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Abstra
tWe 
onsider a version of a Glauber dynami
s for a p-spin Sherrington�Kirkpatri
k model of a spin glass that 
an be seen as a time 
hange of simplerandom walk on the N -dimensional hyper
ube. We show that, for any p ≥ 3and any inverse temperature β > 0, there exist 
onstants γ0 > 0, su
h that forall exponential time s
ales, exp(γN), with γ ≤ γ0, the properly res
aled 
lo
kpro
ess (time-
hange pro
ess), 
onverges to an α-stable subordinator where
α = γ/β2 < 1. Moreover, the dynami
s exhibits aging at these time s
ales withtime-time 
orrelation fun
tion 
onverging to the ar
sine law of this α-stablesubordinator. In other words, up to res
aling, on these time s
ales (that areshorter than the equilibration time of the system), the dynami
s of p-spinmodels ages in the same way as the REM, and by extension Bou
haud's REM-like trap model, 
on�rming the latter as a universal aging me
hanism for awide range of systems. The SK model (the 
ase p = 2) seems to belong to adi�erent universality 
lass.1 Introdu
tion and resultsAging has be
ome one of the main paradigms to des
ribe the long-time behav-ior of 
omplex and/or disordered systems. Systems that have strongly motivatedthis resear
h are spin glasses, where aging was �rst observed experimentally in theanomalous relaxation patterns of the magnetization [LSNB83, Cha84℄. The theo-reti
al modeling of aging phenomena took a major leap with the introdu
tion ofso-
alled trap models by Bou
haud and Dean in the early 1990'ies [Bou92, BD95℄(see [BCKM98℄ for a review). These models reprodu
e the 
hara
teristi
 power lawbehavior seen experimentally while being su�
iently simple to allow for detailedanalyti
al treatment. While trap models are heuristi
ally motivated to 
apture thebehavior of the dynami
s of spin glass models, there is no 
lear theoreti
al, let alonemathemati
al derivation of these from an underlying spin-glass dynami
s. The �rstattempt to establish su
h a 
onne
tion was made in [BBG02, BBG03a, BBG03b℄where it was shown that starting from a parti
ular Glauber dynami
s of the Ran-dom Energy Model (REM), at low temperatures and at the time s
ale slightly shorterthan the equilibration time of the dynami
s, the aging of the time-time 
orrelationfun
tion of the dynami
s 
onverged to that given by Bou
haud's REM-like trapmodel.On the other hand, in a series of papers [B�05, B�M06, B�07a, B�07b℄ a systemati
investigation of a variety of trap models was initiated. In this pro
ess, it emergedthat there appears to be an almost universal aging me
hanism based on α-stablesubordinators that governs aging in most of the trap models. It was also shown thatthe same feature holds for the dynami
s of the REM at shorter time s
ales than those
onsidered in [BBG03a, BBG03b℄, and that this also happens at high temperature1



provided appropriate time s
ales are 
onsidered [B�07a℄. For a general review ontrap models see [B�06℄.In all models 
onsidered so far, however, the random variables des
ribing the quen
heddisorder were 
onsidered to be independent, be it in the REM or in the trap mod-els. Aging in 
orrelated spin glass models was investigated rigorously only in some
ases of spheri
al SK models and at very short time s
ales [BDG01℄. In the presentpaper we show for the �rst time that the same type of aging me
hanism is relevantalso in 
orrelated spin glasses, at least on time s
ales that are short 
ompared toequilibration time (but exponentially large in the volume of the system).Let us �rst des
ribe the 
lass of models we are 
onsidering. Our state spa
es willbe the N-dimensional hyper
ube, SN ≡ {−1, 1}N . RN : SN × SN → [−1, 1] denotesas usual the normalized overlap, RN(σ, τ) ≡ N−1
∑N

i=1 σiτi. The Hamiltonian of the
p-spin SK-model is de�ned as √NHN , where HN : SN → R is the 
entered normalpro
ess indexed by SN with 
ovarian
e

E[HN (σ)HN(τ)] = RN(σ, τ)p, (1.1)and p ∈ N, p > 2. We will denote by H the σ-algebra generated by the randomvariables HN(σ), σ ∈ SN , N ∈ N. The 
orresponding Gibbs measure is then given by
µβ,N(σ) ≡ Z−1

β,Ne
β
√

NHN (σ), (1.2)where Zβ,N denotes the normalizing partition fun
tion.We de�ne the 
lassi
al trap-model dynami
s as a nearest neighbor 
ontinuous timeMarkov 
hain σN(·) on SN with transition rates
wN(σ, τ) =

{

N−1e−β
√

NHN (σ), if dist(σ, τ) = 1,

0, otherwise; (1.3)here dist(·, ·) is the graph distan
e on the hyper
ube,
dist(σ, τ) =

1

2

N
∑

i=1

|σi − τi|. (1.4)A simple way to 
onstru
t this dynami
s is as a time 
hange of a simple randomwalk on SN : We denote by YN(k) ∈ SN , k ∈ N, the simple unbiased random walk(SRW) on SN started at some �xed point of SN , say at {1, . . . , 1}. For β > 0 wede�ne the 
lo
k-pro
ess by
SN(k) =

k−1
∑

i=0

ei exp
{

β
√
NHN

(

YN(i)
)}

, (1.5)where {ei, i ∈ N} is a sequen
e of mean-one i.i.d. exponential random variables. Wedenote by Y the σ-algebra generated by the SRW random variables YN(k), k ∈ N,
N ∈ N. The σ-algebra generated by the random variables ei, i ∈ N will be denotedby E . Then the pro
ess σN (·) 
an be written as

σN(t) ≡ YN(S−1
N (t)). (1.6)2



Obviously, σN is reversible with respe
t to the measure µβ,N . We will 
onsider allrandom pro
esses to be de�ned on an abstra
t probability spa
e (Ω,F ,P). Note thatthe three σ-algebras H, Y , and E are all independent under P.We will systemati
ally use the de�nition of the dynami
s given by (1.3) or (1.6). Thisis the same as was used in the analysis of the REM and in most work on trap models.It di�ers substantially from more popular dynami
s su
h as the Metropolis or theheat-bath algorithm. The main di�eren
e is that in these dynami
s the traje
toriesare not independent of the environment and are biased against going up in energy.This may have a substantial e�e
t on the dynami
s, and we do not know whetherour results will apply also (with some modi�
ations) in these 
ases. The fa
t is thatwe 
urrently do not have the tools to analyze these dynami
s even in the 
ase of theREM!Let Vα(t) be the α-stable subordinator with the Lapla
e transform given by
E[e−λVα(t)] = exp(−tλα). (1.7)The main te
hni
al result on the dynami
s will be the following theorem that providesthe asymptoti
 behavior of the 
lo
k pro
ess.Theorem 1.1. There exists a fun
tion ζ(p) su
h that for all p ≥ 3 and γ satisfying
0 < γ < min

(

β2, ζ(p)β
)

, (1.8)under the 
onditional distribution P[·|Y ] the law of the sto
hasti
 pro
ess
S̄N(t) = e−γNSN

(⌊

tN1/2eNγ2/2β2⌋)

, t ≥ 0, (1.9)de�ned on the the spa
e of 
àdlàg fun
tions equipped with the SkorokhodM1-topology,
onverges, Y-a.s., to the law of γ/β2-stable subordinator Vγ/β2(Kt), t ≥ 0, where Kis a positive 
onstant depending on γ, β and p.Moreover, the fun
tion ζ(p) is in
reasing and it satis�es
ζ(3) ≃ 1.0291 and lim

p→∞
ζ(p) =

√

2 log 2. (1.10)We will explain in Se
tion 5 what theM1-topology is. Roughly, it is a weak topologythat does not 
onvey mu
h information at the jumps of the limiting pro
ess: it 
anbe the 
ase that the approximating pro
esses jumps several times at rather shortdistan
es to produ
e one bigger jump of the limit pro
ess. This will a
tually be the
ase in our models for p < ∞, while it is not the 
ase in the REM. Therefore we
annot repla
e the M1 topology with the stronger J1-topology in Theorem 1.1.To 
ontrol the behavior of spin-spin 
orrelation fun
tions that are 
ommonly usedto 
hara
terize aging, we need to know more on how these jumps o

ur at �nite N .What we will show, is that if we the slightly 
oarse-grain the pro
ess S̄N over blo
ksof size o(N), the res
aled pro
ess does 
onverge in the J1-topology. What this says,is that the jumps of the limiting pro
ess are 
ompounded by smaller jumps thatare made over ≤ o(N) steps of the SRW. In other words, the jumps of the limitingpro
ess 
ome from waiting times a

umulated in one slightly extended trap, andduring this entire time only a negligible fra
tion of the spins are �ipped. That willimply the following aging result. 3



Theorem 1.2. Let Aε
N (t, s) be the event de�ned by

Aε
N(t, s) = {RN

(

σN

(

teγN
)

, σN

(

(t+ s)eγN
))

≥ 1 − ε
}

. (1.11)Then, under the hypothesis of Theorem 1.1, for all ε ∈ (0, 1), t > 0 and s > 0,
lim

N→∞
P[Aε

N (t, s)] =
sinαπ

π

∫ t/(t+s)

0

uα−1(1 − u)−α du. (1.12)Remark. We will in fa
t prove the stronger statement that aging in the above senseo

urs along almost every random walk traje
tory, that is
lim

N→∞
P[Aε

N (t, s)|Y ] =
sinαπ

π

∫ t/(t+s)

0

uα−1(1 − u)−α du, Y-a.s. (1.13)Let us dis
uss the meaning of these results. eγN is the time-s
ale at whi
h we wantto observe the pro
ess. A

ording to Theorem 1.1, at this time the random walkwill make of the order of N1/2eNγ2/2β2 ≪ eγN steps. Sin
e this number is also mu
hsmaller than 2N (as follows from (1.10)), the random walk will essentially visit thatnumber of sites.If the random pro
ess HN was i.i.d., then the maximum of HN along the traje
torywould be (

2 ln(N1/2eNγ2/2β2
)
)1/2 ∼ N1/2γ/β, and the time spent in that site wouldbe of order eγN . Sin
e Theorem 1.1 holds also in the i.i.d. 
ase, that is in the REM(see [B�07a℄), the time spent in the maximum is 
omparable to the total time andthe 
onvergen
e to the α-stable subordinator implies that the total a

umulated timeis 
omposed of pie
es of order eγN that are 
olle
ted along the traje
tory. In fa
t,ea
h jump of the subordinator 
orresponds to one visit to a site that has waitingtimes of that order. In a 
ommon metaphor, the sites are referred to as traps andthe mean waiting times as their depths.The theorem in the general 
ase states that in the p-spin model, the same is essen-tially true. The di�eren
e will be that the traps here will not 
onsist of a single site,but 
onsist of a deep valley (along the traje
tory) whose bottom that has approxi-mately the same energy as in the i.i.d. 
ase and whose shape and width we will beable to des
ribe quite pre
isely. Remarkably, the number of sites 
ontributing signif-i
antly to the residen
e time in the valley is essentially �nite, and di�erent valleysare statisti
ally independent.The fa
t that traps are �nite may appear quite surprising to those familiar with thestati
s of p-spin models. From the results there (see [Tal03, Bov06℄), it is knownthat the Gibbs measure 
on
entrates on �lumps� whose diameter is of order Nǫp,with ǫp > 0. The mystery is however solved easily: the pro
ess HN(σ) does indeedde
reases essentially linearly with speed N−1/2 from a lo
al maximum. Thus, theresiden
e times in su
h sites de
rease geometri
ally, so that the 
ontributions of aneighborhood of size K of a lo
al maximum amounts to a fra
tion of (1 − c−K) ofthe total time spend in that valley ; for the support of the Gibbs measure, one needshowever to take into a

ount the entropy, that is that the volumes of the balls ofradius r in
reases like N r. For the dynami
s, at least at our time-s
ales, this is,however, irrelevant, sin
e the SRW leaves a lo
al minimum essentially ballisti
ally.4



The proof of Theorem 1.1 relies on the 
ombination of detailed information on theproperties of simple random walk on the hyper
ube, whi
h is provided in Se
tion 4(but see also [Mat89, BG06, �G06℄), and 
omparison of the pro
ess HN on thetraje
tory of the SRW to a simpler Gaussian pro
ess using interpolation te
hniquesà la Slepian, familiar from extreme value theory of Gaussian pro
esses.Let us explain this in more detail. On the time s
ales we are 
onsidering, the SRWmakes tN1/2 exp(Nγ2/2β2) ≪ tN1/2 exp(Nζ(p)2/2) ≪ 2N steps. In this regime theSRW is extremely �transient�, in the sense that (i) starting from a given point x, fora times t ≤ ν ∼ Nω, ω < 1, the distan
e from x grows essentially linearly with speedone, that is there are no ba
ktra
kings with high probability; (ii) the SRW will neverreturn to a neighborhood of size ν of the starting point x, with high probability. Theupshot is that we 
an think of the traje
tory of the SRW essentially as of a straightline.Next we 
onsider the Gaussian pro
ess restri
ted to the SRW traje
tory. We expe
tthat the main 
ontributions to the sums SN(k) 
ome from pla
es where YN is maximal(on the traje
tory). We expe
t that the distribution of these extremes do not feel the
orrelation between points farther than ν apart. On the other hand, for points 
loserthan ν, the 
orrelation fun
tion RN(YN(i), YN(j))p 
an be well approximated by alinear fun
tion 1−2p|i−j|/N (using that RN (YN(i), YN(j)) ∼ 1−2|i−j|/N). This is
onvenient sin
e this pro
ess has an expli
it representation in terms of i.i.d. randomvariables that allow for expli
it 
omputations (in fa
t, this is one of the famousSlepian pro
esses for whi
h the extremal distribution 
an be 
omputed expli
itly[Sle61, She71℄). Thus the idea is to 
ut the SRW traje
tory into blo
ks of length
ν and to repla
e the original pro
ess HN(YN(i)) by a new one Ui, where Ui and Ujare independent, if i, j are not in the same blo
k, and E[UiUj ] = 1 − 2p|i − j|/Nif they are. For the new pro
ess, Theorem 1.1 is relatively straightforward. Themain step is the 
omputation of Lapla
e transforms in Se
tion 2. Comparing thereal pro
ess with the auxiliary one is the bulk of the work and is done in Se
tion 3.The properties of SRW needed are established in Se
tion 4. In Se
tion 5 we presentthe proofs of the main theorems.Our results here show some universality of the REM for dynami
s of p-spin modelswith p ≥ 3. This dynami
 universality is 
lose to the stati
 universality of theREM, whi
h shows that various features of the lands
ape of energies (that is ofthe Hamiltonian HN) are insensitive to 
orrelations. This stati
 universality in ami
ro
anoni
al 
ontext has been introdu
ed by [BM04℄ (see [BK06a, BK06b℄ forrigorous results on spin-glasses). The stati
 results 
losest to our dynami
s questionare given in [BGK06, BK07℄ where it is shown that the statisti
s of extreme valuesfor the restri
tion of HN to a random sets XN ⊂ SN are universal, for p ≥ 3 and
|XN | = ecN , for c small enough.This work was initiated during a 
on
entration period on metastability and agingat the Max-Plan
k Institute for Mathemati
s in the S
ien
es in Leipzig. GBA andAB thank the MIP-MIS and Stefan Müller for kind hospitality during this event.AB's resear
h is supported in part by DFG in the Dut
h-German Bilateral Resear
hGroup �Mathemati
s of Random Spatial Models from Physi
s and Biology�.
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2 Behavior the one-blo
k sumsIn this se
tion we analyze the distribution of the blo
k-sums ∑ν
i=1 eie

β
√

NUi, where eiare mean-one i.i.d. exponential random variables, and {Ui, i = 1, . . . , ν} is a 
enteredGaussian pro
ess with the 
ovarian
e EUiUj = 1− 2p|i− j|/N ; ν = νN is a fun
tionof N of the form
ν = ⌊Nω⌋, with ω ∈ (1/2, 1). (2.1)As explained in the introdu
tion, this pro
ess will serve as a lo
al approximation ofthe 
orresponding blo
k sums along a SRW traje
tory. We 
hara
terize the distri-bution of the blo
k-sums in terms of its Lapla
e transform

FN(u) = E

[

exp
{

− ue−γN

ν
∑

i=1

eie
β
√

NUi

}]

. (2.2)Proposition 2.1. For all γ su
h that γ/β2 ∈ (0, 1) there exists a 
onstant, K =
K(γ, β, ω, p), su
h that, uniformly for u in 
ompa
t subsets of [0,∞),

lim
N→∞

N1/2ν−1eNγ2/2β2

[1 − FN(u)] = Kuγ/β2

. (2.3)Proof. We �rst 
ompute the 
onditional expe
tation in (2.2) given the σ-algebra, U ,generated by the Gaussian pro
ess U ,
E

[

exp
{

− ue−γN

ν
∑

i=1

eie
β
√

NUi

}
∣

∣

∣
U

]

=

ν
∏

i=1

1

1 + ue−γNeβ
√

NUi

= exp

{

−
ν

∑

i=1

g
(

ue−γNeβ
√

NUi

)

}

,

(2.4)where
g(x) ≡ ln(1 + x). (2.5)Note that importantly, g(x) is monotone in
reasing and non-negative for x ∈ R+.We use the well-known fa
t (see e.g. [Sle61℄) that the random variables Ui 
an beexpressed using a sequen
e of i.i.d. standard normal variables, Zi, as follows. Set

Z1 = (U1 +Uν)/(4− 4p(ν− 1)/N)1/2 and Zk = (Uk −Uk−1)/(4p/N)1/2, k = 2, . . . , ν.Then Zi are i.i.d. standard normal and
Ui = Γ1Z1 + · · · + ΓiZi − Γi+1Zi+1 − ΓνZν , (2.6)where

Γ1 =

√

1 − p

N
(ν − 1) and Γ2 = · · · = Γν =

√

p

N
. (2.7)Observe that ∑ν

i=1 Γ2
i = 1. Let us de�ne Gi(z) = Gi(z1, . . . , zν) as

Gi(z) = Γ1z1 + · · ·+ Γizi − Γi+1zi+1 − · · · − Γνzν . (2.8)Using this notation we get
1 −FN(u) =

∫

Rν

dz

(2π)ν/2
e−

1
2

Pν
i=1 z2

i

{

1 − exp
[

−
ν

∑

i=1

g
(

ue−γNeβ
√

NGi(z)
) ]}

. (2.9)6



We divide the domain of integration into several parts a

ording to whi
h of the
Gi(z) is maximal. De�ne Dk = {z : Gk(z) ≥ Gi(z)∀i 6= k}. On Dk we use thesubstitution

zi = bi + Γi(γN − log u)/(β
√
N), if i ≤ k,

zi = bi − Γi(γN − log u)/(β
√
N), if i > k. (2.10)It will be useful to de�ne ∑k

j=i+1 aj as ∑k
j=1 aj −

∑i
j=1 aj , whi
h is meaningful alsofor k < i+ 1. Using this de�nition

Gk(b) −Gi(b) = 2

k
∑

j=i+1

Γνbj . (2.11)Set θ = − log(u)/(γN) and de�ne
D′

k =
{

b :

k
∑

j=i+1

bj +
γ
√
p

β
|k − i|(1 + θ) ≥ 0 ∀i 6= k

}

. (2.12)After a straightforward 
omputation we �nd that (2.9) equals
e−Nγ2/2β2

uγ/β2
ν

∑

k=1

∫

D′

k

db

(2π)ν/2
e−

1
2

Pν
i=1 b2i e−

γ
β

√
NGk(b)(1+θ)

×
{

1 − exp
(

−
ν

∑

i=1

g
(

eβ
√

NGk(b)−2β
√

p
Pk

j=i+1 bj−2pγ|k−i|(1+θ)
))}

.

(2.13)To �nish the proof we have to show that uγ/β2 is asymptoti
ally the only dependen
eof (2.13) on u (or on θ) and that the sum is of order νN−1/2. We 
hange variableson
e more to aj = bj/(1 + θ) in order to remove the dependen
e of the integrationdomains on u. Then the sum (without the prefa
tor) in (2.13) 
an be expressed as
ν

∑

k=1

∫

D′′

k

(1 + θ)νda

(2π)ν/2
e−

1
2
(1+θ)2

Pν
i=1 a2

i

[

e−
γ
β

√
NGk(a)(1+θ)2

×
{

1 − exp
(

−
ν

∑

i=1

g
(

e(β
√

NGk(a)−2β
√

p
Pk

j=i+1 aj−2pγ|k−i|)(1+θ)
))}

]

,

(2.14)where D′′
k =

{

a :
∑k

j=i+1 aj +
γ
√

p

β
|k − i| ≥ 0 ∀i 6= k

}

.Let δ > 0 be su
h that (1 + δ)γ/β2 < 1, and let N > log(u)/(γδ), so that |θ| ≤ δ.We �rst examine the bra
ket in the above expression for a �xed k. On D′′
k

exp
{

−
ν

∑

i=1

g
(

e(β
√

NGk(a)−2β
√

p
Pk

j=i+1 aj−2pγ|k−i|)(1+θ)
)

}

≥ exp
{

− νg
(

eβ
√

NGk(a)(1+θ)
)}

.(2.15)Write Gk(a) as (re
all (2.1))
Gk(a) =

ξ − ω logN

(1 + θ)β
√
N
. (2.16)7



The bra
ket of (2.14) is then smaller than
e
− γ

β2 (ξ−ω log N)(1+θ){
1 − exp

(

− νg
(

eξ−ω log N
))}

= N
γω(1+θ)

β2 e
− γξ

β2 (1+θ){
1 − exp

(

− νg
(

eξ/ν
))}

.
(2.17)The fun
tion e− γξ

β2 (1+θ){
1 − exp

(

− νg
(

eξ/ν
))} is bounded for ξ ∈ R, uniformly in

ν, if (1 + θ)γ/β2 < 1. Namely, if ξ ≥ 0,
e
− γξ

β2 (1+θ){
1 − exp

(

− νg
(

eξ/ν
) )}

≤ e
− γξ

β2 (1+θ) ≤ 1. (2.18)If ξ < 0, then, sin
e g(x) ≤ x,
{

1 − exp
(

− νg
(

eξ/ν
))}

≤
{

1 − exp
(

− eξ
)}

, (2.19)whi
h behaves like eξ, as ξ → −∞. This 
ompensates the exponentially growingprefa
tor, if (1 + θ)γ/β2 < 1. Thus, under this 
ondition, the bra
ket of (2.14)in
reases at most polynomially with N .In view of this at most polynomial in
rease, there exist δ > 0 small, su
h that thedomain of integration in (2.14) may be restri
ted to ai's satisfying
ν−1

ν
∑

i=1

a2
i ∈ (1 − δ, 1 + δ), |a1| ≤ N1/4,

ν
∑

i=1

|ai| ≤ ν1+δ. (2.20)The integral over the remaining ai's de
ays at least as e−Nδ′ for some δ′ > 0 (bya simple large deviation argument). For all a satisfying (2.20), |Gk(a)| ≤ N1/4 +
N−1/2ν1+δ′ ≪ N1/2 and thus, for any �xed u, uniformly in a,

e−
γ
β

√
NGk(a)(1+θ)

e−
γ
β

√
NGk(a)

N→∞−−−→ 1, and e−
1
2
(1+θ)2

Pν
i=1 a2

i

e−
1
2

Pν
i=1 a2

i

N→∞−−−→ 1. (2.21)Also, (1 + θ)ν N→∞−−−→ 1. Hen
e, up to a small error, we 
an remove all but the lasto

urren
e of θ in (2.14).Finally, taking xi = ai for i ≥ 2, x1 = N1/2Gk(a), and thus
a1 =

x1 − 4p(x2 + · · ·+ xk − xk+1 − · · · − xν)

Γ1

√
N

, (2.22)(2.14) equals, up to a small error,
ν

∑

k=1

∫

D′′

k

dx e−
1
2

Pν
i=2 x2

i

Γ1N1/2(2π)ν/2
exp

(

− γ

β
x1 −

x2
1

2Γ2
1N

)

exp
(

− a2
1

2
+

x2
1

2Γ2
1N

)

×
{

1 − exp
(

−
ν

∑

i=1

g
(

e(1+θ)βx1e−(2β
√

p
Pk

j=i+1 xj−2pγ|k−i|)(1+θ)
))}

.

(2.23)The last exponential term on the �rst line 
an be omitted. Indeed,
−a

2
1

2
+

x2
1

2Γ2
1N

=
4

Γ2
1N

[

px1(x2 + · · · − xν) − 2p2(x2 + · · · − xν)
2
] N→∞−−−→ 0 (2.24)8



uniformly for all |x1| ≤ N (1+δ)/2 and |x2 + · · · − xν | ≤ ν(1+δ)/2, if δ > 0 su�
ientlysmall. The integral over the remaining x is again at most e−Nδ′ .Now we estimate the integral over x2, . . . , xν ,
∫

D̄′′

k

dxe−
1
2

Pν
i=2 x2

i

(2π)(ν−1)/2
exp

(

−
ν

∑

i=1

g
(

e(1+θ)βx1e−(2β
√

p
Pk

j=i+1 xj+2pγ|k−i|)(1+θ)
))

, (2.25)where D̄′′
k is the restri
tion of D′′

k to the last ν−1 
oordinates (whi
h does not dependon the value of the �rst one). Let V = (V2, . . . , Vν) be a sequen
e of i.i.d. standardnormal random variables. Then, (2.25) equals
P[V ∈ D̄′′

k ]E
[

exp
(

−
ν

∑

i=1

g
(

e(1+θ)βx1e−(2β
√

p
Pk

j=i+1 Vj+2pγ|k−i|)(1+θ)
))

∣

∣

∣
V ∈ D̄′′

k

]

.(2.26)The probability P[V ∈ D̄′′
k ] is bounded from below by the probability that the two-sided random walk, Ri =
∑i

j=0 Vj, i ∈ Z, with standard normal in
rements is largerthan −γ√p|i|/β for all i. This probability is positive and does not depend on N ,whi
h implies that, for all k,
1 > P[V ∈ D̄′′

k ] ≥ c > 0. (2.27)The expe
tation in (2.26) is bounded by one, sin
e the fun
tions g is positive on thedomain of integration. Moreover, as x1 → −∞, the argument of g in (2.26) tendsto zero (sin
e the �rst exponential does, and the se
ond is bounded by one on D′′
k).Hen
e

g
(

e(1+θ)βx1e−(2β
√

p
Pk

j=i+1 Vj+2pγ|k−i|)(1+θ)
)

∼ e(1+θ)βx1e−(2β
√

2
Pk

j=i+1 Vj+2pγ|k−i|)(1+θ).(2.28)Therefore, as xi → −∞,
E

[

exp
(

−
ν

∑

i=1

g
(

e(1+θ)βx1e−(2β
√

p
Pk

j=i+1 Vj+2pγ|k−i|)(1+θ)
))

∣

∣

∣
V ∈ D̄′′

k

]

∼ 1 − e(1+θ)βx1E

[

ν
∑

i=1

e−(2β
√

p
Pk

j=i+1 Vj+2pγ|k−i|)(1+θ)
∣

∣

∣
V ∈ D′′

k

]

= 1 − e(1+θ)βx1

ν
∑

i=1

E

[

e−(2β
√

pRk−i+2pγ|k−i|)(1+θ)
∣

∣

∣
Rk−i ≥ −γ

√
p

β
|k − i|

]

.

(2.29)
Sin
e Ri is a 
entered normal random variable with varian
e |i|, a straightforwardGaussian 
al
ulation implies that
E

[

e−(2β
√

pRk−i+2pγ|k−i|)(1+θ)
∣

∣

∣
Rk−i ≥ −γ

√
p

β
|k − i|

]

∼ Cβ,γ,p
√

|k − i|
e−γ2p|k−i|/(2β2). (2.30)Hen
e, (2.29) is essentially a summation of a geometri
al sequen
e and thereforethere exists 
onstants c1, c2 independent of k, su
h that

1 − c1e
(1+θ)βx1 ≤ (2.29) ≤ 1 − c2e

(1+θ)βx1 , ∀x1 < 0. (2.31)9



Bounds (2.27) and (2.31) imply that (2.25) is bounded from above and from below(with di�erent 
onstants) by
CN−1/2 exp

(

− γ

β
x1 −

x2
1

2Γ2
1N

)

(1 ∧ ce(1+θ)βx1). (2.32)and hen
e (2.23) is bounded from above and below by
CνN−1/2

∫

R

dx1 exp
(

− γ

β
x1 −

x2
1

2Γ2
1N

)

(1 ∧ ce(1+θ)βx1) = CνN−1/2. (2.33)Moreover, (2.25) is de
reasing as fun
tion of min(k, ν − k). As this minimum tendsto in�nity, (2.25) behaves as f(x1)N
−1/2 whi
h is of 
ourse satisfy the bound (2.32).Due to this 
onvergen
e, the 
onstants in the lower and the upper bound of (2.33)
an be made arbitrarily 
lose. This 
ompletes the proof of Proposition 2.1.We 
lose this se
tion with a short des
ription of the shape of the valleys mentionedin the introdu
tion. First, it follows from (2.10) and the following 
omputations thatthe most important 
ontribution to the Lapla
e transform 
omes from realizationsfor whi
h max{Ui : 1 ≤ i ≤ ν} ∼ γ
√
N/β with an error of order N−1/2. It is the�geometri
al� sequen
e in (2.29) whi
h shows that only �nitely many neighbors ofthe maximum a
tually 
ontribute to the Lapla
e transform. The same 
an be seen,at least heuristi
ally, from a simple 
al
ulation

E

[

Uk+i

∣

∣

∣
Uk =

γ

β

√
N

]

=
γ
√
N

β
− Cβ,γ,p

|i|√
N
. (2.34)Whi
h means that, disregarding the �u
tuations, the energy de
reases linearly withthe distan
e from the lo
al maximum and thus the mean waiting times de
reaseexponentially.3 Comparison of the real and the blo
k pro
essWe now 
ome to the main task, the 
omparison of the 
lo
k-pro
ess sums with thosein whi
h the real Gaussian pro
ess is repla
ed by a simpli�ed pro
ess. For a givenrealization, YN , of the SRW, we set X0

N(i) = HN

(

YN(i)
) (the dependen
e on YN willbe suppressed in the notation). Then X0

N(i) is a 
entered Gaussian pro
ess indexedby N with 
ovarian
e matrix
Λ0

ij = E[X0
N (i)X0

N(j)] = RN

(

YN(i), YN(j)
)p
. (3.1)Now we de�ne the 
omparison pro
ess, X1

N(i), as the 
entered Gaussian pro
ess withthe 
ovarian
e matrix
Λ1

ij = E[X1
N (i)X1

N(j)] =

{

1 − 2p|i− j|/N, if ⌊i/ν⌋ = ⌊j/ν⌋,
0, otherwise. (3.2)For h ∈ [0, 1] we de�ne the interpolating pro
ess Xh

N(i) ≡
√

1 − hX0
N (i) +

√
hX1

N(i).10



Let ℓ ∈ N, 0 = t0 < · · · < tℓ = T and u1, . . . , uℓ ∈ R+ be �xed. For any Gaussianpro
ess X we de�ne a fun
tion FN(X) = FN

(

X; {ti}, {ui}
) as

FN

(

X; {ti}, {ui}
)

≡ E

[

exp
(

−
ℓ

∑

k=1

uk

eγN

tkr(N)
∑

i=tk−1r(N)+1

eie
β
√

NX(i)
)
∣

∣

∣
X

]

(X)

= exp
(

−
ℓ

∑

k=1

tkr(N)−1
∑

i=tk−1r(N)

g
( uk

eγN
eβ

√
NX(i)

))

,

(3.3)
where r(N) = N1/2eNγ2/2β2 . Observe that E[F (X0; t, u)|Y ] is a joint Lapla
e trans-form of the distribution of the properly res
aled 
lo
k pro
ess at times ti. Thefollowing approximation is the 
ru
ial step of the proof.Proposition 3.1. If the assumptions of Theorem 1.1 are satis�ed, then for all se-quen
es {ti} and {ui},

lim
N→∞

E
[

FN

(

X0
N ; {ti}, {ui}

)
∣

∣Y
]

− E
[

FN

(

X1
N ; {ti}, {ui}

)]

= 0, Y-a.s. (3.4)Proof. We use the well-known interpolation formula for fun
tionals of two Gaussianpro
esses due (probably) to Slepian and Kahane (see e.g. [LT91℄
E[FN (X1

N) − FN (X0
N)|Y ] =

1

2

∫ 1

0

dh

tr(N)
∑

i,j=1
i6=j

(Λ0
ij − Λ1

ij)E
[ ∂2FN (Xh

N)

∂X(i)∂X(j)

∣

∣

∣
Y

]

. (3.5)We will show that the integral in (3.5) 
onverges to 0.Let k(i) be de�ned by tk(i)−1r(N) < i ≤ tk(i)r(N). The se
ond derivative in (3.5) isequal to
uk(i)uk(j)β

2N

e2γN
eβ

√
N(Xh

N (i)+Xh
N (j))g′

(uk(i)

eγN
eβ

√
NXh

N (i)
)

g′
(uk(j)

eγN
eβ

√
NXh

N (j)
)

FN(Xh
N)

≤ uk(i)uk(j)β
2N

e2γN
eβ

√
N(Xh

N (i)+Xh
N (j))

× exp
[

− 2g
(uk(i)

eγN
eβ

√
NXh

N (i)
)

− 2g
(uk(j)

eγN
eβ

√
NXh

N (j)
)]

,

(3.6)
where we used that g′(x) = (1+x)−1 = exp(−g(x)) (re
all (2.5)), and we omitted inthe summation of FN(Xh

N) all terms di�erent from i and j. To estimate the expe
tedvalue of this expression we need the following te
hni
al lemma.Lemma 3.2. Let c ∈ [−1, 1] and let U1, U2 be two standard normal variables withthe 
ovarian
e E[U1U1] = c and λ a small 
onstant, 0 < λ < 1 − γ/β2 (whi
h willstay �xed). De�ne ΞN(c) = ΞN (c, β, γ, u, v) and Ξ̄N (c) = Ξ̄N(c, β, γ, u, v, λ) by
ΞN (c) =

uvβ2N

e2γN
E

[

exp
{

β
√
N(U1 + U2) − 2g

(

ueβ
√

NU1−γN
)

− 2g
(

veβ
√

NU2−γN
)

}](3.7)
11



and̄
ΞN (c) =

{

C(γ,β,u,v,λ)

(1−c)1/2 exp
{

− γ2N
β2(1+c)

}

, if c > (γ/β2) + λ− 1,
C ′(γ, β, u, v)N exp

{

N(β2(1 + c) − 2γ)
}

, if c ≤ (γ/β2) + λ− 1, (3.8)where C(γ, β, u, v, λ) and C ′(γ, β, u, v) are suitably 
hosen 
onstants, independent of
N and c. Then

ΞN(c) ≤ Ξ̄N(c). (3.9)Proof. De�ne κ± =
√

2(1 ± c). Let Ū1, Ū2 be two independent standard normalvariables. Then U1 and U2 
an be written as
U1 =

1

2
(κ+Ū1 + κ−Ū2), U2 =

1

2
(κ+Ū1 − κ−Ū2). (3.10)Hen
e, U1 + U2 = κ+Ū1. Using g(x) + g(y) = g(x + y + xy) ≥ g(x + y) and

uex + ve−x ≥ min(u, v)e|x|, we get
g
(

ueβ
√

NU1−γN
)

+ g
(

veβ
√

NU2−γN
)

≥ g
(

min(u, v) exp
(κ+β

√
NŪ1

2
+

∣

∣

∣

κ−β
√
NŪ2

2

∣

∣

∣
− γN

))

.
(3.11)Denoting min(u, v) by ū, we �nd that ΞN(c) is bounded from above by

uvβ2N

e2γN

∫

R2

dy

2π
exp

{

− y2
1 + y2

2

2
+ β

√
Nκ+y1 − 2g

(

ūeκ+β
√

Ny1/2+κ−β
√

N |y2|/2−γN
)

}

.(3.12)Substituting z1 = y1 − β
√
Nκ+, z2 = y2 we get

uvβ2N

e2γN
eβ2κ2

+N/2

∫

R2

dz

2π
exp

(

− z2
1 + z2

2

2

)

× exp
(

− 2g
(

ū exp
{√

N
[(β2κ2

+

2
− γ

)√
N +

βκ+

2
z1 +

βκ−
2

|z2|
]}))

.

(3.13)The fun
tion exp(−2g(ūe
√

Nx)) 
onverges to the indi
ator fun
tion 1x<0, as N → ∞.The r�le of x will be played by the bra
ket in the expression (3.13).If this bra
ket remains negative for z 
lose to zero, that is if γ ≥ −λ′ + β2κ2
+/2 (orequivalently c ≤ (γ/β2) + λ− 1), then the integral in (3.13) is bounded from aboveby 1. This yields the 
laim of the lemma for su
h c:

ΞN (c) ≤ uvβ2N

e2γN
eβ2κ2

+N/2 = C ′(γ, β, u, v)N exp
{

N(β2(1+c)−2γ)
}

= Ξ̄N(c). (3.14)If this is not the 
ase, that is γ < −λ′ + β2κ2
+/2, then we need another substitution,

z1 =
1√
N

[

v1 −
κ−
κ+

|v2| −N
(

βκ+ − 2γ

βκ+

)]

,

z2 =
v2√
N
.

(3.15)
12



This substitution transforms the domain where the bra
ket of (3.13) is negativeinto the half-plain v1 < 0: The expression inside of the bra
es in (3.13) equals
βκ+v1/2. Substituting (3.15) into (z2

1 + z2
2)/2 produ
es an additional exponentialprefa
tor exp

(

− (β2κ2
+−2γ)2N

2β2κ2
+

). Another prefa
tor N−1 
omes from the Ja
obian.The remaining terms 
an be bounded from above by
∫

R2

dv

2π
exp

{(

βκ+ − 2γ

βκ+

)(

v1 −
κ−
κ+

|v2|
)

− 2g(ūeβκ+/2)
}

, (3.16)whi
h 
an be separated into a produ
t of two integrals. The integration over v2 givesa fa
tor
((

βκ+ − 2γ

βκ+

)κ−
κ+

)−1

≤ C(λ)κ−1
− ≤ C(λ)(1 − c)−1/2. (3.17)Using properties of g, the integrand of (3.16) behaves as exp{−2v1γ/βκ+} as v1 →

∞, and as exp{(βκ+ − (2γ/βκ+))v1} as v1 → −∞. Therefore, the integral over v1 isbounded uniformly by some λ-dependent 
onstant for all values of c ≥ −1+(γ/β2)+
λ. Putting everything together

ΞN(c) ≤ C(1 − c)−1/2uvβ
2N

e2γN
eβ2κ2

+N/2 1

N
exp

(

− (β2κ2
+ − 2γ)2N

2β2κ2
+

)

= C(γ, β, u, v, λ)(1− c)−1/2 exp
{

− γ2N

β2(1 + c)

}

= Ξ̄N(c).

(3.18)This �nishes the proof of Lemma 3.2.Let ‖d‖ = min(d,N − d) and Dij = dist(YN(i), YN(j)). De�ne, with a slight abuseof notation, Λ0
d = (1 − 2dN−1)p. That is Λ0

d is the 
ovarian
e of X0
N(i) and X0

N (j)if Dij = d. The next proposition, whi
h will be proved in Se
tion 4, will be used to
ontrol the 
orrelations of the pro
ess X0
N .Proposition 3.3. Let γ and β satisfy the hypothesis of Theorem 1.1, and let ν be asin (2.1). Then, for any η > 0, there exists a 
onstant, C = C(β, γ, ν, η), su
h that,

Y-a.s. for N large enough, for all d ∈ {0, . . . , N}

tr(N)
∑

i,j=1
⌊i/ν⌋6=⌊j/ν⌋

1{Dij = d} ≤ C

[

t2r(N)22−N

(

N

d

)

+ tr(N)ν−1eη‖d‖
]

, (3.19)
tr(N)
∑

i,j=1,i6=j
⌊i/ν⌋=⌊j/ν⌋

1{Dij = d}(Λ0
d − Λ1

ij) ≤
Cd2tr(N)

N2
1{d ≤ ν}. (3.20)We now 
on
lude the proof of Proposition 3.1, that is we prove that the right-handside of (3.5) tends to 0. Observe �rst that Dij is smaller than |i − j|. Hen
e, for

⌊i/ν⌋ = ⌊j/ν⌋

Λ0
ij =

[

1 − 2N−1Dij

]p ≥ [1 − 2N−1|i− j|]p ≥ Λ1
ij . (3.21)

13



Sin
e Λ1
ij = 0 for (i, j) with ⌊i/ν⌋ 6= ⌊j/ν⌋, Λ0

ij − Λ1
ij < 0 if and only if Λ0

ij < 0.The summands on the right-hand side of (3.5) 
an be written as di�eren
es of twonon-negative terms:
(Λ0

ij − Λ1
ij)+E

[ ∂2FN (Xh
N)

∂X(i)∂X(j)

∣

∣

∣
Y

]

− (Λ0
ij)−E

[ ∂2FN(Xh
N )

∂X(i)∂X(j)

∣

∣

∣
Y

]

. (3.22)We bound this expression using Lemma 3.2. For given {ui} let
Ξ̃N(c) = max{Ξ̄N(c, β, γ, ui, uj) : 1 ≤ i, j ≤ ℓ}. (3.23)Then Ξ̃N(c) satis�es (3.8) for some 
onstants C and C ′ and it is therefore in
reasingin c. The absolute value of the right-hand side of (3.5) is then bounded from aboveby

tr(N)
∑

i,j=1
i6=j

(Λ0
ij − Λ1

ij)+E

[ ∂2FN(X0
N)

∂X(i)∂X(j)

∣

∣

∣
YN

]

+

tr(N)
∑

i,j=1
i6=j

(Λ0
ij)−E

[ ∂2FN(X1
N)

∂X(i)∂X(j)

]

≤
N

∑

d=0

{

tr(N)
∑

i,j=1
⌊i/ν⌋6=⌊j/ν⌋

1{Dij = d}(Λ0
d)+

∫ 1

0

Ξ̃(hΛ0
d)dh

+

tr(N)
∑

i,j=1,i6=j
⌊i/ν⌋=⌊j/ν⌋

1{Dij = d}(Λ0
d − Λ1

ij)Ξ̃
(

Λ0
d

)

+

tr(N)
∑

i,j:|i−j|≥N/2

1{Dij = d}(Λ0
d)−Ξ̃

(

0
)

}

.

(3.24)
From the de�nition of Ξ̃ it follows that,

∫ 1

0

Ξ̃(hc)dh ≤ C exp
{

− γ2N

β2(1 + c)

}

∫ 1

0

(1 − hc)−1/2dh. (3.25)The last integral 
an be easily evaluated and is smaller than 2 for all c ∈ [−1, 1].Using Proposition 3.3, the �rst line of (3.24) is smaller than the sum of the followingtwo terms:
C

N
∑

d=0

t2r(N)22−N

(

N

d

)

Λ0
d exp

{

− γ2N

β2(1 + Λ0
d)

} (3.26)and
C

N
∑

d=0

tr(N)eη‖d‖

ν
Λ0

d exp
{

− γ2N

β2(1 + Λ0
d)

}

. (3.27)The se
ond line of (3.24) is bounded by
C

ν
∑

d=0

tr(N)d2

N2
Ξ̃(Λ0

d). (3.28)14



The third line is non-zero only if p is odd, and in that 
ase it is bounded by
N

∑

d=N/2

C

[

t2r(N)22−N

(

N

d

)

+ tr(N)ν−1eη‖d‖
]

(2d

N
− 1

)p

Ξ̃(0), (3.29)We estimate (3.26) �rst. Let I(u) be de�ned by
I(u) = u log u+ (1 − u) log(1 − u) + log 2, (3.30)and let

JN(u) = 2−N

(

N

⌊Nu⌋

)

√

πN

2
eNI(u). (3.31)Stirling's formula yields JN(u)

N→∞−−−→ (4u(1−u))−1 uniformly in u on 
ompa
t subsetsof (0, 1). Further, JN (u) ≤ CN1/2 for all u ∈ [0, 1]. From the de�nitions of r(N) and
Ξ̃, we �nd that(3.26) = C

N
∑

d=0

t2N1/2
(

1 − 2d

N

)p

exp
{

NΥp,β,γ

( d

N

)}

JN

( d

N

)

, (3.32)where
Υp,β,γ(u) =

{

γ2

β2 − I(u) − γ2

β2(1+(1−2u)p)
, if (1 − 2u)p ≥ γ

β2 + λ− 1,
γ2

β2 − I(u) + β2(1 + (1 − 2u)p) − 2γ, if (1 − 2u)p ≤ γ
β2 + λ− 1.(3.33)Lemma 3.4. There exists a fun
tion ζ(p) su
h that for all p ≥ 2, and γ, β satisfying

γ ≤ ζ(p)β and γ < β2, there exist positive 
onstants δ, δ′ and c su
h that
Υp,β,γ(u) ≤ −δ for all u ∈ [0, 1] \ (1/2 − δ′, 1/2 + δ′), (3.34)and

Υp,β,γ(u) ≤ −c(u− 1/2)2 for all u ∈ (1/2 − δ′, 1/2 + δ′). (3.35)Moreover ζ(p) is in
reasing and satis�es (1.10), that is
ζ(2) = 2−1/2, ζ(3) = 1.0291, and lim

p→∞
ζ(p) =

√

2 log 2. (3.36)Proof. Sin
e γ/β2 < 1, the se
ond line of the de�nition of Υp,β,γ is used only for
p odd and u ≥ uc(p, β, γ, λ) = (1 + (1 − λ − γ/β2)1/p)/2 > 1/2. Furthermore,
Υp,β,γ(1/2) = Υ′

p,β,γ(1/2) = 0 and
Υ′′

p,β,γ(1/2) =

{

4
(

2γ2

β2 − 1
)

, if p = 2,
−4 otherwise. (3.37)The se
ond derivative is always negative for β, γ, p satisfying the assumptions ofTheorem 1.1. Therefore (3.35) holds.The se
ond line of the de�nition of Υp,β,γ(u) is de
reasing in u. Hen
e for u ≥ uc

Υp,β,γ(u) ≤ Υp,β,γ(uc) = −γ(1 − γ/β2) − I(uc) (3.38)15
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Figure 1: Fun
tion Υp,γ,β for p = 2, 3, 4 and various values of γ/β.whi
h is obviously stri
tly negative and (3.34) is proved for u ≥ uc.For any δ′ > 0 and u < 1/2−δ′ the fun
tion I(u) is stri
tly positive, and the fun
tion
Φ(u) ≡ 1− 1/(1+ (1− 2u)p) is bounded. Therefore, if γ/β is su�
iently small, then
Υp,β,γ(u) < −δ. If p is even, the fun
tion Υp,β,γ is symmetri
 around u = 1/2. If
1/2 < u < uc(p, β, γ) and p is odd, then

Υp,β,γ(u) < Υp,1,0(u) = −I(u) < 0 (3.39)and the proof of (3.35) is �nished.To prove the �rst part of (3.36) we should 
he
k that (3.35) holds for all γ ≤ 2−1/2β.However, Υ2,β,γ(u) is in
reasing in γ2/β2 and I(u) ≥ (1 − 2u)2/2. Thus, for γ ≤
2−1/2β,

Υ2,β,γ(u) ≤
1

2

(

1 − 1

1 + (1 − 2u)2

)

− 1

2
(1 − 2u)2. (3.40)The right-hand side of the last inequality is equal 0 for u = 1/2 and its derivative

2(1 − 2u)
(

1 − 1

(1 + (1 − 2u)2)2

)

> 0 for all u < 1/2. (3.41)The symmetry of Υ2,β,γ around 1/2 then implies the �rst part of (3.36).Obviously, Φ(0) = 1/2, Φ′(0) = −2p, I(0) = log 2 and I ′(0) = −∞. Hen
e, for
γ/β =

√
log 2 there exists u small su
h that Υp,β,γ(u) is positive. This implies

ζ(p) <
√

2 log 2. If u ∈ (0, 1/2) then limp→∞ Φ(u) = 0. This yield the se
ond half of(3.36).For illustration you �nd the graphs of fun
tion Υp,β,γ for p = 2, 3, 4, β = 1, and γ = 0(solid lines), γ =
√

1/2 (dashed lines), γ = 1 (dash-dotted lines) and γ =
√

2 log 2(dotted lines) on Figure 1. The value of ζ(3) was 
al
ulated numeri
ally using the�gure for p = 3.We 
an now �nish the bound on (3.26). Lemma 3.4 and bounds on the fun
tion JNyield that for d/N /∈ (1/2− δ′, 1/2 + δ′) the summands de
rease exponentially in N .Therefore they 
an be negle
ted. The remaining part 
an be bounded by
C

(1/2+δ′)N
∑

d=(1/2−δ′)N

t2N1/2
(

1 − 2d

N

)p

exp(−cN(d/N − 1/2)2)

≤ Ct2N3/2

∫ δ′

−δ′
xpe−c′Nx2

dx

≤ Ct2N3/2N−(p+1)/2

∫ ∞

−∞
upe−c′u2

du
N→∞−−−→ 0,

(3.42)
16



if p ≥ 3.Similarly, for (3.27) we have(3.27) ≤ C

N/2
∑

d=0

tN1/2ν−1
(

1 − 2d

N

)p

exp(NΥ̃(d/N)), (3.43)where, setting ‖u‖ = min(u, 1 − u),
Υ̃p,β,γ(u) =

{

γ2

2β2 − γ2

β2(1+(1−2u)p)
+ η‖u‖, if (1 − 2u)p ≥ γ

β2 + λ− 1,
γ2

2β2 + β2(1 + (1 − 2u)p) − 2γ + η‖u‖, if (1 − 2u)p ≤ γ
β2 + λ− 1.(3.44)Observe �rst that the se
ond part of the de�nition of Υ̃p,β,γ is always stri
tly negative.It is also easy to be 
he
ked that it is possible to 
hoose δ, δ′ and η small su
h thatthe �rst part of the de�nition of Υ̃(u) < δ for all ‖u‖ ≥ δ′. Therefore su
h d 
an benegle
ted. Around d = 0 the fun
tion Υ̃(x) 
an be approximated by a linear fun
tion

−cx, c > 0, and the summation by an integration. As an upper bound we get
CtN3/2ν−1

∫ δ′

0

e−cNxdx ≤ CtN1/2ν−1 N→∞−−−→ 0. (3.45)An analogous bound works for d 
lose to N and p even.For (3.28) we have(3.28) ≤ C
ν

∑

d=0

tN−3/2d2[1 − (1 − 2dN−1)p]−1/2 exp(NΥ̃(d/N)). (3.46)The linear approximation of Υ̃ and of the bra
ket in the last expression yields anupper bound
CtN3/2

∫ ε

0

x3/2e−c′Nxdx ≤ CtN−1 N→∞−−−→ 0. (3.47)Finally, sin
e Ξ̃(0) = Ce−Nγ2/β2 , it is easy to see that the se
ond half of (3.29) tendsto 0. The �rst half equals (up to 
onstant)
N

∑

d=N/2

(2d

N
− 1

)p

t2N2−N

(

N

d

)

≤ Ct2
{

∑

d≥N/2+N3/5

N2−N

(

N

d

)

+
2N3/5
∑

i=1

(N + i

N
− 1

)p

N1/2e−i2/2N
}

,

(3.48)
where we used the known approximation of (N

d

)

≤ CN−1/22Ne−i2/2N for d = (N+i)/2and i≪ N2/3. The �rst term in (3.48) tends to 0 by a standard moderate deviationargument. The se
ond one 
an be approximated by
Ct2N1−(p/2)

∫ ∞

0

xpe−x2/2dx
N→∞−−−→ 0 (3.49)for p ≥ 3. This 
ompletes the proof of Proposition 3.1.17



4 Random walk propertiesIn this se
tion we prove Proposition 3.3. For A ⊂ SN let TA = min{k ≥ 1 : YN(k) ∈
A} be the hitting time of A. We write Px for the law of the simple random walk YN
onditioned on YN(0) = x. LetQ = Qi, i ∈ N, be a birth-death pro
ess on {0, . . . , N}with transition probabilities pi,i−1 = 1 − pi,i+1 = i/N . We use Pk and Ek to denotethe law of (the expe
tation with respe
t to) Q 
onditioned on Q0 = k. Under P0, Qihas the same law as dist(YN(0), YN(i)). De�ne Tk = min{i ≥ 1 : Qi = k} the hittingtime of k by Q. It is well-known fa
t that for k < l < m

Pl[Tm < Tk] =

∑l−1
i=k

(

N−1
i

)−1

∑m−1
i=k

(

N−1
i

)−1 . (4.1)Finally, let pk(d) = P0(Qk = d). We need the following lemma for estimating pk(d)for large k.Lemma 4.1. There exists K large enough su
h that for all k ≥ KN2 logN =: K(N)and x, y ∈ SN

∣

∣

∣

∣

Py[YN(k) = x ∪ YN(k + 1) = x]

2
− 2−N

∣

∣

∣

∣

≤ 2−8N (4.2)and thus
∣

∣

∣

∣

pk(d) + pk+1(d)

2
− 2−N

(

N

d

)
∣

∣

∣

∣

≤ 2−4N . (4.3)Proof. The beginning of the argument is the same as in [Mat87℄. We 
onstru
t
oupling between YN (whi
h by de�nition starts at site 1 = (1, . . . , 1) ∈ SN ) andanother pro
ess Y ⋆
N . This pro
ess is a simple random walk on SN with the initialdistribution µ⋆

N being uniform on those x ∈ SN with dist(x, 1) even. The 
ouplingis the same as in [Mat87℄. This 
oupling gives 
ertain random time TN whi
h 
an beused to bound the variational distan
e between µ⋆ and the distribution µk
N of YN(k):for k even

d∞(µ⋆
N , µ

k
N) ≡ max

A⊂SN

|µ⋆
N(A) − µk

N(A)| ≤ P[TN > k]. (4.4)The law of TN is as follows. Let U = dist(Y ⋆
N(0), 1). That is U is a binomial randomvariable with parameters N and 1/2 
onditioned on being even. Consider anothersimple random walk ỸU on SU started from 1. The distribution of TN is then thesame as the distribution of the hitting time of {x ∈ SU : dist(1, x) = U/2}. It isproved in [Mat87℄ that P (TN > N logN) → c < 1. It is then easy to see that,

P[TN ≥ K(N)] ≤ cKN/2 ≤ 2−8N , (4.5)if K is large enough. Thus, for even k ≥ K(N), d∞(µ⋆
N , µ

k
N) ≤ 2−8N and thus

|µ⋆
N(x)−µk

N (x)| ≤ 2−8N for all x ∈ SN . A similar 
laim for k odd is then not di�
ultto prove. The se
ond part of the lemma is a dire
t 
onsequen
e of the �rst part.
18



Lemma 4.2. Let γ, β, ν satisfy the hypothesis of Proposition 3.3. Then, there existsa 
onstant, C = C(β, γ, ν), su
h that for all N large enough, Y-a.s.
tr(N)
∑

i,j=1,i6=j
⌊i/ν⌋=⌊j/ν⌋

1{Dij = d} ≤ Ctr(N)1{d ≤ ν}, (4.6)and for all d ∈ {0, . . . , N}.Proof. The lemma is trivially true for d > ν. For d ≤ ν, let
ρ(d) = E0

ν
∑

i=1

1{Qi = d}. (4.7)We have ρ(0) ≥ N−1 and ρ(d) ≥ P0[Td ≤ ν]. This probability is de
reasing in d and
P0[Tν ≤ ν] =

N

N
· N − 1

N
. . .

N − ν + 1

N
≥ e−ν2/N . (4.8)Thus ρ(d) ≥ e−ν2/N for all d ≤ ν. To get an upper bound on ρ(d) we write

ρ(d) ≤ E0

[

Tν
∑

i=1

1{Qi = d}
]

= 1 + Ed

[

Tν
∑

i=1

1{Qi = d}
]

= 1 +
1

Pd[Tν < Td]
. (4.9)However, using (4.1),

Pd[Tν < Td] =
N − d

N
Pd+1[Tν < Td] =

N − d

N

(

N−1
d

)−1

∑ν−1
i=d

(

N−1
i

)−1 = 1 −O(νN−1). (4.10)Sin
e ν ≪ N , ρ(d) ≤ 2.Consider now one-blo
k 
ontribution to (4.6),
ν

∑

i,j=1

1{Dij = d} =: ν2Z̃. (4.11)Of 
ourse, Z̃ ∈ [0, 1] and, using the results of the previous paragraph,
e−ν2/N (2ν)−2 ≤ E[Z̃ ] ≤ 2ν−1. (4.12)The left-hand side of (4.6) is sto
hasti
ally smaller than ν2

∑m
k=1 Z̃k, where Z̃k arei.i.d. 
opies of Z̃ and m = ⌈tr(N)/ν⌉. By Hoe�ding's inequality [Hoe63℄,

P

[

m
∑

i=1

Z̃k ≥ 2mE[Z̃k]
]

≤ exp{−2m2
E[Z̃k]

2} ≤ exp{−m2e−2ν2/N(2ν)−4}, (4.13)where we used the lower bound from (4.12). Sin
e ν/N2 ≪ N , by the Borel-Cantellilemma, the left-hand side of (4.6) is a.s. bounded by
ν22mE[Z̃] ≤ Ctr(N) (4.14)for all N large enough and d ≤ ν. This 
ompletes the proof of Lemma 4.2.19



Proof of Proposition 3.3. We prove (3.20) �rst. Observe that for i, j in the sameblo
k
Λ0

d − Λ1
ij =

(

1 − 2d

N

)p

−
(

1 − 2p|i− j|
N

)

=
2p(|i− j| − d)

N
+O

( d2

N2

)

. (4.15)The 
ontribution of the error term is smaller than the right-hand side of (3.20), asfollows from Lemma 4.2.To 
ompute the 
ontribution of the main term, let
ρ̃(d) = E0

[

ν
∑

i=1

(i− d)1{Qi = d}
]

. (4.16)Let T 1
d = Td and T k

d = min{i > T k−1
d : Qi = d}. Then

ρ̃(d) = E0

[

∞
∑

j=1

(T j
d − d)1{T j

d < ν}
]

= E0

[

∞
∑

j=1

(T j
d − T 1

d + T 1
d − d)1{T j

d < ν}
]

≤ E0[(Td − d)1{Td < ν}]
(

1 +

∞
∑

i=1

Ed[T
i
d1{T i

d < ν − d}]
)

. (4.17)Using (4.8), P0[Td = d] ≤ Ce−d2/N and further
P0[Td ≥ d+ 2k] ≤

(

d+ 2k

k

)

( d

N

)k

≤ C
d2k

Nk
. (4.18)Hen
e, cd2N−1 ≤ E0[(Td − d)1{Td < ν}] ≤ Cd2N−1.For the se
ond term in (4.17) we write

1+

∞
∑

i=1

Ed[T
i
d1{T i

d < ν − d}]

≤ 1 + Ed[Td1{Td < ν − d}]
(

1 +
∞

∑

i=1

Ed[T
i
d1{T i

d < ν − d}]
)

=

∞
∑

k=0

{

Ed[Td1{Td < ν − d}]
}k
.

(4.19)
Using the well-known estimate (

2k
k

)

≤ Ck−1/22k and k < 2k,
Ed[Td1{Td < ν − d}] ≤

ν/2
∑

k=1

2k

(

2k

k

)

( ν

N

)k

≤ C

∞
∑

k=1

(4ν

N

)k

≤ C
ν

N
(4.20)and (4.19) is �nite. Thus ρ̃(d) ≤ Cd2N−1 for all d ∈ {0, . . . , ν}.The one-blo
k 
ontribution of the �rst term of (4.15) to (3.20) is then given by

2p

N

ν
∑

i,j=1

(|i− j| − d)1{Dij = d} =:
2p

N
ν3Z̃, (4.21)

20



with Z̃ ∈ [0, 1] and
cd2N−1ν−3 ≤ E[Z̃] ≤ Cd2N−1ν−2. (4.22)Therefore, as in the proof of Lemma 4.2, Hoe�ding's inequality and (4.22) imply thatthe 
ontribution of the �rst term of (4.15) to (3.20) is smaller than Ctr(N)d2N−2,whi
h was to be shown.Finally, we prove (3.19). Sin
e we are interested in an upper bound only we 
an,without loss of generality, restri
t the summation on i < j. We �rst 
onsider the
ontribution of pairs (i, j) su
h that j− i ≥ K(N). Then ne
essarily, ⌊i/n⌋ 6= ⌊j/n⌋.Let R = tr(n). Lemma 4.1 yields

E

[

R
∑

j−i≥K(N)

1{Dij = d}
]

=
R

∑

j−i≥K(N)

pj−i(d) ≤ CR22−N

(

N

d

)

. (4.23)Further,
Var

[ R
∑

j−i≥K(N)

1{Dij = d}
]

=

R
∑

j1−i1≥K(N)

R
∑

j2−i2≥K(N)

P
[

Di1,j1 = Di2,j2 = d
]

− P
[

Di1,j1 = d
]

P
[

Di2,j2 = d
]

.

(4.24)We 
an again suppose that i1 ≤ i2. The right-hand side of (4.24) is non-null onlyif i1 ≤ i2 ≤ j1 < j2 or i1 ≤ i2 < j2 ≤ j1. We will 
onsider only the �rst 
ase. These
ond one 
an be treated analogously. In is not di�
ult to see using Lemma 4.1that if i2 − ij ≥ K(N) or j2 − j1 ≥ K(N) then the di�eren
e of probabilities in theabove summation is at most 2−4N . Therefore, the 
ontribution of su
h (i1, i2, j1, j2)to the varian
e is at most R42−4N .If i2 − i1 < K(N) and j2 − j1 < K(N) then, using Lemma 4.1 again,
P
[

Di1,j1 = Di2,j2 = d
]

≤ C2−N

(

N

d

)

. (4.25)We 
hoose ε > 0. For ‖d‖ ≤ (1 − ε)N/2 we have
∑

j1−i1≥K(N)
i2−i1<K(N)

∑

j2−i2≥K(N)
j2−j1<K(N)

P
[

Di1,j1 = Di2,j2 = d
]

≤ CK(N)2R22−N

(

N

d

)

≤ CK(N)2R2e−NI((1−ε/2)/2) ≪ N−3R2ν−2,(4.26)say. For ‖d‖ ≥ (1 − ε)N/2, that is |d − N/2| ≤ εN/2, we have for ε small enough(how small depend on γ and β) that 2−N
(

N
d

)

≫ N7R−2. Then,
∑

j1−i1≥K(N)
i2−i1<K(N)

∑

j2−i2≥K(N)
j2−j1<K(N)

P
[

Di1,j1 = Di2,j2 = d
]

≤ CN4R22−N

(

N

d

)

≪ N−3R42−2N

(

N

d

)2

.

(4.27)
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We have thus found that the expe
tation of the summation over j − i > K(N) issmaller than the right-hand side of (3.19) and the varian
e of the same summationis mu
h smaller than N−3 times the right-hand side of (3.19) squared. A straight-forward appli
ation of the Chebyshev inequality and the Borel-Cantelli Lemma thengives the desired a.s. bound for pairs j − i ≥ K(N) and all d ∈ {0, . . . , N}.Choose again ε > 0. For j−i < K(N), observe �rst that if ‖d‖ ≥ (logN)1+ε ≫ logNthen the summation over su
h pairs (i, j) in (3.19) is always smaller than K(N)R ≪
Rν−1eη‖d‖ for all η > 0. For the remaining d's, that is ‖d‖ < (logN)1+ε′, let KN ≥ Kbe the smallest 
onstant su
h that KNN

2 logN is a multiple of ν. Sin
e ν ≪ N2,
KN −K ≪ 1. As the di�eren
e between K and KN is negligible, we will use the samenotation K(N) for KNN

2 logN and we will simply suppose that K(N) is a multipleof ν. The summation in (3.19) for j − i ≤ K(N) 
an be bounded from above by
tr(N)
∑

0<j−i<K(N)
⌊i/ν⌋6=⌊j/ν⌋

1{Dij = d} ≤
K(N)−1
∑

k=0

⌈R/K(N)⌉
∑

ℓ=0

K(N)
∑

m=jk

1{DK(N)ℓ+k,K(N)ℓ+k+m = d}, (4.28)where jk is the smallest integer su
h that ⌊(K(N)ℓ+ k)/ν⌋ 6= ⌊(K(N)ℓ+ k+ jk)/ν⌋,whi
h does not depend on ℓ. We de�ne random variables Zℓ(j, d) by
Zℓ(j, d) =

1

K(N)

K(N)
∑

m=j

1{DK(N)ℓ+k,K(N)ℓ+k+m = d}. (4.29)The sequen
e {Zℓ(j, d) : ℓ ≥ 0} for �xed j and d is a sequen
e of i.i.d. variables withvalues in [0, 1].Let EN = {d : ‖d‖ < (logN)1+ε′ , d ≥ N/2}. For d ∈ EN

P[Zℓ(k, d) > 0] ≤
(

N

d

)

Pd(T1 < K(N)) ≤
(

N

d

)

eλKEd

[

e−λT1/N2 log N
]

. (4.30)A

ording to Lemma 3.4 of [�G06℄,
Ed

[

exp(−λT1m(N)−1)
]

≤ (2−Nm(N)λ−1 + ξN(d))(1 + o(1)), (4.31)for N logN ≪ m(N) ≪ 2N , with ξn(k) = 2−n n
2

(

n
k

)−1 ∑n−k
j=1

(

n
k+j

)

1
j
. Taking m(N) =

N2 and d ∈ EN it is not di�
ult to 
he
k that for ε small enough
Ezd

[

e−λT1/N2] ≤ 2−N(1−ε). (4.32)Hen
e,
P

[

⋃

d∈EN

{

K(N)−1
∑

k=0

⌈R/K(N)⌉
∑

ℓ=0

Zℓ(jk, d) > 0
}]

≤ C

(

N

⌈(logN)1+ε⌉

)

R(logN)1+ε2−N(1−ε) ≤ C2−ε′N ,(4.33)22



for some ε′ small. Hen
e, d ∈ EN do not pose any problem, by the Borel-Cantellilemma again.To treat d ≤ (logN)1+ε′ we will distinguish two 
ases: jk ≤ 2d and jk > 2d. Forthe �rst 
ase, observe that for any d < ν there are at most dK(N)/ν values of
k ∈ {0, . . . ,K(N) − 1} su
h that jk ≤ d. Further, as before, Zℓ(jk, d) ≤ Zℓ(0, d),
E[Zℓ(0, d)] ≥ 1/(NK(N)), and E[Zℓ(0, d)] ≤ C/K(N). Hen
e, by Hoe�ding's in-equality, the probability

P

[

K(N)

⌈R/K(N)⌉
∑

ℓ=0

Zℓ(0, d) ≥
R

K(N)

] (4.34)de
reases at least exponentially with N and thus for jk < 2d, a.s,
K(N)

⌈R/K(N)⌉
∑

ℓ=0

Zℓ(0, d) ≥
R

K(N)
. (4.35)For j ≥ 2d and N large enough, Zℓ(j, d) ≤ Zℓ(d+ 6, d). We have,

cN−6 ≤ K(N)E[Zℓ(d+ 6, d)] ≤ CN−3. (4.36)Indeed, the lower bound is trivial and for the upper bound we use the fa
t that theprobability that YN rea
hes d before returning to d + 6 is smaller than CN−5 andbefore the time K(N) there are at most K(N) tries. Hen
e, for j ≥ 2d the probability
P

[

K(N)

⌈R/K(N)⌉
∑

ℓ=0

Z̃ℓ(k, d) ≥
R

N3K(N)

] (4.37)de
reases at least exponentially in N and thus the interior inequality is not valida.s. for all N large. Summing over k we get
K(N)−1
∑

k=0

⌈R/K(N)⌉
∑

ℓ=0

K(N)Zℓ(jk, d) ≤ dK(N)ν−1 R

K(N)
+ K(N)

R

N3K(N)
≤ CRν−1eηd,(4.38)sin
e γ/β2 < 1.5 Convergen
e of 
lo
k pro
essWe will prove the 
onvergen
e of the res
aled 
lo
k pro
ess to the stable subordinatoron spa
e D([0, T ],R) equipped with the Skorokhod M1-topology. This topology isnot 
ommonly used in the literature, therefore we shortly re
all some of its propertiesand 
ompare it with the more standard Skorokhod J1-topology, whi
h we will needlater, too. For more details the reader is referred to [Whi02℄ for both topologies andto [Bil68℄ for detailed a

ount on J1-topology.
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5.1 Topologies on the Skorokhod spa
eConsider spa
e D = D([0, T ],R) of 
àdlàg fun
tions. The J1-topology is the topologygiven by the J1-metri
: for f, g ∈ D

dJ1(f, g) = inf
λ∈Λ

{‖f ◦ λ− g‖∞ ∨ ‖λ− e‖∞}, (5.1)where Λ is the set of stri
tly in
reasing fun
tions mapping [0, T ] onto itself su
h thatboth λ and its inverse are 
ontinuous, and e is the identity map on [0, T ].Also the M1-topology is given by a metri
. For f ∈ D let Γf be its 
ompleted graph,
Γf = {(z, t) ∈ R × [0, T ] : z = αf(t−) + (1 − α)f(t), α ∈ [0, 1]}. (5.2)A parametri
 representation of the 
ompleted graph Γf (or of f) is a 
ontinuousbije
tive mapping φ(s) = (φ1(s), φ2(s)), [0, 1] 7→ Γf whose �rst 
oordinate φ1 isin
reasing. If Π(f) is set of all parametri
 representation of f , then the M1-metri
is de�ned by
dM1(f, g) = inf{‖φ1 − ψ1‖∞ ∨ ‖φ2 − ψ2‖∞ : φ ∈ Π(f), ψ ∈ Π(g)}. (5.3)The spa
e D equipped with both M1- and J1-topologies is Polish. The M1-topologyis weaker than the J1-topology: As an example, 
onsider the sequen
e

fn = 1{[1 − 1/n, 1)} + 2 · 1{[1, T ]}, (5.4)whi
h 
onverges to f = 2 · 1{[1, T ]} in the M1-topology but not in the J1-topology.One often says that the M1-topology allows �intermediate jumps�.We will need a 
riterion for tightness of probability measures on D. To this end wede�ne several moduli of 
ontinuity,
wf (δ) = sup

{

min
(

|f(t) − f(t1)|, |f(t2) − f(t)|
)

: t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ
}

,

w′
f (δ) = sup

{

inf
α∈[0,1]

|f(t) − (αf(t1) + (1 − α)f(t2))| : t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ
}

,

vf (t, δ) = sup
{

|f(t1) − f(t2)| : t1, t2 ∈ [0, T ] ∪ (t− δ, t+ δ)
}

. (5.5)The following result is a restatement of Theorem 12.12.3 of [Whi02℄ and Theorem 15.3of [Bil68℄.Theorem 5.1. The sequen
e of probability measures {Pn} on D([0, T ],R) is tight inthe J1-topology if(i) For ea
h positive ε there exist c su
h that
Pn[f : ‖f‖∞ > c] ≤ ε, n ≥ 1. (5.6)(ii) For ea
h ε > 0 and η > 0, there exist a δ, 0 < δ < T , and an integer n0 su
hthat
Pn[f : wf(δ) ≥ η] ≤ ε, n ≥ n0, (5.7)and

Pn[f : vf (0, δ) ≥ η] ≤ ε and Pn[f : vf (T, δ) ≥ η] ≤ ε, n ≥ n0. (5.8)The same 
laim hold for the M1-topology with wf(δ) in (5.7) repla
ed by w′
f(δ).24



5.2 Proof of Theorem 1.1To prove the 
onvergen
e of the res
aled 
lo
k pro
ess S̄N(·) = e−γNSN(·r(N)) tothe stable subordinator Vγ/β2 , we 
he
k �rst the 
onvergen
e of �nite-dimensionalmarginals. As 
an be guessed, Proposition 3.1 will serve to this purpose. Let ℓ, {ui}and {ti} be as above. Then,
E

[

exp
{

−
ℓ

∑

i=1

ui

(

S̄N(tk) − S̄N(tk−1)
)

}
∣

∣

∣
YN

]

= E
[

FN(X0
N ; {ti}, {ui})

∣

∣YN

]

= E
[

FN(X1
N ; {ti}, {ui})

]

+ o(1),

(5.9)as follows from Proposition 3.1.The value of E
[

FN(X1
N ; {ti}, {ui})

] is not di�
ult to 
al
ulate. De�ne jN (i) =
⌊tir(N)/ν⌋. Then

E
[

FN (X1
N ; {ti}, {ui})

]

= E

[

exp
(

−
ℓ

∑

k=1

uk

eγN

tkr(N)−1
∑

i=tk−1r(N)

eie
β
√

NX1
N (i)

)]

≥ E

[

ℓ
∏

k=1

j(k)
∏

j=j(k−1)+1

exp
(

− uk

eγN

ν−1
∑

i=0

ejν+ie
β
√

NX1
N (jν+i)

)]

(5.10)
Sin
e the pro
ess X1

N is a pie
e-wise independent pro
ess, the produ
t in (5.10) is aprodu
t of independent random variables. Then expe
tations of all of them 
an bethen bounded using Proposition 2.1. We get, for δ > 0 �xed and N large enough,
E
[

FN (X1
N ; {ti}, {ui})

]

≥
ℓ

∏

k=1

jN (k)
∏

j=jN (k−1)+1

FN(uk)

≥
ℓ

∏

k=1

(

1 − (1 + δ)νN−1/2e−Nγ2/2β2

Ku
γ/β2

k

)jN (k)−jN (k−1)−1

≥
ℓ

∏

k=1

exp
{

− (1 + 2δ)(tk − tk−1)Ku
γ/β2}

,

(5.11)
whi
h is (up to 1 + 2δ term) the Lapla
e transform of Vγ/β2(K·). A 
orrespondingupper bound 
an be 
onstru
ted analogously.To 
he
k the tightness for S̄N in D([0, T ],R) equipped with the Skorokhod M1-topology we use Theorem 5.1. Sin
e the pro
esses S̄N are in
reasing, it is easy to seethat 
ondition (i) is equivalent to the tightness of the distribution of S̄N (T ), whi
h
an be 
he
ked easily from the 
onvergen
e of the Lapla
e transform of the marginalat time T (the limiting Lapla
e transform tends to 1 as u→ 0).In order to 
he
k 
ondition (ii), remark that for in
reasing fun
tions the os
illationfun
tion w′

S̄N
(δ) is always equal to zero. So 
he
king (ii) boils down to 
ontrollingthe boundary os
illations vS̄N

(0, δ) and vS̄N
(T, δ). For the �rst quantity (using againthe monotoni
ity of S̄N ) this amounts to 
he
k that P[S̄N (δ) ≥ η] < ε if δ is smallenough and N large enough. Using the 
onvergen
e of of marginal at time δ, it is25



su�
ient to take δ su
h that P[Vγ/β2(Kδ) ≥ η] ≤ ε/2, and take n0 su
h that for all
n ≥ n0

∣

∣P[S̄N (δ) ≥ η] − P[Vγ/β2(Kδ) ≥ η]
∣

∣ ≤ ε/2. (5.12)The reasoning for vS̄N
(T, δ) is analogous.5.3 Coarse-grained 
lo
k pro
essTo prove our aging result, that is Theorem 1.2, we need to modify the result ofTheorem 1.1 slightly. Let S̃N be the �
oarse-grained� 
lo
k pro
esses,

S̃N(t) =
1

eγN
SN(ν⌊tr(N)ν−1⌋). (5.13)For these pro
esses we 
an strengthen the topology used in Theorem 1.1, that is we
an repla
e the M1- by the J1-topology.Theorem 5.2. If the hypothesis of Theorem 1.1 is satis�ed, then

S̃N (t)
N→∞−−−→ Vγ/β2(Kt) Y − a.s., (5.14)weakly in the J1-topology on the spa
e of 
àdlàg fun
tions D([0, T ],R).Unfortunately, we 
annot prove the theorem with estimates we have already at dis-position. We should return ba
k and improve some of them. First we show thattraps with energies �mu
h smaller� than γ

√
N/β almost do not 
ontribute to the
lo
k pro
ess. Let Bm = γ

√
N/β −m/(β

√
N) and let

S̄m
N (t) = e−γN

⌊tr(N)⌋
∑

i=0

ei exp
{

β
√
NX0

N(i)
}

1{X0
N(i) ≤ Bm}. (5.15)Lemma 5.3. For every T and η, ε > 0 there exists m large enough su
h that

P[S̄m
N (T ) ≥ η|Y ] ≤ ε, Y-a.s. (5.16)Proof. To prove this lemma we should improve/modify slightly the 
al
ulations ofSe
tions 2 and 3. With the notation of Se
tion 2 de�ne

Fm
N = E

[

exp
{

− e−γN

ν
∑

i=1

eie
β
√

NUi1{Ui ≤ Bm}
}]

. (5.17)(
omparing with (2.2) observe that we set u = 1). We will show that
lim

N→∞
f(N)eNγ2/2β2

[1 −Fm
N ] = Km, (5.18)with Km → 0 as m → ∞. The proof of this 
laim is 
ompletely analogous to theproof of Proposition 2.1. One should only modify the domains of integrations. Morepre
isely, the de�nition of Dk whi
h appears after (2.9) should be repla
ed by Dm

k =
Dk∩{z : Gk(z) ≤ Bm}. Hen
e, D′

k be
omes D′m
k = D′

k∩{b : Gk(b) ≤ −m/(β/
√
N)},26



whi
h then restri
ts the domain of integration in (2.33) to (−∞,−m/β]. Hen
e, the
onstant Km 
an be made arbitrarily small by 
hoosing m large.Further, as in Se
tion 3, de�ne
Fm

N (X) = exp
(

−
Tr(N)−1

∑

i=0

g
(

e−γNeβ
√

NX(i)
1{X(i) ≤ Bm}

))

. (5.19)Then, as in Proposition 3.1, we will show
lim

N→∞
E
[

Fm
N (X0

N)
∣

∣Y
]

− E
[

Fm
N (X1

N)
]

= 0, Y-a.s. (5.20)We use again (3.5) to show this 
laim. Although the indi
ator fun
tion is not dif-ferentiable, we will pro
eed as if it was, setting (1{x ≤ B})′ = −δ(x−M), where δdenotes the Dira
 delta fun
tion. As usual, this 
an be justi�ed e.g. by using smoothapproximations of the indi
ator fun
tion. The se
ond derivative of Fm
N (X) equals

u2β2N

e2γN
eβ

√
N(X(i)+X(j))g′

(

ueβ
√

NX(i)−γN
)

g′
(

ueβ
√

NX(j)−γN
)

Fm
N (X)

×
(

1{X(i) ≤ Bm} −
δBm(X(i))

β
√
N

)(

1{X(j) ≤ Bm} −
δBm(X(j))

β
√
N

)

≤ u2β2Neβ
√

N(Xh
N (i)+Xh

N (j))−2γN exp
(

− 2g
(

ueβ
√

NXh
N (i)−γN

)

− 2g
(

ueβ
√

NXh
N (j)−γN

))

×
(

1{X(i) ≤ Bm} −
δBm(X(i))

β
√
N

)(

1{X(j) ≤ Bm} −
δBm(X(j))

β
√
N

)

. (5.21)We should now bound the 
ontributions of four terms. The one with the produ
t oftwo indi
ator fun
tions is easy, be
ause we 
an use dire
tly the result of Lemma 3.2.For remaining three terms, those with the produ
t of one indi
ator and one deltafun
tion, and this with two delta fun
tion, the 
al
ulation should be repeated. How-ever, in the end we �nd that (5.21) is bounded by Ξ̄(Cov(X(i), X(j))) as before. Thepresen
e of the delta fun
tions makes a
tually the 
al
ulations slightly less 
ompli-
ated. The proof then pro
eed as in Se
tion 3.We 
an now �nish the proof of Lemma 5.3. By (5.17) and (5.20),
E
[

exp(−S̄m
N (T ))

∣

∣Y
]

= E
[

Fm
N (X0

N)
∣

∣Y
]

= E
[

Fm
N (X1

N)
∣

∣Y
]

+ o(1)

= (1 −Kmf(N)−1e−Nγ2/2β2

)Tr(N)/ν + o(1) = e−KmT + o(1).
(5.22)Sin
e Km → 0 as m→ ∞,

P[S̄m
N (T ) ≥ η|Y ] ≤ 1 − E

[

exp(−S̄m
N (T ))

∣

∣Y
]

1 − e−η
(5.23)
an be made arbitrarily small by taking m large enough.We study now how the blo
ks where the pro
ess visits sites with energies larger than

Bm are distributed along the traje
tory. To this end we set for any Gaussian pro
ess
X

sm
N(i;X) = 1{∃j : iν < j ≤ (i+ 1)ν,X(j) > Bm}. (5.24)27



and we de�ne point pro
ess Hm
N (X) on [0, T ] by

Hm
N (X; dx) =

Tr(N)/ν
∑

i=0

sm
N (i;X)δiν/r(N)(dx). (5.25)Lemma 5.4. For every m ∈ R the point pro
esses Hm

N (X0
N) 
onverge to a homoge-neous Poisson point pro
ess on [0, T ] with intensity ρm ∈ (0,∞), Y-a.s.Proof. To show this lemma we use Proposition 16.17 of Kallenberg [Kal02℄. A
-
ording to it, to prove the 
onvergen
e of Hm

N (X0
N) to a Poisson point pro
ess withintensity ρm it is su�
ient to 
he
k that for any interval I ⊂ [0, T ]

lim
N→∞

P[Hm
N (X0

N ; I) = 0|Y ] = e−ρm|I| (5.26)and
lim sup

N→∞
E[Hm

N (X0
N ; I)|Y ] ≤ ρm|I|, (5.27)where |I| denotes the Lebesgue measure of I.The proof of the �rst 
laim is 
ompletely similar to the previous ones. We start witha one-blo
k estimate for (5.26):

lim
N→∞

N1/2ν−1eNγ2/2β2

E[sm
N (0, U)] = ρm, (5.28)Using the notation of Se
tion 2, we get

E[sm
N (0, U)] =

∫

Am

dz

(2π)ν/2
e−

1
2

Pν
i=1 z2

i , (5.29)where Am = {z : ∃k ∈ {1, . . . , ν}Gk(z) > Bm}. Dividing the domain of integrationa

ording to the maximal Gk(z), this is equal
ν

∑

k=1

∫

Dk

dz

(2π)ν/2
e−

1
2

Pν
i=1 z2

i , (5.30)where Dk = {z : Gk(z) > Bm, Gi(z) ≤ Gk(z)∀i 6= k}. Using the substitution
zi = bi ± ΓiBm on Dk (where + sign is used for i ≤ k and − sign for i > k) we get

e−Nγ2/2β2

emγ/β2
ν

∑

k=1

∫

D′

k

db

(2π)ν/2
e−

1
2

Pν
i=1 b2i e−BmGk(b), (5.31)where D′

k = {b : Gk(b) > 0,
∑k

j=i+1 bj + |k− i|ΓνBm ≥ 0∀i 6= k}. The same reasoningas before then allows to show that the last expression behaves like ρmνN
−1/2e−γ2N/2β2as N → ∞.To 
ompare the real pro
ess with the blo
k-independent pro
ess, let

FN(I;X) = 1{max{X(i) : iν/r(N) ∈ I} ≤ Bm}. (5.32)
28



The di�eren
e between E[FN (I;X0
N)|Y ] and E[FN (I;X1

N)] is again given by the Gaus-sian 
omparison formula (3.5). This time the se
ond derivative equals
δ(X(i)−Bm)δ(X(j)−Bm)

∏

k 6=i,j

1{X(k) ≤ Bm} ≤ δ(X(i)−Bm)δ(X(j)−Bm). (5.33)If 
ovarian
e of X(i) and X(j) equals c, the expe
tation of the last expression isgiven by the value of the joint density of X(i), X(j) at point (Bm, Bm) whi
h is
(2π(1 − c2))−1e−B2

m/(1+c) ≤ C(1 − c2)−1 exp
{

− γ2N

β2(1 + c)

}

. (5.34)The exponential term is the same as in Ξ̄(c). The polynomial prefa
tor is howeverdi�erent, it diverges faster as c→ 1. We should thus return to (3.24) with Ξ̃ repla
edby the right-hand side of (5.34). First
∫ 1

0

(1 − c2)−1 = c−1 arg tanh(c) ≈ −1

2
log(1 − c) (5.35)as c→ 1, whi
h is not bounded for all c as before. The estimates (3.26) and (3.27) arein�uen
ed by this 
hange. For (3.26) we 
an a
tually negle
t this 
hange, be
ausethe main 
ontribution to this term 
ame from the neighborhood of d = N/2 (or

c = 0) and was exponentially small in the neighborhood of d = 1 (or c ∼ 1/N). Inthe treatment of (3.27), the 
hange has more e�e
t, after some 
omputations (3.45)be
omes
CtN3/2ν−1

∫ δ′

0

log(c/x)e−cNxdx ≤ CtN1/2ν−1 logN
N→∞−−−→ 0. (5.36)Finally, the 
hange of polynomial prefa
tor of Ξ̄ implies 
hange in the 
ontrol of(3.28). The equation (3.46) be
omes(3.28) ≤ C

ν
∑

d=0

tN−3/2d2[1 − (1 − 2dN−1)2p]−1 exp(NΥ̃(d/N)). (5.37)and the linearization of Υ̃ gives new form of (3.47)
CtN3/2

∫ ε

0

xe−c′Nxdx ≤ CtN−1/2 N→∞−−−→ 0. (5.38)Therefore, using (5.28)
P[Hm

N (X0
N ; I) = 0|Y ] = E[FN (I;X0

N)|Y ] = E[FN(I;X1
N)] + o(1)

= (1 − E[sm
N(0, U)])|I|r(N)/ν → e−ρm|I|.

(5.39)This 
ompletes the proof of (5.26).It is easy to 
he
k (5.27). By de�nition,
E[Hm

N (X0
N ; I)|Y ] =

∑

i:iν/R∈I

E[sm
N (i, X0

N)|Y ]. (5.40)Sin
e Λ0
ij ≥ Λ1

ij for i, j in the same blo
k, E[sm
N (i, X0

N)|Y ] ≤ E[sm
N (i, X1

N)]. Therefore,(5.40) ≤ |I|r(N)/νE[sm
N(0, U)] = ρm|I|. (5.41)This 
ompletes the proof of Lemma 5.4. 29



Proof of Theorem 5.2. Che
king the 
onvergen
e of �nite-dimensional marginals aswell of 
ondition (i) and the se
ond part of (ii) of Theorem 5.1 is analogous as for theoriginal 
lo
k pro
ess S̄N . We should thus only prove the �rst part of 
ondition (ii).Namely that, for any η and ε there exist δ su
h that
P[wS̄N

(δ) ≥ η] ≤ ε, (5.42)for all N large enough.Let
wf([τ, τ + δ]) = sup{min(|f(t2) − f(t)|, |f(t) − f(t1)|) : τ ≤ t1 ≤ t ≤ t2 ≤ τ + δ}.(5.43)Fix m su
h that P[S̄m

N (T ) ≥ η/2] ≤ ε/2, whi
h is possible a

ording to Lemma 5.3.If Hm
N (X0

n; [τ, τ + δ]) ≤ 1 then
wS̄N

([τ, τ + δ]) ≤ S̄m
N (τ + δ) − S̄m

N (τ) ≤ S̄m
N (T ). (5.44)Hen
e,

P[wS̄N
([τ, τ + δ]) ≥ η|iS̄m

N (T ) ≤ η/2] ≤ P[Hm
N (X0

N ; [τ, τ + δ]) ≥ 2] ≤ Cρmδ
2. (5.45)We 
an now show (5.42). Estimate

wS̃N
(δ) ≤ max{wS̃N

([τ, τ + 2δ]) : 0 ≤ τ ≤ T, τ = kδ, k ∈ N} (5.46)yields
P[wS̃N

(δ) ≥ η|Y ] ≤
Tδ−1
∑

k=0

P[wS̃N
([kδ, (k + 2)δ]) ≥ ε|Y ]

≤ P[S̄m
N (T ) ≥ η/2] +

Tδ−1
∑

k=0

P[Hm
N (X0

N ; [kδ, (k + 2)δ]) ≥ 2]

≤ ε/2 + CTδ−1ρmδ
2 ≤ ε

(5.47)
if δ is 
hosen small enough. This 
ompletes the proof.Proof of Theorem 1.2. Let RN be the range of the 
oarse grained pro
ess S̃N . Ob-viously, for any 1 > ε > 0,

Aε
N(t, s) ⊃ {RN ∩ (t, s) = ∅}, (5.48)be
ause if the above interse
tion is empty, then σN makes less than ν steps in timeinterval [teγN , seγN ], and thus the overlap of σN(teγN ) and σN (seγN ) is O(ν/N).If RN ∩ (t, s) 6= ∅, than there exist u su
h that S̃N(u) ∈ (t, s). Moreover, it followsfrom Theorem 5.2 that for any δ there exist η su
h than

P[S̃N(u+ η) ∈ (s, t)] ≥ 1 − δ. (5.49)This however means that the pro
ess σN make at least ηr(N) steps between times tand s and thus the overlap between σN (teγN) and σN (seγN) is with high probability
lose to 0. 30



Hen
e P[Aε
N (t, s)|Y ] is very well approximated by P[RN ∩ (t, s) = ∅|Y ]. Sin
e stablesubordinator does not hit points, that is P[∃u : Vγ/β2(u) = t] = 0, and S̃N 
onvergein J1-topology,

P[RN ∩ (t, s) = ∅|Y ]
N→∞−−−→ P[{Vγ/β2(u) : u ≥ 0} ∩ (s, t) = ∅], (5.50)whi
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