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Abstract

For plane vector fields depending on three parameters we describe an algorithm
to construct a curve in the parameter space such that to each point of this curve
there belongs a vector field possessing a limit cycle of multiplicity three. One point
of this curve is related to the bifurcation of a limit cycle of multiplicity three from

an equilibrium point. The underlying procedure is a continuation method.

1 Introduction

We consider systems of two scalar autonomous differential equations
dx

d

depending on a parameter vector A € R™ in some region €2 of the phase plane. Under
certain conditions, the phase portrait of system (1.1) in € is determined by the so-called
singular trajectories, namely the equilibria, separatrices and limit cycles of (1.1) in € (see,
e.g., |1]). The most difficult problem in studying these singular trajectories is to localize
multiple limit cycles and to estimate the number of limit cycles. This problem is still

unsolved even in the case of polynomial systems

dt i+5=0 ! L odi i+j=0 ! ’
where a;; and b;; are real coefficients, and it represents the second part of the famous
16-th problem of D. Hilbert [4]. As already D. Hilbert indicated, the investigation of the
dependence of limit cycles on parameters should play a fundamental role in solving the
posed problem.
By our understanding, a complete solution of Hilbert’s 16-th problems should not only
give an upper estimate of the number of limit cycles, it should also provide a constructive
method to localize the limit cycles. This is similar to the problem of estimating and
localizing the real roots of a given polynomial in some interval.
Our main goal in this note is to contribute to the constructive methods for estimating
the number of limit cycles of some classes of planar polynomial systems depending on

parameters.



2 Prelimineries

Let Q be some connected region in R? and A a simply connected region in R™. We

consider system (1.1) in € under the following smoothness assumption.

(A1). P and @ are n-times (n > 1) continuously differentiable with respect to = and v,
and continuously differentiable with respect to A for (z,y, A\) € Q x A.

System (1.1) defines the planar vector field f := (P, Q) on Q. We denote f as smooth if
assumption (A;) is satisfied.
In what follows we recall the definitions of some basic tools of the qualitative theory of

autonomous differential systems.

An isolated periodic solution (z,y) = (x,(t, A), yp(t, \)) of system (1.1) with finite minimal
period T'(A) > 0 is called a limit cycle. We set

L(A) = {(z,y) € R* : 2 = 2,(t,\),y = 4,(t, \) ,0 < t < T(\)}.

Let po be any point on I'(A), let X be a small segment (open connected set) of the normal

to I'(A) through py containing py with the following properties:

(i) All trajectories of (1.1) which meet X intersect ¥ transversally.

ii) There is an open connected subset X of X containing pg such that to each point
gp
q € Yo there is a unique minimal positive number 7(q) ~ T(\) such that the

trajectory of (1.1) starting for ¢ = 0 at ¢ intersects X for t = 7(q).

By this way we define a map II()\,.) : ¥y — ¥ which is called the first return map or
Poincaré map associated with I'(A). Obviously, py is a fixed point of TI(},.).

The following properties of the Poincaré map are well known (see [3]).
(i) II(A,.) is a diffecomorphism with the same smoothness as the vector field f.
(i)
T(N)
H()\apO) = Do, ng()‘>p0) = exp { / dl’llf(l'p(t, )‘)>yp(t> >‘)a )\) dt} (21)
0
Together with II(A,.) we introduce the displacement function 6(A,.) : X9 — R by

The multiplicity of a limit cycle is usually introduced by means of the Poincaré or of the

displacement function:



Definition 2.1 Suppose hypothesis (A1) holds with n > k > 1. T'(\) is called a limit

cycle of multiplicity 1 (or simple limit cycle or hyperbolic limit cycle), if we have
5()‘7290) = 07 52()‘7290) 7é 0.
[T'()A) is called a limit cycle of multiplicity k, k > 2, if it holds

(A, po) = 0t(A\, p0) = 0, s 60V (X, po) = 0,88 (X, po) # 0.

The importance of the concept of the multiplicity of a limit cycle is based on the fact
that under appropriate perturbations of (1.1), from a limit cycle of multiplicity & may
bifurcate up to k simple limit cycles [3, 5.

Analogously to the concept of a multiple limit cycle, we introduce the concept of a multiple
equilibrium of focus type.

An equilibrium point (z., y.) of system (1.1) is said to be an equilibrium of focus type, if
the eigenvalues of the Jacobian matrix J(\) of the right hand side of (1.1) at (., y.) have
non-vanishing imaginary parts. In a neighborhood of an equilibrium point of focus type
we may also introduce the Poincaré map II(\,.) and the displacement function §(A,.).

If we assume that the origin is an equilibrium point of focus type and that the displacement

function ¢ can be represented in the form

ZozZ )E 4 0(€M), (2.2)

and if we assume that for A = )¢ the Jacobian matrix J()g) at the origin has non-vanishing
pure imaginary eigenvalues, then the origin is called a focus of multiplicity 1 if we have
a1(Ag) # 0. It is said to be a focus of multiplicity & with 2k + 1 < n, if it holds

Oél()\o) = (1/2()\0) =..= Oégk_g()\o) = 0,a2k_1()\0) 7é 0.

Analogously to the perturbation of a multiple limit cycle we have the fact that under
appropriate perturbations of (1.1), from a focus of multiplicity k£ may bifurcate up to k
simple limit cycles [3, 5].

Finally, we introduce the so-called Poincaré functional, which is a simple tool to establish
the absence of a periodic solution in some region D C R" for an n-dimensional system of

autonomous differential equations

— = 9(x), (2.3)

where g maps D into R".



Definition 2.2 Let G : D — R be a continuously differentiable functional and such that
the scalar product of gradG and g does not change sign in D and does not vanish on any

nontrivial closed orbit in D, then G is called a Poincaré functional to system (2.3).

The following result is well-known

Proposition 2.1 Suppose the function g maps D continuously into R™ and that there
is a Poincaré functional G to system (2.3) in D. Then system (2.3) has no nontrivial

periodic solution in D.

3 Determining relations for a limit cycle of
multiplicity 3

In the sequel we reformulate the multiplicity conditions in Definition 2.1 for a limit cycle.

For this purpose we introduce the following notations.

H(z,y,\) == P*(z,y,\) + Q*(x,y, \),

. oP 0
Hila,,3) = divf (2,0.0) = 5G9 X) + 50,0,

Hi<z,y,x>=§y(”jj‘l)u,y,a—a%(Qf;‘l)@,y,» for i—2,3

Hi(t, ) - (:L’p(t Ayt A),N) for i=1,2,3,

/ Hi(t ho(N) = /O " Hy(t, \exp ( /0 t Hy(r, )\)dT) dt,
= /0 Hy(t, ) exp (2 /0 t Hy(r, )\)dT) dt.

Taking into account relation (2.1) we have the following lemma.

(3.1)

Lemma 3.1 Suppose assumption (Ay) holds with n = 1. Then the limit cycle I'(\) is
simple (or hyperbolic) if and only if it holds

hi(A) # 0.
Using this lemma and the introduced notations we get

Lemma 3.2 Suppose the assumption (A1) to be valid for n = 3. Let T'(\) be a limit cycle
of system (1.1). Then it holds:



(i) T'(N\) has multiplicity 2 if and only if

h(A) =0, hy(X) =0, hg(A) #0.

The following propositions essentially represent a reformulation of the lemmata 3.1 and
3.2.

Proposition 3.1 Suppose assumption (A1) is valid for n = 2. If the system

dx d

_:P($7y7A)> _y :Q(x>y>)\)a

% W), D= e,y ) |
dt_ 1\, Y, ) dt =e 2\, Y,

has no nontrivial periodic solution, then the multiplicity of any limit cycle of system (1.1)
15 bounded by 2.

Proof. If we suppose that system (1.1) has no limit cycle, then Proposition 3.1 is
obviously true. If we assume that system (1.1) has a limit cycle (x,(t, X), y,(t, X)) with
period T'(\) such that

T
AT(N) — 2(0) = / HL (£, \)dt = hy (V) £ 0,

then this limit cycle has multiplicity 1 and Proposition 3.1 is valid.
The last possibility is that system (1.1) has a limit cycle such that h;(\) = 0 and

T
W (T(N)) — w (0) = / O Hy(t, \) dt = ho(N) £ 0,

then this limit cycle has multiplicity 2. This completes the proof of Proposition 3.1. O

Proposition 3.2 Suppose assumption (Ay) is valid for n = 3. If the system

dx d

- = P($ay7A)> _y = Q(:L’,y, )‘)a

= (), T = () |
dt - 1\, Y, ) dt =€ 3\, Y,

has no nontrivial periodic solution, then the multiplicity of any limit cycle of system (1.1)

s not larger than 3.



Proof. If system (1.1) has no limit cycle or only a simple limit cycle, then Proposition
3.2 is obviously true. If we assume that system (1.1) has a limit cycle such that hy(\) =0

and

wo(T(N)) — wy(0) = /0 " e Hy(t, \)dt = hg(\) # 0,

then this limit cycle has either multiplicity 2 or multiplicity 3. This completes the proof
of Proposition 3.2. O

Remark 3.1 If we increase the differentiability of P and QQ, then Proposition 3.2 excludes

also the existence of limit cycles of multiplicity larger than 3.

4 An algorithm to determine families of planar vector

fields possessing a limit cycle with multiplicity 3

In this section we consider systems (1.1) depending on three parameters (m = 3). Our
goal is to describe an algorithm yielding a finite set A3 of points in the three-dimensional
parameter space A such that to each point of this set there corresponds a system (1.1)

with a limit cycle of multiplicity 3. We denote by K3 the curve defined by the set As.

The first step of our algorithm in constructing such a set consists in finding a point \g € A
which corresponds to a system (1.1) having a focus of multiplicity three. That means we
are looking for a point \g € A which corresponds to a system (1.1) having a degenerate
limit cycle of multiplicity 3 (vanishing amplitude). Taking into account that the relation

aiy1 = 0 implies ag; 0 = 0 for i = 0,1, .... (see |3, 5|) we consider the equations
P(x,y,\) =0,Q(x,y,\) = 0,0q(z,y,A) =0, as(z,y.\) =0, as(z,y,\) =0 (4.1)

to determine an equilibrium point (z.,7.) € € and a parameter value \y € A C R3
such that (z.,y.) is a focus of multiplicity at least 3 of the corresponding system (1.1).
We assume that system (4.1) has such a solution. Without loss of generality, we may
suppose that the corresponding equilibrium coincides with the origin. Then we check,
whether a7 (o) is different from zero in order to be able to say that the focus has exactly

multiplicity 3.

In the next step we consider the extended system (3.2) for A near Ag. We assume that to
a given sequence of small positive numbers x1 < x5 < ... < xny << 1 there is a sequence of
parameter values Ay, Ao, ..., Ay such that system (3.2) has a limit cycle I'()\;) intersecting

the positive z-axis in the point z;. That means that at least for \; near A\ the set A3 can



be parameterized by the intersection point of the corresponding limit cycle I'(\;) with the
positive z-axis and that this set is related to the bifurcation of a limit cycle of multiplicity
3 from a focus of the same multiplicity. In what follows we describe an algorithm which
computes to given z; the corresponding value \;.

First we modify system (3.2) slightly. By means of the transformation ¢ = % T = ut with
= % we introduce a new time 7 such that the primitive period of the limit cycle I'(\;)
is 27 for any A;. But then we have to include the parameter y into the set of parameters

to be determined. Using the new time 7, we get from (3.2) the system

dx d

—_— = ,uP(:B,y,)\), —y - NQ(Iayv)‘)>

dr dr (4 2)
dz dw, p .
E - ,qu(ZL',y, )‘)a ? = pe Hg(!ﬁ,y, )‘)

If we denote by
(Z(7,20,0,0,0, 11, A), 5(7, 9, 0,0,0, 11, A), 2(T, 20,0, 0,0, 1, \), w1 (7, 20, 0,0, 0, 1, X))
the solution of system (4.2) satisfying
7(0,20,0,0,0, 1, A) = o, 4(0,20,0,0,0, 1, \) =0,

2(0,20,0,0,0, 1, A) =0, w1(0,20,0,0,0,, \) = 0,

then the system of equations which determines the parameters A and g such that system

(4.2) has a nontrivial periodic solution has the form

Qpl(ﬂfo,)\,ﬂ/) = i’(27T,ZIf0,0,0,0,M, )‘) — 2o :Ov
902($0aA>M) = ?3(27775507(),070,/% )‘) = Oa (4 3)
@3(1‘07)‘7/1’) = 5(277-7:1:07070707,“’7 )‘) = 07 .
@4(1‘0,)\,/11) = w1(2ﬁvx07070707uv >\) =0.

Suppose we have determined to the sequence 1, ..., x;,_1 the values uj, ..., i, A}, ..., A7

approximating the corresponding values u(xy), ..., u(xz;—1), and A(z1), ..., A(z;i_1).

*

In order to determine to x; the corresponding approximating values (uf, A¥) we apply

Newton’s method to system (4.3) yielding the sequence (u¥, \F) defined by

At Y 1 k o\ k
(,U}H-l) = (lu;g) —J (xl)sp(zl>uzaAz)> k= 07 1a



where )\0 Aj 17,% i1
%(27? 2i,0,0,0, pf 1, AT
J(z;) = 8y<27r 2:,0,0,0, g1, Ay

(27T 2;,0,0,0, 171, A4

8“’1 (2, 2, 0,0,0, iy, Afy)

Remark 4.1 Under the assumption that the

&

(27, 2;,0,0,0, 1, A5
(27, 2;,0,0,0, 1, A5
(27r 2i,0,0,0, 1 1, AF
(27r 2;,0,0,0, 1, AF_,)

)
)
)

wmE &=

)
)
)

%|Qa Q>|Q> Q3|Q>

Qa‘sl

Jacobian matriz J(z;) is invertible and that

the difference |x; — x;_1| is sufficiently small for any i, the sequences {uf}, {\F}, converge

to ur, \f, respectively, as k tends to infinity.

The entries of the matrix J can be calculated by solving the initial value problem

dx

dy

% :MP($7y7A)> d’T :U“Q(:E yv)‘)
dz dwy
% _:U“Hl(x>y7)\)a ?_Me H2(x>y>)\)a
d(%) _ [(oP L 9P OP 0z 0P Oy
dr — "\oN T oz ox ' Oy or)’
d(g—g) C(0Q [ 9QIx  9Qdy
dr O\ Ox O\ 8y o\
d(%)  (0H, 0H,dx 0H dy
dar P\ on T ar ox T oy ax )
d(%5)  (0(eHs,) N O(e*Hy) 0z O(e*Hy) dy | 9(e*Hy) Oz
o M\ o dr N 9y or ' 9z o)’
d(%x
(5:.) P OP 0x 9P dy
dr Ox op | Oy Ou
d(5) o (2008 0Q0y
dr F\ oz ou ' Oy du
d(éz
(3) _H 44 OH, 0z OH, dy
dr Or Ou Oy Ou
(%) _ i (O H) 0 | O Hy) Dy (e Hy) 0
dr 2T H or Ou oy Ou 0z 0Ou)’

ZIJ'(O, Ti, 07 07 07 :u:—lv >\7>jk—1) = Ly,

y(07 Li, 07 07 07 :u:—b )\:—1) = 07



Z(O, Zi, 07 07 07 :u:—lv >‘;‘k—1) = 07 (Ov s, Ov 07 Ov :UJ;‘k—lv )‘:—1) = 07

@(Oaxi>0a070aui—l>)‘i—l) a (0 ZL’Z,O O 0 :uz 17)‘z 1) - 0
0z . . ow X

@(O>Iia0>0aoaﬂi—la)‘i—l) 0;; (O ZL’Z,O 0 0 :uz—b)‘z— ) a
a)\(o xlvo O 0 :uz 17>\7, 1) a)\(o xlvo O 0 :uz 17)‘2 1) 0

0z ow,

8>\(0 JJ’Z,O O 0 :uz 1,>\;k 1) O\ (Ouxivouovonu:—l?)\:—l) = 0.

Remark 4.2 As we mentioned above, the presented variant of the procedure is based on
the assumption that the set A3 of parameter points can be parameterized by the x-coordinate
of the intersection point of the corresponding limit cycle I'(\) with the positive x-azis. If
this assumption is not longer fulfilled, we can reparametrize the remaining subset by one

of the components of the parameter vector A.

In the last step we show that the limit cycle I'(\;) of system (1.1) has multiplicity not
greater than 3. For this purpose we consider system (3.3) for A = \; and construct a
Poincaré functional G(x,y, z, ws, ;) for (z,y) in an annulus ()\;) containing the limit
cycle I'(\;) such that system (3.3) has no periodic solution in Q();). Thus, according to
Proposition 3.2, the multiplicity of I'()\;) is exactly 3.

To construct the Poincaré functional G we make the ansatz
G(% Y, 2, W, )\i) = @Z)(I’ Y, )\i)62z + Cn+1(>\i)w2> (4-4)

where 1) is the linear combination of some base functions 1; in Q(\;)
.Z’ y7 i ZC wj Ly Y, )7 (45)

and C,,11()\;) is some additional parameter. In case that (1.1) is a polynomial system, we
can take monomials in z and y as base functions v;, 7 = 1,2, ..., n. If we differentiate the

functional G along system (3.3) we get

e
El(g 3) = 622 (2¢ d“)f + djacp + dij + Cn+1H3)7 (46)

where Hj is defined in (3.1). If we are able to given \; to find a function ¢ (z,y, ;) and
a parameter function C,41()\;) such that it holds in Q(\;)

(x,y,\i) = 2¢divf + ¢, P +1,Q + Cpy1 Hy # 0, (4.7)
then according to Proposition 3.2 the limit cycle I'(\;) has multiplicity 3.

We summarize this result in the following theorem.

9



Theorem 4.1 Let the assumption (A1) be satisfied for n = 3. Furthermore, we suppose
that to given x; > 0, \; € A, system (3.2) has a limit cycle I'(\;) located in the annulus
Q(\;) and intersecting the positive x-axis in the point (x;,0) and that there are base func-
tions V¥;(z,y, Ni),j = 1,...,n, and coefficient functions Cyx(N;), k = 1,...,n+ 1, such that
for (z,y) € Q(N\;) we have

j=1 7j=1

o
+ Q(l’, Y, )‘Z) Z CJ(AZ)%(xa Y, )‘z) + Cn+1(>\i)H3(x7 Y, >\2> # 0.

n

J=1

(4.8)
Then the multiplicity of the limit cycle I'(\;) of system (1.1) is exactly 3.

5 Application to a polynomial Liénard system with a

unique equilibrium point

We consider the class of Liénard systems

dx

d
prial A (27 — ca® + ba® — ax) = P(x,y, \), d—?; =—x=Q(x,y,\) (5.1)

depending on the real parameter vector A = (a,b,c¢). Our goal is to determine a set of
parameter tuples {\;} by applying the procedure described above such that the corre-
sponding system (5.1) has a limit cycle of multiplicity 3. The following lemma can be
easily verified.

Lemma 5.1 For any tuple (a,b,c) € R, the origin (0,0) is the unique equilibrium point
of system (5.1) in any bounded part of the phase plane. For |a| < 2 it represents a focus
which is exponentially attracting (repelling) for a > 0 (a < 0).

For a =0, the origin is a weak focus whose Lyapunov numbers c; defined in (2.2) satisfy
a; = ap =0, signag = —signb,

i.e., it is asymptotically stable for b > 0.

In case oy = a9 = a3 = 0 we have

ay =0, signas = —signc.
Supposing a; = ... = az = 0, we have
Qg = 0, (0%4 7é 0.

10



Using the notion of multiplicity of an equilibrium point we get from Lemma 5.1 that in
case a = b = ¢ = 0 the origin is a focus of multiplicity 3. Thus, we can use the parameter
tuple (0,0,0) as starting point for our procedure. As a result we get the following set of
parameter points {\;} (see Table 1) for which system (4.2) has a limit cycle I'(\;) whose
multiplicity is at least 3. We note that the limit cycle I'()\;) shrinks to the origin as
|\;| tends to zero, that means, there appears Hopf bifurcation of a limit cycle of higher

multiplicity from the origin.

In the final step we construct to each A; an annulus Q()\;) containing the limit cycle I'(\;)
and a Poincaré functional G(x,y, z, ws, ;) according to the ansatz (4.4) such that the
condition (4.8) is fulfilled.

First we construct an annulus €.()\;) containing the limit cycle I'()\;) and depending on

some parameter €.

i X a b & I

1 0.2 0.000035 0.003500 0.105000 1.000000
2 0.3 0.000399 0.017719 0.236250 1.000000
3 0.4 0.002240 0.056000 0.420000 1.000000
4 0.5 0.008545 0.136719 0.656250 1.000001
5 0.6 0.025515 0.283499 0.944999 1.000007
6 0.7 0.064336 0.525207 1.286239 1.000047
7 0.8 0.143327 0.895901 1.679930 1.000231
8 0.9 0.290354 1.434568 2.125885 1.000950
9 1 0.545023 2.183981 2.623400 1.003359
10 1.1 0.958499 3.186438 3.170108 1.010496
11 1.2 1.583387 4.469510 3.758703 1.029399
12 1.3 2.433288 6.005218 4.368477 1.073128
13 1.4 3.413452 7.654568 4.957041 1.154102
14 1.5 4.414707 9.299753 5.500792 1.270515

Table 1.

For this purpose we imbed system (5.1) into the system

dy

dr

YT (27 — ¢x® + b — a;x) + K, =—z+r(y— (2" — 2’ + b’ —ax)), (5.2)

dt
where the parameter x strictly rotates the field at (x,y) # (0,0) and which represents for

k = 0 system (5.1) possessing the limit cycle ['(\;). Now we set k = £, where ¢ is a small

11



positive number. Then system (5.2) has for K = ¢ and k = —¢ the limit cycle T'.();) and
I'_.(\;), respectively. Since k rotates the vector field, I'.()\;) and I'_.()\;) form an annulus
2.(\;) containing the limit cycle I'()\;). We use this annulus as an approximation of the
wanted annulus Q(\;).

In the next step we construct a functional G. on the annulus Q.();) according to the
ansatz (4.4). The main term in the expression for G, is the function ¢(x,y, \;) which we

represent as a linear combination (4.5) of the base functions x*y':

ZL’ y, Z Ckl (53)

0<k+ISN

Substituting this relation into (4.8) we get

O(x,y, ;) =2 divf(z,y, \;) Z Cri(A k!

0<k+I<N

P(x,y, A k Cr( )1yt
oy 5

E>11<N-1

+Q(x,y ) Y L Cu(M)afy' ™ + Oy (V) Hs(, y, N

1<k+I<N
I>1 k<N-1

Our goal is to choose the coefficients Cy;();) and the coefficient Cy41(A;) in (5.4) in such
a way that the expression ®(x,y, \;) does not vanish in Q.(\;). This problem can be re-
duced to a linear programming problem as described in [2]. If this problem has a solution,
then we take the annulus Q.();) as the wanted annulus ©();) and the functional G. as
Poincaré functional G defined on Q();). In case that we cannot find coefficients Cy;(\;)
such that (4.8) holds, we decrease the parameter ¢ or increase the degree N and repeat

the programming procedure.

In what follows we construct the annulus Q()\;) and the Poincaré functional G to the
parameter tuple A; in Table 1 belonging to xg = 0.8. As annulus €2.(A7) we choose the
region bounded by the limit cycles I'.(A7) and I'_.(\;7) of system (5.2) with £ = 0.03. As
base functions we use monomials with maximal degree 4, i.e. N =4 in (5.3). If we apply

the linear programming algorithm as described in [2]|, we get the following result

Coo(A7) = 1.242085, C9(A7) = 0.909316, Co1 (A7) = 0.909316, Cao(A7) = 1.818632,
C11(A7) = 1.4134, Coa( A7) = 0.683876, C3p(A7) = 0.909316, Ca1 (A7) = 0.909316,
C12(A7) = 0.909316, Coz(A7) = 0.909316, Cyo(A7) = 0, C31(A7) = 1.8186326,

Caa(A7) = 1077677, C13(A7) = 0, Coa(A7) = 1.818632, C5(A\7) = 0.885257,

where the coefficient C5(A7) multiplies the variable ws. With these coefficients we have

12



O(x,y,A\7) >0.0012 >0 for (z,y)€ Q7).

Thus, the functional

G(QU, Y, 2z, Wa, )‘7) = 622 Z Ckl()\'?)xkyl + C5(>\7)U)2
0<k+I<4

is a Poincaré functional in the annulus Q(\7) and we can conclude that I'(\;) is a limit
cycle of multiplicity 3 of system (5.1) with A = A;.
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