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Abstract

Modeling several competitive leaders and followers acting in an electricity
market leads to coupled systems of mathematical programs with equilibrium
constraints, called equilibrium problems with equilibrium constraints (EPECSs).
We consider a simplified model for competition in electricity markets under
uncertainty of demand in an electricity network as a (stochastic) multi-leader-
follower game. First order necessary conditions are developed for the corre-
sponding stochastic EPEC based on a result of Outrata [17|. For applying the
general result an explicit representation of the co-derivative of the normal cone
mapping to a polyhedron is derived (Proposition 3.2). Later the co-derivative
formula is used for verifying constraint qualifications and for identifying M-
stationary solutions of the stochastic EPEC if the demand is represented by a
finite number of scenarios.

1 Introduction

In [17], J. Outrata formulated first order necessary conditions for the following
equilibrium problem with equilibrium constraints (EPEC):

min { f; (¢, 2) [0 € F(z,2) + Ny(2)} (i=1,...,N). (EPEC)

Here, the 2° € R™ refer to decisions taken by N players (e.g., market competitors),
whose objective functions f; do not only depend on their own decisions z° but
also on some parameter z which might represent an exterior decision (e.g., in a
leader-follower system). All decisions together are linked by a generalized equation
0 € F(z,2)+Ny(z) which could model some equilibrium constraint or the solution of
a parameter-dependent optimization problem. It is assumed, that U is some closed
convex set and Ny refers to its normal cone. In principle, (EPEC) is nothing else but
a coupled system of mathematical programs with equilibrium constraints (MPECs),
where each single MPEC describes the optimization problem solved by the individual
players given the decision of the other players. The vector (il, o, Z) is declared
to be a solution to (EPEC), if for i = 1,..., N the vectors (Z', z) are solutions to
the MPEC

min {f; (y,2) [0 € F(z',..., &y, 22", 2) + Ny(2) },

i.e., non of the players can improve his decision given the decisions of his competitors.
As pointed out in [17], these MPECs are typically nonconvex even under convexity



assumptions on the data f;, F,U. Therefore it makes sense to identify possible
solutions by means of first order necessary conditions. In [17], it was proposed to do
so by using Mordukhovich’s co-derivative D* of multifunctions (see [15]) as a basic
tool. For recent extensions of these ideas (e.g., to stability issues in the context of
quasi-variational inequalities), we refer to [16] (see also [15]). We cite the following
Theorem from [17], slightly adapted to the purposes of our paper:

Theorem 1.1 Let (Z,Z) be a solution to (EPEC). If, for all i = 1,...,N, the
multifunctions

ur— {(a",2) lue F(@',....2" 2", 2, 2N, 2) + Nu(2) }

are polyhedral or satisfy the constraint qualification

0= (VuF (z,2) v w0
0€ (V.F(z,2) v+ D*Ny(z,—F(z,2)(v) o
then, for all i =1,... N, there exist v* such that
0 = Vuifi(2,2) + (VuF (£,2) 0 (1)
0 € V.fi(#,2) + (V.F(2,2)" o'+ D"Ny(z, —F (z,2))(0"). (2)

We shall adopt from [17] the name M (ordukhovich)- stationary point for any (z, 2)
satisfying (1) and (2). The main difficulty in the verification of both the constraint
qualification and the optimality conditions (1) and (2) is the computation of the co-
derivative D* Ny to the normal cone mapping associated with U. Explicit formulae
ready to use can be found in |2]| and [18] for the cases of U being a nonnegative
orthant or a rectangle. On the other hand, many practical applications like electric-
ity spot market modeling lead to sets U which are general polyhedra. The purpose
of this note is threefold: first, it is intended to apply the ideas presented so far
to a simplified model of electricity markets under an independent system operator
regime similar to [4] and [11]. Second, and subordinate to this aim, an explicit
formula for D* Ny is derived for general polyhedra U. Third, the whole problem is
put into a stochastic framework which is of much interest due to uncertainties in
electricity demands. For discrete distributions, a characterizing system of relations
for identifying M-stationary solutions is provided and such solutions are explicitly
calculated for a simple example.

Since electricity production and trading decisions of smaller power firms (followers)
do not influence market prices, electricity portfolio optimization models for such
firms may be developed without regarding their market interactions. Inputs of port-
folio optimization models are stochastic price and demand processes in the relevant
time horizon (see, e.g., [3]). To extend stochastic portfolio optimization models to
firms having market power (leaders), the use of modified market prices is suggested,
e.g., in [1].



To investigate the behavior of power firms in deregulated electricity markets, game-
theoretic models are employed (see, e.g., [7, 8, 28]). Such models have to incorporate
the specific features of electricity markets, namely, the transmission network and the
bidding of price-quantity pairs of each generator in the network. When modeling
single-leader-follower games one arrives at mathematical programs with equilibrium
constraints (MPECs). Presently, theory and numerical methods for MPECs is well
developed. We refer to the monographs [14, 19, 5|, the survey [12] and to [25, 6.
Extensions to stochastic MPECs (SMPECs) can be found in |26, 27] and applications
to electricity markets are discussed, e.g., in |9, 21].

The modeling of multi-leader-follower games leads to coupled systems of MPECs
or equilibrium problems with equilibrium constraints (EPECs). In recent years,
much effort has been directed to the theory of such games |20| and to numeri-
cal methods [13| based on nonlinear programming and nonlinear complementarity
(re)formulations. Furthermore, EPEC models for electricity markets with gener-
ators and customers located on a network have been developed and analyzed in
[11, 10, 22]. A stochastic EPEC (SEPEC) modeling an electricity market under
demand uncertainty is studied in [4].

2 A simplified model for competition in electricity
spot markets

In the following, we consider a model for competition in electricity spot markets
which is a simplified for the purpose of our analysis version of models presented in
[4] and [11]. We assume that some electricity network is represented by an oriented
graph, whose m edges correspond to transmission lines and whose N nodes refer
to places at which a demand for electricity is observed and at which electricity is
generated. Neglecting, for the sake of simplicity, transmission losses, the satisfaction
of demand may be modeled as

q+ By > d. (3)

Here, d € RY refers to the vector of demands at each node, ¢ € R” is the vector
of electricity generated at the same nodes and y € R™ represents the oriented flow
vector of electricity along the edges of the graph. B is the incidence matrix of the
electricity network. Typically, ¢ and y are simply bounded by

where the inequality signs are to be understood component-wise. Generators bid a
cost function to an independent system operator (ISO):

cilg) = ciqi + B¢ (i=1,...N).
These may differ from the true cost functions
Ci(gs) = viqi + &g} (i=1,...N).
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Throughout the paper, we shall assume that 3; > 0 for i = 1,..., N, thus accepting
the idea that cost functions are typically convex and leaving aside the purely linear
case. More general cost functions were allowed in [4]. Here, we restrict ourselves to
the quadratic case as considered in |11]. The ISO determines a vector of generated
electricity satisfying the constraints above and minimizing the overall costs:

min{zci(qz‘) (q,y) € G}, (4)

q,yY
' i=1

where
G:={(qy) eR"™|g+By>d, 0<q<q, -§<y<g}.

Note that, by convexity, an optimal solution ¢* of (4) is characterized as a solution
to the generalized equation

oe () 4 Nataun), 5)

Here, [diag 3] denotes the diagonal matrix composed of diagonal entries ;. With ¢*
being an optimal solution to (4), the clearing price charged by generator ¢ amounts
to the derivative of its bid cost function at ¢ (see |11]):

T = a; + 20,q; -
Thus, generator ¢’s profit calculates as
* %2
(i —vi) @i + (26 — 0:) (q7)" -

Therefore, given some fixed bid coefficients (dj,Bj) of the remaining competitors
j # i, generator ¢ solves the following mathematical program with equilibrium con-

straints (MPEC):
0c ( Q(OéiaoﬁiaQ) ) +NG(q,y)}, (6)

ai,Bi,q,y

max {(ozi — )¢ + (26, — ;) qiz

where

9(cy, Bivq) = (tu,..., Q1,05 041,...,0N)

+2 [diag (Bl, N ,Bi—l,ﬁi,BiJrla SR >BN)} q

(compare (5)). Since all competitors solve a similar MPEC given the decisions of
the remaining ones, the coupled system of MPECs

06<O‘+2[%iagﬁ]q)+l\fc(q,y)} (7)
(i=1,...,N)

min {(% — ;) g + (6 — 26;) ¢

i,0:,4,yY




is called an EPEC (equilibrium problem with equilibrium constraints). This EPEC
falls into the general class of type (EPEC) presented in the introduction. Indeed, in
our specific model, one has to put z* := (ay, 3;), 2 := (q,y), U := G as well as

filas, Bi,q,y) = (v —6) @i+ (6 — 206;) qf
F(a,B,q,y) = (a+2[%lagﬁ]q). (8)

Specializing Theorem 1.1 from the introduction to our setting, we obtain:

Theorem 2.1 Let (d,B, q’,gj) be a solution to (7). If, for alli = 1,... N, the
multifunctions

(U {(Oéi,ﬁi, 4Y) ‘U € F(ay, By, ..., ai—1, Bic1, 04, By Qiga, Bigas - - -, 0, B 4, 9)
+Nea(a,y)} (9)

are polyhedral or satisfy the constraint qualification

0= (Ve F (a.5,3,7)" v )
0e (v(q,y)F (@’ﬁ’Q7?j>) U+D*NG((Q>g)a_F (d7ﬁ>(lg

~—
~
—~
<
S~—
—
<
I
=

(10)

then, for alli=1,..., N, there exist v such that
0 = v(ai,,@i).fi (daBaQ> 'g) + (V(ai 51)F (daBaQ> g))T'UZ (11)
0 € v(ai,,@i).fi (@a Ba Q> g) + (V(ai 51)F (@a Ba Q> g))T v (12)

One observes that the difficult part both in the verification of the constraint qual-
ification and in the application of the first order necessary condition consists in
calculating the co-derivative D*N¢. This is the aim of the following section.

3 On the co-derivative of the normal cone mapping
to a polyhedron

This section is devoted to the derivation of an explicit formula for the co-derivative
of the normal cone mapping to a polyhedron. Before addressing this topic, we recall
the definition of the Mordukhovich normal cone (also called limiting normal cone)
and the the induced co-derivative (see [15]):

Definition 3.1 Let S C R"™ be an arbitrary set and £ € clS. Then, the Mor-
dukhovich normal cone to S at T is defined by

*

Ns (7) := Limsup, _; .es [Ts (2)]",
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where [Ts (x)]" refers to the negative polar of the contingent cone Ts (x) to S at x and
Limsup ’ denotes the upper limit in the sense of Kuratowski-Painlevé convergence.

For a multifunction ® : R" = RP, consider a point of its graph: (x,y) € gph ®. The
Mordukhovich normal cone induces the following co-derivative D*® (x,y) : R? = R”
of ® at (z,y):

D*® (z,y) (y) = {z" € R"[ (2", =y") € Ngno (2,9)} Vy" € R”.

Now, we consider a polyhedron C' := {z € R"|Azx < b}, where b € R™ and A is a
matrix of order (m,n). Let (z°,0°) € gph No. As C'is convex, the Mordukhovich
normal cone N¢ reduces to the normal cone in the sense of convex analysis here. In
particular 2° € C and v° € N¢ (2°). With a; and b; referring to the rows of A and
components of b, respectively, let

Ii={ie{l,....,m}|{a;,2°) = b;}

be the set of active indices at z°. Since v° € N¢ (2%), there exits \; > 0 for i € I,

such that
’UO = Z )\zaz (13)
iel

We introduce the following subset of I:
J :={i e I|\ > 0}.
Finally, for each index subset I’ C I, we introduce the closed cone
Fp={heR" (a;,h) <0 (GelI\l)}, {a,h)=0 (el)} (14)
as well as the characteristic index set

X(I') = {j € I|{a;,h) =0 Vh € Fp}. (15)

Proposition 3.2 With the notation introduced above, one has that

0,0
ngth (ZE y U ) = U PIl,Iz X Q117]27

JCLCICI

where

Pr g, = con{a;li € x (I2) \I1} +span{a;|i € I}
Q11712 = {hERn|<CLZ,h> =0 (ie]l), (ai,h> <0 (Z 6)(([2) \Il)}

Here, con and span refer to the convex conic and linear hull, respectively.



Proof. First note, that the set gph N¢ is no longer convex although the polyhedron
C'is so. As a consequence, the Mordukhovich normal cone Nyp, v, (22, 0°) to this set
evaluated at the point (2°,v°) needs not be convex either. According to a well-known
result by Dontchev and Rockafellar (|2, Proof of Theorem 2|), one has that

Nnve (2%0°) = | (B = )" x (F; — F), (16)
F;CF;
where the F; are the closed faces of the cone
K" :=Tc (2°) n{o°}+

and T denotes the tangent cone to C' in the sense of convex analysis. As in Defini-
tion 3.1, we use an asterisk for denoting the negative polar (or dual) cone. Combining
the well-known representation

Te (2°) = {h e R"|{a;,h) <0 (i€ D)},
with (13) and the definition of the index set J, one immediately derives that
K°={heR"{a;,h) <0 (ie€I\J), {a,h)y=0 (i€lJ)}.

Now, any closed face of K is given by a cone Fp as introduced in (14) and with I’
being an arbitrary index set with J C I’ C I. Clearly, the implication

L C I, = Fi, C Fy,

holds true for all index sets I, I such that J C I[;,I, C I. While the reverse
implication cannot be derived in general, one may easily show the following for the
same index sets:

Fr, C Fr, = Fi, = Fr,un,-

In other words, there exists an index set I3, such that Fj, = Fr, C Fp, and I; C I3,
Summarizing, any pair of index sets [y, [ with J C I} C I, C [ induces a pair
of closed faces of K° such that one is a subset of the other, and, conversely, any
such pair of closed faces of K° can be represented by a pair of index sets I, I, with
J C I C I, C I. Consequently, we may rewrite (16) as

Nepnne (2°0%) = | (Fr, = F)" x (Fp, — F,) . (17)
JCNhCI2CI

We claim that
Fll_Flngh,Iz \V/[l,lgijgllglgg[, (18)

where @), j, is defined in the statement of the proposition. Recall that, by the
very definition of x in (15), one always has that I, C x (l2) € I. Now, given any
h € Fy, — Fy,, one has h = hy — hy for some hy; € Fj, and he € FJ,. The inclusion
I; C I, along with (14) then implies that

<CLZ', h1> = <CLZ', hg) =0 (’l € ]1), <CLZ‘, h1> <0 (Z S I\Il) <CLZ‘, hg) =0 (’l c Ig) .
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By (15), we have that (a;, ho) = 0 for all i € x (I3). Moreover, (a;, hy) < 0 for all
i € x (I3) \I1. Altogether, this establishes the inclusion 'C’ of (18).

For the reverse inclusion, let h € @y, , be arbitrary. In case that x (Iy) = I, it
follows form the definition of @y, 5, that h € F, C Fi, — Fp, (due to 0 € F,).
Hence, we may assume now that x (/2) & I. By (15), we have

X (L) ={j€Il{a;,hy =0 VI € Fp}.
As a consequence, for all j € I'\x (I3) there exists some h; € FJ, such that (a;, h;) <
0. We put
> N

jel\x(I2)
Note that h* is well-defined by I'\x (I3) # (). Clearly, h* € F}, and

<ai7 h'*) a27 + Z a27
JENX(I2)
J#i

by definition of h; and by (a;, h;) < 0 for all j € I\x (I2) (recall that h; € Fy,). This

allows to define "
t:= maX{O max {— (@i, 1) }} > 0.
ie\x(I2) (a;, h*)

Finally, put h := h + th*. Due to h € Q1,.1, and h* € Fy,, we have that
(ai, h> =0 (Z c Il) ) <CLZ', h*> =0 (Z cX (]2)), <a2-, h) < 0 (Z cX (IQ) \]1) .

Consequently, recalling that I, C I, C x (I2), it follows that <a,~, 71> =0foralli e [,
and (a;, h) <0 for all i € x (I) \/;. We claim that

(a;, h) = (a;, h) +t{a;,h*) <0 Vie I\x ().

Indeed, the inequality is obvious if (a;, h) < 0, because of ¢t > 0 and (a;, h*) < 0. If
(a;, h) > 0, then the same inequality follows from

<ai7 h)

<ai7 h*>

t > —

by definition of ¢#. Summarizing the previous relations, one arrives at h € Fy,.
Therefore, h = h —th* € Iy, — F,, where we used that th* € F, due to ¢t > 0. This
finishes the proof of (18).

Evidently, Pr, 1, = Q7, 1, for P, 1, as defined in the statement of the proposition.
Consequently, the proposition is proved upon referring to (18) and (17). m

Remark 3.3 If, the vectors {a;|i € I} happen to be linearly independent, then
X(I") = I for all I' C I and the definitions of P, 1, and Qr, 1, in Proposition
3.2 simplify accordingly.



Corollary 3.4 In the setting of Proposition 3.2, one has the following:
D*Ne (2°,0°) (s) € con{a;|i € x (I*(s) UI’(s)) \I*(s)} + span {a;]i € I°(s)}
if (a;,s) =0 ViedJ and {(a;,s)>0 Viex(J)\J
and
D*Ng (2°,0°) (s) = @ otherwise.
Here,

I%(s) == {i € I (a;,s) =0}, I°(s):={i€I|{a;s) >0}

Proof. From the definition of the co-derivative and from Proposition 3.2, it follows
that
D*Ng (2°,0%) (s) = {r|(r,—s) € Ngpnne (2°,0°)}
= {T‘H[l’IQ o J - [1 - [2 - I,’f’ S P[17[2, —S € QIlJQ}' (19)

Since Qr, .1, € Qg forall Iy, Iy with J C I C I, C I, it follows that D* N¢ (2°,0°) (s)
is non-empty only if —s € );; which means, by definition, that (a;, s) = 0 for all
i € J and (a;,s) > 0 for all ¢ € x(J)\J. This proves the second statement of the
corollary. We show that

Qras), o) © Qnn Vh,la: JCH CLCI Vs:—s€Qr 1, (20)
Indeed, the definitions of the respective index sets yield that I; C I*(s) and
X(I2) C I°(s) UI"(s) © Xx(I*(s) U I"(5)).
Now, if h € Qa(s) 1o(s)urv(s), then
(a;,h) =0 VieI%s), (a;,h) <0 Viex([Is)UI’(s))\Is).
It follows that
(a;j,h) =0 Yiel, ({(a,h) <0 Viex(l)\Is).
Due to
X(I2)\I1 © (x(L2)\I*(s)) U (I*(s)\]1) ,
one arrives that (a;,h) < 0 Vi € x(I3)\[1, whence h € @y, 1,. This establishes
(20). Recalling that P, ;, = Q7 ;,, it results from (20) that
Pr = Q1,1 € Qrags) 1asyur(s) = Prags)1es)ure(s)-
Now, we may continue (19) as

D*Ne (2°,0°) (8) C Prags) re(syure(s),

which proves the first statement of the corollary. m

The following simplification of Corollary 3.4 is possible under the assumption of
linear independence:



Corollary 3.5 If the {a;|i € I} are linearly independent, then Corollary 3.4 sim-
plifies to

D*N¢ (2°,0°) (s) = con{ay|i € I"(s)} + span {a;|i € I°(s)}
if {a;,s) =0 Viel,
and
D*Ng (2°,0°) (s) = @ otherwise.

Proof. In view of Remark 3.3, we have that x(.J) = J and, by I%(s) N I*(s) = &,

that
X (I“(s) U lb(s)) \I%(s) = (I“(s) U [b(s)) \I%(s) = I°(s). (21)

Then, Corollary 3.4 yields the assertion of the proposition with the first identity
replaced by an inclusion. To prove the reverse inclusion, let

r € con {a;|i € I"(s)} + span {a;]i € I°(s)}

be arbitrary. Then, by definition and due to (21), 7 € Ppa(y) re(sjum(s)- Exploiting
(21) once more, the definitions of I%(s) and I°(s) provide that —s € Q1a(s),19(s)UIb(5)-
Consequently, r € D*N¢ (2°,0°) (s) by definition of D*N¢. This finishes the proof.
[

Another simplification of Corollary 3.4 can be obtained without linear independence,
but under the assumption of strict complementarity (i.e., \; > 0 for all7 € I in (13)):

Corollary 3.6 If J =1, then

. 0 0 [ span{a;li € I} if (a,s)=0 Viel
D*Ne (a°,0°) (s) = { %) otherwise '
Proof. The second case follows immediately from Corollary 3.4 and from J =
Now, in the first case, one has (a;,s) = 0 for all ¢ € J, hence J C [%(s) C
Consequently, 1%(s) = I and I°(s) = &. Then,

1.
1.

D*N¢ (2°,0°) (s) C span{a;|i € I}

by virtue of Corollary 3.4. For the reverse inclusion, let r € span{a;|i € I} be
arbitrary. Observing that x(/) = I, one has r € P;; and —s € ;. Therefore, r €
D*N¢ (2°,1°) (s) by definition of D*N¢ and by Proposition 3.2. m

Corollary 3.6 shows that the conic part in the representation of the co-derivative
comes into play only if strict complementarity is violated. For later purpose, we
give a slightly more handy formulation of Corollary 3.6:
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Corollary 3.7 If J =1, then
r € D*Ne (2°,0°) (s) <= s € ker A; and r € im A7 .

Here, A; refers to the matriz whose row vectors are the a; fori € 1.

4 Application to the electricity market model

In this section, we illustrate the results of the previous section by applying them to
special instances of the electricity market model. We consider the EPEC (7). For
the simplicity of the presentation, we restrict our considerations to so-called interior
solutions. By this we mean a solution (&, 3, ¢, §) of (7) satisfying

o‘zi,@>0, O<(7i<in, —g}i<yi<gji (’L:l,,N) (22)

Recall that (&,(,q,7) being a solution of (EPEC) implicitly entails that (g,7) €
G. The positivity of the bidding coefficients &;, 3; is a very natural assumption.
The remaining relations characterize a solution, where no generator and no flow of
electricity reaches its simple lower and upper bounds.

4.1 Verification of the constraint qualification

As one can see from the concrete shape of F'in (8), this mapping is bilinear in the
couple (3, q) of variables. Thus, it fails to be polyhedral and, in order to apply the
first order necessary conditions of Theorem 2.1, one first has to verify the constraint
qualification of that same theorem.

Lemma 4.1 If the incidence matriz B of the electricity network has rank m (i.e.,
the network is acyclic), then any interior solution to (6) satisfies the constraint
qualification of Theorem 2.1.

Proof. = We ignore the equation in (10) and observe that, using the partition
v = (vg, ), the inclusion in (10) may be written as
2 |dia Vg . o o=
- < [ gﬂ] ) €D NG((Q>?/)>_F (a>ﬁaQay))(U)' (23)

Now, (¢,y) € G implies that ¢ + By > d. If any inequality in this system were
strict, then one could strictly decrease the cost function ¢;(¢;) in (4). This is because
@i, 3 > 0 (see (22)) and so ¢; is strictly increasing. Then, however, (g, ) could not
be a solution of (4). Consequently, §+ By = d and so I = {1,..., N} for the set of
active indices defined in Section 3 (note that the other inequalities defining G are

11



non-binding due to assumption (22)). It follows that for some A € RY, (5) may be

transformed into [d B} \
o + 2 |dia, q

By (22), comparison of the first components yields that \; > 0 forall: € {1,..., N}.
Hence, J = I for the index set introduced below (13). This allows to apply Corollary
3.7. We note that the matrix A; occurring in this corollary coincides in our concrete
setting with the matrix — (I |B) describing the inequality system ¢+ By > d which
was actually shown to be active in each of its components. The minus-sign is due to
the fact that the polyhedron C' in section 3 is described by means of ’<’- inequalities.
Applying now Corollary 3.7 to (23) one obtains the relations

Va + Buy = 0; ( 2 [dia(%m Y ) - ( BATL/J ) (25)

for a certain multiplier vector ;1 € RY. Combination of the two components in the
second equation provides

BT [diag B} Buv, = 0.

Since 3; > 0 foralli = 1,..., N according to (22) and B has rank m by assumption,
it follows that the (m, m)- matrix BY [diag ﬁ] B has rank m too. Hence, v, = 0 and,
referring to the first equation of (25), v, = 0, and so v = 0, as was to be shown. m

We do not continue here to derive the first order necessary conditions from Theorem
2.1 because it turns out that these do not uniquely identify a stationary solution.
Rather a continuum of such solutions is obtained. This is consistent with a corre-
sponding observation in [11] related to simultaneous bidding of linear and quadratic
cost coefficients. We shall rather follow the idea in |[11]| to consider partial bidding
of say linear cost coefficients in order to identify solutions. Before doing so, we
generalize our setting by allowing the demands d; in (3) to be random.

4.2 Formulation of a stochastic equilibrium problem under
equilibrium constraints (SEPEC)

Since every player i € {1,..., N} does not know the demands d; at least for j # 1,
but hopefully has access to historical data, it is natural to assume that d is a random
vector on some probability space (€2, F,P) whose probability distribution is known
(approximately). This assumption leads to a polyhedral-valued multifunction G
defined on Q with values in RN¥*™ given by

Gw)={(¢.y) ER"™|q+ By > d(w), 0<q<q, —§ <y <3y}
Hence, the pair (q,y) of generation and flow has to be considered as a RV ™™-valued

random vector on (€2, F,P) and the ISO has to minimize the expected overall costs,

12



ie.,

min {E (Z ci(qi(w))>

q,
v 1=1

(q(w),y(w)) € G(w), P—a.s.} ) (26)

Furthermore, the EPEC (7) now becomes the following stochastic equilibrium prob-
lem with equilibrium constraints (SEPEC)

min {E«%—ai)qi(wm@—Qﬁ»q?(w))'oe ( o+ 2ldizgf) Q(“”)) e7)

aiyﬁiyq(')vy(')
+Ne(w) (9(w), y(w)), IP’—a.s.} (i=1,...,N),

where the pairs («;, 3;), i = 1,..., N, are deterministic and have to be determined
before the realization of the demand, and the pairs (¢;(+),v:(-)) ¢ = 1,..., N, are
stochastic. In the terminology of two-stage stochastic programming with recourse,
the cost coefficients (ay, 3;) are first-stage decisions, while (g;(-),v:(+)) are second-
stage or recourse decisions.

Notice that the stochastic EPEC (27) is well defined if G(w) # 0 holds P-a.s.
This fact is a consequence of the measurability of the set-valued mapping G (e.g.,
[23, Theorem 14.36]). Due to measurable selection theorems (see, e.g., [23, Corol-
lary 14.6]) there exists a measurable function (g(-),y(-)) : @ — R¥™™ such that
(¢(w),y(w)) € G(w), P-a.s. The expectations exist since ¢ is bounded by g.

The stochastic EPEC (27) corresponds to a coupled system of (specific) stochastic
MPECs. Theoretical aspects of stochastic MPECs and their solution by sampling
methods are studied in |26, 27|. Existence and stability results for solutions and
numerical methods for stochastic EPECs are widely open.

4.3 Identification of M-stationary solutions for discrete ran-
dom demands and partial bidding of linear coefficients

Assume that the probability distribution of d is discrete with finite support and
denote by d, ... d%) € RN the K different scenarios of d. The scenarios induce
K different polyhedra of scenario-dependent generation and transmission constraints

Gri={(qy) RN g+ By >d®™, 0<q<q —j<y<g} (k=1,... K).

According to the remarks at the end of Section 4.1, we suppose now the quadratic
bid coefficients to be known, hence, 5 = 9, and only the linear bid coefficients to be
subject of optimization. The generalized equation (5) now has to be established for
each scenario k as follows:

' (k)
06(a+2[dgag5]q >+Nak(q(’“’,y(k’) k=1,... K. (28)

13



Accordingly, generator ¢’s profit under scenario k£ equals

2
(i — 7)™ +6; (qi(k)*) ,

where ¢*)* is a solution of (28). Then, in order that every generator maximizes its
expected profit, the underlying SEPEC becomes

where ¢ = (q(l), cee q(K)), Yy = (y(l), ey y(K)) and

filoway) = Zpk{ 7 = a) g 6(q£’“>)] (i=1....N),

F® (0, q.y) = (O‘”[dg“gﬂ ) (h=1,....K).

Here, the pj are the probabilities for the demand scenarios d*), so in particular they
fulfill the relations

In order to apply Theorem 2.1, we rewrite (SEPEC) as a usual EPEC. To this aim
we put

Fi=(FW",. . FX) G:=G x- xGk.
Owing to the calculus rule
Ne ( ) NGl( 7y( )) X NGK(q(K)ay(K))v

(SEPEC) boils down to (EPEC) as presented in Section 2. Since F is a linear map-
ping, the multifunction (9) is polyhedral and we may directly apply the necessary
optimality conditions of Theorem 2.1 without checking the constraint qualification.

As in Section 4.1, we shall be interested in so-called interior solutions for the ease of
presentations. Owing to the scenario character of parts of the solution, we have to
make this concept more precise: A solution (&, ,y) of (7) with the data specified
above is called an interior solution, if it satisfies

a; > 0, O<cj,.(k)<cj,~, —gji<gji(k)<g),~ (i=1,....,.N;k=1,...,K). (29)

Recalling, that partial derivative just with respect to «; rather than with respect to
(v, B;) have to be considered now, we deal with

K
k=1

Vo F (g = ((F.0) .. (7.0)).



where e; denotes the i-th standard unit vector in RY. Then, writing the i-th multi-
plier in the necessary optimality conditions as

= (0

the first equation (11) becomes

K
Yomat =y, (30)

Next, repeating (scenario-wise) the same argumentation as the one leading to (24),
and taking into account that § = §, one verifies the existence of A\¥) ¢ ]Rf, such

that (*) (k)
a + 2 |diagd] g A
< [Og]q ):<BT>\(k>) (k=1,...,K).

This may be condensed to the relations
BT(a 4+ 2[diagd]¢¥) =0 (k=1,..., K). (31)

When describing the polyhedron G introduced above as an inequality system of the
type Ax < b as required in Section 3, one would have to put

- -1 -B
A 0 I 0
A = : A= 1 0o [,
0 A 0 I
0 I
T
r = (q(l)’ y(l)’ cen ’q(K)’ y(K)) ,
= (_d(l)a 07 Cj> _g> 'gv T, _d(K)a 07 Cj> _gv Q)T .

On the other hand, looking for interior solutions according to (29), only the inequal-
ities of the type ¢ + By®) > d®) are binding (compare discussion in the beginning
of the proof of Lemma 4.1). Hence,

¢+ By® =d® (k=1,... K) (32)
and the matrix A; introduced in Corollary 3.7 has the shape

(I |-B) 0
A=
0 (—I |-B)

Then, with the partition o.") = ([5\¥],, [Tji(k)]b), the first statement of Corollary 3.7

) )

allows to extract the following two conditions from the inclusion (12):
0", + B, =0 (i=1,....N;k=1,...,K). (33)

15



Moreover,
Vyfi = 0
qui (un)fi, ey Vq(K) fl) (Z = 1, cey N), where
vq(k)fi(aivquy) = (07707pk[72 - Q; _25lqz(k)]70770)

and

V,FF =0
2[diag 6][7;"],
V F(a,q,9)"0 = (t=1,...,N).
2[diag 0][z"],
Thus, the second statement of Corollary 3.7 together with the inclusion (12) yields
the existence of multipliers u*) € R™ such that

(k) (k)
(w(i) ) = (B/;,u(k)) (k=1,...,K;i=1,...,N), where

wh = @260, 2600% 12600 + puly — @ — 26,47,
252'-}—1@2‘(,]2{—1’ ) 25N@z(]]if))T
In brief,
BTw =0 (k=1,... . Kii=1,...,N). (34)

Summarizing, M-stationary solutions of (SEPEC) are characterized by the relations
(30), (31), (32), (33) and (34).

4.4 Explicit calculation of M-stationary solutions for a small
example

Finally, we want to illustrate the results of the previous section by explicitly cal-
culating the solution of (SEPEC) for the smallest meaningful example, namely a
network consisting of N = 2 nodes which are linked by one single arc (m = 1). In
this case, the incidence matrix simply becomes

First, (30) may be shortly written as

Eg =Y oy (i=12), (35)

k=1

where 'E’ refers to the expected value. With the concrete shape of B, (31) takes the
form

ay + 20,0 = as + 26,7 (k=1,...,K). (36)
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Summing up all these equations upon multiplying them by the probabilities py, one
arrives at
O_él + 251qu - O_ég + 2521@@2 (37)

Next, we derive from (34) the equations

=1,...,K). (38)

26,04 + pln — @ — 26,,")] = 265015 (k
_ _ _(k _(k
2521)%) + Prlye — @ — 252615 )] = 251“&1)

Summing up over k the upper equations, we get

K K
2(51 Z T_Jﬁ) + Y1 — ap — 2(51qu = 2(52 Z 1_)%)
k=1 k=1

Taking into account (35), this reduces to

K
Vi — Gy =20,y . (39)
k=1
Furthermore, (33) yields
(K (k) ~(k _(k

Combining the first of these relations with (39) and (35), we obtain
11— g + 20Eq = 0. (41)
Similarly, the corresponding second relations in (38) and (40) allow to derive that
Yo — g + 201 Egy = 0. (42)
Finally, reading the components of (32) with the concrete shape of B gives
@+ =d @ - =d (k=1 K). (43)
Adding both equations leads to
"+ =d® +d¥ (k=1,... K). (44)

Summation over k entails that Eq; +Eg = Ed; +Ed,. Now, this last equation along
with (37), (41) and (42) constitutes a system of four linear equations in the four
unknowns &, as, Eq; and Eg,, which is easily resolved for its solution

A | (Ed1+Ed2+72%_% )

(01 + d2)
G = yoto (Ed1 4 Edy + ﬁ)
Eq = % (Edy, + Eds) + %
Eqp = % (Ed; + Ed,) + ﬁ
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With these a; and @y one may combine (44) and (36) in order to identify the
scenario-dependent amounts of electricity generation of both competitors:

(2 —m) + (61 — &) (Edy + Eds) + 265 (dgk) + dék)>

i = =1,...,K
7 2 (61 + 02) (k oo K)
2 - 2(51+52) =1,..., .

Next, using either of the two equations in (43), we may resolve for the scenario-
dependent amount of electricity sent from node 2 to node 1:

1
gj(k) = 5 (’71 — ’72) -+ (52 — 51) (Edl + Edg) + 2(51d§k) — 2(52d§k) (k’ = 1, ceey K) .
The expected value of this flow calculates as
1
Eﬂ = 5 (’)/1 — ’)/2) + (51 + (52) (Edl — Edg) .

Finally, we determine the expected profits Ex; of both competing generators:

K 2
Em = Zpk [(al - M) Cﬁk) + 01 <§§k)) } = (@ =) Eq + 6iE (@1)°
k=1

Emy = (a2 — 72)Eg + 6E (52)2 .
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