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Abstra
tThe topi
 of this study 
on
erns the stability of the three-phase 
onta
t-line of a dewetting thin liquid �lm on a hydrophobised substrate driven byvan der Waals for
es. The role of slippage in the emerging instability at thethree-phase 
onta
t-line is studied by deriving a sharp-interfa
e model for thedewetting thin �lm via mat
hed asymptoti
 expansions. This allows for aderivation of travelling waves and their linear stability via eigenmode analysis.In 
ontrast to the dispersion relations typi
ally en
ountered for the �nger-instabilty, where the dependen
e of the growth rate on the wave number isquadrati
, here it is linear. Using the separation of time s
ales of the slowlygrowing rim of the dewetting �lm and time s
ale on whi
h the 
onta
t linedestabilises, the sharp-interfa
e results are 
ompared to earlier results for thefull lubri
ation model and good agreement for the most unstable modes isobtained.1 Introdu
tionConta
t-line instabilities for thin liquid �lms that wet a solid substrate havebeen studied for de
ades, both theoreti
ally and experimentally. The instabil-ities are typi
ally driven by for
es su
h as gravity [1, 19, 44, 46℄, Marangonistresses or both [2, 6, 8, 14, 21℄. The derivation of redu
ed mathemati
almodels exploits a separation of length s
ales to obtain a simpli�ed lubri
ationmodel from the underlying Navier-Stokes equations in 
onjun
tion with 
on-servation of mass. The stress singularity at the three phase 
onta
t line, whi
his inherited by the resulting fourth-order partial di�erential equation, is regu-larized for example via a slip boundary 
ondition or pre
ursor model, wherethe height of the pre
ursor or the slip length is usually mu
h smaller than theheight of the a
tual wetting �lm. The 
hoi
e of the boundary 
ondition atthe three phase 
onta
t line typi
ally enters only weakly in that it does notin�uen
e the eventual appearan
e of �ngers: see for example [1, 21, 24, 29℄.In 
ontrast to the wetting s
enarios the �lm thi
kness in dewetting exper-iments is typi
ally smaller by orders of magnitude. The physi
al situation
onsists of a thin vis
ous polymer �lm that is uniformly spread on a substratesu
h as a sili
on wafer with a hydrophobi
 
oating. For su
h a multi-layeredsystem one 
an re
onstru
t the disjoining pressure from a 
orresponding inter-mole
ular potential whi
h is 
omposed of repulsive and attra
tive long-rangevan der Waals 
ontributions and a short-range term whi
h a

ounts for Born-type repulsion, see e.g. [39, 40℄. The latter term provides a 
ut-o� by penal-izing a thinning of the �lm below a positive thi
kness threshold given by theminimum of the potential. For su
h a situation the thin �lm dewets in a pro-
ess that is initiated either spontaneously through spinodal de
omposition or1



indu
ed through nu
leation for example. The dry spots, or holes, that form asa result subsequently grow as the newly formed 
onta
t line re
edes, therebya

umulating liquid in a 
hara
teristi
 
apillary ridge at the edge of the hole,whi
h in
reases in width and height as the dewetting pro
eeds. In a variety ofexperimental situations it is observed that, while in some 
ases the growth ofthe hole 
ontinues until it 
ollides with neighboring holes, in others the ridgeof the hole destabilizes into �nger-like stru
tures eventually pin
hing o� andforming droplets. Su
h �nger-like 
onta
t-line instabilities have also been ob-served for straight dewetting fronts as opposed to radially symmetri
 fronts,see [23, 31, 35, 38, 41, 42, 48℄. Be
ause of the impa
t this has on the emergingma
ros
opi
 pattern, it is important to understand the dynami
s leading tosu
h an instability.For su
h situations, the relevan
e of slippage at the liquid/solid interfa
efor the instability have been dis
ussed by several authors, [25, 28, 30, 37, 43℄.In [3, 20, 33℄ the dewetting rate and shape of the ridge has been treated usingapproximate formulas derived from s
aling arguments and energy balan
es.However, in order to 
apture the dynami
s of the 
onta
t-line instability itis 
onvenient to des
ribe the evolution of the �lm surfa
e z = h(x, y, t) via alubri
ation approximation that in
ludes the in�uen
e of surfa
e tension andthe intermole
ular potential φ(h) of the air/liquid/solid layer. Coordinates areintrodu
ed here so that x, y denote the dire
tions parallel to the substrate,and z the dire
tion normal to it. In this 
ase the pressure at z = h(x, y, t) isgiven by
p = −∆h+ φ′(h). (1.1)where φ′(h) is the �rst derivative of the intermole
ular potential with respe
tto the liquid �lm thi
kness h. A typi
al 
hoi
e for φ(h), and the one we willadopt in this paper, is [39℄

φ′(h) = ǫ−1Φ′(h/ǫ), where Φ(h) =
1

8h8
− 1

2h2
. (1.2)Note that Φ′(1) = 0 and Φ′′(1) > 0, so that φ has a minimum at h = ǫ ≪ 1.This implies that very thin �lms with a thi
kness s
ale of ǫ are energeti
allypreferred to in parti
ular thi
ker �lms whi
h therefore tend to dewet. Makinguse of the length s
ale separation in the x, y vs. z dire
tion, one 
an thenderive the lubri
ation model [32℄ from the Navier-Stokes equation and (1.1)

ht + ∇ ·
[

hn∇
(

∆h− φ′(h)
)]

= 0, (1.3)stated here (as are all equations in this paper) in non-dimensional form. Here
hn is the mobility 
oe�
ient, where the power n depends on the boundary
onditions at the liquid/solid interfa
e. A widely used 
ondition relates theslippage velo
ity u of the liquid at the wall to the lo
al shear rate uz via

u = b uz, (1.4)where the slip length b 
an be thought of as the distan
e below the interfa
eat whi
h the liquid velo
ity extrapolates to zero. For the above slip boundary2
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Figure 1: (a) Sket
h of a 
ross se
tion of a dewetting rim. (b) Sket
h of a top viewof a (perturbed) ridge for a sharp-interfa
e model, showing the domain Ω o

upiedby the ridge and the two free boundary 
urves Γ±.
ondition at the substrate, the typi
ally used no-slip boundary 
ondition isobtained if b = 0. On the other hand, stuying the hydrodynami
 eaquationsfor di�erent orders of magnitude of b it was shown, using asymptoti
 analysis[30℄, that a hierar
hy of lubri
ation models emerge. One of them with themobility h2 has the distin
t property that it des
ribes dewetting �lms with adewetting rate of t1/3, [27℄. For this 
ase travelling-wave solutions were derivedusing mat
hed asymptoti
 expansions [30℄. In [28℄ a linear stability analysisshowed that small perturbations of the re
eding front are ampli�ed, but inthe slip 
ase by orders of magnitude larger than in the no-slip 
ase. More-over, while the perturbations be
ome symmetri
al in the no-slip 
ase, theyare asymmetri
al and in [26℄ it was shown that these properties 
arry overinto the nonlinear regime of the lubri
ation models. In the 
ontext of lubri
a-tion models for dewetting thin �lms [13℄ derived asymptoti
 solutions for theshape of the dewetting ridges, their dewetting rates and for the limiting 
aseof the mobility h3 their 
onta
t-line instability was investigated via mat
hedasymptoti
 expansions. In this study we will investigate the linear stabilityof the 
onta
t-line for the lubri
ation model with mobility h2 by deriving �rsta sharp-interfa
e model. This also enables us to separate the slow growth ofthe rim from the faster time-s
ale on whi
h the 
onta
t line destabilizes. Asa result, the linear stability analysis 
an be redu
ed to an eigenvalue analysis.Note here that in the 
ontext of spreading liquid droplets, [15, 16, 17℄ intro-du
ed a variational approa
h leading to redu
ed models for the motion of the
onta
t line for the no-slip 
ase.We begin our study by �rst deriving the sharp-interfa
e model in se
tion 2.The we �rst derive their travelling waves in se
tion 3 and study their stabilityin se
tion 4. Finally we 
ompare our results the those for the full lubri
ationmodel studied in [26, 28℄.
3



2 Derivation of the sharp-interfa
e model2.1 Outer ProblemWe 
onsider here equation (1.3) for n = 2, i.e.
ht + ∇ ·

[

h2∇ ·
(

△h− ε−1
1 Φ′ (h/ε1)

)]

= 0, (2.1)and far �eld 
onditions
lim

x→−∞
h(x, y, t) = ε1, and lim

x→+∞
h(x, y, t) = 1, (2.2)where ε1 ≪ 1. This formulation is 
onvenient, for example, for numeri
alsimulations, where the unperturbed �lm thi
kness is held �xed and the growthof the rim is observed. For the derivation of the sharp interfa
e model, it isimportant that both the residual �lm on the left and the unperturbed �lmon the right are mu
h smaller in height of than the a
tual rim. Therefore,we res
ale the �lm pro�le h by a quantity 1/β that is large 
ompared to theunperturbed �lm thi
kness, i.e., β << 1, but at most of the order of thetypi
al ridge height. To maintain the form of the governing equation and thepotential, the other variables are s
aled a

ordingly, i.e.

h =
1

β
h̃, x =

1

β
x̃, y =

1

β
ỹ, t =

1

β2
t̃. (2.3)Introdu
ing these s
alings yields, after dropping ∼ 's,

ht + ∇ ·
[

h2∇ ·
(

△h− ε−1Φ′ (h/ε)
)]

= 0, (2.4)and far �eld 
onditions
lim

x→−∞
h(x, y, t) = ε, and lim

x→+∞
h(x, y, t) = β, (2.5)where ε ≡ ε1β ≪ β ≪ 1. This is the appropriate outer s
aling for thesubsequent derivations.2.2 Transformation to inner 
oordinates near the 
on-ta
t lineLet x = (x, y) be a point in the neighborhood of the 
onta
t line Γ−, parametrizedby r

−(t, s) = (r−1 (t, s), r−2 (t, s)), where s denotes ar
length. Then
x = r

−(t, s) + εχν(t, s) (2.6)de�nes the boundary layer with χ being the boundary layer or `inner' vari-able. The normal ν(t, s) = (−r−2s(t, s), r
−
1s(t, s)) and the tangential unit ve
tor

t(t, s) = (r−1s(t, s), r
−
2s(t, s)) are 
hosen so that (t,ν) is a right hand system,and ν points into the ridge, i.e. into Ω, see �gure 1(b). In the inner region theheight is mu
h smaller and we set

h = εv (2.7)4



Making use of appendix A in [22℄ we obtain the expression
∇ ·
(

h2∇p
)

= ε2
[

2v
(

r−1s(1 − εχκ)vs + ε−1r−2svχ

) (

r−1s(1 − εχκ)ps + ε−1r−2spχ

)

+2v
(

r−2s(1 − εχκ)vs − ε−1r−1svχ

) (

r−2s(1 − εχκ)ps − ε−1r−1spχ

)

+v2
(

ε−2pχχ + ε−1κpχ + pss − χκ2pχ

)] (2.8)where
p = −ε−1

(

vχχ − Φ′(v)
)

− κvχ − ε
(

vss − χκ2vχ

) (2.9)Hen
e, to leading order in ε the se
ond term of (2.4) is
∇ ·
(

h2∇p
)

∼ ε−1
[

v2
(

vχ − Φ′(v)
)]

χ
(2.10)Sin
e the �rst term of (2.4) is transformed to

ht = −εV t(1 − εzκ)vs + V νvz + εvt (2.11)the leading order the inner problem be
omes
[

v2
(

vχχ − Φ′(v)
)]

χ
= 0 (2.12)together with the boundary 
onditions

lim
χ→−∞

v = 1, lim
χ→−∞

vχ = 0, lim
χ→−∞

vχχ = 0 . (2.13)Integrating (2.13) twi
e, using the fa
t that the potential satis�es Φ′(1) = 0sin
e Φ has a minimum there, we get vχχ = Φ′(v), hen
e
vχ = 21/2 (Φ(v) − Φ(1))1/2 . (2.14)For mat
hing we need the behavior for large χ, whi
h is

vχ → 21/2 (−Φ(1))1/2 ≡ λ as χ→ ∞. (2.15)Transformation ba
k to outer variables via
v = χλ , where χ =

(x − r) · ν
ε

,yields
h = (x − r) · ν λ. (2.16)The sharp-interfa
e model then results from the leading order outer prob-lem, together with the boundary 
ondition found by mat
hing to (2.16),

ht = −∇ · (h2∇△h) , in Ω (2.17)
∂h

∂ν

= λ , h = 0 , h
∂

∂ν

△h− V −
ν = 0 on Γ−, (2.18)where the third boundary 
ondition in (2.18) arises by letting χ→ ∞, v → ∞in (2.12). In (2.18), we have introdu
ed the notation

V −
ν ≡ r

−
t · ν. (2.19)Next, we derive the boundary 
ondition on Γ+.5



2.3 Transformation to inner 
oordinates near undis-turbed �lmHere we let x = (x, y) be a point in the neighborhood of the sharp interfa
e
Γ+, parametrized by r

+(t, s) = (r+1 (t, s), r+2 (t, s)). Then
x = r

+(t, s) + βγζν(t, s) (2.20)de�nes the boundary layer with ζ being the `inner' variable, where the s
alingexponent γ remains to be determined. As before, the normal unit ve
tor
ν(t, s) = (−r+2s(t, s), r

+
1s(t, s)) points into ridge (�gure 1(b)) and the tangentialunit ve
tor t(t, s) = (r+1s(t, s), r

+
2s(t, s)) is 
hosen so that (t,ν) form a righthand system.In this se
ond inner region we set

h = βu (2.21)To leading order in β we �nd for ht the expression
ht ∼ −β1−γV νuζ ∼ −β1−γ

(

r
+
t · ν

)

uζ (2.22)and we have
∇ ·
(

h2∇
(

△− ε−1Φ (h/ε)
)

)

∼ β3−4γ
(

u2
(

uζζ − β2γ−1ε−1Φ (βu/ε)
)

ζ

)

ζ(2.23)A travelling-wave balan
e for the moving rim thus requires
γ =

2

3
(2.24)In order for the intermole
ular for
es to play no role in this region we require

O
(

β2γ−1ε−1Φ (βu/ε)
)

≪ 1 (2.25)whi
h introdu
es a restri
tion on β in terms of ε, namely ε2 ≪ β8/3. Hen
e,we obtain for the leading order inner problem near the undisturbed �lm
−V +

ν (s, t)uζ +
(

u2uζζζ

)

ζ
= 0 (2.26)where

V +
ν (s, t) ≡ r

+
t · ν (2.27)This we integrate with respe
t to ζ and use the far �eld 
ondition

lim
ζ→−∞

u = 1 (2.28)to obtain
−V +

ν (s, t) (u − 1) + u2uζζζ = 0 (2.29)For the mat
hing to the outer problem we res
ale �rst ζ = η/(−V +
ν )1/3 toobtain the equation

uηηη =
u− 1

u2
. (2.30)6



See for example [47℄, where this equation has been dis
ussed. Note that we
an assume that as long as the basi
 motion of the rim in outer 
oordinates isto the right (i.e. in the positive dire
tion of the x-axis), V +
ν (s, t) is negative,hen
e the orientation is not reversed by the res
aling from ζ into η variables.Therefore, the �at �lm far �eld 
ondition and the mat
hing 
onditions areimposed at η → −∞ and η → +∞, as before. Equation (2.30) has a solutionwith leading order behavior

u(η) ∼ 2 (2/3)1/2 η3/2 as η → +∞ (2.31)and hen
e
u(ζ) ∼ 2 (2/3)1/2 (−V +

ν )1/2ζ3/2 (2.32)as ζ → ∞. In outer s
ales we obtain
h = 2 (2/3)1/2 (−V +

ν )1/2
(

(

x− r
+
)

· ν
)3/2 (2.33)as the appropriate mat
hing 
ondition.Finally we get for the sharp-interfa
e model

ht = −∇ · (h2∇△h) , in Ω (2.34a)
h = 0 ,

∂h

∂ν

= λ , h
∂

∂ν

△h− V −
ν = 0 on Γ−, (2.34b)

h ∼ 2 (2/3)1/2 (−V +
ν )1/2

(

(

r
+ − x

)

· ν
)3/2 as x→ r

+ (2.34
)For the subsequent dis
ussion of the sharp-interfa
e model it is 
onve-nient to introdu
e the parametrization of Γ− and Γ+ as graphs of fun
tionsof s−(y, t) and s+(y, t), i.e. y 7→ (−y,−s−(y, t)) and y 7→ (y, s+(y, t)), respe
-tively. We obtain the following expressions for the tangent and normal unitve
tors
t
− =

(−s−y ,−1)
√

(s−y )
2
+ 1

and ν
− =

(1,−s−y )
√

(s−y )
2
+ 1

, (2.35)on Γ−, and
t
+ =

(s+y , 1)
√

(s+y )
2
+ 1

and ν
+ =

(−1, s+y )
√

(s+y )
2
+ 1

, (2.36)on Γ+.3 Travelling-wave solutionsWe now assume that the base state is a travelling wave that moves with 
on-stant speed c and does not depend on y. The ansatz is h = h0(x̄), where
x̄ = x− ct, and s̄±0 = s±0 − ct, with 
onstant s̄±0 (i.e. independent of x̄, y or t).Inserting the new variables, we obtain, after dropping the bars,

h0h0xxx = c , (3.1a)
h0 = 0 , h0x = λ , h2

0h0xxx = 0 on x = s−0 , (3.1b)
h0 ∼ 2 (2/3)1/2 c1/2

(

s+0 − x
)3/2 for x→ s+0 . (3.1
)7



Here we have integrated the resulting ODE on
e and used the boundary 
on-ditions to �x the 
onstant of integration.We 
an res
ale (3.1a)-(3.1
) to eliminate c and λ via
h0 = (λ3/c)ϕ0, x = (λ2/c)ξ + s−0 , s+0 = (λ2/c)d+ s−0 , (3.2)whi
h yields (with ′ = d/dξ):

ϕ0ϕ
′′′
0 = 1 , (3.3a)
ϕ0 = 0 , ϕ′

0 = 1 , ϕ2
0ϕ

′′′
0 = 0 on ξ = 0, (3.3b)

ϕ0 ∼ 2 (2/3)1/2 (d− ξ)3/2 for ξ → d. (3.3
)Note that this 
an be integrated to
ϕ0ϕ

′′
0 − 1

2
ϕ2

0 = ξ − d . (3.4)We now dis
uss solutions of (3.3). Note �rst that the fun
tion on the righthand side of (3.3
) is itself an exa
t solution of the ODE (3.3a). The generalexpansion for solutions of (3.3a) with the leading-order behaviour at ξ =
d required by (3.3
) suggests a one-parameter (in addition to d) family ofsolutions and is given by
ϕ0(ξ) = 2 (2/3)1/2 (d− ξ)3/2 + a+(d− ξ)3/2+µ +

∞
∑

n=2

a+
n (d− ξ)3/2+µn (3.5)Here, µ denotes the 
onstant µ =

(

−1 +
√

13
)

/4 and a+ is a free parameter.The 
oe�
ients a+
n must be determined re
ursively from the ODE for n ≥ 2.Similarly, at ξ = 0, we have a one parameter family of solutions thatsatisfy the relevant boundary 
onditions (3.3b). In fa
t, in [7℄, Bu
kinghamet al. �nd a general series expansion for (3.3a) at ξ = 0 that satis�es h(0) = 0with two free parameters. Using the form given by the authors and enfor
ingthe boundary 
onditions (3.3b) to �x one of the two free parameters, we obtain

ϕ0(ξ) = ξ + (1/2)ξ2 ln ξ + a−ξ2 +

∞
∑

n=3

n
∑

m=2

a−nmξ
n(ln ξ)n−m at ξ = 0. (3.6)Here, a− is the remaining free parameter, and the a−mn must be determinedre
ursively from the ODE.In summary, we have, for ea
h boundary point a two-dimensional invari-ant manifold of traje
tories in the three-dimensional phase spa
e of (3.3a).Solutions of (3.3) arise from interse
tions of these manifolds. These are 
o-dimension one Interse
tions so that we expe
t a dis
rete family of solutions,for a dis
rete family of d. In fa
t, as pointed out by [13℄, upon integrating(3.3a) on
e and imposing the boundary 
onditions, one �xes the 
onstant ofintegration and also obtain a single value for d,

d =
1

2
. (3.7)8
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Figure 2: The normalized base state for the base state of the slip model, obtainedas numeri
al solution of (3.3).We solved this problem numeri
ally, using LSODE [18℄ to solve (3.3a) withinitial 
onditions obtained from the series expansion imposed at ξ = ξ1 and
ξ = 1/2−ξ1, with a small ξ1. Continuity of the solution and its derivative wasimposed at the mid point ξ = 1/4 and these 
onditions solved numeri
ally for
a− and a+ by Newton iterations. We obtained a− = −2.175 and a+ = −2.226.The solution ϕ0 is shown in �gure 2.4 Linear stability4.1 FormulationWe �rst shift the governing equations of the sharp-interfa
e model (2.34) tothe moving frame of referen
e also used in (3.1), by letting x̄ = x − ct, and
s̄± = s± − ct, where now s̄± may be a non-
onstant fun
tion depending on yand t. After introdu
ing the new variables, we drop the bars to give
ht − chx + ∇ · (h2∇△h) = 0 , (4.1a)
h = 0 ,

hx − hys
−
y

(

1 + (s−y )2
)1/2

= λ,

h2
△hx −△hys

−
y

(

1 + (s−y )2
)1/2

− (s−t + c)h
(

1 + (s−y )2
)1/2

= 0, for x = s−y , (4.1b)
h ∼ 2 (2/3)1/2

(

s+t + c
(

1 + (s+y )2
)1/2

)1/2(

s+ − x
(

1 + (s+y )2
)1/2

)3/2 as x→ s+.(4.1
)To address linear stability we now let
s± ∼ ±s0 + βs±1 (t) eiky, h ∼ h0 + βh1(x, t) e

iky , (4.2)where h0, s±0 denotes the solution of (3.1) obtained in the previous se
tion 3,whi
h serves as our base state. To O(β) we get
h1t − ch1x +

[

h2
0(h1xxx − k2h1x)

]

x
− k2h2

0(h1xx − k2h1) = 0 (4.3)9



with boundary 
onditions
h1 + λ s−1 = 0 , (4.4a)

h1x + h0xx s
−
1 = 0 , (4.4b)

h2
0h1xxx − ch1 = 0 , (4.4
)as x→ s−0 and

h1 ∼ 61/2c1/2s+1
(

s+0 − x
)1/2 (4.5)as x→ s+0 .We make the ansatz

[ s±1 (t), h1(x, t) ] = [ ŝ±, ĥ(x) ] eαt (4.6)and obtain from (4.3)-(4.5) and the variable transformation
x =

λ2

c
ξ + s−0 , k =

c

λ2
q, (4.7a)

s+0 =
λ2

2c
+ s−0 , s−1 =

λ2

c
d−1 , s+1 =

λ2

c
d+
1 , (4.7b)

h0 =
λ3

c
ϕ0, h1 =

λ3

c
ϕ1, α =

c2

λ2
σ, (4.7
)the eigenvalue problem

−σϕ1 =
(

ϕ2
0

(

ϕ1ξξ − q2ϕ1

)

ξ

)

ξ
− q2ϕ2

0

(

ϕ1ξξ − q2ϕ1

)

+ ϕ1ξ , (4.8a)
ϕ1ξ = ϕ0ξξϕ1 , ϕ2

0ϕ1ξξξ − ϕ1 = 0 , at ξ = 0, (4.8b)
ϕ1 ∼ 61/2d+

1 (1/2 − ξ)1/2 as ξ → 1/2, (4.8
)where ϕ0 is the res
aled base state, i.e. the solution of (3.3). Note that wehave used (4.4a), (4.4b) to eliminate s−1 i.e. d−1 from (4.8b). Note also thatthe leading behavior of ϕ0ξξ in (4.8b) 
an be obtained by taking derivatives of(3.6),
ϕ0ξξ =

3

2
+ 2a− + ln ξ +O(ξ ln ξ) for ξ → 0. (4.9)The general solution of the linear ODE (4.8a) 
an be found as a linear
ombination of four basis fun
tions with the following distin
t types of leading-order behaviour,

ψ−
1 ∼ 1+o(ξ2), ψ−

2 ∼ ξ+o(ξ2), ψ−
3 ∼ ξ ln ξ+o(ξ2), ψ−

4 ∼ ξ2, as ξ → 0.(4.10)In view also of (4.9), a linear 
ombination h1 =
∑4

i=1 ciψ
−
i satis�es only (4.8b)if c3 = c1 and c2 = (1/2 + 2a−) c1, i.e. in e�e
t two 
onditions are imposedat the boundary ξ = 0. The general solution of the ODE that satis�es theboundary 
ondition is then given by

ϕ1 = c−1 φ
−
1 + c−2 φ

−
2 , (4.11a)10



where
φ−1 = 1 +

(

1

2
+ 2a−

)

ξ + ξ ln ξ +O(ξ2 ln ξ), (4.11b)
φ−2 = ξ2 +O(ξ2 ln ξ), (4.11
)as ξ → 0.Similarly, the four possible leading order behaviors as ξ → 1/2 are givenby (1/2 − ξ)ρ with ρ = 0, 3/2 − µ, 1/2, and 1 + µ, where µ = (1 +

√
13)/4denotes the same 
onstant as in se
tion 3. Only the last two power-law be-haviours are 
onsistent with the boundary 
ondition (4.8
), where the se
ondlast 
orresponds to a shift in lo
ation of the interfa
e, i.e. we also e�e
tivelyimpose two 
onditions at the right boundary, yielding the total of four 
ondi-tions required for a fourth order eigenvalue problem. The general solution of(4.8a) that satis�es (4.8
) is given by

ϕ1 = c+1 φ
+
1 + c+2 φ

+
2 , (4.12a)where

φ+
1 ∼ (1/2 − ξ)1/2, (4.12b)
φ+

2 ∼ (1/2 − ξ)(5+
√

13)/4. (4.12
)as ξ → 1/2.4.2 Numeri
al 
onstru
tionTo obtain the eigensolutions we use use a 
onstru
tion based on the idea ofEvans fun
tions, [9, 10, 11, 12℄. For σ to be an eigenvalue, there must exist
c±1 and c±2 so that c−1 φ−1 + c−2 φ

−
2 and c+1 φ+

1 + c+2 φ
+
2 are non-zero and equal for

0 ≤ ξ ≤ 1/2. Then, the 
ommon fun
tion they represent is an eigenfun
tion
orresponding to the eigenvalue σ. The two linear 
ombinations are equalthroughout the whole interval if their value and the �rst three derivatives areequal at an arbitrary point of the interval. Therefore, an eigenvalue is foundif the Wronskian
W = detA, A =











φ−1 φ−2 φ+
1 φ+

2
(

φ−1
)′ (

φ−2
)′ (

φ+
1

)′ (

φ+
2

)′
(

φ−1
)′′ (

φ−2
)′′ (

φ+
1

)′′ (

φ+
2

)′′
(

φ−1
)′′′ (

φ−2
)′′′ (

φ+
1

)′′′ (

φ+
2

)′′′











, (4.13)is zero at any point of the intervall and hen
e everywhere. If this is the
ase, the kernel of A spe
i�es the 
oe�
ients c±1 and c±2 that determine theeigenfun
tion via
A
(

c−1 , c
−
2 ,−c+2 ,−c+2

)T
= 0. (4.14)where the supers
ript indi
ates transposition.We used this approa
h to obtain the eigenvalues and eigenfun
tions nu-meri
ally. For given q and a given 
andidate eigenvalue σ, we �rst 
omputed11



the fun
tions φ±1 , φ±2 using LSODE. The initial 
onditions for the numeri
alsolver were imposed at ξ2 and 1/2 − ξ2 for a small positive ξ2 larger than thevalue ξ1 for the base state: this was done to avoid the singular or near singularbehavior at the boundary points and to obtain solutions with the pres
ribedleading behavior there. The initial 
onditions were obtained from the �rstfew terms of the series expansions of ea
h of the four solutions, whi
h weredetermined prior to the numeri
al 
omputations with the aid of MAPLE. At
ξ = 1/4, we 
omputed the Wronskian. We restri
ted our attention to realeigenvalues so that the value of σ for whi
h W vanishes 
ould be determinedby bise
tioning.We found two eigenvalues, shown in �gure 3. The �top� eigenvalue ispositive for a range of q > 0 up to a 
ut-o� wave number qc = 6.18 and hasa distin
t maximum at q = qm = 3.88, whi
h determines a preferred wave-length for the instability. The other, or �bottom� eigenvalue is always stable.Both eigenvalues tend to zero for q → 0. The 
orresponding eigenfun
tionsare shown in �gure 4. Sin
e eigenfun
tions 
an be res
aled with an arbitraryfa
tor, we 
an enfor
e a normalisation 
ondition, whi
h here we 
hose to be

ϕ1 = 1 at ξ = 0. (4.15)Interestingly, for q → 0, the eigenfun
tions for the two eigenvalues both tendto the translational mode ϕ0ξ . This is in 
ontrast to the situation for the stati
ridge where the eigenfun
tions tend to two di�erent eigenfun
tions for q → 0,namely the peristalti
 mode and the vari
ose mode. Inspe
tion of the solutionsof (4.8) for σ = 0 and q = 0 shows that while the translational mode ϕ0ξ isan eigenfun
tion for σ = 0 where q = 0, the variation of the base state withrespe
t to res
aling is ξϕ0ξ − ϕ0, whi
h is only a generalized eigenfun
tion, inthe sense that plugging it into (4.8a) yields the eigenfun
tion.Furthermore, the behavior of σ(q) is linear in q for q → 0 for both eigen-values, i.e. σ(q) ∼ σ1|q| rather than the O(q2) leading order behavior that istypi
ally observed for the �nger instability in e.g. gravity or Marangoni-driventhin �lm �ows. But see also [45℄, where, via di�erent arguments, similar be-haviour was found for the situation of sliding two-dimensional droplets.4.3 The long-wave limitA long-wave expansion that we 
arry out now reveals that this behaviour isdue to the fa
t that for q = 0, the double eigenvalue σ = 0 has one properand one generalized eigenfun
tion, i.e. the long-wave expansion arises as theperturbation of an algebrai
ally double eigenvalue of geometri
 multipli
ityone. We �rst de�ne L to be the linear di�erential operator that des
ribes theleft hand side of (4.8a), i.e.,
Lϕ1 ≡

(

ϕ2
0

(

ϕ1ξξ − q2ϕ1

)

ξ

)

ξ
− q2ϕ2

0

(

ϕ1ξξ − q2ϕ1

)

+ ϕ1ξ ,Furthermore, let L0 and L1 be the parts of L that 
orrespond to terms thatare respe
tively independent of and quadrati
 in q. Also, let L∗
0 denote the12
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adjoint operator of L0:
L0ϕ ≡

(

ϕ2
0ϕξξξ

)

ξ
+ ϕξ, (4.16a)

L1ϕ ≡ −
(

ϕ2
0ϕξ

)

ξ
− ϕ2

0ϕξξ, (4.16b)
L∗

0ψ ≡
(

ϕ2
0ψξ

)

ξξξ
− ψξ. (4.16
)We seek an expansion for the eigenvalues and eigenfun
tions σ and ϕ1 of(4.8) of interest in terms of q. Motivated by our numeri
al �ndings, we makethe ansatz (assuming q ≥ 0):

σ = σ1q + σ2q
2 +O(q3), ϕ1 = ϕ0ξ + ϕ11q + ϕ12q

2 +O(q3). (4.17)Plugging this ansatz and the expansions of L in (4.16) into Lϕ1 = −σϕ1, theleading order terms are zero, while for the O(q) and O(q2) problems we obtain
L0ϕ11 = −σ1ϕ0ξ, (4.18a)

L0ϕ12 + L1ϕ0ξ = −σ1ϕ11 − σ2ϕ0ξ. (4.18b)Also, we 
ontinue to enfor
e the normalisation 
ondition (4.15) on ϕ1, whi
himplies
ϕ1l = 0 at ξ = 0 for l ≥ 1. (4.19)Equation (4.18a) implies that ϕ11 must be the σ1 multiple of the generalizedeigenfun
tion ρ̄, plus an arbitrary multiple of ρ. The arbitrariness is removedby (4.19), and we obtain

ϕ11 = −σ1 (ξϕ0ξ − ϕ0) . (4.20)We plug this result into (4.18b) and integrate the equation with respe
t to ξ,whi
h yields,
∫ 1/2

0
L1ϕ0ξ dξ = σ2

1

∫ 1/2

0
ξϕ0ξ − ϕ0 dξ (4.21)The integrals on both sides 
an be evaluated by partial integration, and thenwe 
an solve for σ2

1 = 1/2, or
σ1 = ±

√
2

2
. (4.22)Together with (4.20) we therefore obtain to O(q) for the bran
hes of eigenso-lution

σ = ±
√

2

2
q, (4.23a)

ϕ1 = ϕ0ξ ∓
√

2

2
q (ξϕ0ξ − ϕ0) . (4.23b)The knowledge of the eigenfun
tions 
an be used to determine how the un-stable mode perturbs the two boundaries. For a given eigenfun
tion h1 for anunstable eigenvalue σ for some q, the left boundary is perturbed by d−1 eiqy+σt,14



where d−1 = −ϕ1(0). This follows from (4.4a), res
aled by (4.7). On the otherhand, it follows from equation (4.8
) that d+
1 e

iqy+σt is the perturbation of theright boundary, and
d+
1 = lim

ξ→1/2

[

ϕ1/6
1/2(1/2 − ξ)1/2

]

.Sin
e the eigenfun
tion ϕ1 is given as linear 
ombinations of the fun
tions
φ±1 and φ±2 , the expansions of whi
h we know at the boundaries, the valuesof d±1 
an be expressed in terms of c±1 and c±2 . One �nds d−1 = −c−1 and
d+
1 = c+1 /6

1/2, thus
drel ≡

d+
1

d−1
=
c+1 /6

1/2

−c−1
. (4.24)For the translation mode, both boundaries are shifted by the same amountin the same dire
tion, and therefore drel = 1. The graphs of the eigenfun
tionsin �gure 3 suggest that the 
ontribution of φ+

1 hen
e c+1 de
reases as q in
reasesand eventually 
hanges sign. This is indeed the 
ase, as seen in �gure 5, wherethe drel is shown as a fun
tion of q. The fun
tion de
reases monotoni
ally fromone and 
rosses zero near q = 3.62, just below the preferred wavenumber qm.For q > 3.62, the perturbation of the right boundary is out of phase withthe left boundary by half a period, so that rim would be 
omposed by thinnerand thi
ker parts resembling a peristalti
 perturbation. However, near q =
3.62 the perturbation of the right boundary is nearly zero and even when qapproa
hes the 
ut-o� wavenumber qc, beyond whi
h the perturbation de
aysanyway, drel is less than 0.4 i.e. the perturbation is less than half the sizeof the left boundary. Hen
e, all unstable perturbations will appear to be`asymmetri
' in the sense that the side fa
ing the undisturbed �lm is mu
hless perturbed than the side fa
ing the dewetted area.The expression (4.24) 
an be obtained approximately using the long-wave-approximation for the eigenfun
tion (4.23b), and this leads to

drel = 1 −
√

2

4
q +O(q2). (4.25)The 
orresponding straight line is also shown in �gure 5 as a thinner line. It
ompares well with the numeri
al result for small and even moderate valuesof q.5 Comparison to the full lubri
ation modelAs a next step, we investigate the stability of a growing rim for the full lubri-
ation model in the slip 
ase, given by (2.4), (2.5).First, we obtain the base state by solving these equations numeri
ally forthe 
ase where h does not depend on y, using a slightly smoothed jump asinitial data. We use here ǫ = 0.04 and set β = 1, as well as a slightly modi�edintermole
ular potential

Φ(h) = Φ2(h) ≡
a1

8h8
− a2

2h2
+

a3

2(h + d)2
, (5.1a)15



with
a1 = 1.014, a2 = 1.014, a3 = 7.465, d = 25.34. (5.1b)This three-term potential was motivated by numeri
al studies in earlier arti
les[26, 28, 30℄.The base pro�le grows as the rim moves in the dire
tion of the unperturbed�lm, see �gure 6(a). From the s
alings in (3.2), we see that the growth of theheight and width of the rim is inversely proportional to the dewetting rate

c = ṡ. Thus, the dewetting rate de
reases as the rim moves further intothe unperturbed �lm. In fa
t, a spe
i�
 law for the evolution of the 
onta
tline region, s(t) ∼ t2/3, 
an be found from the res
alings (3.2) and a massbalan
e argument. Derivations and dis
ussions of this law 
an be found in theliterature [4, 13, 30, 34, 36℄.The res
alings (3.2) of the traveling wave solution in se
tion 3 lead to auniversal pro�le ϕ0 without any free parameters. Hen
e, if we res
ale the pro-�les in �gure 6(a) that were obtained for the full lubri
ation model a

ordingto (3.2), we expe
t the result to 
losely approximate ϕ0. Instead of obtaining cfrom the evolution of the 
onta
t line, we res
ale h by maxx(h(x, t))/maxξ(ϕ(ξ));the 
orresponding lateral length s
ale is found by 
omparison with (3.2).Hen
e, we res
ale a

ording to
h =

maxx(h(x, t))

maxξ(ϕ0(ξ))
ϕ̂ x =

maxx(h(x, t))

λ maxξ(ϕ0(ξ))
ξ. (5.2)The result is shown in �gure 6(b). We 
learly see that the res
aled solutionsof the full lubri
aiton model 
onverge, for later times, onto the normalizedtraveling solution ϕ for the sharp interfa
e model, i.e. of (3.3). This is to beexpe
ted, sin
e for later times, the rim is larger and hen
e the residual �lmand the unperturbed �lm thi
kness are smaller relative to the rim height, andthis means the e�e
tive ǫ and β are smaller.As next step we des
ribe the o

urren
e of �ngers in the ridge for the fulllubri
ation model in terms of the evolution of a small perturbation of thebase state whi
h we now denote by hb(x, t). Spe
i�
ally, we introdu
e theperturbation

h(x, y, t) = hb(x, t) + δhp(x, t) exp(iky)into the lubri
ation model, with δ ≪ 1 and retain only linear terms in δ. Weobtain for the linearized equation
∂hp

∂t
+ Lhp − k2

[(

h2
bh1x

)

x
+ h2

b

(

h1xx − ε−2Φ′′ (hb/ε)
)]

+k4 h2
bhp = 0, (5.3)where

Lhp ≡ ∂

∂x

[

2h2
b)
(

hbxxx − ε−2Φ′′ (hb/ε))hbx

)

hp − h2
b ε

−2Φ′′ (hb/ε) hbxhp

+h2
b

(

h1xxx − ε−2Φ′′ (hb/ε) h1x

)] (5.4)Note that sin
e we have a time dependent base state, the 
oe�
ients ofthe linearized PDE are non-
onstant in time, hen
e solutions for the linearized16
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problem 
annot be obtained via a 
lassi
al eigenvalue approa
h. Instead, wenumeri
ally solve an initial value problem for (5.3), (5.4) for a �xed set ofwavenumbers, in tandem with the equation for the base state, and observehow the perturbations evolve in time. The 
omputational e�ort s
ales roughlylinearly with the number of wave-numbers we monitor.The evolution is 
omputed for a time interval [t0, t1] where t0 and t1 arethe times where the unperturbed front, more spe
i�
ally, the left 
onta
t lineregions, estimated for the purpose of this subse
tion by the position of theturning point, has rea
hed a 
ertain position, namely
s(t0) = 0.883 and s(t1) = 1.48 · 104;the 
orresponding times are

t0 = 5.18 and t1 = 9.85 · 106.An initial perturbation h(t) is introdu
ed at time t0 using the followingexpression:
hp(x, t0) =

∂hb

∂x
(x, t0), (5.5)whi
h 
orresponds to a `zig-zag' perturbation, i.e. we perturb both sides of theridge in the same dire
tion [5℄. For zero wave-number, (5.5) simply representsan in�nitesimal initial shift of the whole pro�le. Below, we also make someremarks on other 
hoi
es of the initial data for hp.To des
ribe the growth of bumps and eventually �ngers in the ridges, weuse the ampli�
ation A(t) of the perturbation with respe
t to the initial state,

A(t) ≡ maxx |hp(x, t)|
maxx |hp(x, t0)|

for t0 ≤ t ≤ t1.We 
ompare ampli�
ations a
hieved at the same position of the dewettingfronts, rather than at the same value of t. Figure 7 displays A(t) vs. thefront position s(t) for several wavelengths l = 2π/k. For ea
h of the depi
tedwavelengths, the perturbation grows as the dewetting pro
eeds, then it rea
hesa maximum, after whi
h it de
ays. Longer wavelengths a
hieve the maximalampli�
ation fa
tor
Amax ≡ max

t≥t0
A(t)at later stages of the dewetting, when the front has advan
ed further into the�lm and the ridge of the base state has grown in size, suggesting that themost ampli�ed wavelength 
orrelates with the width of the ridge [25℄. This
oin
ides interestingly with results on the �ngering in gravity and Marangoni-driven �ows, where the most ampli�ed wavelength in the modal analysis isproportional to the length s
ale imposed by the bump width [46℄, and withpredi
tions for the breaking up of stati
 ridges [5℄ into droplets.Figure 7(b) shows pro�les of the perturbation hb for a �xed 
hoi
e of

k = 0.0237 at di�erent stages of ampli�
ation. The initial perturbation (givenby (5.5)), whi
h has one pronoun
ed maximum and a minimum, slowly evolvesinto a new pro�le where the minimum is repla
ed by a relatively �at part witha weak tenden
y to 
reate a se
ond `bump' in the pro�le of the perturbation18
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19



after the maximum ampli�
ation has been a
hieved. This 
learly resembles ob-servations made earlier for the eigenfun
tions of the linearized sharp interfa
emodel.In fa
t, we 
an 
ompare the shape of the perturbation with the eigenfun
-tion in a similar way as before for the base state. We res
ale x into ξ as inthe se
ond part of (5.2), leaving hp normalized so that the maximum is one.Also, we need to determine the wavenumber for whi
h to take the eigenfun
-tion of the linearized sharp interfa
e model. This is found by s
aling k withthe inverse of the s
ale for x,
k =

λ maxξ(ϕ0(ξ))

maxx(h(x, t))
q. (5.6)For the hp-pro�le labelled '2' in �gure 7(b), we obtain q = 6.02 whi
h isvery 
lose to the 
ut-o� wavenumber for the sharp interfa
e model. Note thatsin
e maxx(h(x, t)) in
reases with time, the �e�e
tive� wavenumber q de
reaseswith time, and in fa
t, at the time tmax when A(t) rea
hes its maximum value

Amax, whi
h is slightl after the time of pro�le '2', the value for q turns out toapproximate the 
ut-o� wavenumber very 
losely.In �gure 8, we now 
ompare the res
aled hp-pro�le with the eigenfun
tion of(4.8) for q = 6.02. We see good agreement for ξ < 0.2 but some deteriorationas ξ approa
hes 1/2. In general, however, we 
an expe
t the agreement toimprove if we start with a larger l = 2π/k, sin
e then the base pro�les arelarger when a 
ertain value of q is rea
hed, hen
e the thi
kness of the residualand the unperturbed �lm thi
kness are smaller 
ompared to the size of therim.Furthermore, note that the evolution of the base state hb(x, t) is algebrai
and thus slow 
ompared to the rapid exponential growth of an unstable modeof (4.3). This suggests that the evolution of hp is given at every instan
eby solving (4.3) for the most unstable mode. This means in parti
ular thatwe treat c = ṡ(t) as a 
onstant for the purpose of solving (4.3), but retainits slow algebrai
 growth in the solution itself, in the sense of a �quasistati
�approximation. This yields
h1(x, t) =

λ3

c
ϕ1(ξ; q) exp

[

c2

λ2
σt

]

, ξ =
c

λ2
(x− s), q =

λ2

c
k, (5.7)where ϕ1 and σ represent the eigensolution of (4.8) with the largest real partof σ. Re
all that sin
e the wave number k of the perturbation of the fulllubri
ation model is kept �xed, q now 
hanges due to the quasi-stati
 evolutionof c = c(t) = ṡ.Rather than 
omparing (5.7) dire
tly with hp we solve (5.7) to express σin terms of a normalized maximum of h1,

σ =
λ2

c2
d

dt
ln

[

maxx h1(x, t)

maxx h1(x, t0)

]

. (5.8)and then repla
e h1 by hp, i.e. we monitor
σ̂ = σ̂(t) =

λ2

c2
d

dt
lnA(t; k). (5.9)20



The expression σ̂ 
an be evaluated in time using the numeri
al solutionsfor hp for an arbitrary �xed 
hoi
e of k. We note that it is 
onvenient to avoiddetermining c(t) = ṡ(t), so we pro
eed as for the res
aling of the base stateand use (5.2), (5.6). The 
orresponding time s
ale 
an be found by 
omparisonwith (3.2), so that we a
tually 
ompute σ̂ via
σ̂ =

[

maxx(h(x, t))

λ2 maxξ(ϕ0(ξ))

]2 d

dt
lnA(t; k). (5.10)to generate the lines in �gure 8(b).If hp is indeed well approximated by h1, then the dispersion relation

(q, σ(q)) obtained from the eigenproblem (4.8) must be well approximated bythe 
urve (q(t), σ̂(t)). In fa
t, we 
an argue similarly as before that (q(t), σ̂) isexpe
ted to asymptoti
ally approa
h (q, σ(q)) as we 
onsider larger t for thesame �xed k, whi
h means larger q(t) or repeat the pro
edure with a larger
hoi
e for k. Indeed, this is what we see in �gure 8(b).6 Con
lusionIn this paper we derived the sharp-interfa
e model for a dewetting rim from the
orresponding lubri
ation model taking a

ount of slippage. For the resultigredu
ed model we were able to derive analyti
al expressions for the dispersionrelations that show that the dependen
e of the growth rate on the wavenumberis linear. This is in 
ontrast to the quadrati
 denpenden
e typi
ally found for�nger-type instabilities in thin �lm problems. It is therefore interesting toinvestigate via the methods of this study the linear stability of the sharp-interfa
e model 
orresponding to the typi
ally used no-slip 
ase. This will bethe topi
 of a 
ompanion paper to follow.A
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