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AbstratWe onsider a version of a Glauber dynamis for a p-spin Sherrington�Kirkpatrik model of a spin glass that an be seen as a time hange of simplerandom walk on the N -dimensional hyperube. We show that, for any p ≥ 3and any inverse temperature β > 0, there exist onstants γ0 > 0, suh that forall exponential time sales, exp(γN), with γ ≤ γ0, the properly resaled lokproess (time-hange proess), onverges to an α-stable subordinator where
α = γ/β2 < 1. Moreover, the dynamis exhibits aging at these time sales withtime-time orrelation funtion onverging to the arsine law of this α-stablesubordinator. In other words, up to resaling, on these time sales (that areshorter than the equilibration time of the system), the dynamis of p-spinmodels ages in the same way as the REM, and by extension Bouhaud's REM-like trap model, on�rming the latter as a universal aging mehanism for awide range of systems. The SK model (the ase p = 2) seems to belong to adi�erent universality lass.1 Introdution and resultsAging has beome one of the main paradigms to desribe the long-time behav-ior of omplex and/or disordered systems. Systems that have strongly motivatedthis researh are spin glasses, where aging was �rst observed experimentally in theanomalous relaxation patterns of the magnetization [LSNB83, Cha84℄. The theo-retial modeling of aging phenomena took a major leap with the introdution ofso-alled trap models by Bouhaud and Dean in the early 1990'ies [Bou92, BD95℄(see [BCKM98℄ for a review). These models reprodue the harateristi power lawbehavior seen experimentally while being su�iently simple to allow for detailedanalytial treatment. While trap models are heuristially motivated to apture thebehavior of the dynamis of spin glass models, there is no lear theoretial, let alonemathematial derivation of these from an underlying spin-glass dynamis. The �rstattempt to establish suh a onnetion was made in [BBG02, BBG03a, BBG03b℄where it was shown that starting from a partiular Glauber dynamis of the Ran-dom Energy Model (REM), at low temperatures and at the time sale slightly shorterthan the equilibration time of the dynamis, the aging of the time-time orrelationfuntion of the dynamis onverged to that given by Bouhaud's REM-like trapmodel.On the other hand, in a series of papers [B�05, B�M06, B�07a, B�07b℄ a systematiinvestigation of a variety of trap models was initiated. In this proess, it emergedthat there appears to be an almost universal aging mehanism based on α-stablesubordinators that governs aging in most of the trap models. It was also shown thatthe same feature holds for the dynamis of the REM at shorter time sales than thoseonsidered in [BBG03a, BBG03b℄, and that this also happens at high temperature1



provided appropriate time sales are onsidered [B�07a℄. For a general review ontrap models see [B�06℄.In all models onsidered so far, however, the random variables desribing the quenheddisorder were onsidered to be independent, be it in the REM or in the trap mod-els. Aging in orrelated spin glass models was investigated rigorously only in someases of spherial SK models and at very short time sales [BDG01℄. In the presentpaper we show for the �rst time that the same type of aging mehanism is relevantalso in orrelated spin glasses, at least on time sales that are short ompared toequilibration time (but exponentially large in the volume of the system).Let us �rst desribe the lass of models we are onsidering. Our state spaes willbe the N-dimensional hyperube, SN ≡ {−1, 1}N . RN : SN × SN → [−1, 1] denotesas usual the normalized overlap, RN(σ, τ) ≡ N−1
∑N

i=1 σiτi. The Hamiltonian of the
p-spin SK-model is de�ned as √NHN , where HN : SN → R is the entered normalproess indexed by SN with ovariane

E[HN (σ)HN(τ)] = RN(σ, τ)p, (1.1)and p ∈ N, p > 2. We will denote by H the σ-algebra generated by the randomvariables HN(σ), σ ∈ SN , N ∈ N. The orresponding Gibbs measure is then given by
µβ,N(σ) ≡ Z−1

β,Ne
β
√

NHN (σ), (1.2)where Zβ,N denotes the normalizing partition funtion.We de�ne the lassial trap-model dynamis as a nearest neighbor ontinuous timeMarkov hain σN(·) on SN with transition rates
wN(σ, τ) =

{

N−1e−β
√

NHN (σ), if dist(σ, τ) = 1,

0, otherwise; (1.3)here dist(·, ·) is the graph distane on the hyperube,
dist(σ, τ) =

1

2

N
∑

i=1

|σi − τi|. (1.4)A simple way to onstrut this dynamis is as a time hange of a simple randomwalk on SN : We denote by YN(k) ∈ SN , k ∈ N, the simple unbiased random walk(SRW) on SN started at some �xed point of SN , say at {1, . . . , 1}. For β > 0 wede�ne the lok-proess by
SN(k) =

k−1
∑

i=0

ei exp
{

β
√
NHN

(

YN(i)
)}

, (1.5)where {ei, i ∈ N} is a sequene of mean-one i.i.d. exponential random variables. Wedenote by Y the σ-algebra generated by the SRW random variables YN(k), k ∈ N,
N ∈ N. The σ-algebra generated by the random variables ei, i ∈ N will be denotedby E . Then the proess σN (·) an be written as

σN(t) ≡ YN(S−1
N (t)). (1.6)2



Obviously, σN is reversible with respet to the measure µβ,N . We will onsider allrandom proesses to be de�ned on an abstrat probability spae (Ω,F ,P). Note thatthe three σ-algebras H, Y , and E are all independent under P.We will systematially use the de�nition of the dynamis given by (1.3) or (1.6). Thisis the same as was used in the analysis of the REM and in most work on trap models.It di�ers substantially from more popular dynamis suh as the Metropolis or theheat-bath algorithm. The main di�erene is that in these dynamis the trajetoriesare not independent of the environment and are biased against going up in energy.This may have a substantial e�et on the dynamis, and we do not know whetherour results will apply also (with some modi�ations) in these ases. The fat is thatwe urrently do not have the tools to analyze these dynamis even in the ase of theREM!Let Vα(t) be the α-stable subordinator with the Laplae transform given by
E[e−λVα(t)] = exp(−tλα). (1.7)The main tehnial result on the dynamis will be the following theorem that providesthe asymptoti behavior of the lok proess.Theorem 1.1. There exists a funtion ζ(p) suh that for all p ≥ 3 and γ satisfying
0 < γ < min

(

β2, ζ(p)β
)

, (1.8)under the onditional distribution P[·|Y ] the law of the stohasti proess
S̄N(t) = e−γNSN

(⌊

tN1/2eNγ2/2β2⌋)

, t ≥ 0, (1.9)de�ned on the the spae of àdlàg funtions equipped with the SkorokhodM1-topology,onverges, Y-a.s., to the law of γ/β2-stable subordinator Vγ/β2(Kt), t ≥ 0, where Kis a positive onstant depending on γ, β and p.Moreover, the funtion ζ(p) is inreasing and it satis�es
ζ(3) ≃ 1.0291 and lim

p→∞
ζ(p) =

√

2 log 2. (1.10)We will explain in Setion 5 what theM1-topology is. Roughly, it is a weak topologythat does not onvey muh information at the jumps of the limiting proess: it anbe the ase that the approximating proesses jumps several times at rather shortdistanes to produe one bigger jump of the limit proess. This will atually be thease in our models for p < ∞, while it is not the ase in the REM. Therefore weannot replae the M1 topology with the stronger J1-topology in Theorem 1.1.To ontrol the behavior of spin-spin orrelation funtions that are ommonly usedto haraterize aging, we need to know more on how these jumps our at �nite N .What we will show, is that if we the slightly oarse-grain the proess S̄N over bloksof size o(N), the resaled proess does onverge in the J1-topology. What this says,is that the jumps of the limiting proess are ompounded by smaller jumps thatare made over ≤ o(N) steps of the SRW. In other words, the jumps of the limitingproess ome from waiting times aumulated in one slightly extended trap, andduring this entire time only a negligible fration of the spins are �ipped. That willimply the following aging result. 3



Theorem 1.2. Let Aε
N (t, s) be the event de�ned by

Aε
N(t, s) = {RN

(

σN

(

teγN
)

, σN

(

(t+ s)eγN
))

≥ 1 − ε
}

. (1.11)Then, under the hypothesis of Theorem 1.1, for all ε ∈ (0, 1), t > 0 and s > 0,
lim

N→∞
P[Aε

N (t, s)] =
sinαπ

π

∫ t/(t+s)

0

uα−1(1 − u)−α du. (1.12)Remark. We will in fat prove the stronger statement that aging in the above senseours along almost every random walk trajetory, that is
lim

N→∞
P[Aε

N (t, s)|Y ] =
sinαπ

π

∫ t/(t+s)

0

uα−1(1 − u)−α du, Y-a.s. (1.13)Let us disuss the meaning of these results. eγN is the time-sale at whih we wantto observe the proess. Aording to Theorem 1.1, at this time the random walkwill make of the order of N1/2eNγ2/2β2 ≪ eγN steps. Sine this number is also muhsmaller than 2N (as follows from (1.10)), the random walk will essentially visit thatnumber of sites.If the random proess HN was i.i.d., then the maximum of HN along the trajetorywould be (

2 ln(N1/2eNγ2/2β2
)
)1/2 ∼ N1/2γ/β, and the time spent in that site wouldbe of order eγN . Sine Theorem 1.1 holds also in the i.i.d. ase, that is in the REM(see [B�07a℄), the time spent in the maximum is omparable to the total time andthe onvergene to the α-stable subordinator implies that the total aumulated timeis omposed of piees of order eγN that are olleted along the trajetory. In fat,eah jump of the subordinator orresponds to one visit to a site that has waitingtimes of that order. In a ommon metaphor, the sites are referred to as traps andthe mean waiting times as their depths.The theorem in the general ase states that in the p-spin model, the same is essen-tially true. The di�erene will be that the traps here will not onsist of a single site,but onsist of a deep valley (along the trajetory) whose bottom that has approxi-mately the same energy as in the i.i.d. ase and whose shape and width we will beable to desribe quite preisely. Remarkably, the number of sites ontributing signif-iantly to the residene time in the valley is essentially �nite, and di�erent valleysare statistially independent.The fat that traps are �nite may appear quite surprising to those familiar with thestatis of p-spin models. From the results there (see [Tal03, Bov06℄), it is knownthat the Gibbs measure onentrates on �lumps� whose diameter is of order Nǫp,with ǫp > 0. The mystery is however solved easily: the proess HN(σ) does indeeddereases essentially linearly with speed N−1/2 from a loal maximum. Thus, theresidene times in suh sites derease geometrially, so that the ontributions of aneighborhood of size K of a loal maximum amounts to a fration of (1 − c−K) ofthe total time spend in that valley ; for the support of the Gibbs measure, one needshowever to take into aount the entropy, that is that the volumes of the balls ofradius r inreases like N r. For the dynamis, at least at our time-sales, this is,however, irrelevant, sine the SRW leaves a loal minimum essentially ballistially.4



The proof of Theorem 1.1 relies on the ombination of detailed information on theproperties of simple random walk on the hyperube, whih is provided in Setion 4(but see also [Mat89, BG06, �G06℄), and omparison of the proess HN on thetrajetory of the SRW to a simpler Gaussian proess using interpolation tehniquesà la Slepian, familiar from extreme value theory of Gaussian proesses.Let us explain this in more detail. On the time sales we are onsidering, the SRWmakes tN1/2 exp(Nγ2/2β2) ≪ tN1/2 exp(Nζ(p)2/2) ≪ 2N steps. In this regime theSRW is extremely �transient�, in the sense that (i) starting from a given point x, fora times t ≤ ν ∼ Nω, ω < 1, the distane from x grows essentially linearly with speedone, that is there are no baktrakings with high probability; (ii) the SRW will neverreturn to a neighborhood of size ν of the starting point x, with high probability. Theupshot is that we an think of the trajetory of the SRW essentially as of a straightline.Next we onsider the Gaussian proess restrited to the SRW trajetory. We expetthat the main ontributions to the sums SN(k) ome from plaes where YN is maximal(on the trajetory). We expet that the distribution of these extremes do not feel theorrelation between points farther than ν apart. On the other hand, for points loserthan ν, the orrelation funtion RN(YN(i), YN(j))p an be well approximated by alinear funtion 1−2p|i−j|/N (using that RN (YN(i), YN(j)) ∼ 1−2|i−j|/N). This isonvenient sine this proess has an expliit representation in terms of i.i.d. randomvariables that allow for expliit omputations (in fat, this is one of the famousSlepian proesses for whih the extremal distribution an be omputed expliitly[Sle61, She71℄). Thus the idea is to ut the SRW trajetory into bloks of length
ν and to replae the original proess HN(YN(i)) by a new one Ui, where Ui and Ujare independent, if i, j are not in the same blok, and E[UiUj ] = 1 − 2p|i − j|/Nif they are. For the new proess, Theorem 1.1 is relatively straightforward. Themain step is the omputation of Laplae transforms in Setion 2. Comparing thereal proess with the auxiliary one is the bulk of the work and is done in Setion 3.The properties of SRW needed are established in Setion 4. In Setion 5 we presentthe proofs of the main theorems.Our results here show some universality of the REM for dynamis of p-spin modelswith p ≥ 3. This dynami universality is lose to the stati universality of theREM, whih shows that various features of the landsape of energies (that is ofthe Hamiltonian HN) are insensitive to orrelations. This stati universality in amiroanonial ontext has been introdued by [BM04℄ (see [BK06a, BK06b℄ forrigorous results on spin-glasses). The stati results losest to our dynamis questionare given in [BGK06, BK07℄ where it is shown that the statistis of extreme valuesfor the restrition of HN to a random sets XN ⊂ SN are universal, for p ≥ 3 and
|XN | = ecN , for c small enough.This work was initiated during a onentration period on metastability and agingat the Max-Plank Institute for Mathematis in the Sienes in Leipzig. GBA andAB thank the MIP-MIS and Stefan Müller for kind hospitality during this event.AB's researh is supported in part by DFG in the Duth-German Bilateral ResearhGroup �Mathematis of Random Spatial Models from Physis and Biology�.
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2 Behavior the one-blok sumsIn this setion we analyze the distribution of the blok-sums ∑ν
i=1 eie

β
√

NUi, where eiare mean-one i.i.d. exponential random variables, and {Ui, i = 1, . . . , ν} is a enteredGaussian proess with the ovariane EUiUj = 1− 2p|i− j|/N ; ν = νN is a funtionof N of the form
ν = ⌊Nω⌋, with ω ∈ (1/2, 1). (2.1)As explained in the introdution, this proess will serve as a loal approximation ofthe orresponding blok sums along a SRW trajetory. We haraterize the distri-bution of the blok-sums in terms of its Laplae transform

FN(u) = E

[

exp
{

− ue−γN

ν
∑

i=1

eie
β
√

NUi

}]

. (2.2)Proposition 2.1. For all γ suh that γ/β2 ∈ (0, 1) there exists a onstant, K =
K(γ, β, ω, p), suh that, uniformly for u in ompat subsets of [0,∞),

lim
N→∞

N1/2ν−1eNγ2/2β2

[1 − FN(u)] = Kuγ/β2

. (2.3)Proof. We �rst ompute the onditional expetation in (2.2) given the σ-algebra, U ,generated by the Gaussian proess U ,
E

[

exp
{

− ue−γN

ν
∑

i=1

eie
β
√

NUi

}
∣

∣

∣
U

]

=

ν
∏

i=1

1

1 + ue−γNeβ
√

NUi

= exp

{

−
ν

∑

i=1

g
(

ue−γNeβ
√

NUi

)

}

,

(2.4)where
g(x) ≡ ln(1 + x). (2.5)Note that importantly, g(x) is monotone inreasing and non-negative for x ∈ R+.We use the well-known fat (see e.g. [Sle61℄) that the random variables Ui an beexpressed using a sequene of i.i.d. standard normal variables, Zi, as follows. Set

Z1 = (U1 +Uν)/(4− 4p(ν− 1)/N)1/2 and Zk = (Uk −Uk−1)/(4p/N)1/2, k = 2, . . . , ν.Then Zi are i.i.d. standard normal and
Ui = Γ1Z1 + · · · + ΓiZi − Γi+1Zi+1 − ΓνZν , (2.6)where

Γ1 =

√

1 − p

N
(ν − 1) and Γ2 = · · · = Γν =

√

p

N
. (2.7)Observe that ∑ν

i=1 Γ2
i = 1. Let us de�ne Gi(z) = Gi(z1, . . . , zν) as

Gi(z) = Γ1z1 + · · ·+ Γizi − Γi+1zi+1 − · · · − Γνzν . (2.8)Using this notation we get
1 −FN(u) =

∫

Rν

dz

(2π)ν/2
e−

1
2

Pν
i=1 z2

i

{

1 − exp
[

−
ν

∑

i=1

g
(

ue−γNeβ
√

NGi(z)
) ]}

. (2.9)6



We divide the domain of integration into several parts aording to whih of the
Gi(z) is maximal. De�ne Dk = {z : Gk(z) ≥ Gi(z)∀i 6= k}. On Dk we use thesubstitution

zi = bi + Γi(γN − log u)/(β
√
N), if i ≤ k,

zi = bi − Γi(γN − log u)/(β
√
N), if i > k. (2.10)It will be useful to de�ne ∑k

j=i+1 aj as ∑k
j=1 aj −

∑i
j=1 aj , whih is meaningful alsofor k < i+ 1. Using this de�nition

Gk(b) −Gi(b) = 2

k
∑

j=i+1

Γνbj . (2.11)Set θ = − log(u)/(γN) and de�ne
D′

k =
{

b :

k
∑

j=i+1

bj +
γ
√
p

β
|k − i|(1 + θ) ≥ 0 ∀i 6= k

}

. (2.12)After a straightforward omputation we �nd that (2.9) equals
e−Nγ2/2β2

uγ/β2
ν

∑

k=1

∫

D′

k

db

(2π)ν/2
e−

1
2

Pν
i=1 b2i e−

γ
β

√
NGk(b)(1+θ)

×
{

1 − exp
(

−
ν

∑

i=1

g
(

eβ
√

NGk(b)−2β
√

p
Pk

j=i+1 bj−2pγ|k−i|(1+θ)
))}

.

(2.13)To �nish the proof we have to show that uγ/β2 is asymptotially the only dependeneof (2.13) on u (or on θ) and that the sum is of order νN−1/2. We hange variablesone more to aj = bj/(1 + θ) in order to remove the dependene of the integrationdomains on u. Then the sum (without the prefator) in (2.13) an be expressed as
ν

∑

k=1

∫

D′′

k

(1 + θ)νda

(2π)ν/2
e−

1
2
(1+θ)2

Pν
i=1 a2

i

[

e−
γ
β

√
NGk(a)(1+θ)2

×
{

1 − exp
(

−
ν

∑

i=1

g
(

e(β
√

NGk(a)−2β
√

p
Pk

j=i+1 aj−2pγ|k−i|)(1+θ)
))}

]

,

(2.14)where D′′
k =

{

a :
∑k

j=i+1 aj +
γ
√

p

β
|k − i| ≥ 0 ∀i 6= k

}

.Let δ > 0 be suh that (1 + δ)γ/β2 < 1, and let N > log(u)/(γδ), so that |θ| ≤ δ.We �rst examine the braket in the above expression for a �xed k. On D′′
k

exp
{

−
ν

∑

i=1

g
(

e(β
√

NGk(a)−2β
√

p
Pk

j=i+1 aj−2pγ|k−i|)(1+θ)
)

}

≥ exp
{

− νg
(

eβ
√

NGk(a)(1+θ)
)}

.(2.15)Write Gk(a) as (reall (2.1))
Gk(a) =

ξ − ω logN

(1 + θ)β
√
N
. (2.16)7



The braket of (2.14) is then smaller than
e
− γ

β2 (ξ−ω log N)(1+θ){
1 − exp

(

− νg
(

eξ−ω log N
))}

= N
γω(1+θ)

β2 e
− γξ

β2 (1+θ){
1 − exp

(

− νg
(

eξ/ν
))}

.
(2.17)The funtion e− γξ

β2 (1+θ){
1 − exp

(

− νg
(

eξ/ν
))} is bounded for ξ ∈ R, uniformly in

ν, if (1 + θ)γ/β2 < 1. Namely, if ξ ≥ 0,
e
− γξ

β2 (1+θ){
1 − exp

(

− νg
(

eξ/ν
) )}

≤ e
− γξ

β2 (1+θ) ≤ 1. (2.18)If ξ < 0, then, sine g(x) ≤ x,
{

1 − exp
(

− νg
(

eξ/ν
))}

≤
{

1 − exp
(

− eξ
)}

, (2.19)whih behaves like eξ, as ξ → −∞. This ompensates the exponentially growingprefator, if (1 + θ)γ/β2 < 1. Thus, under this ondition, the braket of (2.14)inreases at most polynomially with N .In view of this at most polynomial inrease, there exist δ > 0 small, suh that thedomain of integration in (2.14) may be restrited to ai's satisfying
ν−1

ν
∑

i=1

a2
i ∈ (1 − δ, 1 + δ), |a1| ≤ N1/4,

ν
∑

i=1

|ai| ≤ ν1+δ. (2.20)The integral over the remaining ai's deays at least as e−Nδ′ for some δ′ > 0 (bya simple large deviation argument). For all a satisfying (2.20), |Gk(a)| ≤ N1/4 +
N−1/2ν1+δ′ ≪ N1/2 and thus, for any �xed u, uniformly in a,

e−
γ
β

√
NGk(a)(1+θ)

e−
γ
β

√
NGk(a)

N→∞−−−→ 1, and e−
1
2
(1+θ)2

Pν
i=1 a2

i

e−
1
2

Pν
i=1 a2

i

N→∞−−−→ 1. (2.21)Also, (1 + θ)ν N→∞−−−→ 1. Hene, up to a small error, we an remove all but the lastourrene of θ in (2.14).Finally, taking xi = ai for i ≥ 2, x1 = N1/2Gk(a), and thus
a1 =

x1 − 4p(x2 + · · ·+ xk − xk+1 − · · · − xν)

Γ1

√
N

, (2.22)(2.14) equals, up to a small error,
ν

∑

k=1

∫

D′′

k

dx e−
1
2

Pν
i=2 x2

i

Γ1N1/2(2π)ν/2
exp

(

− γ

β
x1 −

x2
1

2Γ2
1N

)

exp
(

− a2
1

2
+

x2
1

2Γ2
1N

)

×
{

1 − exp
(

−
ν

∑

i=1

g
(

e(1+θ)βx1e−(2β
√

p
Pk

j=i+1 xj−2pγ|k−i|)(1+θ)
))}

.

(2.23)The last exponential term on the �rst line an be omitted. Indeed,
−a

2
1

2
+

x2
1

2Γ2
1N

=
4

Γ2
1N

[

px1(x2 + · · · − xν) − 2p2(x2 + · · · − xν)
2
] N→∞−−−→ 0 (2.24)8



uniformly for all |x1| ≤ N (1+δ)/2 and |x2 + · · · − xν | ≤ ν(1+δ)/2, if δ > 0 su�ientlysmall. The integral over the remaining x is again at most e−Nδ′ .Now we estimate the integral over x2, . . . , xν ,
∫

D̄′′

k

dxe−
1
2

Pν
i=2 x2

i

(2π)(ν−1)/2
exp

(

−
ν

∑

i=1

g
(

e(1+θ)βx1e−(2β
√

p
Pk

j=i+1 xj+2pγ|k−i|)(1+θ)
))

, (2.25)where D̄′′
k is the restrition of D′′

k to the last ν−1 oordinates (whih does not dependon the value of the �rst one). Let V = (V2, . . . , Vν) be a sequene of i.i.d. standardnormal random variables. Then, (2.25) equals
P[V ∈ D̄′′

k ]E
[

exp
(

−
ν

∑

i=1

g
(

e(1+θ)βx1e−(2β
√

p
Pk

j=i+1 Vj+2pγ|k−i|)(1+θ)
))

∣

∣

∣
V ∈ D̄′′

k

]

.(2.26)The probability P[V ∈ D̄′′
k ] is bounded from below by the probability that the two-sided random walk, Ri =
∑i

j=0 Vj, i ∈ Z, with standard normal inrements is largerthan −γ√p|i|/β for all i. This probability is positive and does not depend on N ,whih implies that, for all k,
1 > P[V ∈ D̄′′

k ] ≥ c > 0. (2.27)The expetation in (2.26) is bounded by one, sine the funtions g is positive on thedomain of integration. Moreover, as x1 → −∞, the argument of g in (2.26) tendsto zero (sine the �rst exponential does, and the seond is bounded by one on D′′
k).Hene

g
(

e(1+θ)βx1e−(2β
√

p
Pk

j=i+1 Vj+2pγ|k−i|)(1+θ)
)

∼ e(1+θ)βx1e−(2β
√

2
Pk

j=i+1 Vj+2pγ|k−i|)(1+θ).(2.28)Therefore, as xi → −∞,
E

[

exp
(

−
ν

∑

i=1

g
(

e(1+θ)βx1e−(2β
√

p
Pk

j=i+1 Vj+2pγ|k−i|)(1+θ)
))

∣

∣

∣
V ∈ D̄′′

k

]

∼ 1 − e(1+θ)βx1E

[

ν
∑

i=1

e−(2β
√

p
Pk

j=i+1 Vj+2pγ|k−i|)(1+θ)
∣

∣

∣
V ∈ D′′

k

]

= 1 − e(1+θ)βx1

ν
∑

i=1

E

[

e−(2β
√

pRk−i+2pγ|k−i|)(1+θ)
∣

∣

∣
Rk−i ≥ −γ

√
p

β
|k − i|

]

.

(2.29)
Sine Ri is a entered normal random variable with variane |i|, a straightforwardGaussian alulation implies that
E

[

e−(2β
√

pRk−i+2pγ|k−i|)(1+θ)
∣

∣

∣
Rk−i ≥ −γ

√
p

β
|k − i|

]

∼ Cβ,γ,p
√

|k − i|
e−γ2p|k−i|/(2β2). (2.30)Hene, (2.29) is essentially a summation of a geometrial sequene and thereforethere exists onstants c1, c2 independent of k, suh that

1 − c1e
(1+θ)βx1 ≤ (2.29) ≤ 1 − c2e

(1+θ)βx1 , ∀x1 < 0. (2.31)9



Bounds (2.27) and (2.31) imply that (2.25) is bounded from above and from below(with di�erent onstants) by
CN−1/2 exp

(

− γ

β
x1 −

x2
1

2Γ2
1N

)

(1 ∧ ce(1+θ)βx1). (2.32)and hene (2.23) is bounded from above and below by
CνN−1/2

∫

R

dx1 exp
(

− γ

β
x1 −

x2
1

2Γ2
1N

)

(1 ∧ ce(1+θ)βx1) = CνN−1/2. (2.33)Moreover, (2.25) is dereasing as funtion of min(k, ν − k). As this minimum tendsto in�nity, (2.25) behaves as f(x1)N
−1/2 whih is of ourse satisfy the bound (2.32).Due to this onvergene, the onstants in the lower and the upper bound of (2.33)an be made arbitrarily lose. This ompletes the proof of Proposition 2.1.We lose this setion with a short desription of the shape of the valleys mentionedin the introdution. First, it follows from (2.10) and the following omputations thatthe most important ontribution to the Laplae transform omes from realizationsfor whih max{Ui : 1 ≤ i ≤ ν} ∼ γ
√
N/β with an error of order N−1/2. It is the�geometrial� sequene in (2.29) whih shows that only �nitely many neighbors ofthe maximum atually ontribute to the Laplae transform. The same an be seen,at least heuristially, from a simple alulation

E

[

Uk+i

∣

∣

∣
Uk =

γ

β

√
N

]

=
γ
√
N

β
− Cβ,γ,p

|i|√
N
. (2.34)Whih means that, disregarding the �utuations, the energy dereases linearly withthe distane from the loal maximum and thus the mean waiting times dereaseexponentially.3 Comparison of the real and the blok proessWe now ome to the main task, the omparison of the lok-proess sums with thosein whih the real Gaussian proess is replaed by a simpli�ed proess. For a givenrealization, YN , of the SRW, we set X0

N(i) = HN

(

YN(i)
) (the dependene on YN willbe suppressed in the notation). Then X0

N(i) is a entered Gaussian proess indexedby N with ovariane matrix
Λ0

ij = E[X0
N (i)X0

N(j)] = RN

(

YN(i), YN(j)
)p
. (3.1)Now we de�ne the omparison proess, X1

N(i), as the entered Gaussian proess withthe ovariane matrix
Λ1

ij = E[X1
N (i)X1

N(j)] =

{

1 − 2p|i− j|/N, if ⌊i/ν⌋ = ⌊j/ν⌋,
0, otherwise. (3.2)For h ∈ [0, 1] we de�ne the interpolating proess Xh

N(i) ≡
√

1 − hX0
N (i) +

√
hX1

N(i).10



Let ℓ ∈ N, 0 = t0 < · · · < tℓ = T and u1, . . . , uℓ ∈ R+ be �xed. For any Gaussianproess X we de�ne a funtion FN(X) = FN

(

X; {ti}, {ui}
) as

FN

(

X; {ti}, {ui}
)

≡ E

[

exp
(

−
ℓ

∑

k=1

uk

eγN

tkr(N)
∑

i=tk−1r(N)+1

eie
β
√

NX(i)
)
∣

∣

∣
X

]

(X)

= exp
(

−
ℓ

∑

k=1

tkr(N)−1
∑

i=tk−1r(N)

g
( uk

eγN
eβ

√
NX(i)

))

,

(3.3)
where r(N) = N1/2eNγ2/2β2 . Observe that E[F (X0; t, u)|Y ] is a joint Laplae trans-form of the distribution of the properly resaled lok proess at times ti. Thefollowing approximation is the ruial step of the proof.Proposition 3.1. If the assumptions of Theorem 1.1 are satis�ed, then for all se-quenes {ti} and {ui},

lim
N→∞

E
[

FN

(

X0
N ; {ti}, {ui}

)
∣

∣Y
]

− E
[

FN

(

X1
N ; {ti}, {ui}

)]

= 0, Y-a.s. (3.4)Proof. We use the well-known interpolation formula for funtionals of two Gaussianproesses due (probably) to Slepian and Kahane (see e.g. [LT91℄
E[FN (X1

N) − FN (X0
N)|Y ] =

1

2

∫ 1

0

dh

tr(N)
∑

i,j=1
i6=j

(Λ0
ij − Λ1

ij)E
[ ∂2FN (Xh

N)

∂X(i)∂X(j)

∣

∣

∣
Y

]

. (3.5)We will show that the integral in (3.5) onverges to 0.Let k(i) be de�ned by tk(i)−1r(N) < i ≤ tk(i)r(N). The seond derivative in (3.5) isequal to
uk(i)uk(j)β

2N

e2γN
eβ

√
N(Xh

N (i)+Xh
N (j))g′

(uk(i)

eγN
eβ

√
NXh

N (i)
)

g′
(uk(j)

eγN
eβ

√
NXh

N (j)
)

FN(Xh
N)

≤ uk(i)uk(j)β
2N

e2γN
eβ

√
N(Xh

N (i)+Xh
N (j))

× exp
[

− 2g
(uk(i)

eγN
eβ

√
NXh

N (i)
)

− 2g
(uk(j)

eγN
eβ

√
NXh

N (j)
)]

,

(3.6)
where we used that g′(x) = (1+x)−1 = exp(−g(x)) (reall (2.5)), and we omitted inthe summation of FN(Xh

N) all terms di�erent from i and j. To estimate the expetedvalue of this expression we need the following tehnial lemma.Lemma 3.2. Let c ∈ [−1, 1] and let U1, U2 be two standard normal variables withthe ovariane E[U1U1] = c and λ a small onstant, 0 < λ < 1 − γ/β2 (whih willstay �xed). De�ne ΞN(c) = ΞN (c, β, γ, u, v) and Ξ̄N (c) = Ξ̄N(c, β, γ, u, v, λ) by
ΞN (c) =

uvβ2N

e2γN
E

[

exp
{

β
√
N(U1 + U2) − 2g

(

ueβ
√

NU1−γN
)

− 2g
(

veβ
√

NU2−γN
)

}](3.7)
11



and̄
ΞN (c) =

{

C(γ,β,u,v,λ)

(1−c)1/2 exp
{

− γ2N
β2(1+c)

}

, if c > (γ/β2) + λ− 1,
C ′(γ, β, u, v)N exp

{

N(β2(1 + c) − 2γ)
}

, if c ≤ (γ/β2) + λ− 1, (3.8)where C(γ, β, u, v, λ) and C ′(γ, β, u, v) are suitably hosen onstants, independent of
N and c. Then

ΞN(c) ≤ Ξ̄N(c). (3.9)Proof. De�ne κ± =
√

2(1 ± c). Let Ū1, Ū2 be two independent standard normalvariables. Then U1 and U2 an be written as
U1 =

1

2
(κ+Ū1 + κ−Ū2), U2 =

1

2
(κ+Ū1 − κ−Ū2). (3.10)Hene, U1 + U2 = κ+Ū1. Using g(x) + g(y) = g(x + y + xy) ≥ g(x + y) and

uex + ve−x ≥ min(u, v)e|x|, we get
g
(

ueβ
√

NU1−γN
)

+ g
(

veβ
√

NU2−γN
)

≥ g
(

min(u, v) exp
(κ+β

√
NŪ1

2
+

∣

∣

∣

κ−β
√
NŪ2

2

∣

∣

∣
− γN

))

.
(3.11)Denoting min(u, v) by ū, we �nd that ΞN(c) is bounded from above by

uvβ2N

e2γN

∫

R2

dy

2π
exp

{

− y2
1 + y2

2

2
+ β

√
Nκ+y1 − 2g

(

ūeκ+β
√

Ny1/2+κ−β
√

N |y2|/2−γN
)

}

.(3.12)Substituting z1 = y1 − β
√
Nκ+, z2 = y2 we get

uvβ2N

e2γN
eβ2κ2

+N/2

∫

R2

dz

2π
exp

(

− z2
1 + z2

2

2

)

× exp
(

− 2g
(

ū exp
{√

N
[(β2κ2

+

2
− γ

)√
N +

βκ+

2
z1 +

βκ−
2

|z2|
]}))

.

(3.13)The funtion exp(−2g(ūe
√

Nx)) onverges to the indiator funtion 1x<0, as N → ∞.The r�le of x will be played by the braket in the expression (3.13).If this braket remains negative for z lose to zero, that is if γ ≥ −λ′ + β2κ2
+/2 (orequivalently c ≤ (γ/β2) + λ− 1), then the integral in (3.13) is bounded from aboveby 1. This yields the laim of the lemma for suh c:

ΞN (c) ≤ uvβ2N

e2γN
eβ2κ2

+N/2 = C ′(γ, β, u, v)N exp
{

N(β2(1+c)−2γ)
}

= Ξ̄N(c). (3.14)If this is not the ase, that is γ < −λ′ + β2κ2
+/2, then we need another substitution,

z1 =
1√
N

[

v1 −
κ−
κ+

|v2| −N
(

βκ+ − 2γ

βκ+

)]

,

z2 =
v2√
N
.

(3.15)
12



This substitution transforms the domain where the braket of (3.13) is negativeinto the half-plain v1 < 0: The expression inside of the braes in (3.13) equals
βκ+v1/2. Substituting (3.15) into (z2

1 + z2
2)/2 produes an additional exponentialprefator exp

(

− (β2κ2
+−2γ)2N

2β2κ2
+

). Another prefator N−1 omes from the Jaobian.The remaining terms an be bounded from above by
∫

R2

dv

2π
exp

{(

βκ+ − 2γ

βκ+

)(

v1 −
κ−
κ+

|v2|
)

− 2g(ūeβκ+/2)
}

, (3.16)whih an be separated into a produt of two integrals. The integration over v2 givesa fator
((

βκ+ − 2γ

βκ+

)κ−
κ+

)−1

≤ C(λ)κ−1
− ≤ C(λ)(1 − c)−1/2. (3.17)Using properties of g, the integrand of (3.16) behaves as exp{−2v1γ/βκ+} as v1 →

∞, and as exp{(βκ+ − (2γ/βκ+))v1} as v1 → −∞. Therefore, the integral over v1 isbounded uniformly by some λ-dependent onstant for all values of c ≥ −1+(γ/β2)+
λ. Putting everything together

ΞN(c) ≤ C(1 − c)−1/2uvβ
2N

e2γN
eβ2κ2

+N/2 1

N
exp

(

− (β2κ2
+ − 2γ)2N

2β2κ2
+

)

= C(γ, β, u, v, λ)(1− c)−1/2 exp
{

− γ2N

β2(1 + c)

}

= Ξ̄N(c).

(3.18)This �nishes the proof of Lemma 3.2.Let ‖d‖ = min(d,N − d) and Dij = dist(YN(i), YN(j)). De�ne, with a slight abuseof notation, Λ0
d = (1 − 2dN−1)p. That is Λ0

d is the ovariane of X0
N(i) and X0

N (j)if Dij = d. The next proposition, whih will be proved in Setion 4, will be used toontrol the orrelations of the proess X0
N .Proposition 3.3. Let γ and β satisfy the hypothesis of Theorem 1.1, and let ν be asin (2.1). Then, for any η > 0, there exists a onstant, C = C(β, γ, ν, η), suh that,

Y-a.s. for N large enough, for all d ∈ {0, . . . , N}

tr(N)
∑

i,j=1
⌊i/ν⌋6=⌊j/ν⌋

1{Dij = d} ≤ C

[

t2r(N)22−N

(

N

d

)

+ tr(N)ν−1eη‖d‖
]

, (3.19)
tr(N)
∑

i,j=1,i6=j
⌊i/ν⌋=⌊j/ν⌋

1{Dij = d}(Λ0
d − Λ1

ij) ≤
Cd2tr(N)

N2
1{d ≤ ν}. (3.20)We now onlude the proof of Proposition 3.1, that is we prove that the right-handside of (3.5) tends to 0. Observe �rst that Dij is smaller than |i − j|. Hene, for

⌊i/ν⌋ = ⌊j/ν⌋

Λ0
ij =

[

1 − 2N−1Dij

]p ≥ [1 − 2N−1|i− j|]p ≥ Λ1
ij . (3.21)

13



Sine Λ1
ij = 0 for (i, j) with ⌊i/ν⌋ 6= ⌊j/ν⌋, Λ0

ij − Λ1
ij < 0 if and only if Λ0

ij < 0.The summands on the right-hand side of (3.5) an be written as di�erenes of twonon-negative terms:
(Λ0

ij − Λ1
ij)+E

[ ∂2FN (Xh
N)

∂X(i)∂X(j)

∣

∣

∣
Y

]

− (Λ0
ij)−E

[ ∂2FN(Xh
N )

∂X(i)∂X(j)

∣

∣

∣
Y

]

. (3.22)We bound this expression using Lemma 3.2. For given {ui} let
Ξ̃N(c) = max{Ξ̄N(c, β, γ, ui, uj) : 1 ≤ i, j ≤ ℓ}. (3.23)Then Ξ̃N(c) satis�es (3.8) for some onstants C and C ′ and it is therefore inreasingin c. The absolute value of the right-hand side of (3.5) is then bounded from aboveby

tr(N)
∑

i,j=1
i6=j

(Λ0
ij − Λ1

ij)+E

[ ∂2FN(X0
N)

∂X(i)∂X(j)

∣

∣

∣
YN

]

+

tr(N)
∑

i,j=1
i6=j

(Λ0
ij)−E

[ ∂2FN(X1
N)

∂X(i)∂X(j)

]

≤
N

∑

d=0

{

tr(N)
∑

i,j=1
⌊i/ν⌋6=⌊j/ν⌋

1{Dij = d}(Λ0
d)+

∫ 1

0

Ξ̃(hΛ0
d)dh

+

tr(N)
∑

i,j=1,i6=j
⌊i/ν⌋=⌊j/ν⌋

1{Dij = d}(Λ0
d − Λ1

ij)Ξ̃
(

Λ0
d

)

+

tr(N)
∑

i,j:|i−j|≥N/2

1{Dij = d}(Λ0
d)−Ξ̃

(

0
)

}

.

(3.24)
From the de�nition of Ξ̃ it follows that,

∫ 1

0

Ξ̃(hc)dh ≤ C exp
{

− γ2N

β2(1 + c)

}

∫ 1

0

(1 − hc)−1/2dh. (3.25)The last integral an be easily evaluated and is smaller than 2 for all c ∈ [−1, 1].Using Proposition 3.3, the �rst line of (3.24) is smaller than the sum of the followingtwo terms:
C

N
∑

d=0

t2r(N)22−N

(

N

d

)

Λ0
d exp

{

− γ2N

β2(1 + Λ0
d)

} (3.26)and
C

N
∑

d=0

tr(N)eη‖d‖

ν
Λ0

d exp
{

− γ2N

β2(1 + Λ0
d)

}

. (3.27)The seond line of (3.24) is bounded by
C

ν
∑

d=0

tr(N)d2

N2
Ξ̃(Λ0

d). (3.28)14



The third line is non-zero only if p is odd, and in that ase it is bounded by
N

∑

d=N/2

C

[

t2r(N)22−N

(

N

d

)

+ tr(N)ν−1eη‖d‖
]

(2d

N
− 1

)p

Ξ̃(0), (3.29)We estimate (3.26) �rst. Let I(u) be de�ned by
I(u) = u log u+ (1 − u) log(1 − u) + log 2, (3.30)and let

JN(u) = 2−N

(

N

⌊Nu⌋

)

√

πN

2
eNI(u). (3.31)Stirling's formula yields JN(u)

N→∞−−−→ (4u(1−u))−1 uniformly in u on ompat subsetsof (0, 1). Further, JN (u) ≤ CN1/2 for all u ∈ [0, 1]. From the de�nitions of r(N) and
Ξ̃, we �nd that(3.26) = C

N
∑

d=0

t2N1/2
(

1 − 2d

N

)p

exp
{

NΥp,β,γ

( d

N

)}

JN

( d

N

)

, (3.32)where
Υp,β,γ(u) =

{

γ2

β2 − I(u) − γ2

β2(1+(1−2u)p)
, if (1 − 2u)p ≥ γ

β2 + λ− 1,
γ2

β2 − I(u) + β2(1 + (1 − 2u)p) − 2γ, if (1 − 2u)p ≤ γ
β2 + λ− 1.(3.33)Lemma 3.4. There exists a funtion ζ(p) suh that for all p ≥ 2, and γ, β satisfying

γ ≤ ζ(p)β and γ < β2, there exist positive onstants δ, δ′ and c suh that
Υp,β,γ(u) ≤ −δ for all u ∈ [0, 1] \ (1/2 − δ′, 1/2 + δ′), (3.34)and

Υp,β,γ(u) ≤ −c(u− 1/2)2 for all u ∈ (1/2 − δ′, 1/2 + δ′). (3.35)Moreover ζ(p) is inreasing and satis�es (1.10), that is
ζ(2) = 2−1/2, ζ(3) = 1.0291, and lim

p→∞
ζ(p) =

√

2 log 2. (3.36)Proof. Sine γ/β2 < 1, the seond line of the de�nition of Υp,β,γ is used only for
p odd and u ≥ uc(p, β, γ, λ) = (1 + (1 − λ − γ/β2)1/p)/2 > 1/2. Furthermore,
Υp,β,γ(1/2) = Υ′

p,β,γ(1/2) = 0 and
Υ′′

p,β,γ(1/2) =

{

4
(

2γ2

β2 − 1
)

, if p = 2,
−4 otherwise. (3.37)The seond derivative is always negative for β, γ, p satisfying the assumptions ofTheorem 1.1. Therefore (3.35) holds.The seond line of the de�nition of Υp,β,γ(u) is dereasing in u. Hene for u ≥ uc

Υp,β,γ(u) ≤ Υp,β,γ(uc) = −γ(1 − γ/β2) − I(uc) (3.38)15
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Figure 1: Funtion Υp,γ,β for p = 2, 3, 4 and various values of γ/β.whih is obviously stritly negative and (3.34) is proved for u ≥ uc.For any δ′ > 0 and u < 1/2−δ′ the funtion I(u) is stritly positive, and the funtion
Φ(u) ≡ 1− 1/(1+ (1− 2u)p) is bounded. Therefore, if γ/β is su�iently small, then
Υp,β,γ(u) < −δ. If p is even, the funtion Υp,β,γ is symmetri around u = 1/2. If
1/2 < u < uc(p, β, γ) and p is odd, then

Υp,β,γ(u) < Υp,1,0(u) = −I(u) < 0 (3.39)and the proof of (3.35) is �nished.To prove the �rst part of (3.36) we should hek that (3.35) holds for all γ ≤ 2−1/2β.However, Υ2,β,γ(u) is inreasing in γ2/β2 and I(u) ≥ (1 − 2u)2/2. Thus, for γ ≤
2−1/2β,

Υ2,β,γ(u) ≤
1

2

(

1 − 1

1 + (1 − 2u)2

)

− 1

2
(1 − 2u)2. (3.40)The right-hand side of the last inequality is equal 0 for u = 1/2 and its derivative

2(1 − 2u)
(

1 − 1

(1 + (1 − 2u)2)2

)

> 0 for all u < 1/2. (3.41)The symmetry of Υ2,β,γ around 1/2 then implies the �rst part of (3.36).Obviously, Φ(0) = 1/2, Φ′(0) = −2p, I(0) = log 2 and I ′(0) = −∞. Hene, for
γ/β =

√
log 2 there exists u small suh that Υp,β,γ(u) is positive. This implies

ζ(p) <
√

2 log 2. If u ∈ (0, 1/2) then limp→∞ Φ(u) = 0. This yield the seond half of(3.36).For illustration you �nd the graphs of funtion Υp,β,γ for p = 2, 3, 4, β = 1, and γ = 0(solid lines), γ =
√

1/2 (dashed lines), γ = 1 (dash-dotted lines) and γ =
√

2 log 2(dotted lines) on Figure 1. The value of ζ(3) was alulated numerially using the�gure for p = 3.We an now �nish the bound on (3.26). Lemma 3.4 and bounds on the funtion JNyield that for d/N /∈ (1/2− δ′, 1/2 + δ′) the summands derease exponentially in N .Therefore they an be negleted. The remaining part an be bounded by
C

(1/2+δ′)N
∑

d=(1/2−δ′)N

t2N1/2
(

1 − 2d

N

)p

exp(−cN(d/N − 1/2)2)

≤ Ct2N3/2

∫ δ′

−δ′
xpe−c′Nx2

dx

≤ Ct2N3/2N−(p+1)/2

∫ ∞

−∞
upe−c′u2

du
N→∞−−−→ 0,

(3.42)
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if p ≥ 3.Similarly, for (3.27) we have(3.27) ≤ C

N/2
∑

d=0

tN1/2ν−1
(

1 − 2d

N

)p

exp(NΥ̃(d/N)), (3.43)where, setting ‖u‖ = min(u, 1 − u),
Υ̃p,β,γ(u) =

{

γ2

2β2 − γ2

β2(1+(1−2u)p)
+ η‖u‖, if (1 − 2u)p ≥ γ

β2 + λ− 1,
γ2

2β2 + β2(1 + (1 − 2u)p) − 2γ + η‖u‖, if (1 − 2u)p ≤ γ
β2 + λ− 1.(3.44)Observe �rst that the seond part of the de�nition of Υ̃p,β,γ is always stritly negative.It is also easy to be heked that it is possible to hoose δ, δ′ and η small suh thatthe �rst part of the de�nition of Υ̃(u) < δ for all ‖u‖ ≥ δ′. Therefore suh d an benegleted. Around d = 0 the funtion Υ̃(x) an be approximated by a linear funtion

−cx, c > 0, and the summation by an integration. As an upper bound we get
CtN3/2ν−1

∫ δ′

0

e−cNxdx ≤ CtN1/2ν−1 N→∞−−−→ 0. (3.45)An analogous bound works for d lose to N and p even.For (3.28) we have(3.28) ≤ C
ν

∑

d=0

tN−3/2d2[1 − (1 − 2dN−1)p]−1/2 exp(NΥ̃(d/N)). (3.46)The linear approximation of Υ̃ and of the braket in the last expression yields anupper bound
CtN3/2

∫ ε

0

x3/2e−c′Nxdx ≤ CtN−1 N→∞−−−→ 0. (3.47)Finally, sine Ξ̃(0) = Ce−Nγ2/β2 , it is easy to see that the seond half of (3.29) tendsto 0. The �rst half equals (up to onstant)
N

∑

d=N/2

(2d

N
− 1

)p

t2N2−N

(

N

d

)

≤ Ct2
{

∑

d≥N/2+N3/5

N2−N

(

N

d

)

+
2N3/5
∑

i=1

(N + i

N
− 1

)p

N1/2e−i2/2N
}

,

(3.48)
where we used the known approximation of (N

d

)

≤ CN−1/22Ne−i2/2N for d = (N+i)/2and i≪ N2/3. The �rst term in (3.48) tends to 0 by a standard moderate deviationargument. The seond one an be approximated by
Ct2N1−(p/2)

∫ ∞

0

xpe−x2/2dx
N→∞−−−→ 0 (3.49)for p ≥ 3. This ompletes the proof of Proposition 3.1.17



4 Random walk propertiesIn this setion we prove Proposition 3.3. For A ⊂ SN let TA = min{k ≥ 1 : YN(k) ∈
A} be the hitting time of A. We write Px for the law of the simple random walk YNonditioned on YN(0) = x. LetQ = Qi, i ∈ N, be a birth-death proess on {0, . . . , N}with transition probabilities pi,i−1 = 1 − pi,i+1 = i/N . We use Pk and Ek to denotethe law of (the expetation with respet to) Q onditioned on Q0 = k. Under P0, Qihas the same law as dist(YN(0), YN(i)). De�ne Tk = min{i ≥ 1 : Qi = k} the hittingtime of k by Q. It is well-known fat that for k < l < m

Pl[Tm < Tk] =

∑l−1
i=k

(

N−1
i

)−1

∑m−1
i=k

(

N−1
i

)−1 . (4.1)Finally, let pk(d) = P0(Qk = d). We need the following lemma for estimating pk(d)for large k.Lemma 4.1. There exists K large enough suh that for all k ≥ KN2 logN =: K(N)and x, y ∈ SN

∣

∣

∣

∣

Py[YN(k) = x ∪ YN(k + 1) = x]

2
− 2−N

∣

∣

∣

∣

≤ 2−8N (4.2)and thus
∣

∣

∣

∣

pk(d) + pk+1(d)

2
− 2−N

(

N

d

)
∣

∣

∣

∣

≤ 2−4N . (4.3)Proof. The beginning of the argument is the same as in [Mat87℄. We onstrutoupling between YN (whih by de�nition starts at site 1 = (1, . . . , 1) ∈ SN ) andanother proess Y ⋆
N . This proess is a simple random walk on SN with the initialdistribution µ⋆

N being uniform on those x ∈ SN with dist(x, 1) even. The ouplingis the same as in [Mat87℄. This oupling gives ertain random time TN whih an beused to bound the variational distane between µ⋆ and the distribution µk
N of YN(k):for k even

d∞(µ⋆
N , µ

k
N) ≡ max

A⊂SN

|µ⋆
N(A) − µk

N(A)| ≤ P[TN > k]. (4.4)The law of TN is as follows. Let U = dist(Y ⋆
N(0), 1). That is U is a binomial randomvariable with parameters N and 1/2 onditioned on being even. Consider anothersimple random walk ỸU on SU started from 1. The distribution of TN is then thesame as the distribution of the hitting time of {x ∈ SU : dist(1, x) = U/2}. It isproved in [Mat87℄ that P (TN > N logN) → c < 1. It is then easy to see that,

P[TN ≥ K(N)] ≤ cKN/2 ≤ 2−8N , (4.5)if K is large enough. Thus, for even k ≥ K(N), d∞(µ⋆
N , µ

k
N) ≤ 2−8N and thus

|µ⋆
N(x)−µk

N (x)| ≤ 2−8N for all x ∈ SN . A similar laim for k odd is then not di�ultto prove. The seond part of the lemma is a diret onsequene of the �rst part.
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Lemma 4.2. Let γ, β, ν satisfy the hypothesis of Proposition 3.3. Then, there existsa onstant, C = C(β, γ, ν), suh that for all N large enough, Y-a.s.
tr(N)
∑

i,j=1,i6=j
⌊i/ν⌋=⌊j/ν⌋

1{Dij = d} ≤ Ctr(N)1{d ≤ ν}, (4.6)and for all d ∈ {0, . . . , N}.Proof. The lemma is trivially true for d > ν. For d ≤ ν, let
ρ(d) = E0

ν
∑

i=1

1{Qi = d}. (4.7)We have ρ(0) ≥ N−1 and ρ(d) ≥ P0[Td ≤ ν]. This probability is dereasing in d and
P0[Tν ≤ ν] =

N

N
· N − 1

N
. . .

N − ν + 1

N
≥ e−ν2/N . (4.8)Thus ρ(d) ≥ e−ν2/N for all d ≤ ν. To get an upper bound on ρ(d) we write

ρ(d) ≤ E0

[

Tν
∑

i=1

1{Qi = d}
]

= 1 + Ed

[

Tν
∑

i=1

1{Qi = d}
]

= 1 +
1

Pd[Tν < Td]
. (4.9)However, using (4.1),

Pd[Tν < Td] =
N − d

N
Pd+1[Tν < Td] =

N − d

N

(

N−1
d

)−1

∑ν−1
i=d

(

N−1
i

)−1 = 1 −O(νN−1). (4.10)Sine ν ≪ N , ρ(d) ≤ 2.Consider now one-blok ontribution to (4.6),
ν

∑

i,j=1

1{Dij = d} =: ν2Z̃. (4.11)Of ourse, Z̃ ∈ [0, 1] and, using the results of the previous paragraph,
e−ν2/N (2ν)−2 ≤ E[Z̃ ] ≤ 2ν−1. (4.12)The left-hand side of (4.6) is stohastially smaller than ν2

∑m
k=1 Z̃k, where Z̃k arei.i.d. opies of Z̃ and m = ⌈tr(N)/ν⌉. By Hoe�ding's inequality [Hoe63℄,

P

[

m
∑

i=1

Z̃k ≥ 2mE[Z̃k]
]

≤ exp{−2m2
E[Z̃k]

2} ≤ exp{−m2e−2ν2/N(2ν)−4}, (4.13)where we used the lower bound from (4.12). Sine ν/N2 ≪ N , by the Borel-Cantellilemma, the left-hand side of (4.6) is a.s. bounded by
ν22mE[Z̃] ≤ Ctr(N) (4.14)for all N large enough and d ≤ ν. This ompletes the proof of Lemma 4.2.19



Proof of Proposition 3.3. We prove (3.20) �rst. Observe that for i, j in the sameblok
Λ0

d − Λ1
ij =

(

1 − 2d

N

)p

−
(

1 − 2p|i− j|
N

)

=
2p(|i− j| − d)

N
+O

( d2

N2

)

. (4.15)The ontribution of the error term is smaller than the right-hand side of (3.20), asfollows from Lemma 4.2.To ompute the ontribution of the main term, let
ρ̃(d) = E0

[

ν
∑

i=1

(i− d)1{Qi = d}
]

. (4.16)Let T 1
d = Td and T k

d = min{i > T k−1
d : Qi = d}. Then

ρ̃(d) = E0

[

∞
∑

j=1

(T j
d − d)1{T j

d < ν}
]

= E0

[

∞
∑

j=1

(T j
d − T 1

d + T 1
d − d)1{T j

d < ν}
]

≤ E0[(Td − d)1{Td < ν}]
(

1 +

∞
∑

i=1

Ed[T
i
d1{T i

d < ν − d}]
)

. (4.17)Using (4.8), P0[Td = d] ≤ Ce−d2/N and further
P0[Td ≥ d+ 2k] ≤

(

d+ 2k

k

)

( d

N

)k

≤ C
d2k

Nk
. (4.18)Hene, cd2N−1 ≤ E0[(Td − d)1{Td < ν}] ≤ Cd2N−1.For the seond term in (4.17) we write

1+

∞
∑

i=1

Ed[T
i
d1{T i

d < ν − d}]

≤ 1 + Ed[Td1{Td < ν − d}]
(

1 +
∞

∑

i=1

Ed[T
i
d1{T i

d < ν − d}]
)

=

∞
∑

k=0

{

Ed[Td1{Td < ν − d}]
}k
.

(4.19)
Using the well-known estimate (

2k
k

)

≤ Ck−1/22k and k < 2k,
Ed[Td1{Td < ν − d}] ≤

ν/2
∑

k=1

2k

(

2k

k

)

( ν

N

)k

≤ C

∞
∑

k=1

(4ν

N

)k

≤ C
ν

N
(4.20)and (4.19) is �nite. Thus ρ̃(d) ≤ Cd2N−1 for all d ∈ {0, . . . , ν}.The one-blok ontribution of the �rst term of (4.15) to (3.20) is then given by

2p

N

ν
∑

i,j=1

(|i− j| − d)1{Dij = d} =:
2p

N
ν3Z̃, (4.21)
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with Z̃ ∈ [0, 1] and
cd2N−1ν−3 ≤ E[Z̃] ≤ Cd2N−1ν−2. (4.22)Therefore, as in the proof of Lemma 4.2, Hoe�ding's inequality and (4.22) imply thatthe ontribution of the �rst term of (4.15) to (3.20) is smaller than Ctr(N)d2N−2,whih was to be shown.Finally, we prove (3.19). Sine we are interested in an upper bound only we an,without loss of generality, restrit the summation on i < j. We �rst onsider theontribution of pairs (i, j) suh that j− i ≥ K(N). Then neessarily, ⌊i/n⌋ 6= ⌊j/n⌋.Let R = tr(n). Lemma 4.1 yields

E

[

R
∑

j−i≥K(N)

1{Dij = d}
]

=
R

∑

j−i≥K(N)

pj−i(d) ≤ CR22−N

(

N

d

)

. (4.23)Further,
Var

[ R
∑

j−i≥K(N)

1{Dij = d}
]

=

R
∑

j1−i1≥K(N)

R
∑

j2−i2≥K(N)

P
[

Di1,j1 = Di2,j2 = d
]

− P
[

Di1,j1 = d
]

P
[

Di2,j2 = d
]

.

(4.24)We an again suppose that i1 ≤ i2. The right-hand side of (4.24) is non-null onlyif i1 ≤ i2 ≤ j1 < j2 or i1 ≤ i2 < j2 ≤ j1. We will onsider only the �rst ase. Theseond one an be treated analogously. In is not di�ult to see using Lemma 4.1that if i2 − ij ≥ K(N) or j2 − j1 ≥ K(N) then the di�erene of probabilities in theabove summation is at most 2−4N . Therefore, the ontribution of suh (i1, i2, j1, j2)to the variane is at most R42−4N .If i2 − i1 < K(N) and j2 − j1 < K(N) then, using Lemma 4.1 again,
P
[

Di1,j1 = Di2,j2 = d
]

≤ C2−N

(

N

d

)

. (4.25)We hoose ε > 0. For ‖d‖ ≤ (1 − ε)N/2 we have
∑

j1−i1≥K(N)
i2−i1<K(N)

∑

j2−i2≥K(N)
j2−j1<K(N)

P
[

Di1,j1 = Di2,j2 = d
]

≤ CK(N)2R22−N

(

N

d

)

≤ CK(N)2R2e−NI((1−ε/2)/2) ≪ N−3R2ν−2,(4.26)say. For ‖d‖ ≥ (1 − ε)N/2, that is |d − N/2| ≤ εN/2, we have for ε small enough(how small depend on γ and β) that 2−N
(

N
d

)

≫ N7R−2. Then,
∑

j1−i1≥K(N)
i2−i1<K(N)

∑

j2−i2≥K(N)
j2−j1<K(N)

P
[

Di1,j1 = Di2,j2 = d
]

≤ CN4R22−N

(

N

d

)

≪ N−3R42−2N

(

N

d

)2

.

(4.27)
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We have thus found that the expetation of the summation over j − i > K(N) issmaller than the right-hand side of (3.19) and the variane of the same summationis muh smaller than N−3 times the right-hand side of (3.19) squared. A straight-forward appliation of the Chebyshev inequality and the Borel-Cantelli Lemma thengives the desired a.s. bound for pairs j − i ≥ K(N) and all d ∈ {0, . . . , N}.Choose again ε > 0. For j−i < K(N), observe �rst that if ‖d‖ ≥ (logN)1+ε ≫ logNthen the summation over suh pairs (i, j) in (3.19) is always smaller than K(N)R ≪
Rν−1eη‖d‖ for all η > 0. For the remaining d's, that is ‖d‖ < (logN)1+ε′, let KN ≥ Kbe the smallest onstant suh that KNN

2 logN is a multiple of ν. Sine ν ≪ N2,
KN −K ≪ 1. As the di�erene between K and KN is negligible, we will use the samenotation K(N) for KNN

2 logN and we will simply suppose that K(N) is a multipleof ν. The summation in (3.19) for j − i ≤ K(N) an be bounded from above by
tr(N)
∑

0<j−i<K(N)
⌊i/ν⌋6=⌊j/ν⌋

1{Dij = d} ≤
K(N)−1
∑

k=0

⌈R/K(N)⌉
∑

ℓ=0

K(N)
∑

m=jk

1{DK(N)ℓ+k,K(N)ℓ+k+m = d}, (4.28)where jk is the smallest integer suh that ⌊(K(N)ℓ+ k)/ν⌋ 6= ⌊(K(N)ℓ+ k+ jk)/ν⌋,whih does not depend on ℓ. We de�ne random variables Zℓ(j, d) by
Zℓ(j, d) =

1

K(N)

K(N)
∑

m=j

1{DK(N)ℓ+k,K(N)ℓ+k+m = d}. (4.29)The sequene {Zℓ(j, d) : ℓ ≥ 0} for �xed j and d is a sequene of i.i.d. variables withvalues in [0, 1].Let EN = {d : ‖d‖ < (logN)1+ε′ , d ≥ N/2}. For d ∈ EN

P[Zℓ(k, d) > 0] ≤
(

N

d

)

Pd(T1 < K(N)) ≤
(

N

d

)

eλKEd

[

e−λT1/N2 log N
]

. (4.30)Aording to Lemma 3.4 of [�G06℄,
Ed

[

exp(−λT1m(N)−1)
]

≤ (2−Nm(N)λ−1 + ξN(d))(1 + o(1)), (4.31)for N logN ≪ m(N) ≪ 2N , with ξn(k) = 2−n n
2

(

n
k

)−1 ∑n−k
j=1

(

n
k+j

)

1
j
. Taking m(N) =

N2 and d ∈ EN it is not di�ult to hek that for ε small enough
Ezd

[

e−λT1/N2] ≤ 2−N(1−ε). (4.32)Hene,
P

[

⋃

d∈EN

{

K(N)−1
∑

k=0

⌈R/K(N)⌉
∑

ℓ=0

Zℓ(jk, d) > 0
}]

≤ C

(

N

⌈(logN)1+ε⌉

)

R(logN)1+ε2−N(1−ε) ≤ C2−ε′N ,(4.33)22



for some ε′ small. Hene, d ∈ EN do not pose any problem, by the Borel-Cantellilemma again.To treat d ≤ (logN)1+ε′ we will distinguish two ases: jk ≤ 2d and jk > 2d. Forthe �rst ase, observe that for any d < ν there are at most dK(N)/ν values of
k ∈ {0, . . . ,K(N) − 1} suh that jk ≤ d. Further, as before, Zℓ(jk, d) ≤ Zℓ(0, d),
E[Zℓ(0, d)] ≥ 1/(NK(N)), and E[Zℓ(0, d)] ≤ C/K(N). Hene, by Hoe�ding's in-equality, the probability

P

[

K(N)

⌈R/K(N)⌉
∑

ℓ=0

Zℓ(0, d) ≥
R

K(N)

] (4.34)dereases at least exponentially with N and thus for jk < 2d, a.s,
K(N)

⌈R/K(N)⌉
∑

ℓ=0

Zℓ(0, d) ≥
R

K(N)
. (4.35)For j ≥ 2d and N large enough, Zℓ(j, d) ≤ Zℓ(d+ 6, d). We have,

cN−6 ≤ K(N)E[Zℓ(d+ 6, d)] ≤ CN−3. (4.36)Indeed, the lower bound is trivial and for the upper bound we use the fat that theprobability that YN reahes d before returning to d + 6 is smaller than CN−5 andbefore the time K(N) there are at most K(N) tries. Hene, for j ≥ 2d the probability
P

[

K(N)

⌈R/K(N)⌉
∑

ℓ=0

Z̃ℓ(k, d) ≥
R

N3K(N)

] (4.37)dereases at least exponentially in N and thus the interior inequality is not valida.s. for all N large. Summing over k we get
K(N)−1
∑

k=0

⌈R/K(N)⌉
∑

ℓ=0

K(N)Zℓ(jk, d) ≤ dK(N)ν−1 R

K(N)
+ K(N)

R

N3K(N)
≤ CRν−1eηd,(4.38)sine γ/β2 < 1.5 Convergene of lok proessWe will prove the onvergene of the resaled lok proess to the stable subordinatoron spae D([0, T ],R) equipped with the Skorokhod M1-topology. This topology isnot ommonly used in the literature, therefore we shortly reall some of its propertiesand ompare it with the more standard Skorokhod J1-topology, whih we will needlater, too. For more details the reader is referred to [Whi02℄ for both topologies andto [Bil68℄ for detailed aount on J1-topology.
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5.1 Topologies on the Skorokhod spaeConsider spae D = D([0, T ],R) of àdlàg funtions. The J1-topology is the topologygiven by the J1-metri: for f, g ∈ D

dJ1(f, g) = inf
λ∈Λ

{‖f ◦ λ− g‖∞ ∨ ‖λ− e‖∞}, (5.1)where Λ is the set of stritly inreasing funtions mapping [0, T ] onto itself suh thatboth λ and its inverse are ontinuous, and e is the identity map on [0, T ].Also the M1-topology is given by a metri. For f ∈ D let Γf be its ompleted graph,
Γf = {(z, t) ∈ R × [0, T ] : z = αf(t−) + (1 − α)f(t), α ∈ [0, 1]}. (5.2)A parametri representation of the ompleted graph Γf (or of f) is a ontinuousbijetive mapping φ(s) = (φ1(s), φ2(s)), [0, 1] 7→ Γf whose �rst oordinate φ1 isinreasing. If Π(f) is set of all parametri representation of f , then the M1-metriis de�ned by
dM1(f, g) = inf{‖φ1 − ψ1‖∞ ∨ ‖φ2 − ψ2‖∞ : φ ∈ Π(f), ψ ∈ Π(g)}. (5.3)The spae D equipped with both M1- and J1-topologies is Polish. The M1-topologyis weaker than the J1-topology: As an example, onsider the sequene

fn = 1{[1 − 1/n, 1)} + 2 · 1{[1, T ]}, (5.4)whih onverges to f = 2 · 1{[1, T ]} in the M1-topology but not in the J1-topology.One often says that the M1-topology allows �intermediate jumps�.We will need a riterion for tightness of probability measures on D. To this end wede�ne several moduli of ontinuity,
wf (δ) = sup

{

min
(

|f(t) − f(t1)|, |f(t2) − f(t)|
)

: t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ
}

,

w′
f (δ) = sup

{

inf
α∈[0,1]

|f(t) − (αf(t1) + (1 − α)f(t2))| : t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ
}

,

vf (t, δ) = sup
{

|f(t1) − f(t2)| : t1, t2 ∈ [0, T ] ∪ (t− δ, t+ δ)
}

. (5.5)The following result is a restatement of Theorem 12.12.3 of [Whi02℄ and Theorem 15.3of [Bil68℄.Theorem 5.1. The sequene of probability measures {Pn} on D([0, T ],R) is tight inthe J1-topology if(i) For eah positive ε there exist c suh that
Pn[f : ‖f‖∞ > c] ≤ ε, n ≥ 1. (5.6)(ii) For eah ε > 0 and η > 0, there exist a δ, 0 < δ < T , and an integer n0 suhthat
Pn[f : wf(δ) ≥ η] ≤ ε, n ≥ n0, (5.7)and

Pn[f : vf (0, δ) ≥ η] ≤ ε and Pn[f : vf (T, δ) ≥ η] ≤ ε, n ≥ n0. (5.8)The same laim hold for the M1-topology with wf(δ) in (5.7) replaed by w′
f(δ).24



5.2 Proof of Theorem 1.1To prove the onvergene of the resaled lok proess S̄N(·) = e−γNSN(·r(N)) tothe stable subordinator Vγ/β2 , we hek �rst the onvergene of �nite-dimensionalmarginals. As an be guessed, Proposition 3.1 will serve to this purpose. Let ℓ, {ui}and {ti} be as above. Then,
E

[

exp
{

−
ℓ

∑

i=1

ui

(

S̄N(tk) − S̄N(tk−1)
)

}
∣

∣

∣
YN

]

= E
[

FN(X0
N ; {ti}, {ui})

∣

∣YN

]

= E
[

FN(X1
N ; {ti}, {ui})

]

+ o(1),

(5.9)as follows from Proposition 3.1.The value of E
[

FN(X1
N ; {ti}, {ui})

] is not di�ult to alulate. De�ne jN (i) =
⌊tir(N)/ν⌋. Then

E
[

FN (X1
N ; {ti}, {ui})

]

= E

[

exp
(

−
ℓ

∑

k=1

uk

eγN

tkr(N)−1
∑

i=tk−1r(N)

eie
β
√

NX1
N (i)

)]

≥ E

[

ℓ
∏

k=1

j(k)
∏

j=j(k−1)+1

exp
(

− uk

eγN

ν−1
∑

i=0

ejν+ie
β
√

NX1
N (jν+i)

)]

(5.10)
Sine the proess X1

N is a piee-wise independent proess, the produt in (5.10) is aprodut of independent random variables. Then expetations of all of them an bethen bounded using Proposition 2.1. We get, for δ > 0 �xed and N large enough,
E
[

FN (X1
N ; {ti}, {ui})

]

≥
ℓ

∏

k=1

jN (k)
∏

j=jN (k−1)+1

FN(uk)

≥
ℓ

∏

k=1

(

1 − (1 + δ)νN−1/2e−Nγ2/2β2

Ku
γ/β2

k

)jN (k)−jN (k−1)−1

≥
ℓ

∏

k=1

exp
{

− (1 + 2δ)(tk − tk−1)Ku
γ/β2}

,

(5.11)
whih is (up to 1 + 2δ term) the Laplae transform of Vγ/β2(K·). A orrespondingupper bound an be onstruted analogously.To hek the tightness for S̄N in D([0, T ],R) equipped with the Skorokhod M1-topology we use Theorem 5.1. Sine the proesses S̄N are inreasing, it is easy to seethat ondition (i) is equivalent to the tightness of the distribution of S̄N (T ), whihan be heked easily from the onvergene of the Laplae transform of the marginalat time T (the limiting Laplae transform tends to 1 as u→ 0).In order to hek ondition (ii), remark that for inreasing funtions the osillationfuntion w′

S̄N
(δ) is always equal to zero. So heking (ii) boils down to ontrollingthe boundary osillations vS̄N

(0, δ) and vS̄N
(T, δ). For the �rst quantity (using againthe monotoniity of S̄N ) this amounts to hek that P[S̄N (δ) ≥ η] < ε if δ is smallenough and N large enough. Using the onvergene of of marginal at time δ, it is25



su�ient to take δ suh that P[Vγ/β2(Kδ) ≥ η] ≤ ε/2, and take n0 suh that for all
n ≥ n0

∣

∣P[S̄N (δ) ≥ η] − P[Vγ/β2(Kδ) ≥ η]
∣

∣ ≤ ε/2. (5.12)The reasoning for vS̄N
(T, δ) is analogous.5.3 Coarse-grained lok proessTo prove our aging result, that is Theorem 1.2, we need to modify the result ofTheorem 1.1 slightly. Let S̃N be the �oarse-grained� lok proesses,

S̃N(t) =
1

eγN
SN(ν⌊tr(N)ν−1⌋). (5.13)For these proesses we an strengthen the topology used in Theorem 1.1, that is wean replae the M1- by the J1-topology.Theorem 5.2. If the hypothesis of Theorem 1.1 is satis�ed, then

S̃N (t)
N→∞−−−→ Vγ/β2(Kt) Y − a.s., (5.14)weakly in the J1-topology on the spae of àdlàg funtions D([0, T ],R).Unfortunately, we annot prove the theorem with estimates we have already at dis-position. We should return bak and improve some of them. First we show thattraps with energies �muh smaller� than γ

√
N/β almost do not ontribute to thelok proess. Let Bm = γ

√
N/β −m/(β

√
N) and let

S̄m
N (t) = e−γN

⌊tr(N)⌋
∑

i=0

ei exp
{

β
√
NX0

N(i)
}

1{X0
N(i) ≤ Bm}. (5.15)Lemma 5.3. For every T and η, ε > 0 there exists m large enough suh that

P[S̄m
N (T ) ≥ η|Y ] ≤ ε, Y-a.s. (5.16)Proof. To prove this lemma we should improve/modify slightly the alulations ofSetions 2 and 3. With the notation of Setion 2 de�ne

Fm
N = E

[

exp
{

− e−γN

ν
∑

i=1

eie
β
√

NUi1{Ui ≤ Bm}
}]

. (5.17)(omparing with (2.2) observe that we set u = 1). We will show that
lim

N→∞
f(N)eNγ2/2β2

[1 −Fm
N ] = Km, (5.18)with Km → 0 as m → ∞. The proof of this laim is ompletely analogous to theproof of Proposition 2.1. One should only modify the domains of integrations. Morepreisely, the de�nition of Dk whih appears after (2.9) should be replaed by Dm

k =
Dk∩{z : Gk(z) ≤ Bm}. Hene, D′

k beomes D′m
k = D′

k∩{b : Gk(b) ≤ −m/(β/
√
N)},26



whih then restrits the domain of integration in (2.33) to (−∞,−m/β]. Hene, theonstant Km an be made arbitrarily small by hoosing m large.Further, as in Setion 3, de�ne
Fm

N (X) = exp
(

−
Tr(N)−1

∑

i=0

g
(

e−γNeβ
√

NX(i)
1{X(i) ≤ Bm}

))

. (5.19)Then, as in Proposition 3.1, we will show
lim

N→∞
E
[

Fm
N (X0

N)
∣

∣Y
]

− E
[

Fm
N (X1

N)
]

= 0, Y-a.s. (5.20)We use again (3.5) to show this laim. Although the indiator funtion is not dif-ferentiable, we will proeed as if it was, setting (1{x ≤ B})′ = −δ(x−M), where δdenotes the Dira delta funtion. As usual, this an be justi�ed e.g. by using smoothapproximations of the indiator funtion. The seond derivative of Fm
N (X) equals

u2β2N

e2γN
eβ

√
N(X(i)+X(j))g′

(

ueβ
√

NX(i)−γN
)

g′
(

ueβ
√

NX(j)−γN
)

Fm
N (X)

×
(

1{X(i) ≤ Bm} −
δBm(X(i))

β
√
N

)(

1{X(j) ≤ Bm} −
δBm(X(j))

β
√
N

)

≤ u2β2Neβ
√

N(Xh
N (i)+Xh

N (j))−2γN exp
(

− 2g
(

ueβ
√

NXh
N (i)−γN

)

− 2g
(

ueβ
√

NXh
N (j)−γN

))

×
(

1{X(i) ≤ Bm} −
δBm(X(i))

β
√
N

)(

1{X(j) ≤ Bm} −
δBm(X(j))

β
√
N

)

. (5.21)We should now bound the ontributions of four terms. The one with the produt oftwo indiator funtions is easy, beause we an use diretly the result of Lemma 3.2.For remaining three terms, those with the produt of one indiator and one deltafuntion, and this with two delta funtion, the alulation should be repeated. How-ever, in the end we �nd that (5.21) is bounded by Ξ̄(Cov(X(i), X(j))) as before. Thepresene of the delta funtions makes atually the alulations slightly less ompli-ated. The proof then proeed as in Setion 3.We an now �nish the proof of Lemma 5.3. By (5.17) and (5.20),
E
[

exp(−S̄m
N (T ))

∣

∣Y
]

= E
[

Fm
N (X0

N)
∣

∣Y
]

= E
[

Fm
N (X1

N)
∣

∣Y
]

+ o(1)

= (1 −Kmf(N)−1e−Nγ2/2β2

)Tr(N)/ν + o(1) = e−KmT + o(1).
(5.22)Sine Km → 0 as m→ ∞,

P[S̄m
N (T ) ≥ η|Y ] ≤ 1 − E

[

exp(−S̄m
N (T ))

∣

∣Y
]

1 − e−η
(5.23)an be made arbitrarily small by taking m large enough.We study now how the bloks where the proess visits sites with energies larger than

Bm are distributed along the trajetory. To this end we set for any Gaussian proess
X

sm
N(i;X) = 1{∃j : iν < j ≤ (i+ 1)ν,X(j) > Bm}. (5.24)27



and we de�ne point proess Hm
N (X) on [0, T ] by

Hm
N (X; dx) =

Tr(N)/ν
∑

i=0

sm
N (i;X)δiν/r(N)(dx). (5.25)Lemma 5.4. For every m ∈ R the point proesses Hm

N (X0
N) onverge to a homoge-neous Poisson point proess on [0, T ] with intensity ρm ∈ (0,∞), Y-a.s.Proof. To show this lemma we use Proposition 16.17 of Kallenberg [Kal02℄. A-ording to it, to prove the onvergene of Hm

N (X0
N) to a Poisson point proess withintensity ρm it is su�ient to hek that for any interval I ⊂ [0, T ]

lim
N→∞

P[Hm
N (X0

N ; I) = 0|Y ] = e−ρm|I| (5.26)and
lim sup

N→∞
E[Hm

N (X0
N ; I)|Y ] ≤ ρm|I|, (5.27)where |I| denotes the Lebesgue measure of I.The proof of the �rst laim is ompletely similar to the previous ones. We start witha one-blok estimate for (5.26):

lim
N→∞

N1/2ν−1eNγ2/2β2

E[sm
N (0, U)] = ρm, (5.28)Using the notation of Setion 2, we get

E[sm
N (0, U)] =

∫

Am

dz

(2π)ν/2
e−

1
2

Pν
i=1 z2

i , (5.29)where Am = {z : ∃k ∈ {1, . . . , ν}Gk(z) > Bm}. Dividing the domain of integrationaording to the maximal Gk(z), this is equal
ν

∑

k=1

∫

Dk

dz

(2π)ν/2
e−

1
2

Pν
i=1 z2

i , (5.30)where Dk = {z : Gk(z) > Bm, Gi(z) ≤ Gk(z)∀i 6= k}. Using the substitution
zi = bi ± ΓiBm on Dk (where + sign is used for i ≤ k and − sign for i > k) we get

e−Nγ2/2β2

emγ/β2
ν

∑

k=1

∫

D′

k

db

(2π)ν/2
e−

1
2

Pν
i=1 b2i e−BmGk(b), (5.31)where D′

k = {b : Gk(b) > 0,
∑k

j=i+1 bj + |k− i|ΓνBm ≥ 0∀i 6= k}. The same reasoningas before then allows to show that the last expression behaves like ρmνN
−1/2e−γ2N/2β2as N → ∞.To ompare the real proess with the blok-independent proess, let

FN(I;X) = 1{max{X(i) : iν/r(N) ∈ I} ≤ Bm}. (5.32)
28



The di�erene between E[FN (I;X0
N)|Y ] and E[FN (I;X1

N)] is again given by the Gaus-sian omparison formula (3.5). This time the seond derivative equals
δ(X(i)−Bm)δ(X(j)−Bm)

∏

k 6=i,j

1{X(k) ≤ Bm} ≤ δ(X(i)−Bm)δ(X(j)−Bm). (5.33)If ovariane of X(i) and X(j) equals c, the expetation of the last expression isgiven by the value of the joint density of X(i), X(j) at point (Bm, Bm) whih is
(2π(1 − c2))−1e−B2

m/(1+c) ≤ C(1 − c2)−1 exp
{

− γ2N

β2(1 + c)

}

. (5.34)The exponential term is the same as in Ξ̄(c). The polynomial prefator is howeverdi�erent, it diverges faster as c→ 1. We should thus return to (3.24) with Ξ̃ replaedby the right-hand side of (5.34). First
∫ 1

0

(1 − c2)−1 = c−1 arg tanh(c) ≈ −1

2
log(1 − c) (5.35)as c→ 1, whih is not bounded for all c as before. The estimates (3.26) and (3.27) arein�uened by this hange. For (3.26) we an atually neglet this hange, beausethe main ontribution to this term ame from the neighborhood of d = N/2 (or

c = 0) and was exponentially small in the neighborhood of d = 1 (or c ∼ 1/N). Inthe treatment of (3.27), the hange has more e�et, after some omputations (3.45)beomes
CtN3/2ν−1

∫ δ′

0

log(c/x)e−cNxdx ≤ CtN1/2ν−1 logN
N→∞−−−→ 0. (5.36)Finally, the hange of polynomial prefator of Ξ̄ implies hange in the ontrol of(3.28). The equation (3.46) beomes(3.28) ≤ C

ν
∑

d=0

tN−3/2d2[1 − (1 − 2dN−1)2p]−1 exp(NΥ̃(d/N)). (5.37)and the linearization of Υ̃ gives new form of (3.47)
CtN3/2

∫ ε

0

xe−c′Nxdx ≤ CtN−1/2 N→∞−−−→ 0. (5.38)Therefore, using (5.28)
P[Hm

N (X0
N ; I) = 0|Y ] = E[FN (I;X0

N)|Y ] = E[FN(I;X1
N)] + o(1)

= (1 − E[sm
N(0, U)])|I|r(N)/ν → e−ρm|I|.

(5.39)This ompletes the proof of (5.26).It is easy to hek (5.27). By de�nition,
E[Hm

N (X0
N ; I)|Y ] =

∑

i:iν/R∈I

E[sm
N (i, X0

N)|Y ]. (5.40)Sine Λ0
ij ≥ Λ1

ij for i, j in the same blok, E[sm
N (i, X0

N)|Y ] ≤ E[sm
N (i, X1

N)]. Therefore,(5.40) ≤ |I|r(N)/νE[sm
N(0, U)] = ρm|I|. (5.41)This ompletes the proof of Lemma 5.4. 29



Proof of Theorem 5.2. Cheking the onvergene of �nite-dimensional marginals aswell of ondition (i) and the seond part of (ii) of Theorem 5.1 is analogous as for theoriginal lok proess S̄N . We should thus only prove the �rst part of ondition (ii).Namely that, for any η and ε there exist δ suh that
P[wS̄N

(δ) ≥ η] ≤ ε, (5.42)for all N large enough.Let
wf([τ, τ + δ]) = sup{min(|f(t2) − f(t)|, |f(t) − f(t1)|) : τ ≤ t1 ≤ t ≤ t2 ≤ τ + δ}.(5.43)Fix m suh that P[S̄m

N (T ) ≥ η/2] ≤ ε/2, whih is possible aording to Lemma 5.3.If Hm
N (X0

n; [τ, τ + δ]) ≤ 1 then
wS̄N

([τ, τ + δ]) ≤ S̄m
N (τ + δ) − S̄m

N (τ) ≤ S̄m
N (T ). (5.44)Hene,

P[wS̄N
([τ, τ + δ]) ≥ η|iS̄m

N (T ) ≤ η/2] ≤ P[Hm
N (X0

N ; [τ, τ + δ]) ≥ 2] ≤ Cρmδ
2. (5.45)We an now show (5.42). Estimate

wS̃N
(δ) ≤ max{wS̃N

([τ, τ + 2δ]) : 0 ≤ τ ≤ T, τ = kδ, k ∈ N} (5.46)yields
P[wS̃N

(δ) ≥ η|Y ] ≤
Tδ−1
∑
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≤ ε/2 + CTδ−1ρmδ
2 ≤ ε

(5.47)
if δ is hosen small enough. This ompletes the proof.Proof of Theorem 1.2. Let RN be the range of the oarse grained proess S̃N . Ob-viously, for any 1 > ε > 0,

Aε
N(t, s) ⊃ {RN ∩ (t, s) = ∅}, (5.48)beause if the above intersetion is empty, then σN makes less than ν steps in timeinterval [teγN , seγN ], and thus the overlap of σN(teγN ) and σN (seγN ) is O(ν/N).If RN ∩ (t, s) 6= ∅, than there exist u suh that S̃N(u) ∈ (t, s). Moreover, it followsfrom Theorem 5.2 that for any δ there exist η suh than

P[S̃N(u+ η) ∈ (s, t)] ≥ 1 − δ. (5.49)This however means that the proess σN make at least ηr(N) steps between times tand s and thus the overlap between σN (teγN) and σN (seγN) is with high probabilitylose to 0. 30



Hene P[Aε
N (t, s)|Y ] is very well approximated by P[RN ∩ (t, s) = ∅|Y ]. Sine stablesubordinator does not hit points, that is P[∃u : Vγ/β2(u) = t] = 0, and S̃N onvergein J1-topology,

P[RN ∩ (t, s) = ∅|Y ]
N→∞−−−→ P[{Vγ/β2(u) : u ≥ 0} ∩ (s, t) = ∅], (5.50)whih, as follows from the ar-sine law for stable subordinators, is given by theformula (1.13).Referenes[BBG02℄ G. Ben Arous, A. Bovier, and V. Gayrard. Aging in the random energymodel. Physial Review Letters, 88(8):087201, February 2002.[BBG03a℄ G. Ben Arous, A. Bovier, and V. Gayrard. Glauber dynamis of the ran-dom energy model. I. Metastable motion on the extreme states. Comm.Math. Phys., 235(3):379�425, 2003.[BBG03b℄ G. Ben Arous, A. Bovier, and V. Gayrard. Glauber dynamis of therandom energy model. II. Aging below the ritial temperature. Comm.Math. Phys., 236(1):1�54, 2003.[B�05℄ G. Ben Arous and J. �erný. Bouhaud's model exhibits two agingregimes in dimension one. Ann. Appl. Probab., 15(2):1161�1192, 2005.[B�06℄ G. Ben Arous and J. �erný. Dynamis of trap models. In Éole d'Étéde Physique des Houhes, Session LXXXIII �Mathematial StatistialPhysis�, pages 331�394. Elsevier, 2006.[B�07a℄ G. Ben Arous and J. �erný. The arsine law as a universal aging shemefor trap models. to appear in Communiations on Pure and AppliedMathematis, 2007.[B�07b℄ G. Ben Arous and J. �erný. Saling limit for trap models on Z
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