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Abstract

The topic of this study concerns the stability of the three-phase contact-
line of a dewetting thin liquid film on a hydrophobised substrate driven by
van der Waals forces. The role of slippage in the emerging instability at the
three-phase contact-line is studied by deriving a sharp-interface model for the
dewetting thin film via matched asymptotic expansions. This allows for a
derivation of travelling waves and their linear stability via eigenmode analysis.
In contrast to the dispersion relations typically encountered for the finger-
instabilty, where the dependence of the growth rate on the wave number is
quadratic, here it is linear. Using the separation of time scales of the slowly
growing rim of the dewetting film and time scale on which the contact line
destabilises, the sharp-interface results are compared to earlier results for the
full lubrication model and good agreement for the most unstable modes is
obtained.

1 Introduction

Contact-line instabilities for thin liquid films that wet a solid substrate have
been studied for decades, both theoretically and experimentally. The instabil-
ities are typically driven by forces such as gravity |1, 19, 44, 46|, Marangoni
stresses or both |2, 6, 8, 14, 21|. The derivation of reduced mathematical
models exploits a separation of length scales to obtain a simplified lubrication
model from the underlying Navier-Stokes equations in conjunction with con-
servation of mass. The stress singularity at the three phase contact line, which
is inherited by the resulting fourth-order partial differential equation, is regu-
larized for example via a slip boundary condition or precursor model, where
the height of the precursor or the slip length is usually much smaller than the
height of the actual wetting film. The choice of the boundary condition at
the three phase contact line typically enters only weakly in that it does not
influence the eventual appearance of fingers: see for example |1, 21, 24, 29|.
In contrast to the wetting scenarios the film thickness in dewetting exper-
iments is typically smaller by orders of magnitude. The physical situation
consists of a thin viscous polymer film that is uniformly spread on a substrate
such as a silicon wafer with a hydrophobic coating. For such a multi-layered
system one can reconstruct the disjoining pressure from a corresponding inter-
molecular potential which is composed of repulsive and attractive long-range
van der Waals contributions and a short-range term which accounts for Born-
type repulsion, see e.g. [39, 40]. The latter term provides a cut-off by penal-
izing a thinning of the film below a positive thickness threshold given by the
minimum of the potential. For such a situation the thin film dewets in a pro-
cess that is initiated either spontaneously through spinodal decomposition or



induced through nucleation for example. The dry spots, or holes, that form as
a result subsequently grow as the newly formed contact line recedes, thereby
accumulating liquid in a characteristic capillary ridge at the edge of the hole,
which increases in width and height as the dewetting proceeds. In a variety of
experimental situations it is observed that, while in some cases the growth of
the hole continues until it collides with neighboring holes, in others the ridge
of the hole destabilizes into finger-like structures eventually pinching off and
forming droplets. Such finger-like contact-line instabilities have also been ob-
served for straight dewetting fronts as opposed to radially symmetric fronts,
see |23, 31, 35, 38, 41, 42, 48|. Because of the impact this has on the emerging
macroscopic pattern, it is important to understand the dynamics leading to
such an instability.

For such situations, the relevance of slippage at the liquid/solid interface
for the instability have been discussed by several authors, [25, 28, 30, 37, 43].
In [3, 20, 33] the dewetting rate and shape of the ridge has been treated using
approximate formulas derived from scaling arguments and energy balances.
However, in order to capture the dynamics of the contact-line instability it
is convenient to describe the evolution of the film surface z = h(z,y,t) via a
lubrication approximation that includes the influence of surface tension and
the intermolecular potential ¢(h) of the air/liquid/solid layer. Coordinates are
introduced here so that x, y denote the directions parallel to the substrate,
and z the direction normal to it. In this case the pressure at z = h(x,y,t) is
given by

p=—Ah+¢'(h). (1.1)

where ¢'(h) is the first derivative of the intermolecular potential with respect
to the liquid film thickness h. A typical choice for ¢(h), and the one we will
adopt in this paper, is [39]

L
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Note that ®’(1) = 0 and ®”(1) > 0, so that ¢ has a minimum at h = € < 1.
This implies that very thin films with a thickness scale of € are energetically
preferred to in particular thicker films which therefore tend to dewet. Making
use of the length scale separation in the z, y vs. z direction, one can then
derive the lubrication model [32] from the Navier-Stokes equation and (1.1)

#'(h) = e 1®'(h/e), where ®(h)= (1.2)

h +V - [V (Ah— ¢/ (R))] =0, (1.3)

stated here (as are all equations in this paper) in non-dimensional form. Here
h™ is the mobility coefficient, where the power n depends on the boundary
conditions at the liquid/solid interface. A widely used condition relates the
slippage velocity w of the liquid at the wall to the local shear rate u, via

u=bu,, (1.4)

where the slip length b can be thought of as the distance below the interface
at which the liquid velocity extrapolates to zero. For the above slip boundary
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Figure 1: (a) Sketch of a cross section of a dewetting rim. (b) Sketch of a top view
of a (perturbed) ridge for a sharp-interface model, showing the domain Q occupied
by the ridge and the two free boundary curves I't.

condition at the substrate, the typically used no-slip boundary condition is
obtained if b = 0. On the other hand, stuying the hydrodynamic eaquations
for different orders of magnitude of b it was shown, using asymptotic analysis
[30], that a hierarchy of lubrication models emerge. One of them with the
mobility A% has the distinct property that it describes dewetting films with a
dewetting rate of t'/3, [27]. For this case travelling-wave solutions were derived
using matched asymptotic expansions [30]. In [28] a linear stability analysis
showed that small perturbations of the receding front are amplified, but in
the slip case by orders of magnitude larger than in the no-slip case. More-
over, while the perturbations become symmetrical in the no-slip case, they
are asymmetrical and in [26] it was shown that these properties carry over
into the nonlinear regime of the lubrication models. In the context of lubrica-
tion models for dewetting thin films [13] derived asymptotic solutions for the
shape of the dewetting ridges, their dewetting rates and for the limiting case
of the mobility A3 their contact-line instability was investigated via matched
asymptotic expansions. In this study we will investigate the linear stability
of the contact-line for the lubrication model with mobility h? by deriving first
a sharp-interface model. This also enables us to separate the slow growth of
the rim from the faster time-scale on which the contact line destabilizes. As
a result, the linear stability analysis can be reduced to an eigenvalue analysis.
Note here that in the context of spreading liquid droplets, [15, 16, 17| intro-
duced a variational approach leading to reduced models for the motion of the
contact line for the no-slip case.

We begin our study by first deriving the sharp-interface model in section 2.
The we first derive their travelling waves in section 3 and study their stability
in section 4. Finally we compare our results the those for the full lubrication
model studied in |26, 28].



2 Derivation of the sharp-interface model

2.1 Outer Problem

We consider here equation (1.3) for n = 2, i.e.
he +V - [B?V - (Ah — 7' (h/e1))] =0, (2.1)
and far field conditions

lim h(z,y,t) =e1, and lim h(z,y,t) =1, (2.2)
T——00 T—+00
where €; < 1. This formulation is convenient, for example, for numerical
simulations, where the unperturbed film thickness is held fixed and the growth
of the rim is observed. For the derivation of the sharp interface model, it is
important that both the residual film on the left and the unperturbed film
on the right are much smaller in height of than the actual rim. Therefore,
we rescale the film profile h by a quantity 1/3 that is large compared to the
unperturbed film thickness, i.e., 8 << 1, but at most of the order of the
typical ridge height. To maintain the form of the governing equation and the
potential, the other variables are scaled accordingly, i.e.
1 1 1.

1~ 7 — —
h—Bh, iL‘—B$, y—ﬂy, t 5225. (2.3)

Introducing these scalings yields, after dropping ~ s,
hi +V - [W?V - (A — 1@ (h/e))] =0, (2.4)
and far field conditions

lim h(z,y,t)=e, and lm h(z,y,t) =0, (2.5)

r——00 Tr——+00

where ¢ = ;8 < ( <« 1. This is the appropriate outer scaling for the
subsequent derivations.

2.2 Transformation to inner coordinates near the con-
tact line

Let x = (x,y) be a point in the neighborhood of the contact line I' ", parametrized
by r~(t,s) = (r{ (t,s),75 (t,s)), where s denotes arclength. Then

x=r" (t,s)+exv(t,s) (2.6)

defines the boundary layer with x being the boundary layer or ‘inner’ vari-
able. The normal v(t,s) = (—ry,(t,s),r,(f, s)) and the tangential unit vector
t(t,s) = (ry,(t,s),ro,(t,s)) are chosen so that (t,v) is a right hand system,
and v points into the ridge, i.e. into €2, see figure 1(b). In the inner region the
height is much smaller and we set

h =ev (2.7)



Making use of appendix A in [22] we obtain the expression

V- (hQVp) = ¢2 [221 (rl_s(l — exK)vs + 6_17"2_st) (rl_s(l — exK)ps + 6_17'2_st)
+2v (7"2_8(1 — EXK)Us — 6_17"1_st) (7"2_5(1 — EXK)Ps — 6_17"1_st)
+0? (e Py + € KDy + Ps — XKDy )] (2.8)
where
p=—c""(vyy — P'(v)) — Ky — € (Vs — XK V) (2.9)

Hence, to leading order in € the second term of (2.4) is

2 -17,2 !
V. (h*Vp) ~e " [v* (vy — @ (v))]x (2.10)
Since the first term of (2.4) is transformed to
hy = —eVY(1 — ezr)vs + VP, + vy (2.11)

the leading order the inner problem becomes

2 / _
[0° (vyy — @ (v))]x =0 (2.12)
together with the boundary conditions

XEIPOOU =1, XEIPOOUX =0, XEIPOO Vyy = 0. (2.13)

Integrating (2.13) twice, using the fact that the potential satisfies ®'(1) = 0
since ® has a minimum there, we get vy, = ®'(v), hence

vy, = 2Y2 (D(v) — (1))2. (2.14)
For matching we need the behavior for large y, which is
vy =22 (=d(1)2P =2 as x — o (2.15)
Transformation back to outer variables via
v=xA, where x= w,
yields
h=(x—-r)-vA\ (2.16)

The sharp-interface model then results from the leading order outer prob-
lem, together with the boundary condition found by matching to (2.16),

hy = —V-(h®VAhR), in Q (2.17)
oh o _ _
a—’/ = )\, h—O, ha—VAh—VV —0 ODF, (218)

where the third boundary condition in (2.18) arises by letting x — oo, v — 00
in (2.12). In (2.18), we have introduced the notation

V-

v

r, V. (2.19)

Next, we derive the boundary condition on I'T.



2.3 Transformation to inner coordinates near undis-
turbed film

Here we let x = (z,y) be a point in the neighborhood of the sharp interface
I'", parametrized by rT(¢,s) = (r] (¢,s),75 (t,5)). Then

x =r"(t,s)+ B Cv(t,s) (2.20)

defines the boundary layer with ¢ being the ‘inner’ variable, where the scaling
exponent v remains to be determined. As before, the normal unit vector
v(t,s) = (—r4,(t,s),r,(t, s)) points into ridge (figure 1(b)) and the tangential
unit vector t(t,s) = (r,(t,s),75,(t,s)) is chosen so that (t,v) form a right
hand system.

In this second inner region we set

h = pu (2.21)
To leading order in 3 we find for h; the expression
hy ~ =BV ue ~ =B () v) ue (2.22)
and we have

V- <h2V (A—c"'0 (h/a))) ~ g3 <u2 (uge — O Le 10 (Bu/a))<><

(2.23)
A travelling-wave balance for the moving rim thus requires
2
== 2.24
=3 (2.24)

In order for the intermolecular forces to play no role in this region we require
O (57171 ® (Bu/e)) < 1 (2.25)

which introduces a restriction on § in terms of €, namely £2 < $%/3. Hence,
we obtain for the leading order inner problem near the undisturbed film

—VV+(S, t) ue + (u2u<<<)c =0 (2.26)

where
Vi(s,t)=r) v (2.27)

This we integrate with respect to ¢ and use the far field condition

lim v=1 (2.28)
—
to obtain
~V,F(s,t) (uw— 1) + w?ucee =0 (2.29)

For the matching to the outer problem we rescale first ¢ = n/(=V,")Y/3 to

obtain the equation
u—1

Unnn =

- (2.30)
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See for example [47], where this equation has been discussed. Note that we
can assume that as long as the basic motion of the rim in outer coordinates is
to the right (i.e. in the positive direction of the z-axis), V' (s,t) is negative,
hence the orientation is not reversed by the rescaling from ( into 7 variables.
Therefore, the flat film far field condition and the matching conditions are
imposed at n — —oo and n — +o0, as before. Equation (2.30) has a solution
with leading order behavior

u(n) ~ 2(2/3)/2 32 as 1n — +00 (2.31)
and hence
u(Q) ~2(2/3)2 (-V,1) /3¢ (2.32)
as ( — oo. In outer scales we obtain
3/2
h=2(2/3)/? (—Vj)l/?( (x—rt)- u) (2.33)
as the appropriate matching condition.
Finally we get for the sharp-interface model
hy ==V -(h®V Ah), in Q (2.34a)
oh 0
— ar — ANh—V = r~ 2.34b
hO,aV)\,hthVVOOH, (2.34b)
3/2
h ~ 2(2/3)1/2 (—VV+)1/2((1'+ - x) -u) as T — 1t (2.34c)

For the subsequent discussion of the sharp-interface model it is conve-
nient to introduce the parametrization of I'” and I'" as graphs of functions
of s7(y,t) and st (y,t), i.e. y— (—y,—s (y,t)) and y — (y, s (y,t)), respec-
tively. We obtain the following expressions for the tangent and normal unit

vectors
-5, ,—1 1, —s,
t™ = 5y ) and v = (723/), (2.35)
(sy) +1 (s5)" +1
on I'", and
s, —1, s
tt = % and vt = (72@’) : (2.36)
(sy) +1 (sy) +1

on I't.

3 Travelling-wave solutions

We now assume that the base state is a travelling wave that moves with con-
stant speed ¢ and does not depend on y. The ansatz is h = ho(Z), where
T =z —ct, and EB—L = Sét — ct, with constant E(jf (i.e. independent of &, y or t).
Inserting the new variables, we obtain, after dropping the bars,

hOhOxmﬁ =C, (31&)
ho=0, Thox=X, hihoree =0 onz=sy, (3.1b)
hoN2(2/3)1/2cl/2 (SaL—:E)g/Z for x — sg. (3.1c)



Here we have integrated the resulting ODE once and used the boundary con-
ditions to fix the constant of integration.
We can rescale (3.1a)-(3.1¢) to eliminate ¢ and A via

ho = (N’fe)po, w=(N[e)e+sy5, s§=(N/c)d+sy,  (32)
which yields (with ' = d/d¢):

oy =1, (3.3a)
wo=0, ¢y=1, 90(2)@6” =0 oné&=0, (3.3b)
o ~2(2/3)Y2(d—-€)3? for € —d. (3.3¢)

Note that this can be integrated to

1
Popy — 5@3 =¢—d. (3.4)

We now discuss solutions of (3.3). Note first that the function on the right
hand side of (3.3c) is itself an exact solution of the ODE (3.3a). The general
expansion for solutions of (3.3a) with the leading-order behaviour at & =
d required by (3.3c) suggests a one-parameter (in addition to d) family of
solutions and is given by

po(€) =2(2/3)'/% (d = 2 + a™(d — &)/ ** + i ay (d—€)¥*m (3.5)

n=2

Here, p denotes the constant p = (—1 + \/ﬁ) /4 and a™ is a free parameter.
The coefficients a;” must be determined recursively from the ODE for n > 2.

Similarly, at & = 0, we have a one parameter family of solutions that
satisfy the relevant boundary conditions (3.3b). In fact, in |7], Buckingham
et al. find a general series expansion for (3.3a) at & = 0 that satisfies h(0) =0
with two free parameters. Using the form given by the authors and enforcing
the boundary conditions (3.3b) to fix one of the two free parameters, we obtain

0o(&) =&+ 1/ ME+a 4+ D a,, "™ at&=0. (3.6)

n=3 m=2

Here, a™ is the remaining free parameter, and the a,,, must be determined
recursively from the ODE.

In summary, we have, for each boundary point a two-dimensional invari-
ant manifold of trajectories in the three-dimensional phase space of (3.3a).
Solutions of (3.3) arise from intersections of these manifolds. These are co-
dimension one Intersections so that we expect a discrete family of solutions,
for a discrete family of d. In fact, as pointed out by [13], upon integrating
(3.3a) once and imposing the boundary conditions, one fixes the constant of
integration and also obtain a single value for d,

d=3. (3.7)
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Figure 2: The normalized base state for the base state of the slip model, obtained
as numerical solution of (3.3).

We solved this problem numerically, using LSODE [18] to solve (3.3a) with
initial conditions obtained from the series expansion imposed at £ = &; and
€ =1/2—¢;, with a small §. Continuity of the solution and its derivative was
imposed at the mid point £ = 1/4 and these conditions solved numerically for
a~ and at by Newton iterations. We obtained a= = —2.175 and a™ = —2.226.
The solution ¢q is shown in figure 2.

4 Linear stability

4.1 Formulation

We first shift the governing equations of the sharp-interface model (2.34) to
the moving frame of reference also used in (3.1), by letting & = x — ct, and

5t = s + may be a non-constant function depending on y

and t. After introducing the new variables, we drop the bars to give
hi — chy +V - (hV AR) =0, (4.1a)
hy — hys; B
B2 Ahy — Dhysy B (sy +c)h
L+ )" (L))

++ 1/2 + 3/2
h~2(2/3)1/2< 5 T C 1/2) ( ° x1/2) as x — s,
(1+(s5)?) (1+(s5)?)

(4.1c)

— ct, where now 5

)

=0, forz=s,, (4.1b)

To address linear stability we now let
st~ 450+ Bst(t) €™, b~ hg+ Bhy(x,t) ™Y, (4.2)

where hg, sac denotes the solution of (3.1) obtained in the previous section 3,
which serves as our base state. To O(f3) we get

hit — chig + [h§(hizes — K*h1a)], — K°h(hiee — K*h1) =0 (4.3)

9



with boundary conditions

hy + )\81_ = 0, (4.4&)
hiz + hoze 51_ = 0, (44b)
h2higee —chi = 0, (4.4c)

as v — s, and
hy ~ 61/201/251r (sg — ) 12 (4.5)
as r — saL.
We make the ansatz
[sE(t), ha(z,t)] =[5, h(z)]e™ (4.6)

A2 _ c
T = ?5 +s,, k 2 q, (4.7a)
2 3 3 )\2 B )\2
SaL =5 +5,, s = . dy, sf = ?df, (4.7b)
A3 A3 2
ho = —¢o, h1=—¢1, a= o, (4.7¢)

the eigenvalue problem

—op1 = (903 (90155 - t]2<f?1)§>£ — q2<P(2) (@155 — q2<,01) +p1e,  (4.8a)
Pie = QosePrs  Popreee —p1 =0, at £=0, (4.8b)
o1~ 677 (1/2-9)"7 as £—1/2, (4.8¢)

where ¢q is the rescaled base state, i.e. the solution of (3.3). Note that we
have used (4.4a), (4.4b) to eliminate s i.e. dj from (4.8b). Note also that
the leading behavior of (g¢¢ in (4.8b) can be obtained by taking derivatives of
(3.6),

Poce = g +2a~ +Iné+0(EIng) for & — 0. (4.9)

The general solution of the linear ODE (4.8a) can be found as a linear
combination of four basis functions with the following distinct types of leading-
order behaviour,

Y7 ~140(€2), ¥y ~E&+0(€%), Y5 ~Elné+o(E?), vp ~E&%, asé—0.

(4.10)
In view also of (4.9), a linear combination hy = Z?:l ci1p; satisfies only (4.8b)
if c3 =1 and ¢g = (1/2+2a7) ¢y, i.e. in effect two conditions are imposed
at the boundary & = 0. The general solution of the ODE that satisfies the
boundary condition is then given by

p1 =, Q] +cy 05, (4.11a)

10



where

¢y =1+ <%+2a_>§+§ln§+0(§2ln§), (4.11D)
¢y =&+ 0(E2 ), (4.11c)

as & — 0.

Similarly, the four possible leading order behaviors as £ — 1/2 are given
by (1/2 — €)P with p = 0, 3/2 — p, 1/2, and 1 + p, where p = (1 + /13)/4
denotes the same constant as in section 3. Only the last two power-law be-
haviours are consistent with the boundary condition (4.8¢), where the second
last corresponds to a shift in location of the interface, i.e. we also effectively
impose two conditions at the right boundary, yielding the total of four condi-
tions required for a fourth order eigenvalue problem. The general solution of
(4.8a) that satisfies (4.8¢c) is given by

p1=cof + 5 by, (4.12a)
where

of ~ (1/2 -8, (4.12b)

63 ~ (1/2 — )V, (4.12¢)
as € — 1/2.

4.2 Numerical construction

To obtain the eigensolutions we use use a construction based on the idea of
Evans functions, |9, 10, 11, 12|. For o to be an eigenvalue, there must exist
cljE and cét so that c; ¢; +c5 ¢5 and cfgbi" + c;'qﬁg are non-zero and equal for
0 < ¢ <1/2. Then, the common function they represent is an eigenfunction
corresponding to the eigenvalue o. The two linear combinations are equal
throughout the whole interval if their value and the first three derivatives are
equal at an arbitrary point of the interval. Therefore, an eigenvalue is found
if the Wronskian

N ég
e | @) () (o) (éF)
W =det A, A= (@1_)/,:/ (‘Zsz_):lll (gb_li_)l/l/, (QS;_)I/,// , (4.13)
(00)" (e2) (#1)" (¢3)

is zero at any point of the intervall and hence everywhere. If this is the
case, the kernel of A specifies the coefficients c{c and céc that determine the
eigenfunction via

A (cl_,cz_, —c5, —c;)T =0. (4.14)

where the superscript indicates transposition.
We used this approach to obtain the eigenvalues and eigenfunctions nu-
merically. For given ¢ and a given candidate eigenvalue o, we first computed

11



the functions (ﬁli, qﬁéﬁ using LSODE. The initial conditions for the numerical
solver were imposed at & and 1/2 — & for a small positive & larger than the
value & for the base state: this was done to avoid the singular or near singular
behavior at the boundary points and to obtain solutions with the prescribed
leading behavior there. The initial conditions were obtained from the first
few terms of the series expansions of each of the four solutions, which were
determined prior to the numerical computations with the aid of MAPLE. At
¢ = 1/4, we computed the Wronskian. We restricted our attention to real
eigenvalues so that the value of o for which W vanishes could be determined
by bisectioning.

We found two eigenvalues, shown in figure 3. The “top” eigenvalue is
positive for a range of ¢ > 0 up to a cut-off wave number ¢. = 6.18 and has
a distinct maximum at ¢ = ¢, = 3.88, which determines a preferred wave-
length for the instability. The other, or “bottom” eigenvalue is always stable.
Both eigenvalues tend to zero for ¢ — 0. The corresponding eigenfunctions
are shown in figure 4. Since eigenfunctions can be rescaled with an arbitrary
factor, we can enforce a normalisation condition, which here we chose to be

p1=1 at £=0. (4.15)

Interestingly, for ¢ — 0, the eigenfunctions for the two eigenvalues both tend
to the translational mode p¢. This is in contrast to the situation for the static
ridge where the eigenfunctions tend to two different eigenfunctions for ¢ — 0,
namely the peristaltic mode and the varicose mode. Inspection of the solutions
of (4.8) for ¢ = 0 and g = 0 shows that while the translational mode ¢ is
an eigenfunction for ¢ = 0 where ¢ = 0, the variation of the base state with
respect to rescaling is {po¢ — o, which is only a generalized eigenfunction, in
the sense that plugging it into (4.8a) yields the eigenfunction.

Furthermore, the behavior of o(q) is linear in ¢ for ¢ — 0 for both eigen-
values, i.e. o(q) ~ o1|g| rather than the O(q?) leading order behavior that is
typically observed for the finger instability in e.g. gravity or Marangoni-driven
thin film flows. But see also [45], where, via different arguments, similar be-
haviour was found for the situation of sliding two-dimensional droplets.

4.3 The long-wave limit

A long-wave expansion that we carry out now reveals that this behaviour is
due to the fact that for ¢ = 0, the double eigenvalue ¢ = 0 has one proper
and one generalized eigenfunction, i.e. the long-wave expansion arises as the
perturbation of an algebraically double eigenvalue of geometric multiplicity
one. We first define L to be the linear differential operator that describes the
left hand side of (4.8a), i.e.,

Loy = (903 (pree — q2901)£)§ — ¢} (pree — a*o1) + e,

Furthermore, let Ly and L; be the parts of L that correspond to terms that
are respectively independent of and quadratic in ¢. Also, let L denote the
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Figure 3: The top eigenvalue ((a), left figure) and the bottom eigenvalue ((b), right
figure) in the slip dominated case, i.e. for (4.8).
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Figure 4: (a) A zoom into the long-wave range (small ¢) range for the top and bot-
tom eigenvalues. The thicker lines are numerical results for the eigenvalue problem
(4.8), the thinner ones come from the long-wave approximation (4.23b). (b) The
eigenfunctions for both eigenvalues for a number of different wavenumbers ¢. Solid
lines are used for the eigenfunctions of the top, and dashed lines for those of the
bottom, eigenvalue, respectively. The symbols indicate the corresponding value of ¢.
For ¢ — 0, the two lines coincide since both eigenfunctions tend to the translational

mode (i.e. to @gg).



adjoint operator of Lg:

Lop = (@3@555)5 + ¢, (4.16a)
Lip = — (93we) . — voee: (4.16D)

We seek an expansion for the eigenvalues and eigenfunctions o and ¢; of
(4.8) of interest in terms of ¢. Motivated by our numerical findings, we make
the ansatz (assuming g > 0):

o= 01q + 09q* +O(q3), ©1 = Poe + @114 + ©12¢° +O(q3). (4.17)

Plugging this ansatz and the expansions of L in (4.16) into Ly = —opq, the
leading order terms are zero, while for the O(g) and O(q?) problems we obtain

Lop11 = —o10¢, (4.18a)
Lopi2 + Lipoe = —01011 — 0200¢- (4.18Db)

Also, we continue to enforce the normalisation condition (4.15) on ¢;, which
implies
=0 at £€=0 for [>1. (4.19)

Equation (4.18a) implies that ¢11 must be the o1 multiple of the generalized
eigenfunction p, plus an arbitrary multiple of p. The arbitrariness is removed
by (4.19), and we obtain

11 = —o1 (pog — ¥o) - (4.20)

We plug this result into (4.18b) and integrate the equation with respect to &,

which yields,
1/2

1/2
/0 Ligogd = ot [ o oo (4.21)

The integrals on both sides can be evaluated by partial integration, and then
we can solve for 02 = 1/2, or

2
o1 = ig. (4.22)
Together with (4.20) we therefore obtain to O(gq) for the branches of eigenso-
lution
V2

V2
p1= e F =54 (&poe — o) - (4.23b)

The knowledge of the eigenfunctions can be used to determine how the un-
stable mode perturbs the two boundaries. For a given eigenfunction h; for an
unstable eigenvalue o for some g, the left boundary is perturbed by d; glaytot,
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where di = —¢1(0). This follows from (4.4a), rescaled by (4.7). On the other
hand, it follows from equation (4.8¢) that df €*¥*°¢ is the perturbation of the
right boundary, and

df = lim_|p1/62(1/2-)"?).

lim
£€—1/2
Since the eigenfunction ¢ is given as linear combinations of the functions
gbli and gbét, the expansions of which we know at the boundaries, the values
of dic can be expressed in terms of c{c and céc. One finds d] = —c; and
df = ¢ /62, thus

_df /6!

drel = (424)

i e

For the translation mode, both boundaries are shifted by the same amount
in the same direction, and therefore d,.; = 1. The graphs of the eigenfunctions
in figure 3 suggest that the contribution of qSi" hence ci" decreases as g increases
and eventually changes sign. This is indeed the case, as seen in figure 5, where
the d,e is shown as a function of q. The function decreases monotonically from
one and crosses zero near ¢ = 3.62, just below the preferred wavenumber g,,.

For ¢ > 3.62, the perturbation of the right boundary is out of phase with
the left boundary by half a period, so that rim would be composed by thinner
and thicker parts resembling a peristaltic perturbation. However, near ¢ =
3.62 the perturbation of the right boundary is nearly zero and even when ¢
approaches the cut-off wavenumber ¢., beyond which the perturbation decays
anyway, dye is less than 0.4 i.e. the perturbation is less than half the size
of the left boundary. Hence, all unstable perturbations will appear to be
‘asymmetric’ in the sense that the side facing the undisturbed film is much
less perturbed than the side facing the dewetted area.

The expression (4.24) can be obtained approximately using the long-wave-
approximation for the eigenfunction (4.23b), and this leads to

2
da = 1= 224+ 0P, (1.25)

The corresponding straight line is also shown in figure 5 as a thinner line. It
compares well with the numerical result for small and even moderate values
of q.

5 Comparison to the full lubrication model

As a next step, we investigate the stability of a growing rim for the full lubri-
cation model in the slip case, given by (2.4), (2.5).

First, we obtain the base state by solving these equations numerically for
the case where h does not depend on y, using a slightly smoothed jump as
initial data. We use here ¢ = 0.04 and set 3 = 1, as well as a slightly modified
intermolecular potential

ai az as
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with
ap = 1.014, a9 =1.014, a3 ="7.465, d = 25.34. (5.1b)

This three-term potential was motivated by numerical studies in earlier articles
[26, 28, 30].

The base profile grows as the rim moves in the direction of the unperturbed
film, see figure 6(a). From the scalings in (3.2), we see that the growth of the
height and width of the rim is inversely proportional to the dewetting rate
¢ = §. Thus, the dewetting rate decreases as the rim moves further into
the unperturbed film. In fact, a specific law for the evolution of the contact
line region, s(t) ~ t2/3, can be found from the rescalings (3.2) and a mass
balance argument. Derivations and discussions of this law can be found in the
literature |4, 13, 30, 34, 36].

The rescalings (3.2) of the traveling wave solution in section 3 lead to a
universal profile g without any free parameters. Hence, if we rescale the pro-
files in figure 6(a) that were obtained for the full lubrication model according
to (3.2), we expect the result to closely approximate ¢g. Instead of obtaining ¢
from the evolution of the contact line, we rescale h by max, (h(x,t))/ max¢(¢(€));
the corresponding lateral length scale is found by comparison with (3.2).
Hence, we rescale according to

max, (h(x,t))

= “maxe(go(6)

. max, (h(x,t))
A maxe(po(§)) ™

The result is shown in figure 6(b). We clearly see that the rescaled solutions
of the full lubricaiton model converge, for later times, onto the normalized
traveling solution ¢ for the sharp interface model, i.e. of (3.3). This is to be
expected, since for later times, the rim is larger and hence the residual film
and the unperturbed film thickness are smaller relative to the rim height, and
this means the effective € and § are smaller.

As next step we describe the occurrence of fingers in the ridge for the full
lubrication model in terms of the evolution of a small perturbation of the
base state which we now denote by hy,(z,t). Specifically, we introduce the
perturbation

(5.2)

h(z,y,t) = hy(z,t) + Shy (2, t) exp(iky)

into the lubrication model, with § < 1 and retain only linear terms in §. We
obtain for the linearized equation

Do i Ly K2 (W), + 12 (has — 20" (1))
+k*h2h, = 0, (5.3)
where
0 _ .
Chy = o [2hF) (Pbwes — 720" (hy/€)) hba) hp — B e™2@" (hny/€) hishy

+03 (Rigge — £ 20" (hy,/€) his)] (5.4)

Note that since we have a time dependent base state, the coefficients of
the linearized PDE are non-constant in time, hence solutions for the linearized
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drd

wavenumber q

Figure 5: The perturbation of the right boundary relative to the perturbation of
the left boundary, obtained from the eigenfunction for the top eigenvalue via (4.24),
for a range of different wave numbers ¢q. The thicker, curved line is obtained by

evaluating (4.24) using the numerically computed eigenfunctions, while the thinner
line uses the long-wave approximation, i.e. the formula given in (4.25). Further

explanations are given in the text.
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Figure 6: (a) Evolution of the dewetting rim profile obtained by solving (2.4), (2.5)
(for only one spatial variable x), with e = 0.04 and § = 1. The potential is given by
(5.1). The figure shows the rim at three different times ¢. (b) The same rim profiles
rescaled as explained in the text, see equation (5.2), using the same line styles as on
the left. The fourth profile, shown by open circles, corresponds to the solutions ¢

for the sharp interface model, see also figure 2.
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problem cannot be obtained via a classical eigenvalue approach. Instead, we
numerically solve an initial value problem for (5.3), (5.4) for a fixed set of
wavenumbers, in tandem with the equation for the base state, and observe
how the perturbations evolve in time. The computational effort scales roughly
linearly with the number of wave-numbers we monitor.

The evolution is computed for a time interval [to, 1] where ¢y and ¢; are
the times where the unperturbed front, more specifically, the left contact line
regions, estimated for the purpose of this subsection by the position of the
turning point, has reached a certain position, namely

s(tg) =0.883  and  s(t;) = 1.48 - 10%;
the corresponding times are
to=5.18 and ¢ =9.85-10°.

An initial perturbation h(t) is introduced at time to using the following
expression:

oh

hp(2,t0) = 8—;(117,750), (5.5)

which corresponds to a ‘zig-zag’ perturbation, i.e. we perturb both sides of the
ridge in the same direction |5]. For zero wave-number, (5.5) simply represents
an infinitesimal initial shift of the whole profile. Below, we also make some
remarks on other choices of the initial data for h.

To describe the growth of bumps and eventually fingers in the ridges, we
use the amplification A (%) of the perturbation with respect to the initial state,

maxy |hp(z, )|

A(t) = for t9g <t <ty.

max, |hp(z, to)|
We compare amplifications achieved at the same position of the dewetting
fronts, rather than at the same value of ¢. Figure 7 displays A(t) vs. the
front position s(t) for several wavelengths [ = 27 /k. For each of the depicted
wavelengths, the perturbation grows as the dewetting proceeds, then it reaches
a maximum, after which it decays. Longer wavelengths achieve the maximal
amplification factor

Apax = max A(t)
t>to

at later stages of the dewetting, when the front has advanced further into the
film and the ridge of the base state has grown in size, suggesting that the
most amplified wavelength correlates with the width of the ridge [25]. This
coincides interestingly with results on the fingering in gravity and Marangoni-
driven flows, where the most amplified wavelength in the modal analysis is
proportional to the length scale imposed by the bump width [46], and with
predictions for the breaking up of static ridges [5] into droplets.

Figure 7(b) shows profiles of the perturbation hy, for a fixed choice of
k = 0.0237 at different stages of amplification. The initial perturbation (given
by (5.5)), which has one pronounced maximum and a minimum, slowly evolves
into a new profile where the minimum is replaced by a relatively flat part with
a weak tendency to create a second ‘bump’ in the profile of the perturbation
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Figure 7: (a) Amplification A(¢) of the perturbation versus front position s(t). Line
styles correspond to different wavelengths [ = 27/k as indicated in the legend. (b)
The perturbation profile for wavelength | = 264.7 at different stages of its evolution,
shifted along the z-axis for better distinction, and with the maximum normalized
to one. The labels 1, 2, 3 correspond to the crosses in the inset, which indicate the
position s(¢) of the base state and the amplification A(t) achieved by h,(x,t).
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Figure 8: (a) Comparison of the rescaled perturbation hy(z,t) labelled "2’ (solid line)
with the eigenfunction of the sharp interface model for the corresponding wavenum-
ber ¢ (circles). (b) Comparison of the rescaled growth rates ¢ and wavenumbers
q obtained from the solutions h, for several choices of fixed | = 27/k, with the
dispersion relation for the sharp interface model (circles). Further explanations for
(a) and (b) are given in the text.
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after the maximum amplification has been achieved. This clearly resembles ob-
servations made earlier for the eigenfunctions of the linearized sharp interface
model.

In fact, we can compare the shape of the perturbation with the eigenfunc-
tion in a similar way as before for the base state. We rescale x into ¢ as in
the second part of (5.2), leaving h;, normalized so that the maximum is one.
Also, we need to determine the wavenumber for which to take the eigenfunc-
tion of the linearized sharp interface model. This is found by scaling k& with
the inverse of the scale for z,

A maxg(po(§))

k= Wq. (5.6)

For the hy-profile labelled "2’ in figure 7(b), we obtain ¢ = 6.02 which is
very close to the cut-off wavenumber for the sharp interface model. Note that
since max(h(z,t)) increases with time, the “effective” wavenumber ¢ decreases
with time, and in fact, at the time ¢,,,x when A(t) reaches its maximum value
Amax, which is slightl after the time of profile '2’, the value for ¢ turns out to
approximate the cut-off wavenumber very closely.

In figure 8, we now compare the rescaled hy-profile with the eigenfunction of
(4.8) for ¢ = 6.02. We see good agreement for & < 0.2 but some deterioration
as & approaches 1/2. In general, however, we can expect the agreement to
improve if we start with a larger | = 27/k, since then the base profiles are
larger when a certain value of ¢ is reached, hence the thickness of the residual
and the unperturbed film thickness are smaller compared to the size of the
rim.

Furthermore, note that the evolution of the base state hy(x,t) is algebraic
and thus slow compared to the rapid exponential growth of an unstable mode
of (4.3). This suggests that the evolution of h, is given at every instance
by solving (4.3) for the most unstable mode. This means in particular that
we treat ¢ = §(t) as a constant for the purpose of solving (4.3), but retain
its slow algebraic growth in the solution itself, in the sense of a “quasistatic”
approximation. This yields

B A3 ) c? < B A2
m0 = CaGoen |G| €= G- o=k 6D
where @1 and o represent the eigensolution of (4.8) with the largest real part
of 0. Recall that since the wave number k of the perturbation of the full
lubrication model is kept fixed, ¢ now changes due to the quasi-static evolution
of c=c(t) = s.

Rather than comparing (5.7) directly with h, we solve (5.7) to express o
in terms of a normalized maximum of hq,

A d maxy hi(z,t)
=—=—In|——2 7. 5.8
T 2d [maxm hl(x,to)] (5.8)
and then replace hy by hp, i.e. we monitor
o A2 d
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The expression ¢ can be evaluated in time using the numerical solutions
for hy, for an arbitrary fixed choice of k. We note that it is convenient to avoid
determining c(t) = $(t), so we proceed as for the rescaling of the base state
and use (5.2), (5.6). The corresponding time scale can be found by comparison
with (3.2), so that we actually compute ¢ via

. [max(h(et) 17
o= | @A 10

to generate the lines in figure 8(b).

If hy, is indeed well approximated by hq, then the dispersion relation
(q,0(q)) obtained from the eigenproblem (4.8) must be well approximated by
the curve (q(t),4(t)). In fact, we can argue similarly as before that (¢(t),5) is
expected to asymptotically approach (g,o(q)) as we consider larger ¢ for the
same fixed k, which means larger ¢(¢) or repeat the procedure with a larger
choice for k. Indeed, this is what we see in figure 8(b).

6 Conclusion

In this paper we derived the sharp-interface model for a dewetting rim from the
corresponding lubrication model taking account of slippage. For the resultig
reduced model we were able to derive analytical expressions for the dispersion
relations that show that the dependence of the growth rate on the wavenumber
is linear. This is in contrast to the quadratic denpendence typically found for
finger-type instabilities in thin film problems. It is therefore interesting to
investigate via the methods of this study the linear stability of the sharp-
interface model corresponding to the typically used no-slip case. This will be
the topic of a companion paper to follow.
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