemma 3 .1 i). 
PROOF OF LEMMA 3.1 ii): Setting T2 = T21 + T22, T2z = {T2z,i}~1 , 

T21,i := l ks( t;, s )x( s )ds - h L,'ks( t;, t; )x( t;) , T22,i := h L, 'ks( t;, t;)x( t;) , 
J i<S:i· 

we get ( cf. Lemma 2.1) 

T21,; .- h { lN ks(t;, ah)x( ah)da - ~1ks(t;,jh)x(jh)} 
h lN H(a)(8/8a)4{k5 (t;, ah)x(ah)}da. 

From (Al), (3.2), and (A6) we obtain 

(8/8a)4{ks(ti, ah)x(ah)} = (8/8a)4 { Ct~q-l)/Pks(t{, (ah)q)(ah)(q-l)/p' · 

. x( (ah )q)( ah )<q-l)/p} 

- (8/8a)4 { Ct~q-l)/Pks(t{, (ah)q)(ah)(q-l)x((ah)q)} , 
1(8/8a)4{ks(ti, ah)x{ah)}I < Ci(q-l)/pMq-l)(l+l/p)+q"Ya(q-l)+q"Y-4 • 

Inserting this into the last formula for T21 ,i, we get 

IT21,il < Ci(q-l)/Ph(q-l)(l+l/p)+>n+1 {fo1 
a(q-l)+>nda + 1N a(q-l)+>n-4da} 

< Ci(q-1)/phmin{4+(q-1)/p,(q-1)(1+1/p)+q"Y+l} { log h-l if q(r + 1) = 4 
1 else , 

I 

llT
2
ill < Chmin{4-1/p,q("Y+l)-1/p} { log h-l if q(r + 1) == 4 (3.l6) 

1 else. 
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On the other hand, 

IT22,il < C h 2: / t~q-l)/p(j h )(q-l)+cn ~ Ci(q-l)/phq+(q-l)/p+cn , 
j5:_j. 

llT22ll < Chq('Y+i)-l/p. (3.17) 

Eqs. (3.16) and (3.17) imply Lemma 3.1 ii). I 
PROOF OF LEMMA 3.1 iii): We get µN(t) = µH,N(t) - µR,N(t) + µs,N(t) + µT,N(t), 

where µH,N(t) = µ(t/h) is given by (2.9) and 

.- rxi kM (!) ~ (~) (q-l)/p ds - h ~111 kM (!) ~ (tj) (q-l)/p 
Ji s s t j t; t; t 

µs,N(t) 
r1 (S) (q-l)/p I (t ") (q-l)jp .- lo ks(t, s) t ds - h 'I; k5 (t, t;) : 

1 

I (t.) (q-l)/p 
h ~ ks(t, t;) ..l.. 

i5:i· t 

Using (Al), we get 

I - ( )/ I (t ") (q-l)jp lµT,N(t)I < Ch ~ t<q-l)/Plks(tq, tDlt/-1 P : 
15:.1· 

< Oh L (jh)(q-l) ~ Chq. (3.18) 
i5:.i· 

With the help of Lemma 2.1, we arrive at 

µ,s,N(t) h {t ks(t,uh) (t;h) (q-l)/p du - z;,1ks(t,jh) Cf h) (q-1)/p} 

h laN H( u )(a I au )4 { t<•-l)/pks( t°, (uh)•)( uh )(q-l)/p' (t;h) (q-l)/p} du ' 

l/Ls,N( t) I < c h laN IH( u )I L cia~m)ks( t•, (uh )•)I( uh r•+(q-l)u-4du 

< Ch t IH(u)I 

< c ~ 
m:m5:.4, 

mq+(q-1)-4~0 

< Chmin{q,4}. 

m:m5:.4, 

m:m5:.4, 

mq+( q-1 )-4~0 

hl+mq+(q-1) {fol Umq+(q-l)du + J.N Umq+(q-l)-4du} 

(3.19) 
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For µR,N(t), we obtain (cf. Lemmata 2.1and2.4 and use H(a) = G(a) for a E [O, N -4]) 

(3.20) 

From (3.18)-(3.20), (2.10), and (2.9) we conclude 

lµN(t) - µ(t/h)I ~ Chmin{4,q}' Iµ( 7 )I ~ r-min{4,qa} { iog 7 ~s:~ = 4 (3.21) 

Together with (3.2) we get 

µN(ti)x(ti) = µ(i) { C(ih)q('Y+l/p)-l/p + 0 ((ih)q('Yi+l/p)-l/p)} 

+O (hmin{4,q}(ih)q('Y+1/p)-1/p) 

where 

f(i) 

lf(i)I 

hq('Y+l/p)-1/pj(i) + Q (lµ(i)j(ih)q(·n+l/p)-1/p + hmin{4,q}(ih)q('Y+1/p)-1/p), 

.- aµ( i)iq('Y+ifp>-1fp, 

< oi-min{q(a-"'(-1/p)+l/p,4-q('Y+l/p)+l/p} { llog i if qa = 4 
else. 

Hence, we arrive at 

< C hmin{q, 4}+q("Y+l/p)-1/p {~ iq("Y+l/p)p-1} l/p 

+Chq(·n+i/p)-1/p {~ lµ(i)IPiq(1'1+1/p)p-1} 1/p 

< a hmin{q, 4}-1/p + a hq("'f1 +l/p)-1/p . 
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. {~ i-min{4,qa}p+q(-,1+i/p)p-1} l/p. { iog h-1 ~5:a = 4 

< C hmin{ 4-1/p, qa.-1/p,q-1/p, q(·n +l/p)-1/p} . 

! log h-1 if qa = 4 and 11 -f:. a - l/p 
. (log h-1 )1/P if 11 = min{qa, 4}/q - l/p and qa -f:. 4 

(log h-1 )1+1/P if 11 =a - l/p and qa = 4 
1 else. 

This proves Lemma 3.1 iii). 

3.3 Proof of the asymptotic error estimates 

From (3.4), the stability of AN, and Lemma 3.1 we get 

I 

eN h•(-r+l/p)-l/p Af/{g( i)}f:,1 + 0 (h"'0 (log h-1 )•22 ) , (3.22) 

e3o min{4 -1/p, q -1/p, qa-1/p, q(T1+1/p) -1/p, q(l + 1) - l/p}' 

e22 .-

e20 .-

where 

e14 if g13 < min{e1s, e20} 
e11 if els < min{e13, e20} 
e21 if e20 < min{e13, els} 
max{e14, e17} if el3 = els < e20 
max{e14, e21} if e13 = e20 < els 
max{e11, e21} if e1s = e20 < e13 
max{e14, e11, e21} if U13 = l?1s = e2o , 

min{4 -1/p, q(1+1) -1/p} U21 := u if q(T + 1) = 4 
' else, 

lg(i)I < ci-fl23 (log h-1 )"25 ' 

e23 .- min{q(a -1- 1/p) + l/p, 4 - q(1+1/p) + l/p}, 

e2s ·- { :: 
max{g24, es} 

·- { 1 if qa = 4 
es .- 0 else 

if q(T- a)~ 4 
if q(T - a) < 4 and e1s < e12 
if q(T - a) < 4 and e12 = els , 

. _ { 1 if q(T + a) = 4 
' e24 . - 0 else . 

We observe that (A7) implies min{q(a-1-l/p), 4-q(T+l/p)} > 0 and {g(i)}~1 E lP. 
Hence, Theorem 2. 7 applies and we get 

eN - hq(-r+l/p)-l/p {f ( ti/ h )}f:1 + 0 ( hfl26 (log h-1 )fl27 ) (3.23) 

e26 .- min{4 - 1/p, q - 1/p, qa -1/p, q(11+1/p) - 1/p, q(l + 1) - 1/p, 
q21- 1/p}' 
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{ U22 if U3o < U31 
e21 .- U32 if U31 < U3o 

max{e22, U32} if U3o = e31 

as well as 

If ( i) I < ci-"28 (log h-1 )"29 , (3.24) 
e2s .- min{4- q(r + 1/p) + l/p, q(1 - l/p) + 1/p, q(a - 1 - 1/p) + l/p}. 

Here we have set 

where e2, e3, and e4 are the numbers defined as in Sect. 2.3 under the special choice 
/3 := U23, w := e2s· Eqs. (3.23) and (3.24) imply Theorem 1.3. 

4 APPLICATION TO THE DOUBLE LAYER EQUATION OVER POLY-
GONAL DOMAINS AND NUMERICAL TESTS 

4.1 The quadrature method for the double layer equation 

In this section we shall apply the results of Sect. 1 to the numerical solution of the 
double layer integral equation over polygonal boundaries. For definiteness, we shall 
restrict ourselves to the case p = oo. Before we consider the equation over the polygonal 
boundary let us have a look at a model problem. This model problem is the equation 
( 1.1) with the kernel function ( 1. 3) corresponding to the angle () =f. 71", 0 < () < 271". 
We note that the double layer equation over a polyhedral boundary can be written as 
a system of equations, where the main part of the matrix operator is a diagonal matrix 
the entries of which take the form of our model operator ( cf. e.g. [4, 3, 26]). 

It is not hard to derive from (1.3) that the kernel kM satisfies (A2) with the param-
eters a = 1, a.1 = 2. From the asymptotics of solutions to Mellin convolution equations 
( cf. [4, 6, 20]) we conclude the validity of (A6) with 

71" 
1= max{211" - B, B} ' 

The formula ( cf. e.g. [4]) 

- { min.c;:8 ' j} if () ~ 71" 
11 - min{ 27r~8 ' 2;} if () > 71" . 

(MkM)(e) = +sin(_[7r - B]e) 
sm( 71" e) 

for the Mellin symbol implies (A3) i) and ii). Moreover, because (1.1) is a "Wiener-Hopf'' 
equation with Mellin convolution and because either the null space or the cokernel of 
such an operator is trivial, we conclude that (A3) iii) is satisfied too. As mentioned in 
Sect. 1.2, the resolvent kernel lM is the solution of (IH + f<H)ZM = -kM. Thus the 
asymptotics in (A6) implies the relation (A4) for u ~ 0. To obtain the relation for 
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a~ oo, we perform the transformation of variables l ~ l-1 , s ~ s-1 in the equation 
(IH + k_H)lM = -kM. Observing_kM(l/r) :- kM(r) and (kH])(i-1 ) = (KHg)(l) for 
g(s) = f(s- 1 

), we conclude (IH + KH )h = -kM for h(s) = ZM(s-1 ). Since the operator 
( IH + kH) is injective, we get lM( s) = lM( 5-1 ) and the asymptotics for a ~ oo in ( A4) 
follows from that for a ~ 0. Assumption (A 7) is obvious for q = 1, 2, 3, 4. In other 
words, all the assumptions (Al)-(A 7) are fulfilled for the choice p = oo and q = 1, 2, 3, 4. 

Let us suppose p = oo and q = 1, 2, 3, 4 and consider the solution x of (1.5) with the 
kernel given by (1. 7) and (1.3). Let XN stand for the approximate solution obtained from 
(1.9) or (1.10) and let the extrapolated solution xi,,. be given by (1.23). Furthermore, let 
us consider a smooth function g : [O, 1] ~ JR. From Theorem 1.1, Corollary 1.5 and 
Theorem 1.6 we get 

llx - XNllL 00 [0,1] < Chq"", ( 4.1) 

sup lx(t) - XN(t)I < Chq { iog h-1 if q = 4 ( 4.2) 
E:~t9 else, 

t I Chq { iog h-1 if q = 4 
0 

xg-h'l;xN(t;)g(t;) < else, (4.3) 
J 

sup lx(t,:) - xiv(ti)I < Chq { iog h-1 if q = 4 ( 4.4) 
i=l, ... ,N else. 

The estimates ( 4.2)-( 4.4), however, can be improved. Namely, using the special form 
(1.3), it is not hard to conclude that 

1(8/8a)4
kM m ;1 

f 1(8/8a)4
kM m ;1 da 

Hence, instead of (2.10) we even have lµ(r)I ~ cr-4 • On the other hand, the choice 
j. = 0 and p = oo leads to µT,N = 0 and µs,N = O(h4 ) (cf. (3.18) and (3.19)). This 
means that Lemma 3.1 iii) holds without the factor logi in the estimate for IJ(i)I and 
with g15 , g16, and e11 replaced by 4- q-y, min{ 4, q-y1}, and 0, respectively. Applying this 
result in the proof of Sect. 3.3, we arrive at (3.22), (3.23), and (3.24) with e23, g25 , g30 , 

e22, e2a, e29, e2s, and e21 replaced by min{4-q1, q}, 0, min{4, q-y1}, 0, min{4-q1, q1}, 

_ { 1 if q = 3 and () E { ~, 3
;} 

e29 - 0 else ' 

min{ 4, q11 }, and g29 , respectively. Finally, from this improved error expansion, we get 

sup lx(t) - XN(t)I < Chmin{4,q·n} { iog h-1 if q = 3 and () E {~, 3;} ( 4.5) 
E:99 else, 

t I 
Chmin{4,ort1} { iog h-1 if q = 3 and () E {~, 3;} ( 4.6) 

O xg - h'l; XN(t;)g(t;) < else, 
3 
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Now we turn to the double layer equation over the polygonal boundary and introduce 
the same quadrature method as in (26]. Let n be a bounded simply connected polygon, 
and let r denote its boundary. The Dirichlet problem for Laplace's equation 

6U( t) = 0, t E n, 
Ulr = g 

( 4.8) 

with a continuous function g, can be reduced to the second kind integral equation ( cf. 
e. g. [20, 3]) 

(I - 2W)x -

(W x )(t) 

-2g, 
1 l v( s) · ( t - s) 1 - I 12 x(s)dsr - -2x(t)x(t), t Er, 27r r t - s 

( 4.9) 

(4.10) 

where v(s) is the exterior normal of !l at s E I' = 80 and x(s) E (-1, 1) is chosen 
such that [1 + x( s )]7r is the exterior angle between the tangents to r at t as t ~ s±. 
Especially, x( s) = 0 ifs is not a corner point of r. We shall consider ( 4.9) in the space of 
continuous functions. Taking into account that the constant functions are eigenfunctions 
of W corresponding to the eigenvalue -1/2, we can write ( 4.9) as 

1 l v( s) · ( t - s) 2x(t)-- I 12 [x(s)-x(t)]dsr=-2g(t), tEr. 
7r r t - s 

( 4.11) 

Let Ne stand for the number of corners of r and suppose r is parameterized by the 
function (0, Ne] 3 a 1---t I'(a) such that {I'(l), l = 0, 1, ... , Ne} are the corner points 
of r. Moreover, we suppose I'(O) -, I'(Ne) and that [l, l + 1] 3 a 1---t I'(a) is linear for 
l = 1, 2, ... , Ne. We fix an integer N ~ 1 and a real number q ~ 1 and introduce the 
graded mesh 

t~N) := (t r, s~~1,; := r(/ -1+ t~N) /2), s~f.] := r(I - t)Nl /2), 
l = 1, 2, ... , Ne, j = 0, 1, ... , N. 

For the quadrature, we introduce the rule ( cf. (1.8)) 

£f(s)dsI' 

g lr'(I ~ 1/
2)1 {{ f (r(l -1 + aq/2))qaq-1da +ff (r(I - aq/2))qaq-1da} 

f'j ~ II''(l + 1/2)1 {h """'!( (N) ·) (j_)q-l + h ""''J(s(N~) (j_)q-l} 
L, 2 ~ 82z-1,, q N ~ 2z,, q N 
l=l 1 1 

-. 2:* f(sf~))wz,j. 
l,j 
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If we substitute in ( 4.11) the point t by sC:,} and replace the integration by the quadrature, 
then we arrive at the following generalization of the quadrature method (1.9). 

( (N)) ( (N) (N)) 
(N) 1 "'* V 8 1,j . 8 m,i - 81,j (N) (N) _ (N) 

2xN(sm,i)-;~ (N) _ (N) 2 [xN(sz,j )- XN(smJ]wz,j - -2g(sm,i), (4.12) 
l,1 l8 m,i 8 z,j I 

m=l,2, ... ,2Ne, i=l, ... ,N. 

This quadrature method together with a modification ( cf. method (1.9) and its modifica-
tion (1.10)) is well-known to be stable and convergent ( cf. e.g. [26]). Now we introduce 
the interior angle Bz := [1 - x( l)]7r at the l-th corner and set 

ll 
7r .- max{27r - Bz, Bz} ' 

1i 
{ min{ 2

" "} if Bz ~ 7r 27r-8z' Bi 
min{-'/f'- 2'/f'} if Bz > 7r , 27r-8z' Si 

lr .- min{1l, l = 1, 2, ... , Ne}, 
11,r .- min{1L l = 1,2, ... ,Ne}. 

Using the approximate solution XN from ( 4.12), we define the extrapolated solution by 
(cf. (1.23)) 

( 4.13) 

where Li is again the largest non-negative integer such that i ~ 2-Li N. Furthermore, let 
g denote a smooth function over r. Then, analogously to the estimates (4.1),(4.5)-(4.7), 
we obtain 

llx - XNllL00 (r) < Chqrr, ( 4.14) 

{ log h-
1 if q = 3 

sup lx(t) - XN(t)I < Chmin{4,<n1,r} l and 11,r = 4/3 ( 4.15) 
e~lt-r(l)I, l=l, ... ,Nc else, 

{ log h-
1 if q = 3 fr - I:* ( (N)f ( (N)) < C h min{ 4, <ni,r} l and 11,r = 4/3 r xg - . XN Sz,j g Sz,j Wl,j 

l,J else, 
( 4.16) 

{ log h-
1 if q = 3 

( (N)) e ( (N))I < Chmin{4,<n1,r} l and 11,r = 4/3 ( 4.17) sup Ix 8 z,i - x N 8 1,i 
l=1, ... ,2Nc, else. 

i=l, ... ,N 
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4.2 Numerical tests 
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Figure 1: Dirichlet error. 

lE +03 lE +04 

For a numerical example, we take the equilateral triangle n = 6.ABC with corner 
points A := (-1/2, 0), B := (1/2, 0), and C := (0, VJ/2). We consider the harmonic 
function U(t) := U(1t, 2t) :=log j(1t - 0.1)2 + (2t - e - 0.15)2 and get 

1 fr v( s) · ( t - s) 
U(t) = - I 12 x(s)d,,r, t En, 

27r r t - s 
( 4.18) 

where x is the solution of (I - 2W)x = y := 2Ulr· In accordance with Sect.4.1 we 
determine an approximate solution XN of x by the quadrature method ( 4.12). Note that 
the number of linear equations in ( 4.12) is equal to 3 · (2N - 1). For the interior point 
t# = (0.1, 0.15), we compute the approximation 

( (N)) (t# (N)) 
U ( #) _ 1 ~· v sl,j · - sl,j ( (N)) N t - 2 L.J (N) XN Sl,j WL,j 

7r z,; It# - sz,; 1
2 

( 4.19) 

of U(t#) = 1. By DEN we denote the error IUN(t#) - U(t#)I of the Dirichlet solution 
U at t# and by SEN the supremum norm error llxN - XN/2llL= ~ llx - xNll£00 of the 
solution x to the integral equation. 

The last supremum is computed over the coarser grid { s~~/2)}. Furthermore, for the 
orders /35 and /3D of the errors SEN~ h/3 5 and DEN ~ h/3D, we determine the approxi-
mate values /3f.r :=-[log SEN-log SEN/2]/ log 2 and /3fJ :=-[log DEN-log DEN/2]/ log 2. 
Finally, we compute the extrapolated solution xN- following ( 4.13) and consider the supre-
mum norm error EEN := llxN-12 - xjy14 llL= ~ llx - xN-llL= and the convergence order 
/3~ := -[log EEN - log EEN/2]/ log 2. In Table 1 ( cf. Figure 1-3) we present the corre-
sponding numerical results. Numerical test over other triangles and with different kind 
of Dirichlet data yield similar errors. 
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I q I N.I DEN 
1 8 0.00047 

16 0.0000032 7.19 0.1148 0.08355 
32 0.00000035 3.20 0.0735 0.64 0.01569 2.41 
64 0.000000014 4.62 0.0477 0.62 0.00674 1.22 

128 0. 00000000054 4.72 0.0311 0.61 0.00292 1.21 
256 0.000000000021 4.65 0.0204 0.61 0.00127 1.20 
512 0.00000000000093 4.52 0.0134 0.60 0.00055 1.20 

1024 0.000000000000047 4.31 0.0089 0.60 0.00024 1.20 
2 8 0.0014 

16 0.00023 2.63 0.02744 0.0255233380 
32 0.00000056 8.66 0.01195 1.20 0.0000950151 8.07 
64 0.00000015 1.96 0.00520 1.20 0.0000079896 3.57 

128 0.0000000063 4.51 0.00226 1.20 0.0000014369 2.47 
256 0.00000000020 4.99 0.00099 1.20 0. 0000002683 2.42 
512 0. 0000000000048 5.37 0.00043 1.20 0.0000000506 2.41 

1024 0.000000000000042 6.86 0.00019 1.20 0. 0000000096 2.40 
3 8 0.00544 

16 0.00109 2.32 0.059912 0.0386 
32 0.000042 4.70 0.016680 1.84 0.0023330037 4.05 
64 0.00000023 7.47 0.004753 1.81 0.0001926554 3.60 

128 0. 000000034 2.78 0.001362 1.80 0.0000158881 3.60 
256 0.0000000012 4.73 0.000391 1.80 0.0000013096 3.60 
512 0.000000000032 5.31 0.000112 1.80 0. 0000001080 3.60 

1024 0.00000000000019 7.39 0.000032 1.80 0.0000000089 3.60 
4 8 0.0197 

16 0.00148 3.73 0.1024866 0.051365 
32 0.000212 2.80 0.0190687 2.42 0.001789 4.84 
64 0.00000195 6.77 0.0035983 2.41 0.00006329517 4.82 

128 0.000000093 4.39 0.0006812 2.40 0.00000223962 4.82 
256 0. 0000000048 4.28 0.0001290 2.40 0. 00000008362 4.74 
512 0. 00000000014 5.11 0.0000245 2.40 0.00000000453 4.21 

1024 0.0000000000017 6.38 0.0000046 2.40 0. 00000000025 4.17 

Table 1: Errors and orders of convergence. 

The results of Table 1 ( cf. Figure 1) show that the approximate values UN( t#) of 
the linear functional U( t#) of x converge with an order which is much higher than the 
predicted one ( cf. ( 4.16)). Moreover, it turns out that quite good approximations can 
be obtained already with the choice q = 1. This high order is due to the cancellation of 
low order terms arising in the error expansion from different sides of the triangle. We 
suggest that such a cancellation happens for all polyhedra and for all computations of 
function values at fixed points in the interior of the domain. However, numerical tests for 
the Mellin convolution equation over the interval with kernel (1.3) show that the order 
in ( 4.6) cannot be improved. 

If the equation (I - 2W)x = y corresponds to a direct boundary integral formulation 
for the Neumann problem, then the solution x itself is of interest. For this case or for 
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Figure 2: Supremum norm error. 

the computation of U(t) with t close to the boundary r, small errors SEn or EEN are 
required. Table 1 ( cf. Figure 2) shows that the convergence order {3f., of SEN tends to 
0.6 · q. Since /r = 0.6, the estimate ( 4.14) is confirmed. The extrapolated solution xjy 
converges ( cf. Figure 3)also with the predicted order 1.2 · q ( cf. ( 4.17) ). 
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