
Weierstraÿ-Institutfür Angewandte Analysis und Stohastikim Forshungsverbund Berlin e.V.Preprint ISSN 0946 � 8633On the onstrution of bifuration urves related tolimit yles of multipliity three for planar vetor �eldsLeonid Cherkas1, Alexander Grin2, Klaus R. Shneider3submitted: 21st June 2007
1 Belorussian State Universityof Informatis and RadioeletronisBrovka Street 6220127 MinskBelarusE-Mail: herkas�inp.by

2 Grodno State UniversityOzheshko Street 22230023 GrodnoBelarusE-mail:grin�grsu.by
3 Weierstrass Institute for AppliedAnalysis and StohastisMohrenstraÿe 3910117 BerlinGermanyE-mail: shneider�wias-berlin.deNo. 1242Berlin 2007

2000 Mathematis Subjet Classi�ation. 34C05, 34C23.Key words and phrases. multiple limit yle, degenerate Hopf bifuration, ontinuation method.



Edited byWeierstraÿ-Institut für Angewandte Analysis und Stohastik (WIAS)Mohrenstraÿe 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



AbstratFor plane vetor �elds depending on three parameters we desribe an algorithmto onstrut a urve in the parameter spae suh that to eah point of this urvethere belongs a vetor �eld possessing a limit yle of multipliity three. One pointof this urve is related to the bifuration of a limit yle of multipliity three froman equilibrium point. The underlying proedure is a ontinuation method.1 IntrodutionWe onsider systems of two salar autonomous di�erential equations
dx

dt
= P (x, y, λ),

dy

dt
= Q(x, y, λ) (1.1)depending on a parameter vetor λ ∈ Rm in some region Ω of the phase plane. Underertain onditions, the phase portrait of system (1.1) in Ω is determined by the so-alledsingular trajetories, namely the equilibria, separatries and limit yles of (1.1) in Ω (see,e.g., [1℄). The most di�ult problem in studying these singular trajetories is to loalizemultiple limit yles and to estimate the number of limit yles. This problem is stillunsolved even in the ase of polynomial systems

dx

dt
=

n
∑

i+j=0

aijx
iyj,

dy

dt
=

n
∑

i+j=0

bijx
iyj,where aij and bij are real oe�ients, and it represents the seond part of the famous16-th problem of D. Hilbert [4℄. As already D. Hilbert indiated, the investigation of thedependene of limit yles on parameters should play a fundamental role in solving theposed problem.By our understanding, a omplete solution of Hilbert's 16-th problems should not onlygive an upper estimate of the number of limit yles, it should also provide a onstrutivemethod to loalize the limit yles. This is similar to the problem of estimating andloalizing the real roots of a given polynomial in some interval.Our main goal in this note is to ontribute to the onstrutive methods for estimatingthe number of limit yles of some lasses of planar polynomial systems depending onparameters. 1



2 PrelimineriesLet Ω be some onneted region in R2 and Λ a simply onneted region in Rm. Weonsider system (1.1) in Ω under the following smoothness assumption.
(A1). P and Q are n-times (n ≥ 1) ontinuously di�erentiable with respet to x and y,and ontinuously di�erentiable with respet to λ for (x, y, λ) ∈ Ω × Λ.System (1.1) de�nes the planar vetor �eld f := (P,Q) on Ω. We denote f as smooth ifassumption (A1) is satis�ed.In what follows we reall the de�nitions of some basi tools of the qualitative theory ofautonomous di�erential systems.An isolated periodi solution (x, y) = (xp(t, λ), yp(t, λ)) of system (1.1) with �nite minimalperiod T (λ) > 0 is alled a limit yle. We set

Γ(λ) := {(x, y) ∈ R2 : x = xp(t, λ), y = yp(t, λ) , 0 ≤ t ≤ T (λ)}.Let p0 be any point on Γ(λ), let Σ be a small segment (open onneted set) of the normalto Γ(λ) through p0 ontaining p0 with the following properties:(i) All trajetories of (1.1) whih meet Σ interset Σ transversally.(ii) There is an open onneted subset Σ0 of Σ ontaining p0 suh that to eah point
q ∈ Σ0 there is a unique minimal positive number τ(q) ≈ T (λ) suh that thetrajetory of (1.1) starting for t = 0 at q intersets Σ for t = τ(q).By this way we de�ne a map Π(λ, .) : Σ0 → Σ whih is alled the �rst return map orPoinaré map assoiated with Γ(λ). Obviously, p0 is a �xed point of Π(λ, .).The following properties of the Poinaré map are well known (see [3℄).(i) Π(λ, .) is a di�eomorphism with the same smoothness as the vetor �eld f .(ii)

Π(λ, p0) = p0, Π′
ξ(λ, p0) = exp

{

∫ T (λ)

0

divf(xp(t, λ), yp(t, λ), λ) dt
}

. (2.1)Together with Π(λ, .) we introdue the displaement funtion δ(λ, .) : Σ0 → R by
δ(λ, ξ) := Π(λ, ξ) − ξ.The multipliity of a limit yle is usually introdued by means of the Poinaré or of thedisplaement funtion: 2



De�nition 2.1 Suppose hypothesis (A1) holds with n ≥ k ≥ 1. Γ(λ) is alled a limityle of multipliity 1 (or simple limit yle or hyperboli limit yle), if we have
δ(λ, p0) = 0, δ′ξ(λ, p0) 6= 0.

Γ(λ) is alled a limit yle of multipliity k, k ≥ 2, if it holds
δ(λ, p0) = δ′ξ(λ, p0) = 0, ...., δ

(k−1)
ξ (λ, p0) = 0, δ

(k)
ξ (λ, p0) 6= 0.The importane of the onept of the multipliity of a limit yle is based on the fatthat under appropriate perturbations of (1.1), from a limit yle of multipliity k maybifurate up to k simple limit yles [3, 5℄.Analogously to the onept of a multiple limit yle, we introdue the onept of a multipleequilibrium of fous type.An equilibrium point (xe, ye) of system (1.1) is said to be an equilibrium of fous type, ifthe eigenvalues of the Jaobian matrix J(λ) of the right hand side of (1.1) at (xe, ye) havenon-vanishing imaginary parts. In a neighborhood of an equilibrium point of fous typewe may also introdue the Poinaré map Π(λ, .) and the displaement funtion δ(λ, .).If we assume that the origin is an equilibrium point of fous type and that the displaementfuntion δ an be represented in the form

δ(λ, ξ) =

n
∑

i=1

αi(λ)ξi + o(ξn), (2.2)and if we assume that for λ = λ0 the Jaobian matrix J(λ0) at the origin has non-vanishingpure imaginary eigenvalues, then the origin is alled a fous of multipliity 1 if we have
α1(λ0) 6= 0. It is said to be a fous of multipliity k with 2k + 1 ≤ n, if it holds

α1(λ0) = α2(λ0) = ... = α2k−2(λ0) = 0, α2k−1(λ0) 6= 0.Analogously to the perturbation of a multiple limit yle we have the fat that underappropriate perturbations of (1.1), from a fous of multipliity k may bifurate up to ksimple limit yles [3, 5℄.Finally, we introdue the so-alled Poinaré funtional, whih is a simple tool to establishthe absene of a periodi solution in some region D ⊂ Rn for an n-dimensional system ofautonomous di�erential equations
dx

dt
= g(x), (2.3)where g maps D into Rn. 3



De�nition 2.2 Let G : D → R be a ontinuously di�erentiable funtional and suh thatthe salar produt of gradG and g does not hange sign in D and does not vanish on anynontrivial losed orbit in D, then G is alled a Poinaré funtional to system (2.3).The following result is well-knownProposition 2.1 Suppose the funtion g maps D ontinuously into Rn and that thereis a Poinaré funtional G to system (2.3) in D. Then system (2.3) has no nontrivialperiodi solution in D.3 Determining relations for a limit yle ofmultipliity 3In the sequel we reformulate the multipliity onditions in De�nition 2.1 for a limit yle.For this purpose we introdue the following notations.
H(x, y, λ) := P 2(x, y, λ) +Q2(x, y, λ),

H1(x, y, λ) := divf(x, y, λ) ≡
∂P

∂x
(x, y, λ) +

∂Q

∂y
(x, y, λ),

Hi(x, y, λ) =
∂

∂y

(

PHi−1

H

)

(x, y, λ) −
∂

∂x

(

QHi−1

H

)

(x, y, λ) for i = 2, 3.

Ĥi(t, λ) := Hi(xp(t, λ), yp(t, λ), λ) for i = 1, 2, 3,

h1(λ) =

∫ T (λ)

0

Ĥ1(t, λ)dt, h2(λ) =

∫ T (λ)

0

Ĥ2(t, λ)exp

(∫ t

0

Ĥ1(τ, λ)dτ

)

dt,

h3(λ) =

∫ T (λ)

0

Ĥ3(t, λ) exp

(

2

∫ t

0

Ĥ1(τ, λ)dτ

)

dt.

(3.1)
Taking into aount relation (2.1) we have the following lemma.Lemma 3.1 Suppose assumption (A1) holds with n = 1. Then the limit yle Γ(λ) issimple (or hyperboli) if and only if it holds

h1(λ) 6= 0.Using this lemma and the introdued notations we getLemma 3.2 Suppose the assumption (A1) to be valid for n = 3. Let Γ(λ) be a limit yleof system (1.1). Then it holds: 4



(i) Γ(λ) has multipliity 2 if and only if
h1(λ) = 0, h2(λ) 6= 0.(ii) Γ(λ) has multipliity 3 if and only if

h1(λ) = 0, h2(λ) = 0, h3(λ) 6= 0.The following propositions essentially represent a reformulation of the lemmata 3.1 and3.2.Proposition 3.1 Suppose assumption (A1) is valid for n = 2. If the system
dx

dt
= P (x, y, λ),

dy

dt
= Q(x, y, λ),

dz

dt
= H1(x, y, λ),

dw1

dt
= ezH2(x, y, λ)

(3.2)has no nontrivial periodi solution, then the multipliity of any limit yle of system (1.1)is bounded by 2.Proof. If we suppose that system (1.1) has no limit yle, then Proposition 3.1 isobviously true. If we assume that system (1.1) has a limit yle (xp(t, λ), yp(t, λ)) withperiod T (λ) suh that
z(T (λ)) − z(0) =

∫ T (λ)

0

H1(t, λ)dt = h1(λ) 6= 0,then this limit yle has multipliity 1 and Proposition 3.1 is valid.The last possibility is that system (1.1) has a limit yle suh that h1(λ) = 0 and
w1(T (λ)) − w1(0) =

∫ T (λ)

0

ez(t)H2(t, λ) dt = h2(λ) 6= 0,then this limit yle has multipliity 2. This ompletes the proof of Proposition 3.1. 2Proposition 3.2 Suppose assumption (A1) is valid for n = 3. If the system
dx

dt
= P (x, y, λ),

dy

dt
= Q(x, y, λ),

dz

dt
= H1(x, y, λ),

dw2

dt
= e2zH3(x, y, λ)

(3.3)has no nontrivial periodi solution, then the multipliity of any limit yle of system (1.1)is not larger than 3. 5



Proof. If system (1.1) has no limit yle or only a simple limit yle, then Proposition3.2 is obviously true. If we assume that system (1.1) has a limit yle suh that h1(λ) = 0and
w2(T (λ)) − w2(0) =

∫ T (λ)

0

e2z(t)H3(t, λ)dt = h3(λ) 6= 0,then this limit yle has either multipliity 2 or multipliity 3. This ompletes the proofof Proposition 3.2. 2Remark 3.1 If we inrease the di�erentiability of P and Q, then Proposition 3.2 exludesalso the existene of limit yles of multipliity larger than 3.4 An algorithm to determine families of planar vetor�elds possessing a limit yle with multipliity 3In this setion we onsider systems (1.1) depending on three parameters (m = 3). Ourgoal is to desribe an algorithm yielding a �nite set Λ3 of points in the three-dimensionalparameter spae Λ suh that to eah point of this set there orresponds a system (1.1)with a limit yle of multipliity 3. We denote by K3 the urve de�ned by the set Λ3.The �rst step of our algorithm in onstruting suh a set onsists in �nding a point λ0 ∈ Λwhih orresponds to a system (1.1) having a fous of multipliity three. That means weare looking for a point λ0 ∈ Λ whih orresponds to a system (1.1) having a degeneratelimit yle of multipliity 3 (vanishing amplitude). Taking into aount that the relation
α2i+1 = 0 implies α2i+2 = 0 for i = 0, 1, .... (see [3, 5℄) we onsider the equations

P (x, y, λ) = 0, Q(x, y, λ) = 0, α1(x, y, λ) = 0, α3(x, y.λ) = 0, α5(x, y, λ) = 0 (4.1)to determine an equilibrium point (xe, ye) ∈ Ω and a parameter value λ0 ∈ Λ ⊂ R3suh that (xe, ye) is a fous of multipliity at least 3 of the orresponding system (1.1).We assume that system (4.1) has suh a solution. Without loss of generality, we maysuppose that the orresponding equilibrium oinides with the origin. Then we hek,whether α7(λ0) is di�erent from zero in order to be able to say that the fous has exatlymultipliity 3.In the next step we onsider the extended system (3.2) for λ near λ0. We assume that toa given sequene of small positive numbers x1 < x2 < ... < xN << 1 there is a sequene ofparameter values λ1, λ2, ..., λN suh that system (3.2) has a limit yle Γ(λi) intersetingthe positive x-axis in the point xi. That means that at least for λi near λ0 the set Λ3 an6



be parameterized by the intersetion point of the orresponding limit yle Γ(λi) with thepositive x-axis and that this set is related to the bifuration of a limit yle of multipliity
3 from a fous of the same multipliity. In what follows we desribe an algorithm whihomputes to given xi the orresponding value λi.First we modify system (3.2) slightly. By means of the transformation t = T

2π
τ = µτ with

µ = T
2π

we introdue a new time τ suh that the primitive period of the limit yle Γ(λi)is 2π for any λi. But then we have to inlude the parameter µ into the set of parametersto be determined. Using the new time τ , we get from (3.2) the system
dx

dτ
= µP (x, y, λ),

dy

dτ
= µQ(x, y, λ),

dz

dτ
= µH1(x, y, λ),

dw1

dτ
= µezH2(x, y, λ).

(4.2)If we denote by
(x̃(τ, x0, 0, 0, 0, µ, λ), ỹ(τ, x0, 0, 0, 0, µ, λ), z̃(τ, x0, 0, 0, 0, µ, λ), w̃1(τ, x0, 0, 0, 0, µ, λ))the solution of system (4.2) satisfying

x̃(0, x0, 0, 0, 0, µ, λ) = x0, ỹ(0, x0, 0, 0, 0, µ, λ) = 0,

z̃(0, x0, 0, 0, 0, µ, λ) = 0, w̃1(0, x0, 0, 0, 0, µ, λ) = 0,then the system of equations whih determines the parameters λ and µ suh that system(4.2) has a nontrivial periodi solution has the form
ϕ1(x0, λ, µ) ≡ x̃(2π, x0, 0, 0, 0, µ, λ)− x0 = 0,

ϕ2(x0, λ, µ) ≡ ỹ(2π, x0, 0, 0, 0, µ, λ) = 0,

ϕ3(x0, λ, µ) ≡ z̃(2π, x0, 0, 0, 0, µ, λ) = 0,

ϕ4(x0, λ, µ) ≡ w̃1(2π, x0, 0, 0, 0, µ, λ) = 0.

(4.3)
Suppose we have determined to the sequene x1, ..., xi−1 the values µ∗

1, ..., µ
∗
i−1, λ∗1, ..., λ∗i−1approximating the orresponding values µ(x1), ..., µ(xi−1), and λ(x1), ..., λ(xi−1).In order to determine to xi the orresponding approximating values (µ∗

i , λ
∗
i ) we applyNewton's method to system (4.3) yielding the sequene (µk

i , λ
k
i ) de�ned by

(

λk+1
i

µk+1
i

)

=

(

λk
i

µk
i

)

− J−1(xi)ϕ(xi, µ
k
i , λ

k
i ), k = 0, 1, ...7



where λ0
i = λ∗i−1, µ

0
i = µ∗

i−1,
J(xi) =













∂x̃
∂λ

(2π, xi, 0, 0, 0, µ
∗
i−1, λ

∗
i−1)

∂x̃
∂µ

(2π, xi, 0, 0, 0, µ
∗
i−1, λ

∗
i−1)

∂ỹ

∂λ
(2π, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1)

∂ỹ

∂µ
(2π, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1)

∂z̃
∂λ

(2π, xi, 0, 0, 0, µ
∗
i−1, λ

∗
i−1)

∂z̃
∂µ

(2π, xi, 0, 0, 0, µ
∗
i−1, λ

∗
i−1)

∂w̃1

∂λ
(2π, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1)

∂w̃1

∂µ
(2π, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1)













.Remark 4.1 Under the assumption that the Jaobian matrix J(xi) is invertible and thatthe di�erene |xi −xi−1| is su�iently small for any i, the sequenes {µk
i }, {λ

k
i }, onvergeto µ∗

i , λ
∗
i , respetively, as k tends to in�nity.The entries of the matrix J an be alulated by solving the initial value problem

dx

dτ
= µP (x, y, λ),

dy

dτ
= µQ(x, y, λ),

dz

dτ
= µH1(x, y, λ),

dw1

dτ
= µezH2(x, y, λ),

d(∂x
∂λ

)

dτ
= µ

(

∂P

∂λ
+
∂P

∂x

∂x

∂λ
+
∂P

∂y

∂y

∂λ

)

,

d( ∂y

∂λ
)

dτ
= µ

(

∂Q

∂λ
+
∂Q

∂x

∂x

∂λ
+
∂Q

∂y

∂y

∂λ

)

,

d( ∂z
∂λ

)

dτ
= µ

(

∂H1

∂λ
+
∂H1

∂x

∂x

∂λ
+
∂H1

∂y

∂y

∂λ

)

,

d(∂w1

∂λ
)

dτ
= µ

(

∂(ezH2)

∂λ
+
∂(ezH2)

∂x

∂x

∂λ
+
∂(ezH2)

∂y

∂y

∂λ
+
∂(ezH2)

∂z

∂z

∂λ

)

,

d(∂x
∂µ

)

dτ
= P + µ

(

∂P

∂x

∂x

∂µ
+
∂P

∂y

∂y

∂µ

)

,

d( ∂y

∂µ
)

dτ
= Q+ µ

(

∂Q

∂x

∂x

∂µ
+
∂Q

∂y

∂y

∂µ

)

,

d( ∂z
∂µ

)

dτ
= H1 + µ

(

∂H1

∂x

∂x

∂µ
+
∂H1

∂y

∂y

∂µ

)

,

d(∂w1

∂µ
)

dτ
= ezH2 + µ

(

∂(ezH2)

∂x

∂x

∂µ
+
∂(ezH2)

∂y

∂y

∂µ
+
∂(ezH2)

∂z

∂z

∂µ

)

,

x(0, xi, 0, 0, 0, µ
∗
i−1, λ

∗
i−1) = xi, y(0, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1) = 0,8



z(0, xi, 0, 0, 0, µ
∗
i−1, λ

∗
i−1) = 0, w1(0, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1) = 0,

∂x

∂µ
(0, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1) =

∂y

∂µ
(0, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1) = 0,

∂z

∂µ
(0, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1) =

∂w1

∂µ
(0, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1) = 0,

∂x

∂λ
(0, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1) =

∂y

∂λ
(0, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1) = 0,

∂z

∂λ
(0, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1) =

∂w1

∂λ
(0, xi, 0, 0, 0, µ

∗
i−1, λ

∗
i−1) = 0.Remark 4.2 As we mentioned above, the presented variant of the proedure is based onthe assumption that the set Λ3 of parameter points an be parameterized by the x-oordinateof the intersetion point of the orresponding limit yle Γ(λ) with the positive x-axis. Ifthis assumption is not longer ful�lled, we an reparametrize the remaining subset by oneof the omponents of the parameter vetor λ.In the last step we show that the limit yle Γ(λi) of system (1.1) has multipliity notgreater than 3. For this purpose we onsider system (3.3) for λ = λi and onstrut aPoinaré funtional G(x, y, z, w2, λi) for (x, y) in an annulus Ω(λi) ontaining the limityle Γ(λi) suh that system (3.3) has no periodi solution in Ω(λi). Thus, aording toProposition 3.2, the multipliity of Γ(λi) is exatly 3.To onstrut the Poinaré funtional G we make the ansatz

G(x, y, z, w2, λi) := ψ(x, y, λi)e
2z + Cn+1(λi)w2, (4.4)where ψ is the linear ombination of some base funtions ψj in Ω(λi)

ψ(x, y, λi) =
n

∑

j=1

Cj(λi)ψj(x, y, λi), (4.5)and Cn+1(λi) is some additional parameter. In ase that (1.1) is a polynomial system, wean take monomials in x and y as base funtions ψj , j = 1, 2, ..., n. If we di�erentiate thefuntional G along system (3.3) we get
dG

dt |(3.3)
= e2z

(

2ψ divf + ψxP + ψyQ+ Cn+1H3

)

, (4.6)where H3 is de�ned in (3.1). If we are able to given λi to �nd a funtion ψ(x, y, λi) anda parameter funtion Cn+1(λi) suh that it holds in Ω(λi)

Φ(x, y, λi) := 2ψ divf + ψxP + ψyQ+ Cn+1H3 6= 0, (4.7)then aording to Proposition 3.2 the limit yle Γ(λi) has multipliity 3.We summarize this result in the following theorem.9



Theorem 4.1 Let the assumption (A1) be satis�ed for n = 3. Furthermore, we supposethat to given xi > 0, λi ∈ Λ3, system (3.2) has a limit yle Γ(λi) loated in the annulus
Ω(λi) and interseting the positive x-axis in the point (xi, 0) and that there are base fun-tions ψj(x, y, λi), j = 1, ..., n, and oe�ient funtions Ck(λi), k = 1, ..., n + 1, suh thatfor (x, y) ∈ Ω(λi) we have

Φ(x, y, λi) ≡2 divf(x, y, λi)

n
∑

j=1

Cj(λi)ψj(x, y, λi) + P (x, y, λi)

n
∑

j=1

Cj(λi)
∂ψj

∂x
(x, y, λi)

+Q(x, y, λi)

n
∑

j=1

Cj(λi)
∂ψj

∂y
(x, y, λi) + Cn+1(λi)H3(x, y, λi) 6= 0. (4.8)Then the multipliity of the limit yle Γ(λi) of system (1.1) is exatly 3.5 Appliation to a polynomial Liénard system with aunique equilibrium pointWe onsider the lass of Liénard systems

dx

dt
= y − (x7 − cx5 + bx3 − ax) ≡ P (x, y, λ),

dy

dt
= −x ≡ Q(x, y, λ) (5.1)depending on the real parameter vetor λ = (a, b, c). Our goal is to determine a set ofparameter tuples {λi} by applying the proedure desribed above suh that the orre-sponding system (5.1) has a limit yle of multipliity 3. The following lemma an beeasily veri�ed.Lemma 5.1 For any tuple (a, b, c) ∈ R3, the origin (0, 0) is the unique equilibrium pointof system (5.1) in any bounded part of the phase plane. For |a| < 2 it represents a fouswhih is exponentially attrating (repelling) for a > 0 (a < 0).For a = 0, the origin is a weak fous whose Lyapunov numbers αi de�ned in (2.2) satisfy

α1 = α2 = 0, sign α3 = −sign b,i.e., it is asymptotially stable for b > 0.In ase α1 = α2 = α3 = 0 we have
α4 = 0, sign α5 = −sign c.Supposing α1 = ... = α5 = 0, we have

α6 = 0, α7 6= 0.10



Using the notion of multipliity of an equilibrium point we get from Lemma 5.1 that inase a = b = c = 0 the origin is a fous of multipliity 3. Thus, we an use the parametertuple (0, 0, 0) as starting point for our proedure. As a result we get the following set ofparameter points {λi} (see Table 1) for whih system (4.2) has a limit yle Γ(λi) whosemultipliity is at least 3. We note that the limit yle Γ(λi) shrinks to the origin as
|λi| tends to zero, that means, there appears Hopf bifuration of a limit yle of highermultipliity from the origin.In the �nal step we onstrut to eah λi an annulus Ω(λi) ontaining the limit yle Γ(λi)and a Poinaré funtional G(x, y, z, w2, λi) aording to the ansatz (4.4) suh that theondition (4.8) is ful�lled.First we onstrut an annulus Ωε(λi) ontaining the limit yle Γ(λi) and depending onsome parameter ε.
i x0 a b c µ1 0.2 0.000035 0.003500 0.105000 1.0000002 0.3 0.000399 0.017719 0.236250 1.0000003 0.4 0.002240 0.056000 0.420000 1.0000004 0.5 0.008545 0.136719 0.656250 1.0000015 0.6 0.025515 0.283499 0.944999 1.0000076 0.7 0.064336 0.525207 1.286239 1.0000477 0.8 0.143327 0.895901 1.679930 1.0002318 0.9 0.290354 1.434568 2.125885 1.0009509 1 0.545023 2.183981 2.623400 1.00335910 1.1 0.958499 3.186438 3.170108 1.01049611 1.2 1.583387 4.469510 3.758703 1.02939912 1.3 2.433288 6.005218 4.368477 1.07312813 1.4 3.413452 7.654568 4.957041 1.15410214 1.5 4.414707 9.299753 5.500792 1.270515Table 1.For this purpose we imbed system (5.1) into the system
dx

dt
= y− (x7 − cix

5 + bix
3 − aix) + κx,

dy

dt
= −x+ κ

(

y− (x7 − cix
5 + bix

3 − aix)
)

, (5.2)where the parameter κ stritly rotates the �eld at (x, y) 6= (0, 0) and whih represents for
κ = 0 system (5.1) possessing the limit yle Γ(λi). Now we set κ = ±ε, where ε is a small11



positive number. Then system (5.2) has for κ = ε and κ = −ε the limit yle Γε(λi) and
Γ−ε(λi), respetively. Sine κ rotates the vetor �eld, Γε(λi) and Γ−ε(λi) form an annulus
Ωε(λi) ontaining the limit yle Γ(λi). We use this annulus as an approximation of thewanted annulus Ω(λi).In the next step we onstrut a funtional Gε on the annulus Ωε(λi) aording to theansatz (4.4). The main term in the expression for Gε is the funtion ψ(x, y, λi) whih werepresent as a linear ombination (4.5) of the base funtions xkyl:

ψ(x, y, λi) =
∑

0≤k+l≤N

Ckl(λi)x
kyl. (5.3)Substituting this relation into (4.8) we get

Φ(x, y, λi) ≡2 divf(x, y, λi)
∑

0≤k+l≤N

Ckl(λi)x
kyl

+ P (x, y, λi)
∑

1≤k+l≤N

k≥1 l≤N−1

k Ckl(λi)x
k−1yl

+Q(x, y, λi)
∑

1≤k+l≤N

l≥1 k≤N−1

l Ckl(λi)x
kyl−1 + CN+1(λi)H3(x, y, λi).

(5.4)
Our goal is to hoose the oe�ients Ckl(λi) and the oe�ient CN+1(λi) in (5.4) in suha way that the expression Φ(x, y, λi) does not vanish in Ωε(λi). This problem an be re-dued to a linear programming problem as desribed in [2℄. If this problem has a solution,then we take the annulus Ωε(λi) as the wanted annulus Ω(λi) and the funtional Gε asPoinaré funtional G de�ned on Ω(λi). In ase that we annot �nd oe�ients Ckl(λi)suh that (4.8) holds, we derease the parameter ε or inrease the degree N and repeatthe programming proedure.In what follows we onstrut the annulus Ω(λ7) and the Poinaré funtional G to theparameter tuple λ7 in Table 1 belonging to x0 = 0.8. As annulus Ωε(λ7) we hoose theregion bounded by the limit yles Γε(λ7) and Γ−ε(λ7) of system (5.2) with ε = 0.03. Asbase funtions we use monomials with maximal degree 4, i.e. N = 4 in (5.3). If we applythe linear programming algorithm as desribed in [2℄, we get the following result
C00(λ7) = 1.242085, C10(λ7) = 0.909316, C01(λ7) = 0.909316, C20(λ7) = 1.818632,

C11(λ7) = 1.4134, C02(λ7) = 0.683876, C30(λ7) = 0.909316, C21(λ7) = 0.909316,

C12(λ7) = 0.909316, C03(λ7) = 0.909316, C40(λ7) = 0, C31(λ7) = 1.8186326,

C22(λ7) = 1.077677, C13(λ7) = 0, C04(λ7) = 1.818632, C5(λ7) = 0.885257,where the oe�ient C5(λ7) multiplies the variable w2. With these oe�ients we have12



Φ(x, y, λ7) ≥ 0.0012 > 0 for (x, y) ∈ Ω(λ7).Thus, the funtional
G(x, y, z, w2, λ7) = e2z

∑

0≤k+l≤4

Ckl(λ7)x
kyl + C5(λ7)w2is a Poinaré funtional in the annulus Ω(λ7) and we an onlude that Γ(λ7) is a limityle of multipliity 3 of system (5.1) with λ = λ7.6 AknowledgementThe seond author aknowledgements the �nanial support by DAAD and the hospitalityof the Weierstrass Institute for Applied Analysis and Stohastis in Berlin.Referenes[1℄ A. A. Andronov, E. A. Leontovih, I. I. Gordon, A. G. Maier, Qualitativetheory of seond order dynamial systems, John Wiley and Sons, New York, 1973.[2℄ L. A. Cherkas, A. A. Grin, Algebrai aspets of �nding a Dula funtion forpolynomial autonomous systems on the plane, Di�erential Equations 37 (2001), 411-417.[3℄ F. Dumortier, J. Llibre, J. C. Artes, Qualitative theory of planar di�erentialsystems, Universitext. Springer, 2006.[4℄ D. Hilbert, Mathematial Problems, Reprinted english translation: Bull. Amer.Math. So. 37 (2000), 407-436.[5℄ L. Perko, Di�erential equations and dynamial systems, Texts Appl. Math. 7,Springer, 2001.
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