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Abstra
tOne of the 
entral problems in mathemati
al geneti
s is the inferen
e of evolutionaryparameters of a population (su
h as the mutation rate) based on the observed geneti
 typesin a �nite DNA sample. If the population model under 
onsideration is in the domain ofattra
tion of the 
lassi
al Fleming-Viot pro
ess, su
h as the Wright-Fisher- or the Moranmodel, then the standard means to des
ribe its genealogy is Kingman's 
oales
ent. For this
oales
ent pro
ess, powerful inferen
e methods are well-established.An important feature of the above 
lass of models is, roughly speaking, that the numberof o�spring of ea
h individual is small when 
ompared to the total population size, and hen
eall an
estral 
ollisions are binary only. Re
ently, more general population models have beenstudied, in parti
ular in the domain of attra
tion of so-
alled generalised Λ-Fleming-Viot pro-
esses, as well as their (dual) genealogies, given by the so-
alled Λ-
oales
ents, whi
h allowmultiple 
ollisions. Moreover, Eldon and Wakeley (2006) provide eviden
e that su
h moregeneral 
oales
ents might a
tually be more adequate to des
ribe real populations with ex-treme reprodu
tive behaviour, in parti
ular many marine spe
ies. In this paper, we extendmethods of Ethier and Gri�ths (1987) and Gri�ths and Tavaré (1994, 1995) to obtain a like-lihood based inferen
e method for general Λ-
oales
ents. In parti
ular, we obtain a method to
ompute (approximate) likelihood surfa
es for the observed type probabilities of a given sam-ple. We argue that within the (vast) family of Λ-
oales
ents, the parametrisable sub-familyof Beta(2 − α, α)-
oales
ents, where α ∈ (1, 2], are of parti
ular relevan
e. We illustrate ourmethod using simulated datasets, thus obtaining maximum-likelihood estimators of mutationand demographi
 parameters.1 Introdu
tionEven though 
oales
ents with multiple 
ollisions have been studied quite extensively in the mathe-mati
al literature over the last de
ade (see, e.g. [P99℄, [S99℄, [S03℄, [MS01℄, [BLG03℄ and [BBS06℄),and have been expli
itly proposed as a model for genealogies in various biologi
al s
enarios, theiruse in biologi
al studies has been rather limited up to now (see, however, [EW06℄).We suspe
t that this is at least in part due to a la
k of statisti
al tools, whi
h would allow to de
idewhi
h among various multiple merger 
oales
ents is most suitable for a given population, and whi
hwould furthermore allow to draw inferen
e about parameters of interest, e.g. mutation rates, insu
h s
enarios. Our aim is to 
ontribute to remedying this la
k by des
ribing and implementingmethods to 
ompute likelihoods of observed sequen
e data in s
enarios with multiple 
ollisions.These in turn 
an form the basis of tests and estimation pro
edures.In the present paper, we give parti
ular attention to the so-
alled Beta-
oales
ents, whi
h are aone-parameter subfamily of Λ-
oales
ents in
luding Kingman's 
oales
ent (see (1.4) below), andwhi
h exhibit interesting theoreti
al properties as well as pra
ti
al advantages (see Se
tion 8).1.1 Coales
ent pro
essesFor neutral population models of �xed population size in the domain of attra
tion of the 
lassi
alFleming-Viot pro
ess, su
h as the Wright-Fisher- and the Moran model, the genealogy of a �nitesample 
an be des
ribed by the now 
lassi
al Kingman-
oales
ent, whi
h we introdu
e brie�y,followed by the more re
ently dis
overed and mu
h more general Λ-
oales
ents. For ba
kground1



on (
lassi
al and generalised) Fleming-Viot pro
esses and variations of Kingman's 
oales
ent, seee.g. [EK86℄, [D93℄, [EK93℄ and [DK99℄ as well as [H90℄, [N01℄, [HSW05℄ and [W06℄.Kingman's 
oales
ent. Let Pn be the set of partitions of {1, . . . , n} and let P denote the setof partitions of N. For ea
h n ∈ N, Kingman [K82℄ introdu
ed the so-
alled n-
oales
ent, whi
his a Pn-valued 
ontinuous time Markov pro
ess {Πn(t), t ≥ 0}, su
h that Πn(0) is the partitionof {1, . . . , n} into singleton blo
ks, and then ea
h pair of blo
ks merges at rate one. Given thatthere are b blo
ks at present, this means that the overall rate to see a merger between blo
ks is
( b
2 ). Note that only binary mergers are allowed. Kingman [K82℄ also showed that there exists a

P-valued Markov pro
ess {Π(t), t ≥ 0}, whi
h is now 
alled the (standard) Kingman-
oales
ent,and whose restri
tion to the �rst n positive integers is the n-
oales
ent. To see this, note that therestri
tion of any n-
oales
ent to {1, . . . , m}, where 1 ≤ m ≤ n, is an m-
oales
ent. Hen
e thepro
ess 
an be 
onstru
ted by an appli
ation of the standard extension theorem.
Λ-
oales
ents. Pitman [P99℄ and Sagitov [S99℄ introdu
ed and dis
ussed 
oales
ents whi
h allowmultiple 
ollisions, i.e. more than just two blo
ks may merge at a time. Again, su
h a 
oales
entwith multiple 
ollisions (whi
h will be later 
alled a Λ-
oales
ent) is a P-valued Markov-pro
ess
{Π(t), t ≥ 0}, su
h that for ea
h n, its restri
tion to the �rst n positive integers is a Pn-valuedMarkov pro
ess (the �n-Λ-
oales
ent�) with the following transition rates. Whenever there are bblo
ks in the partition at present, ea
h k-tuple of blo
ks (where 2 ≤ k ≤ b ≤ n) is merging to forma single blo
k at rate λb,k, and no other transitions are possible. The rates λb,k do not depend oneither n or on the stru
ture of the blo
ks. Pitman showed that in order to be 
onsistent, whi
hmeans that for all 2 ≤ k ≤ b,

λb,k = λb+1,k + λb+1,k+1,su
h transition rates must ne
essarily satisfy
λb,k =

∫ 1

0

xk(1 − x)b−k 1

x2
Λ(dx), (1.1)for some �nite measure Λ on the unit interval. Note that (1.1) sets up a one-to-one 
orresponden
ebetween 
oales
ents with multiple 
ollisions and �nite measures Λ. Indeed, it is easy to see that the

λb,k determine Λ by an appli
ation of Hausdor�'s moment problem, whi
h has a unique solutionin this 
ase.Due to the restri
tion property, the Λ-
oales
ent on P (with rates obtained from the measure Λ asdes
ribed above) 
an be 
onstru
ted from the 
orresponding n-Λ-
oales
ents via extension.Note that the family of Λ-
oales
ents is rather large, and in parti
ular it 
annot be parametrisedby a few real variables. Important examples in
lude Λ = δ0 (Kingman's 
oales
ent) and Λ = δ1(leading to star-shaped genealogies, i.e. one huge merger into one single blo
k). Later, we willbe 
on
erned with two important parametri
 sub
lasses of Λ-
oales
ents, namely the so-
alledBeta-
oales
ents, where Λ has a Beta(2 − α, α)-density for some α ∈ (1, 2], and simple linear
ombinations of atomi
 measures of the type Λ = c1δ0 + c2δy for some 
onstants c1, c2 > 0 and
y ∈ (0, 1]. To avoid trivialities, we will hen
eforth assume that Λ 6= 0.Remarks (Multiple 
ollisions and reprodu
tion events).1. An important di�eren
e between the 
lassi
al Kingman-
oales
ent and 
oales
ents whi
h allowmultiple 
ollisions should be pointed out here. Roughly speaking, a Kingman 
oales
ent arises asthe limiting genealogy of a so-
alled Cannings population model ([C74℄, [C75℄), if the individualsprodu
e a number of o�spring that is negligible when 
ompared to the total population size (inparti
ular, this requires that the varian
e of the number of o�spring per individual 
onverges to a�nite limit). More general 
oales
ents with multiple mergers arise, on
e the o�spring distribution issu
h that a non-negligible proportion, say x ∈ (0, 1], of the population alive in the next generation2



goes ba
k to a single reprodu
tion event from a single an
estor in the present generation. In this
ase, x−2Λ(dx) 
an be interpreted as the intensity at whi
h we see su
h proportions x. Pre
ise
onditions on the underlying Cannings-models and the 
lassi�
ation of the 
orresponding limitinggenealogies 
an be found in [MS01℄.2. In [EW06℄, Eldon and Wakeley assume that there are extreme reprodu
tive events, whi
ha

ount for non-negligible proportions of the population in a single reprodu
tion event, in thepopulation dynami
s of the Pa
i�
 Oyster. In fa
t, many marine spe
ies seem to exhibit su
hbehaviour (see also [A04℄ and [BBB94℄). 2Remarks (�Coming down from in�nity�).1. Not all Λ-
oales
ents seem to be reasonable as models for biologi
al populations, sin
e some donot allow for a �nite �time to the most re
ent 
ommon an
estor� of the entire population (TMRCA).This is equivalent to �
oming down from in�nity in �nite time�: it means that, given any initialpartition in P , and for all ε > 0, the partition Π(ε) a.s. 
onsists of �nitely many blo
ks only.Letting
λb =

b
∑

k=2

(k − 1)

(

b

k

)

λb,k,S
hweinsberg [S00℄ proves that if either Λ has an atom at 0 or Λ has no atom at zero and
λ∗ :=

∞
∑

b=2

λ−1
b < ∞, (1.2)then the 
orresponding 
oales
ent does 
ome down from in�nity (and if so, the time to 
ome downto only one blo
k has �nite expe
tation).2. An important example for a 
oales
ent, whi
h (only just) does not 
ome down from in�nity isthe Bolthausen-Sznitman 
oales
ent, where Λ(dx) = dx is the uniform distribution on [0, 1]. Thisis the Beta(2−α, α)-
oales
ent with α = 1, and it plays an important role in statisti
al me
hani
smodels for disordered systems (see e.g. [Bo06℄ for an introdu
tion).3. However, it should be observed that all n-Λ-
oales
ents (for �nite n) do have an a.s. �nite

TMRCA. 2Examples for 
oales
ents whi
h satisfy (1.2) are the pro
ess 
onsidered in [EW06℄, 
orrespondingto
Λ = c1δ0 + c2δy, c1 > 0, c2 ≥ 0 (1.3)for y ∈ (0, 1) (in parti
ular Kingman's 
oales
ent if c1 = 1, c2 = 0; but note that [EW06℄ also
onsider a s
enario where c1 = 0), the so-
alled Beta(2 − α, α)-
oales
ents with α ∈ (1, 2), where

Λ(dx) =
Γ(2)

Γ(2 − α)Γ(α)
x1−α(1 − x)α−1 dx, (1.4)(even though the right-hand side of (1.4) makes no sense for α = 2, Kingman's 
oales
ent 
an bein
luded as the weak limit Beta(2 − α, α) → δ0 as α → 2), and a 
oales
ent dis
ussed in Durrettand S
hweinsberg [DS05℄,

Λ(dx) = c1δ0 + c2xdx, c1, c2 ≥ 0, c1 + c2 > 0, (1.5)whi
h they propose to des
ribe the genealogy at a neutral lo
us whi
h is suitably linked to sele
tedlo
i undergoing re
urrent sele
tive sweeps.It is easy to interpret the behaviour of the population 
orresponding to the 
oales
ent asso
iatedwith (1.3). The �rst atom stands for a Kingman-
omponent, i.e. essentially reprodu
tion with3



�nite varian
e. The se
ond atom means that with rate c2, a single individual 
an produ
e 100×y%of the population 
urrently alive in a single reprodu
tion event.Populations with extreme reprodu
tive behaviour. Re
ently, biologists have studied thegeneti
 variation of 
ertain marine spe
ies with rather extreme reprodu
tive behaviour, see, e.g.,Árnason [A04℄ (Atlanti
 Cod) and [BBB94℄ (Pa
i�
 Oyster). Eldon and Wakeley [EW06℄ analysedthe sample des
ribed in [BBB94℄ and proposed a one-parameter family of Λ-
oales
ents, whi
h
omprises Kingman's 
oales
ent as a boundary 
ase, namely those des
ribed by (1.3), as modelsfor their genealogy. Inferen
e is then based on a simple summary statisti
, the number of segregatingsites and singleton polymorphisms. They 
on
lude that ([EW06℄, p. 2622):For many spe
ies, the 
oales
ent with multiple mergers might be a better null modelthan Kingman's 
oales
ent.In this paper, we obtain a method to 
ompute the full likelihood of sequen
e observations underthe in�nitely-many sites model for general Λ-
oales
ents. This method 
an then be used to obtainmaximum-likelihood estimators for demographi
 and mutational parameters.We apply our method to the spe
ial 
ase of the one-parameter family of Beta(2−α, α)-
oales
entsfrom (1.4), where α ∈ (1, 2], and illustrate its use on simulated datasets. These 
oales
ents ariseas limits of genealogies of a 
lass of neutral models, where the probability that the individuallitter size ex
eeds k ∈ N de
reases like C × k−α for some C > 0 ([S03℄, [BBC05℄). See Se
tion 8for further details. Still, it appears an open problem to determine whi
h Λ-
oales
ent is mostsuitable in whi
h biologi
al s
enario.For an appli
ation of our method to real sequen
e data and a more thorough dis
ussion ofunderlying biologi
al assumptions, we refer to a forth
oming arti
le.Inferen
e for Kingman's 
oales
ent. E�
ient likelihood-based inferen
e methods for King-man's 
oales
ent, some solving re
ursion (4.4) approximately via Monte Carlo methods, others us-ing MCMC, have been developed sin
e the beginning of the 1990ies, see [EG87℄, [GT94a℄, [GT94b℄,[GT94
℄, [GT96a℄, [GT96b℄, [GT97℄, [FKY99℄, [DIG04a℄, [SD00℄. In [SD00℄, Stephens and Don-nelly provide proposal distributions for importan
e sampling, whi
h are optimal in some sense, and
ompare them to various other methods. Their importan
e sampling s
heme seems, at present, tobe the most e�
ient tool for inferen
e for relatively large datasets.1.2 Outline of the paperIn Se
tion 2, we dis
uss some 
ombinatorial properties of observations 
omplying with the in�nitely-many-sites model whi
h we will require subsequently.In Se
tion 3, we present the probabilisti
 neutral 
oales
ent model that gives rise to our data.Se
tion 4 
ontains re
ursions for the type probabilities assuming a given underlying Λ-
oales
ent.In Se
tion 5, we brie�y state re
ursions of the above kind in the �nite- and in�nite-alleles 
ases.A detailed derivation of the �nite-alleles re
ursions 
an be found in [BB07℄. For 
ompleteness, were
all the re
ursion obtained by Möhle in [M06℄ for the in�nite-alleles model.In Se
tion 6, we derive proposal transitions for a Markov 
hain that we then use to obtain aMonte Carlo s
heme for the type probabilities resp. likelihoods obtained in Se
tion 4 under the
Λ-
oales
ent in the in�nite-sites model.Se
tion 7 
ontains an urn-like algorithm for 
onvenient generation of datasets under the general
oales
ent model. 4



Figure 2.1: Forbidden sub-patterns in the IMS
0 1
1 0
1 1(a) 0 0

0 1
1 0
1 1(b)(a) Known an
estral types, (b) Unknown an
estral typesIn Se
tion 8, we dis
uss population models whose genealogies are naturally approximated by Beta-
oales
ents, and present some likelihood-surfa
es, obtained by applying our Monte Carlo methodto several simulated datasets.Finally, in Se
tion 9 (the Appendix), we in
lude the original genetrees 
orresponding to our samplesthat lead to the likelihood-surfa
es in Se
tion 8.2 Combinatori
s of the in�nitely-many-sites modelThe in�nitely-many-sites (IMS) model ([K69℄, [W75℄) is a popular model in population geneti
s todes
ribe the variability in DNA samples. It assumes that the lo
us under 
onsideration 
onsists ofa(n in theory in�nitely long) sequen
e of 
ompletely linked sites and that ea
h site is hit at moston
e by a mutation in the entire history of the sample. It may e.g. be justi�ed by 
onsidering asuitable limit of diverging sequen
e lengths and small mutation rates. In this se
tion, we dis
usssome 
ombinatorial properties of observations 
omplying with the IMS model whi
h we requirelater. See e.g. [EG87℄, [H90℄, [GT95℄ or [T01℄ for an overview.Observations 
onsist of n aligned sequen
es, where at most two di�erent bases are visible at ea
hsite, and say s sites are segregating. To �x notation, we think of numbering the samples and thesegregating sites in some (arbitrary) fashion.2.1 Known an
estral types and rooted genealogi
al treesAssuming that an
estral types are known, e.g. by 
omparing with a sequen
e from a suitableoutgroup, the data is represented by an n × s matrix S = (sij), where sij = 0 if sample i has thean
estral type at segregating site j, and sij = 1 if it has the mutant type. It is natural to 
ondensethis matrix by removing identi
al rows (
orresponding to types whi
h were observed more thanon
e in the sample). Enumerate the, say d ≤ n, di�erent types in some (arbitrary) way. Thenthe data 
an be equivalently des
ribed by a d × s-matrix S together with an ordered partition

a = (a1, . . . , ad) of {1, . . . , n}, where ai are the (numbers of the) samples of type i. The data are
ompatible with the IMS model if no sub-pattern as in Figure 2.1 (a) or any of its row permutationsappears in S; equivalently, if Oj denotes the set of types whi
h 
arry mutation j, we must havefor any pair k, j that Oj ∩Ok 6= ∅ ⇒ Oj ⊂ Ok or Ok ⊂ Oj . Violations of the IMS assumption 
anbe 
aused by parallel or ba
k mutations or by re
ombination. A data matrix S 
ompatible withIMS 
an be equivalently des
ribed by (the partition a and) a rooted genealogi
al tree t, wherethe leaves 
orrespond to observed sequen
es and internal nodes to mutations. A possible way toen
ode su
h trees is via
t =

(

x1, . . . ,xd

)

, (2.1)where xi = (xi0, xi1, . . . , xij(i)) is the sequen
e of mutations observed when tra
ing from type iba
kwards to the root. The fa
t that t is a rooted tree is equivalent to the following 
onditions:1) Coordinates within ea
h sequen
e xi are distin
t.5



2) If for some i, i′ ∈ {1, . . . , d} and j, j′ we have xij = xi′j′ , then
xi,j+k = xi′,j′+k, for all k.3) There is at least one 
oordinate 
ommon to all sequen
es.It is 
ustomary to number mutations by {1, . . . , s} and take xij(i) = 0 for the �root mutation�. Inorder to re
over S from t, simply put 1s in row i at all 
olumns xik, 0 ≤ k < j(i). A 
onstru
tiveway of obtaining t from the matrix S is Gus�eld's algorithm ([G91℄): Interpret the 
olumns of

S as binary numbers (with the �rst row as the most signi�
ant bit) and re-order them a

ordingto de
reasing size (with the largest in the leftmost 
olumn, and ties resolved arbitrarily). Theentries of xi are found by �reading o�� from right to left the 
olumns j with sij = 1. Note that thisimpli
itly puts a temporal order on the observed mutations, and orders mutations a

ording to this�age�, whi
h is not ne
essarily 
ompletely determined by the a
tual sequen
e data. This is harmlessbe
ause we will later �fa
tor out� the mutation labels by 
onsidering appropriate equivalen
e 
lasses:Introdu
e equivalen
e relations on the set of types by writing
(x1, . . . ,xd) ∼ (y1, . . . ,yd), (2.2)if there is a bije
tion ξ : N0 → N0 with yij = ξ(xij), i ∈ 1, . . . , d; j = 0, 1, . . . . Furthermore, write
(x1, . . . ,xd) ≈ (y1, . . . ,yd), (2.3)if there is a bije
tion ζ : N0 → N0 and a permutation σ on {1, . . . , d}, su
h that yσ(i),j = ζ(xij), i =

1, . . . , d; j = 0, 1, . . .Under �∼�, the 
on
rete labels of mutations are irrelevant. Note that in what follows, we suppressthe distin
tion between su
h an equivalen
e 
lass, denoted by [t], and a representative, denotedby t. Under �≈�, tags of types be
ome irrelevant, too.Example: A dataset of eight alleles, whi
h is 
onsistent with the above rules.
1 : (6, 1, 0) 5 : (7, 1, 0)

2 : (6, 1, 0) 6 : (8, 5, 1, 0)

3 : (10, 1, 0) 7 : (4, 3, 2, 0)

4 : (7, 1, 0) 8 : (9, 4, 3, 2, 0)Note that the alleli
 types (6, 1, 0) and (7, 1, 0) appear twi
e in the example, i.e. have multipli
itytwo. For notational 
onvenien
e, our sequen
es all end in 0, this re�e
ts the existen
e of a 
ommon�root�. The labels of the mutations and the root are by no means required to be de
reasing, thisis just suitable 
onvention.Given a sample of size n, we will now write (t,n) for the pair 
onsisting of the set of di�erent types
t = (x1, . . . ,xd), d ≤ n, and the multipli
ity ve
tor n. In the above example, we have d = 6 and

(t,n) =
(

(

(6, 1, 0), (10, 1, 0), (7, 1, 0), (8, 5, 1, 0), (4, 3, 2, 0), (9, 4, 3, 2, 0)
)

, (2, 1, 2, 1, 1, 1)
)

.If we take numbered samples into a

ount, i.e. if we let ai ⊂ {1, . . . , n}, i ∈ {1, . . . , d} denote theset of the numbers of the sequen
es with type xi, then one 
an also 
onsider the set of types andordered partitions (t, a), where a = (a1, . . . , ad), in the above example given by
(t,a) =

(

(

(6, 1, 0), (10, 1, 0), (7, 1, 0), (8, 5, 1, 0),(4, 3, 2, 0), (9, 4, 3, 2, 0)
)

,

(

{1, 2}, {3}, {4, 5}, {6}, {7}, {8}
)

)

.The probabilisti
 me
hanism behind these data and the ne
essary equivalen
e relation will bedis
ussed in detail in Se
tion 3. 6



Figure 2.2: Rooted and unrooted tree 
orresponding to the example.
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(b) Unrooted tree2.2 Unknown an
estral types and unrooted genealogi
al treesIf an
estral types are not known, the data matrix S is only spe
i�ed up to �ips of its 
olumns.As above, it su�
es to 
onsider the 
ondensed data matrix, whi
h we again denote by S with d(pairwise di�erent) rows together with the partition a. The data are 
ompatible with the IMSmodel in this 
ase if and only if no sub-pattern as in Figure 2.1 (b) or any of its row permutationsappears in S (the so-
alled �four gamete rule�). If they are 
ompatible in this sense, they 
orrespondto an unrooted genealogi
al tree, and a valid �polarised� data matrix (or equivalently, a rooted tree
t) 
an be obtained by �ipping in su
h a way that in ea
h 
olumn, 0 is the more frequent type.All other possible polarisations (resp. 
ompatible rooted trees) 
an be obtained by passing to anunrooted tree, and subsequent re-rooting.To build an unrooted tree Q from a(n equivalen
e 
lass of) rooted tree(s) t as en
oded in (2.1),pro
eed as follows: Verti
es 
orrespond to observed and inferred sequen
es (types), where aninferred type represents an internal node of degree ≥ 3 in t; edges of t are merged at internalnodes of degree 2 (whi
h were �internal� mutations in t), and the resulting edges of Q are markedby the number of mutations they 
arry. Thus, Q is des
ribed by

• its set of verti
es V (together with an ordered �meta-partition� a des
ribing whi
h samples
orrespond to whi
h vertex, where possibly some verti
es, namely the inferred types, aremarked by ∅), and
• a matrix (mij), where mij is the number of mutations between verti
es i and j (with thestipulation that mij = 0 if there is no edge between i and j in Q).Note that this tree need not be binary. Two (equivalen
e 
lasses under ∼ of) rooted genealogi
altrees t, t′ (with the same enumerated types and the same set of mutation labels) are equivalentas unrooted trees, in symbols t ∼u t′, if they lead to the same unrooted tree in the 
onstru
tionabove.Alternatively, given an unpolarised d × s observation matrix S one 
an 
ompute the pairwisedi�eren
e matrix with entries

Dij := #
{

1 ≤ k ≤ s : Sik = 0, Sjk = 1 or Sik = 1, Sjk = 0
}

. (2.4)7



It is easy to see that the four-gamete rule for S implies that this metri
 D on the set of typessatis�es the �four-point 
ondition�:any four elements 
an be named x, y, u, v su
h that
Dxy + Duv ≤ Dxu + Dyv = Dxv + Dyu.

(2.5)Thus, the pairwise distan
e (Hamming) metri
 D is additive, and 
orresponds to a unique unrootedtree Q with integer bran
h lengths (see e.g. [WSS77℄, or use neighbour-joining [SK88℄).These two methods of obtaining an unrooted tree from an unpolarised observation matrix S areequivalent. Sin
e a rooted tree t = (x1, . . . ,xd) 
ompatible with a polarisation of S also gives riseto (the same) pairwise distan
e matrix C(t) on the d types with entries
cij(t) := #{k : xik 6∈ xj} + #{k : xjk 6∈ xi}, 1 ≤ i, j ≤ d(with an obvious abuse of the � 6∈�-notation), this follows from the uniqueness of the tree de�ningan additive metri
. Thus we have

t ∼u t′ ⇐⇒ C(t) = C(t′). (2.6)For a given unrooted tree Q with γ sequen
es (in
luding inferred sequen
es) with mj mutationso

uring on edge j (j = 1, . . . , |E|) and s segregating sites altogether (i.e. s =
∑

j mj), there are
γ +

∑

j

(

mj − 1
)

= s + 1 (2.7)possible positions of the root (and thus this many di�erent rooted trees 
orresponding to Q): theroot 
ould be at any of the γ sequen
es or between any two mutations on any edge.3 In�nite sites data and Λ-
oales
ent treesTo obtain an n-sample under the in�nite-sites model from a 
oales
ent tree, we perform the follow-ing probabilisti
 experiment. Note that by duality, this des
ribes the distribution of a sample ofsize n from the stationary distribution of a Λ-generalised Fleming-Viot pro
ess ([DK99℄, [BLG03℄)with mutation pro
ess as in [EG87℄.(i) Run an n-Λ-
oales
ent. Obtain a rooted 
oales
ent tree.(ii) On this rooted tree with n leaves (numbered from 1 to n), pla
e mutations along the bran
hesat rate r (note that in the �Kingman world�, this parameter is 
ustomarily 
alled θ/2).(iii) Label these mutations randomly: Given there are s mutations in total, atta
h randomly(i.e. a

ording to the uniform distribution) the labels from 1, . . . , s to these mutations.(iv) Turn this 
oales
ent tree with labelled mutations and numbered leaves into a �genetree� bybreaking edges at mutations, resulting in verti
es of degree 2, and then moving the bran
hingpoints inwards until they rea
h the nearest mutation. Ignore the lengths of the edges.(v) A type is the sequen
e of labels of mutations observed following the path ba
kwards froma leaf to the root. Enumerate the di�erent types randomly to obtain a set of sequen
es
{x1, . . . ,xd}, where d ≤ n is the number of di�erent types.In the following, we suppress the distin
tion between t and its equivalen
e 
lass [t] under�∼� de�ned in (2.2). 8



Figure 3.1: Two 
oales
ent trees 
onsistent with the example from Subse
tion 2.1.
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(a) Binary 
oales
ent tree 1 2 3 4 5 6 7 8
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(b) Coales
ent tree with multiple 
ollisions(vi) Let Ai ⊂ {1, . . . , n} be the random set of the numbers (being atta
hed to leaves in Step 2)whi
h have type i ∈ {1, . . . , d}. We obtain a random pair (T,A), where A = (A1, . . . , Ad) isan ordered random partition.(vii) Finally, let
p(t,a) := P{(T,A) = (t,a)}.Note that, by the symmetry of the 
oales
ent,

p
(

t, (a1, . . . , ad)
)

= p
(

t, (π(a1), . . . , π(ad))
) for any permutation π ∈ Sn. (3.1)We 
all su
h pairs (t,a) a numbered sample 
on�guration with ordered types. Later, it will be usefulto 
onsider only the frequen
ies of the ordered types, i.e. de�ne a map

φ : (t,a) 7→ (t,n),where n = (n1, . . . , nd) := (#a1, . . . , #ad), i.e.∑d

i=1 ni = n. We denote its probability distributionby
p0
(

(t,n)
)

:= p
(

φ−1(t,n)
)

=
n!

n1! · · ·nd!
p
(

(t,a)
) (3.2)for any (t,a) ∈ φ−1(t,n) by the observation in (3.1).For notational simpli
ity, we introdu
e the following slightly ambiguous operations: By a − ei,we mean a partition obtained from a by removing one element from the set ai (with impli
itadjustments so that the result is a partition of {1, . . . , n− 1}). Note that we will not be 
on
ernedwith the fa
t whi
h element we a
tually remove, sin
e, by (3.1), the type probability p will notdepend on the a
tual 
hoi
e. Similarly, by a− (k − 1)ei we mean the partition obtained from a byremoving k − 1 elements from ai (
ertainly, this only makes sense if #ai ≥ k). Finally, a + ei willbe the partition obtained from a by adding an arbitrary element of N to the set ai that is not yet
ontained in any other set al, l = 1 . . . d. 9



4 Genealogi
al tree probabilities for Λ-
oales
ents in thein�nite-sites modelIn this se
tion, we obtain re
ursions for the probability of given type 
on�guration of a samplebased on the probabilisti
 model dis
ussed above. These re
ursions then lead to a Monte-Carlomethod to (approximately) 
ompute the probability of 
on�gurations under various Λ-
oales
ents.We will distinguish two 
ases. In the �rst 
ase, we will 
onsider ordered labelled samples of type
(t,a), whi
h take the full information 
ontained in the partition a into a

ount. In the se
ond 
ase,we restri
t to numbered ordered 
on�gurations of the type (t,n), whi
h only 
ount the multipli
ities
n.4.1 Ordered labelled samplesIt is in prin
iple possible to 
ompute the exa
t probabilities of a given type 
on�guration (t,a) viaa re
ursive formula.Theorem 4.1. We have, for given (t,a),

p(t,a) =
1

nr +
∑n

k=2

(

n
k

)

λn,k

∑

i: ni≥2

ni
∑

k=2

(

ni

k

)

λn,k p(t,a− (k − 1)ei)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1, xk0 distinct

s(xk) 6=xj ∀j

p(sk(t),a)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1,

xk0 distinct

∑

j:s(xk)=xj

p(rk(t), rk(a + ej)), (4.1)where ej denotes j-th unit ve
tor, sk(t) deletes �rst 
oordinate of the k-th sequen
e in t, s(xk)removes the �rst 
oordinate from the sequen
e xk, rk(t) removes k-th sequen
e from t, and xk0`distin
t' means that xk0 6= xij for all (i, j) 6= (k, 0). The boundary 
ondition for the root is
p({0}, (1)) = 1.Proof. Similar to the Kingman-
ase by 
onditioning on the last event in the 
oales
ent history,taking multiple mergers into a

ount. The �rst term on the right-hand side 
orresponds to a(multiple) 
ollision of lineages of the same type, hen
e requiring multipli
ity at least two, these
ond term refers to the event that a mutation is removed from a type (ne
essarily a singleton),whose an
estral type is not visible in the sample at present. Finally, the third term 
orrespondsto removing a mutation from a type whose an
estor is already present in the sample. 24.2 Numbered ordered samplesRe
all from (3.2), using the notation of Theorem 4.1, that

p0(t,n) =
n!

n1! · · ·nd!
p(t,a). (4.2)

10



Thus, for the types and multipli
ities (t,n), we obtain
p0(t,n) =

1

nr +
∑n

k=2

(

n
k

)

λn,k

∑

i: ni≥2

ni
∑

k=2

(

ni

k

)

× λn,k

n!

n1! · · ·nd!

n1! · · · (ni − k + 1)! · · ·nd!

(n − k + 1)!
p0(t,n − (k − 1)ei)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1, xk0 distinct

s(xk) 6=xj ∀j

p0(sk(t),n)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1,

xk0 distinct

∑

j:s(xk)=xj

n!

n1! · · ·nd!

×
n1! · · · (nj + 1)! · · ·nd!

n!
p0(rk(t), rk(n + ej)).Sin
e

(

ni

k

)

n!

n1! · · ·nd!

n1! · · · (ni − k + 1)! · · ·nd!

(n − k + 1)!

=
ni!

k!(ni − k)!

n!(ni − k + 1)!

ni!(n − k + 1)!
=

(

n

k

)

ni − k + 1

n − k + 1
,rearrangement leads toCorollary 4.2. For given (t,n), we have

p0(t,n) =
1

nr +
∑n

k=2

(

n
k

)

λn,k

∑

i: ni≥2

ni
∑

k=2

(

n

k

)

λn,k

ni − k + 1

n − k + 1
p0(t,n − (k − 1)ei)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1, xk0 distinct

s(xk) 6=xj ∀j

p0(sk(t),n)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1,

xk0 distinct

∑

j:s(xk)=xj

(nj + 1)p0(rk(t), rk(n + ej)), (4.3)with the usual boundary 
ondition for the root, i.e. p0({0}, (1)) = 1.Remark. Regarding our se
ond equivalen
e relation �≈�, de�ned in (2.3), the probability
p∗([t]≈,n) of observing a parti
ular unordered and unlabelled tree is related to p0(t,n) via a
ombinatorial fa
tor

p∗([t]≈,n) =
1

a(t,n)
p0(t,n),where, with tσ := (xσ(1), . . . ,xσ(d)), nσ = (nσ(1), . . . , nσ(d)),

a(t,n) = #
{

σ ∈ Sd : tσ ∼ t,n = nσ

}is the number of permutations of the types whi
h leave the 
ombinatorial stru
ture un
hanged(see [GT95℄). 2

11



Remark. In the 
ase of Kingman's 
oales
ent, we re
over from (4.3) the following re
ursion, whi
his due to Ethier and Gri�ths, see [EG87℄ and [G89℄ (and repla
e r by θ/2):
p0(t,n) =

1

nr +
(

n
2

)

∑

k: nk≥2

(

n

2

)

nk − 1

n − 1
p0(t,n − ek)

+
r

nr +
(

n
2

)

∑

k: nk=1, xk0 distinct

s(xk) 6=xj ∀j

p0(sk(t),n)

+
r

nr +
(

n
2

)

∑

k: nk=1,

xk0 distinct

∑

j:s(xk)=xj

(nj + 1)p0(rk(t), rk(n + ej)) (4.4)wit the same boundary 
ondition as above. 2Remark. For samples of size n = 2, the re
ursion (4.3) 
an easily be solved expli
itly (and of
ourse independently of Λ, as long as Λ([0, 1]) = 1): We have
p0
(

(0), (2)
)

=
1

1 + 2r
and (4.5)

p0
(

(x1,x2), (1, 1)
)

= 2

(

j(1) + j(2)

j(1)

)

( r

1 + 2r

)j(1)+j(2) 1

1 + 2r
(4.6)for x1 = (x10, . . . , x1j(1)), x2 = (x20, . . . , x2j(2)) (and all entries distin
t ex
ept x1j(1) = x2j(2) = 0).

24.3 Unrooted genealogi
al treesIf the an
estral types at segregating sites are not known, the data only determine an unrooted tree
Q, as dis
ussed in Subse
tion 2.2. The probability of an observation (Q,a) is then given by

p(Q,a) =
∑

T :C(T )=C(T0)

p(T, a), (4.7)where T0 is any rooted tree 
ompatible with Q (and the sum has no. of segregating sites + 1summands), or with unlabelled samples
p0(Q,n) =

∑

T :C(T )=C(T0)

p0(T,n). (4.8)By 
ombining (4.8) and (4.3) and re-arranging as in [GT95℄, Se
t. 2.2, we obtain
p0(Q,n) =

1

nr +
∑n

ℓ=2

(

n
ℓ

)

λn,ℓ

∑

i: ni≥2

ni
∑

k=2

(

n

k

)

λn,k

ni − k + 1

n − k + 1
p0(Q,n − (k − 1)ei)

+
r

nr +
∑n

ℓ=2

(

n
ℓ

)

λn,ℓ

∑

k: nk=1, |k|=1

k→j, mkj>1

p0(Q − ekj ,n)

+
r

nr +
∑n

ℓ=2

(

n
ℓ

)

λn,ℓ

∑

k: nk=1, |k|=1

k→j, mkj=1

∑

j:s(xk)=xj

(nj + 1)p0(Q − ekj , rk(n + ej)), (4.9)12



where |k| = 1 means that the degree of vertex k is 1, k → j means that vertex k is joined to vertex
j, and �nally, in the last term on the right-hand side, vertex k is removed from Q. The boundary
ondition is p0(Q, (1)) = 1 for the tree 
onsisting of one vertex only.Remarks 1.) Note that it may be possible to draw inferen
e about an
estral states at some or allsegregating sites by 
omparing likelihoods for various positions of the root.2.) As above, re
ursion (4.9) 
an be solved expli
itly for samples of size n = 2. In fa
t, the onlyinformation about the two sequen
es in the in�nitely-many-sites model is then 
aptured by thenumber of segregating sites (i.e. the number of mutations), say, s. Hen
e, by a slight abuse ofnotation, we have

p0((0), (2)) =
1

1 + 2r
,and

p0((s)), (1, 1)) = 2

(

2r

1 + 2r

)s
1

1 + 2r
, s = 1, 2, . . . (4.10)in keeping with the idea that two samples are separated by a geometri
 number of mutations. 25 Finite- and in�nite alleles re
ursionsIn this se
tion, we provide similar re
ursions for the �nite- and in�nite alleles models of mathemat-i
al geneti
s. The �nitely-many-alleles re
ursions 
an either be derived using Donnelly and Kurtz'[DK99℄ modi�ed lookdown 
onstru
tion, assuming a given underlying generalised Λ-Fleming-Viotpro
ess, or via 
al
ulations based on the generator of the population model, as in des
ribed[DIG04a℄ for the Kingman-
ase. A detailed derivation of the re
ursions, using both approa
hes,
an be found in [BB07℄.Here, we 
onsider type 
hanges, or mutations, o

urring at rate r > 0, and let P = (Pij) denote asto
hasti
 transition matrix on the 
orresponding �nite type spa
e E with #E =: d ≥ 1, and withequilibrium µ. This means that if a mutation o

urs, type i mutates to type j with probability Pij .Silent mutations are allowed (i.e. Pjj ≥ 0). Due to ex
hangeability, we will merely be interestedin the type frequen
y probability p0(n). So, the only relevant information is (of 
ourse) how manysamples were of whi
h type. For n = (n1, . . . , nd) ∈ Zd

+, denote #n := n1 + · · ·+ nd. Let p0(n) bethe probability that in a sample of size #n, there are exa
tly nj of type j, j = 1, . . . , d.Theorem 5.1. Abbreviate n := #n, and write ek for the k-th 
anoni
al unit ve
tor of Zd. Then,the re
ursion for p0 is
p0(n) =

r

rn

d
∑

j=1

d
∑

i=1

(ni + 1 − δij)Pijp
0(n − ej + ei)

+
1

rn

d
∑

j=1
nj≥2

nj
∑

k=2

(

n

k

)

λn,k

nj − k + 1

n − k + 1
p0(n− (k − 1)ej) (5.1)with boundary 
onditions p0(ej) = µj . In the Kingman 
ase, this agrees with (3) in [DIG04a℄.In the in�nitely-many alleles 
ase, one assumes that every mutation, whi
h o

urs along the 
oa-les
ent tree with rate r > 0, leads to an entirely new type, no other information is being retained.If we take a sample of n ∈ N genes, it is natural to ask for the probability p0(n) to sample aspe
i�
, non-ordered allele 
on�guration n = (n1, . . . , nℓ), where ℓ ≤ n is the number of di�erenttypes observed in the sample, and ni, for i ∈ {1, . . . , ℓ} is the number of times that type i is being13



observed. Let ñj = (n1, . . . , nj−1, nj+1, . . . , nℓ). Using 
oales
ent arguments, it is possible obtainthe following re
ursion, see [M06℄, Theorem 3.1.Theorem 5.2 (Möhle). The probability of a non-ordered allele 
on�guration n = (n1, . . . , nℓ)satis�es the re
ursion given by p0(1) = 1 and
p0(n) =

nr
∑n

k=2

(

n
k

)

λn,k + nr

ℓ
∑

j=1
nj=1

1

ℓ
p0(ñj)

+
1

∑n

k=2

(

n
k

)

λn,k + nr

n
∑

k=2

ℓ
∑

j=1
nj≥k

(

n

k

)

λn,k

nj − k + 1

n − k + 1
p0(n− (k − 1)ej). (5.2)In the Kingman-
ase, this re
ursion 
an be solved expli
itly and leads to an alternative formulationof the famous Ewens sampling formula, see [E79℄. It seems that the only other 
ase in whi
h anexpli
it solution is known is the 
ase Λ = δ1, in whi
h the genealogy is star-shaped.6 A Monte Carlo method for the 
omputation of the likeli-hoods in the in�nite-sites modelWe �rst derive a simple Monte-Carlo approximation of the exa
t sampling probabilities in thein�nite-sites model by simulating a Markov 
hain ba
kwards along the sample paths of the 
oales-
ent (essentially based on [GT94b℄, see also [T01℄). Note that this 
an be viewed as an integrationover all paths of Algorithm 1 (see Se
tion 7.2) whi
h lead to the observed 
on�guration � these
orrespond to �
oales
ent histories� as 
onsidered in [SD00℄, [DIG04a℄.6.1 An unbiased estimator for p0(t,n)Given ordered types and frequen
ies (t,n), we de�ne the tree 
omplexity of (t,n) as

c[(t,n)] =
d
∑

i=1

ni +
d
∑

i=1

#xi ∈ N, (6.1)where, for 1 ≤ i ≤ d, #xi denotes the length of the sequen
e xi (ex
lusive of the root).Note that the tree 
omplexity is the sum of the sample size and the number of segregating sites.This de�nition transfers in the obvious way also to the pair of ordered types and partitions (t,a).It is 
lear that the tree 
omplexity is independent of the 
hoi
e of a representative t from theequivalen
e 
lass [t] and hen
e well-de�ned. If c[(t,n)] = 1, the minimum for a non-vanishing tree,then the tree 
onsists only of its root with multipli
ity one, i.e. (t,n) = ({0}, (1)) =: t0. We write
(t′,n′) ≺ (t,n)if (t′,n′) 
an be rea
hed from (t,n) by either removing one mutation or a 
oales
en
e event, seebelow. In this 
ase, c[(t′,n′)] < c[(t,n)]. Hen
e observe that the re
ursions (4.4) and (4.3) areproper re
ursions in the sense that they stri
tly de
rease the tree 
omplexity in ea
h step.The following lemma is an appropriate version of the 
orresponding Lemma 6.1 in [T01℄.Lemma 6.1. Let {Xk, k ≥ 0} be a Markov 
hain on the spa
e of ordered types with 
orrespondingfrequen
ies, denoted by (T ,N ), and with transitions Q = (q(t,n),(t′,n′)) su
h that the hitting time

τ = inf
{

k ≥ 0 : Xk = ({0}, (1))
}14



for any given initial state (t,n) in (T ,N ) is bounded by some 
onstant 0 ≤ K1(t,n) < ∞. Let
f : (T ,N ) → [0,∞) be a measurable fun
tion and de�ne

u(t,n)(f) = E(t,n)

τ
∏

k=0

f(Xk) (6.2)for all X0 = (t,n) ∈ (T ,N ), so that
u({0},(1))(f) = f

(

{0}, (1)
)

.Then
u(t,n)(f) = f

(

(t,n)
)

∑

(t,n)∈(T ,N)

(t′,n′)≺(t,n)

q(t,n),(t′,n′)u(t′,n′)(f) (6.3)for all (t,n) ∈ (T ,N )\({0}, (1)). Conversely, the unique solution of (6.3) is given by (6.2).Remark. If the transitions Q = (q(t′,n′),(t,n)) are only positive if c[(t′,n′)] < c[(t,n)], then
τ = inf

{

k ≥ 0 : Xk = ({0}, (1))
}is always bounded from above by the tree 
omplexity of the initial state. 2Proof. Sin
e τ ≤ c[(t,n)], the expe
ted value remains �nite for ea
h initial 
ondition. Now,
ompute

u(t,n)(f) = E(t,n)

τ
∏

k=0

f(Xk)

= f(t,n) E(t,n)

[

E(t,n)

[ τ
∏

k=1

f(Xk)
∣

∣

∣X1

]

]

= f(t,n) E
[

uX1(f)
]

= f(t,n)
∑

(t′,n′)∈(T ,N)

(t′,n′)≺(t,n)

q(t,n),(t′,n′)u(t′,n′)(f),as required. 2The result provides a simulation method for solving re
ursions of type (6.3): simulate a traje
toryof the 
hain X starting at (t,n) until it hits the root ({0}, (1)) at time τ , 
ompute the valueof the produ
t ∏τ

k=0 f(Xk) and repeat this many times. Averaging these values provides anunbiased and 
onsistent estimate of u(t,n)(f) in terms of an approximation of the expe
ted value
E(t,n)

∏τ
k=0 f(Xk) by the strong law of large numbers. Lemma 6.1 states that this expe
tation isa solution to the re
ursion in question.Corollary 6.2. For ordered types and frequen
ies (t,n), de�ne

u(t,n)(f) = p0(t,n)and for c[(t,n)] > 1, put
f(t,n) =

1

rn

(

∑

k: nk=1, xk0 distinct

s(xk) 6=xj ∀j

r +
∑

k: nk=1,

xk0 distinct

∑

j:sk(xk)=xj

r(nj + 1)

+
∑

1≤i≤d: ni≥2

ni
∑

k=2

(

n

k

)

λn,k

ni − k + 1

n − k + 1



 , (6.4)15



where
rn = nr +

n
∑

k=2

(

n

k

)

λn,k. (6.5)Furthermore, let
u({0},(1))(f) = f

(

{0}, (1)
)

= 1. (6.6)Consider a Markov-Chain {Xl = (t(l),n(l))} on (T ,N ) with transitions
(t,n) →























(sk(t),n) w. p. r
rnf(t,n) if nk = 1, xk0 dist., s(xk) 6= xj ∀j,

(rk(t), rk(n + ej)) w. p. r(nj+1)
rnf(t,n) if nk = 1, xk0 dist., s(xk) = xj ,

(t,n − (k − 1)ei) w. p. 1
rnf(t,n)

(

n
k

)

λn,k
ni−k+1
n−k+1 if 2 ≤ k ≤ ni.Then,

p0(t,n) = E(t,n)

τ
∏

l=0

f(t(l),n(l)). (6.7)Proof. This is the immediate appli
ation of Lemma 6.1, noting that, as in the last remark,starting from (t,n), the stopping time τ is bounded by c[(t,n)] < ∞. Note that one might preferto stop at n = 2 in view of (4.5 � 4.6). 2Simulating independent 
opies and taking the average now yields an unbiased estimator of p0(t,n).Note that a similar result holds for the re
ursion w.r.t. (t,a).To 
ompute p0(Q,n) in the unrooted 
ase, one 
an either estimate ea
h term in (4.8) using themethod above, or implement an analogous Monte-Carlo s
heme based on (4.9) and a Markov-Chain
{Y (l), l = 0, 1, 2, . . .} on the spa
e (Q,N ) of unrooted trees with node multipli
ities as below. Notethat the 
omplexity of a tree as de�ned in (6.1) does not depend on the position of the root, andis thus well-de�ned for unrooted trees.Corollary 6.3. With the notation of Subse
tion 4.3, put f((0), (1)) = 1, and for (Q,n) ∈ (Q,N )with c[(Q,n)] > 1, set

f(Q,n) =
1

rn

(

∑

i: ni≥2

ni
∑

k=2

(

n

k

)

λn,k

ni − k + 1

n − k + 1

+
∑

k: nk=1, |k|=1

k→j, mkj>1

r +
∑

k: nk=1, |k|=1

k→j, mkj=1

∑

j:s(xk)=xj

r (nj + 1)

)

where rn is de�ned in (6.5). Consider a Markov-Chain {Yl = (Q(l),n(l))} on (Q,N ) with transi-tions
(Q,n) →























(Q − ekj ,n) w. p. r
rnf(t,n) if nk = 1, |k| = 1, k → j, mkj > 1

(Q − ekj , rk(n + ej)) w. p. r(nj+1)
rnf(t,n) if nk = 1, |k| = 1, k → j, mkj = 1

(Q,n− (k − 1)ei) w. p. 1
rnf(t,n)

(

n
k

)

λn,k
ni−k+1
n−k+1 if 2 ≤ k ≤ ni.Then, with τ := min{l : (Q(l),n(l)) = ((0), (1))},

p0(Q,n) = E(Q,n)

τ
∏

l=0

f(Q(l),n(l)).16



6.2 Simulation of likelihood surfa
es with pre-spe
i�ed driving values.It is possible to obtain simultaneous likelihoods for a variety of values for (r, Λ) using a singlerealization of the Markov-
hain X only.Lemma 6.4. Let {Xk, k ≥ 0} be a Markov 
hain with state spa
e (T ,N ) and with transitions
Q = (q(t,n),(t′,n′)) su
h that the hitting time

τ = inf
{

k ≥ 0 : Xk = ({0}, (1))
}for any given initial state (t,n) in (T ,N ) is bounded by some 
onstant 0 ≤ K2(t,n) < ∞. Let

g : (T ,N ) × (T ,N ) → [0,∞) be a measurable fun
tion and de�ne
u(t,n)(g) = E(t,n)

τ−1
∏

k=0

g(Xk, Xk+1) (6.8)for all X0 = (t,n) ∈ (T ,N )), with u({0},(1))(g) = 1. Then, for all (t,n) ∈ (T ,N )\({0}, (1)),
u(t,n)(g) =

∑

(t,n)∈(T ,N)

(t′,n′)≺(t,n)

g
(

(t,n
)

, (t′,n′))q
(

(t,n), (t′,n′)
)

u(t′,n′)(g) (6.9)and this set of equations has the unique solution (6.8).Proof. Similar to the proof of Lemma 6.1. 2We follow the spirit of Corollary 6.2 and suitably rewrite (4.3). To this end, de�ne p0
(r,Λ)(t,n) tobe the probability of observing the unordered, labelled tree (t,n) if the underlying mutation rateis r and the genealogy is governed by a Λ-
oales
ent.Corollary 6.5. Let (r, Λ) and (r∗, Λ∗) ∈ R+×M([0, 1]) be given. For ordered types and frequen
ies

(t,n), de�ne f(r,Λ)(t,n) through (6.4) � (6.6) and similarly f(r∗,Λ∗)(t,n). Consider a Markov-Chain {Xl = (t(l),n(l))} on (T ,N ) with transitions q(r∗,Λ∗) given by
(t,n) →























(sk(t),n) w. p. r∗

r∗
nf(r∗,Λ∗)(t,n) if nk = 1, xk0 dist., s(xk) 6= xj ∀j,

(rk(t), rk(n + ej)) w. p. r∗(nj+1)
r∗

nf(r∗,Λ∗)(t,n) if nk = 1, xk0 dist., s(xk) = xj ,

(t,n − (k − 1)ei) w. p. 1
r∗

nf(r∗,Λ∗)(t,n)

(

n
k

)

λ∗
n,k

ni−k+1
n−k+1 if 2 ≤ k ≤ ni.Then, de�ning

g(r,Λ),(r∗,Λ∗)((t,n), (t′,n′)) = f(r,Λ)(t,n)
q(r,Λ)

(

(t,n), (t′,n′)
)

q(r∗,Λ∗)

(

(t,n), (t′,n′)
) ,one has

p0
(r,Λ)(t,n) = E

(r∗,Λ∗)
(t,n)

τ−1
∏

k=0

g(r,Λ),(r∗,Λ∗)(Xk, Xk+1), (6.10)provided that the parameters (r, Λ), (r∗, Λ∗) ful�l the 
ondition
f(r,Λ)(t,n)q(r,Λ)

(

(t,n), (t′,n′)
)

> 0 ⇒ q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

> 0. (6.11)17



Again, this gives rise to a simulation algorithm, this time based on (r∗, Λ∗) rather than the�target� (r, Λ).Proof. We may rewrite (4.3) as
p0
(r,Λ)(t,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

f(r,Λ)(t,n)q(r,Λ)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′) (6.12)for the obvious 
hoi
e for q(r,Λ). Furthermore, using (6.11), (6.12) may be re
ast as
p0
(r,Λ)(t,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

f(r,Λ)(t,n)
q(r,Λ)

(

(t,n), (t′,n′)
)

q(r∗,Λ∗)

(

(t,n), (t′,n′)
)q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′),(6.13)hen
e
p0
(r,Λ)(t,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

g(r,Λ),(r∗,Λ∗)((t,n), (t′,n′))q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′), (6.14)so that Lemma 6.4 may dire
tly be applied to equation (6.14) and the Markov 
hain Xl =
(t(l),n(l)) with driving values r∗ and (λ∗

n,k)2≤k≤n (
oming from Λ∗) and transitions as above.Thus we arrive at the representation
p0
(r,Λ)(t,n) = E

(r∗,Λ∗)
(t,n)

τ−1
∏

k=0

g(r,Λ),(r∗,Λ∗)(Xk, Xk+1),as required. 2With this result, many estimators for p0
(r,Λ)(t,n) for various values of (r, Λ), respe
ting theabsolute 
ontinuity 
ondition (6.11), 
an be obtained by simulating just one realization of theMarkov 
hain with driving values (r∗, Λ∗). This seems 
omputationally mu
h more e�
ient thanusing di�erent driving values. However, one should be aware that one obtains 
orrelated estimatesand that the varian
e of the estimator for p0

(r,Λ)(t,n) depends on (r∗, Λ∗).Remarks. 1.) The same approa
h 
an be used to extend Corollary 6.3.2.) There are obvious improvements of this method. Combining likelihoods in approximatelyoptimal linear 
ombinations of the (ri, Λi) leads to a further redu
tion in varian
e (see [T01℄ fordetails). More advan
ed te
hniques su
h as a sophisti
ated importan
e sampling in the spirit of[SD00℄ or bridge sampling are 
urrently under investigation by the authors and part of an ongoingresear
h proje
t.7 An urn-like algorithm for generating samples7.1 Reversing the blo
k-
ounting pro
essIn this se
tion, we show how the so-
alled blo
k 
ounting pro
ess, whi
h keeps tra
k of the numberof blo
ks of a 
oales
ent-pro
ess, 
an be used to derive the site frequen
y spe
trum for an n-samplein the in�nite-sites model. The time-reversal of this pro
ess will later be useful in order to obtainurn-like algorithms to produ
e samples under the �nite- and in�nite-alleles model.18



Let {Πt}t≥0 be a Λ-
oales
ent. We denote by {Yt}t≥0 the 
orresponding blo
k 
ounting pro
ess,i.e. Yt = # of blo
ks of Πt is a 
ontinuous-time Markov 
hain on N with jump rates
qij =

(

i

i − j + 1

)

λi,i−j+1 , i > j ≥ 1.The total jump rate while in i is of 
ourse −qii =
∑i−1

j=1 qij . We write
pij :=

qij

−qii

(7.1)for the jump probabilities of the skeleton 
hain, noting that (pij) is a sto
hasti
 matrix. Note thatin order to redu
e i 
lasses to j 
lasses, an i − j + 1-merger has to o

ur. Let
g(n, m) := En

[ ∫ ∞

0

1{Ys=m} ds

] for n ≥ m ≥ 2 (7.2)be the expe
ted amount of time that Y , starting from n, spends in m. De
omposing a

ording tothe �rst jump of Y , we �nd the following set of equations for g(n, m):
g(n, m) =

n−1
∑

k=m

pnkg(k, m), n > m ≥ 2, (7.3)
g(m, m) =

1

−qmm

, m ≥ 2. (7.4)Let us write Y (n) for the pro
ess starting from Y
(n)
0 = n. Let τ := inf{t : Y

(n)
t = 1} be the timerequired to 
ome down to only one 
lass, and let

Ỹ
(n)
t := Y

(n)
(τ−t)−, 0 ≤ t < τbe the time-reversed path, where we de�ne Ỹ

(n)
t = ∂, some 
emetery state, when t ≥ τ .Proposition 7.1 (Time-reversal). With the above de�nitions, Ỹ (n) is a 
ontinuous-time Markov
hain on {2, . . . , n} ∪ {∂} with jump rates

q̃
(n)
ji =

g(n, i)

g(n, j)
qij , j < i ≤ n,and q̃

(n)
n∂ = −qnn, where g(n, m) is as in (7.2). The starting distribution of Ỹ (n) is given by

P{Ỹ
(n)
0 = k} = g(n, k)qk1,for ea
h k.Proof. The result follows from Nagasawa's Formula, see e.g. [RW87℄, and the observation

P{Ỹ
(n)
0 = k} = Pn

{

Ỹ (n) hits k, jumps to 1 from there}
= Pn

{

Ỹ (n) hits k
} qk1

−qkk

= g(n, k)qk1.Note that unless Λ is 
on
entrated on {0} (Kingman-
ase), the dynami
s of Ỹ (n) does depend on
n. 219



7.2 Generating samplesThe sto
hasti
 me
hanism des
ribed in Se
tion 3 allows in prin
iple to generate random samplesin a two-step pro
edure by �rst simulating a Λ-
oales
ent tree with real bran
h lengths, and thensuperimposing mutations along the bran
hes at rate r. However, from a 
omputational point ofview, it is more e�
ient to generate the genealogy �in one pass� from the root forwards to theleaves of the 
oales
ent tree with the help of the reversed blo
k 
ounting pro
ess. This is a
hievedby the following algorithm. We write #n :=
∑d

i=1 ni, and denote q̃
(n)
k := −q̃

(n)
kk .Algorithm 1.1) Draw K a

ording to the law of Ỹ

(n)
0 , i.e. P{K = k} = g(n, k)qk1. Begin with the a single�an
estral type� with multipli
ity K, i.e. t = (x1),x1 = 0,n = ((K)), and so d = 1. Set

s := 1.2) Given (t,n), let k := #n, and draw a uniform random variable U on [0, 1].
◦ If U ≤ kr

kr+q̃
(n)
k

, then draw one type, say I, a

ording to the present frequen
ies.- If nI = 1, repla
e xI by (s, xI0, . . . , xIj(I)), in
rease s by 1.- If nI > 1, 
reate new type xd+1 = (s, xI0, . . . , xIj(I)), set nd+1 := 1, in
rease s and
d ea
h by one, de
rease nI by one.

◦ If U > kr

kr+q̃
(n)
k

, then:- If #n = n, go to 4).- Otherwise, pi
k J ∈ {k + 1, . . . , n} with P{J = j} = q̃
(n)
#n,j/q̃

(n)
#n

. Choose one of thepresent types i (a

ording to their present frequen
y), and add J − #n 
opies ofthis type, i.e. repla
e ni := ni + J − #n.3) Repeat 2).4) Finally, in order to 
reate a numbered sample 
on�guration with ordered types (t,a) from
(t,n), pi
k uniformly an ordered partition a with #ai = ni, i = 1, . . . , d.Remark. It is easy to adapt this algorithm to work in the �nite- and in�nitely-many alleles
ases. In the 
ase of parent-independent mutation, one 
an also use an algorithm whi
h runs�ba
kwards in time�. Indeed, in order to simulate su
h a sample one follows lineages ba
kwards.�A
tive� an
estral lineages are lost either by (possibly multiple) 
oales
en
e or when hitting their�de�ning� mutation. Details 
an be found in [BB07℄. 28 Illustration and dis
ussion8.1 Beta-
oales
entsRe
all that the genealogy of a sample from a large but �nite population model of size N in thedomain of attra
tion of the 
lassi
al Fleming-Viot pro
ess is asymptoti
ally des
ribed by Kingman's
oales
ent, if time is measured (ba
kwards) in units of N/σ2 generations, where σ2 is the varian
eof the number of o�spring per individual. Thus, if the variability of individual o�spring numbersis very high, this limit may be inappropriate, and a multiple merger 
oales
ent 
ould be a morereasonable model for the genealogy of the sample under 
onsideration.20



The one-parameter family of multiple-merger 
oales
ents des
ribed by (1.4) with α ∈ (1, 2) 
an beused to des
ribe the genealogy of a sample at a neutral lo
us in a s
enario with (asymptoti
ally)in�nite varian
e of o�spring distributions, and the parameter α des
ribes the algebrai
 de
ay of thetail of the individual o�spring distribution. This 
an be justi�ed either by 
onsidering the time-
hanged genealogy of a (
ontinuous-state) bran
hing pro
ess of index α as in [BBC05℄, or moredire
tly by a sequen
e of Cannings-type models as in [S03℄: In ea
h generation, let individualsgenerate potential o�spring as in a super
riti
al Galton-Watson pro
ess, where the tail of theo�spring distribution varies regularly with index α, i.e. the probability to have more than k 
hildrende
ays like Const.×k−α. Among these, N are sampled without repla
ement to survive and form thenext generation. Then ([S03℄, Thm. 4 and Lemma 13), if time is measured in units of Cα × Nα−1generations, the genealogy of a random sample is des
ribed by a Beta(2 − α, α)-
oales
ent inthe limit N → ∞. In both approa
hes, the situation with �nite varian
e of individual o�springnumbers 
an be in
luded as the boundary 
ase α = 2, whi
h 
orresponds to Kingman's 
oales
ent.Intuitively, smaller α 
orresponds to more extreme variability among o�spring numbers.Note that impli
itly, the 
hoi
e of α �xes the s
aling of the individual mutation probability µ pergeneration: in a population of size N , this translates to a rate
r = CαNα−1µwith whi
h mutations appear on the (limiting) Beta(2 − α, α)-
oales
ent. In the 
ase α = 2, thisis the familiar formula r (= θ/2) = 2Nµ.8.2 Likelihood surfa
esThe Monte Carlo algorithm des
ribed by Corollaries 6.2 and 6.5 is implemented in beta genetree,whi
h is, together with a te
hni
al report do
umenting the program, available from [B07℄. Byrepeated 
alls of the program, it 
an be used to (approximately) 
ompute likelihood surfa
es forparametri
 families of 
oales
ents. Here, we illustrate this by an appli
ation to four arti�
ial(in�nitely many sites) datasets, ea
h of size n = 100, generated randomly using the algorithmdes
ribed in Subse
tion 7.2 for a Beta(2−α, α)-
oales
ent, with α = 1.25, 1.5, 1.75, 2.0 and mutationparameter r = 2.0. The rooted genetrees 
orresponding to the four datasets, drawn with theprogram treepi
 from Bob Gri�th's genetree software suite, 
an be found in the appendix.Figure 8.2 shows (approximately) the logarithm of the probability of observing ea
h of the fourdatasets under a Beta(2 − α, α)-
oales
ent, on whi
h mutations appear with rate r, as a fun
tionof (α, r) ∈ (1, 2] × (0, 4]. Computation was based on a grid of 25 × 25 points in the α-r-plane, thevalue at ea
h point is 
al
ulated by repla
ing the expe
ted value on the right-hand side of (6.7) byan empiri
al average using 107 independent runs of the Markov 
hain.Su
h likelihood surfa
es 
an be used to �nd maximum-likelihood estimators for the parameters

(α, r). Positions of maxima are given in the table below.Dataset (a) (b) (
) (d)true value of (α, r) (1.25, 2.0) (1.5, 2.0) (1.75, 2.0) (2.0, 2.0)ML estimator (α̂, r̂) (1.4, 2.67) (1.54, 3.0)∗ (1.63, 1.67) (2.0, 2.17)
∗there is a 
omparable value at (1.3, 1.67).These results appear promising in that it seems possible to (at least on the prin
ipal level) re
over

α and r from a sample, and in parti
ular to distinguish between Kingman- and multiple merger
oales
ents. Note that in the 
ases (a) � (
), 
orresponding to multiple merger behaviour, themaximal likelihood is assumed well away from the �Kingman axis� α = 2, and the maximal valueis at least two orders of magnitude larger than the highest value on the Kingman axis.Remarks 1.) Investigation of statisti
al properties of these ML-estimators and 
omparison withestimators based on likelihoods of summary statisti
s (as in [EW06℄) and on moment-estimators21



Figure 8.1: Likelihood-surfa
es for α = 1.25, 1.5, 1.75 and 2 (Kingman 
ase).

PSfrag repla
ements

log
10

(likelihood)

α

r

1.2 1.4 1.6 1.8 2.0

1

2

3

4 −15

−16

−16

−16

−18

−18

−18

−19

−19

−20

−20

−20

−
20

−20
−22

−24

−25

−26

−28

−30

−30

−35

−35
−35

−40

−40

−45(a) 1.25

PSfrag repla
ements

log
10

(likelihood)

α

r

1.2 1.4 1.6 1.8 2.0

1

2

3

4

−24

−25

−26

−26

−28

−28

−30

−
3
0

−
3
0

−
30

−35

−35

−
3
5

−40
−40

−45(b) 1.5
PSfrag repla
ements

log
10

(likelihood)

α

r

1.2 1.4 1.6 1.8 2.0

1

2

3

4
−15

−20

−20

−20

−25

−30

−30

−35

−16

−17
−18−19

−19

−22

−22

−24

−26

−28

(
) 1.75

PSfrag repla
ements

log
10

(likelihood)

α

r

1.2 1.4 1.6 1.8 2.0

1

2

3

4
−25

−27

−28
−29

−30

−30

−
32

−35

−35

−
35

−40

−40

−45(d) 2

22



based on the frequen
y spe
trum (e.g. a Watterson-like estimator of r for given Λ) will be treatedin future work.2.) The same method 
an obviously be applied to other families of Λ-
oales
ents, e.g. those de-s
ribed by (1.3) or (1.5). However, the 
hoi
e of a 
lass of 
oales
ents for a given dataset shouldbe based on biologi
al modelling 
onsiderations. Further dis
ussion and an appli
ation to �real�datasets will be subje
t of future work.A
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9 Appendix9.1 Underlying genetreesFigure 9.1: Genetrees 
orresponding to the four datasets analysed in Subse
tion 8.2 (α =
1.25, 1.5, 1.75 and 2 (Kingman 
ase)).
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