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AbstratOne of the entral problems in mathematial genetis is the inferene of evolutionaryparameters of a population (suh as the mutation rate) based on the observed geneti typesin a �nite DNA sample. If the population model under onsideration is in the domain ofattration of the lassial Fleming-Viot proess, suh as the Wright-Fisher- or the Moranmodel, then the standard means to desribe its genealogy is Kingman's oalesent. For thisoalesent proess, powerful inferene methods are well-established.An important feature of the above lass of models is, roughly speaking, that the numberof o�spring of eah individual is small when ompared to the total population size, and heneall anestral ollisions are binary only. Reently, more general population models have beenstudied, in partiular in the domain of attration of so-alled generalised Λ-Fleming-Viot pro-esses, as well as their (dual) genealogies, given by the so-alled Λ-oalesents, whih allowmultiple ollisions. Moreover, Eldon and Wakeley (2006) provide evidene that suh moregeneral oalesents might atually be more adequate to desribe real populations with ex-treme reprodutive behaviour, in partiular many marine speies. In this paper, we extendmethods of Ethier and Gri�ths (1987) and Gri�ths and Tavaré (1994, 1995) to obtain a like-lihood based inferene method for general Λ-oalesents. In partiular, we obtain a method toompute (approximate) likelihood surfaes for the observed type probabilities of a given sam-ple. We argue that within the (vast) family of Λ-oalesents, the parametrisable sub-familyof Beta(2 − α, α)-oalesents, where α ∈ (1, 2], are of partiular relevane. We illustrate ourmethod using simulated datasets, thus obtaining maximum-likelihood estimators of mutationand demographi parameters.1 IntrodutionEven though oalesents with multiple ollisions have been studied quite extensively in the mathe-matial literature over the last deade (see, e.g. [P99℄, [S99℄, [S03℄, [MS01℄, [BLG03℄ and [BBS06℄),and have been expliitly proposed as a model for genealogies in various biologial senarios, theiruse in biologial studies has been rather limited up to now (see, however, [EW06℄).We suspet that this is at least in part due to a lak of statistial tools, whih would allow to deidewhih among various multiple merger oalesents is most suitable for a given population, and whihwould furthermore allow to draw inferene about parameters of interest, e.g. mutation rates, insuh senarios. Our aim is to ontribute to remedying this lak by desribing and implementingmethods to ompute likelihoods of observed sequene data in senarios with multiple ollisions.These in turn an form the basis of tests and estimation proedures.In the present paper, we give partiular attention to the so-alled Beta-oalesents, whih are aone-parameter subfamily of Λ-oalesents inluding Kingman's oalesent (see (1.4) below), andwhih exhibit interesting theoretial properties as well as pratial advantages (see Setion 8).1.1 Coalesent proessesFor neutral population models of �xed population size in the domain of attration of the lassialFleming-Viot proess, suh as the Wright-Fisher- and the Moran model, the genealogy of a �nitesample an be desribed by the now lassial Kingman-oalesent, whih we introdue brie�y,followed by the more reently disovered and muh more general Λ-oalesents. For bakground1



on (lassial and generalised) Fleming-Viot proesses and variations of Kingman's oalesent, seee.g. [EK86℄, [D93℄, [EK93℄ and [DK99℄ as well as [H90℄, [N01℄, [HSW05℄ and [W06℄.Kingman's oalesent. Let Pn be the set of partitions of {1, . . . , n} and let P denote the setof partitions of N. For eah n ∈ N, Kingman [K82℄ introdued the so-alled n-oalesent, whihis a Pn-valued ontinuous time Markov proess {Πn(t), t ≥ 0}, suh that Πn(0) is the partitionof {1, . . . , n} into singleton bloks, and then eah pair of bloks merges at rate one. Given thatthere are b bloks at present, this means that the overall rate to see a merger between bloks is
( b
2 ). Note that only binary mergers are allowed. Kingman [K82℄ also showed that there exists a

P-valued Markov proess {Π(t), t ≥ 0}, whih is now alled the (standard) Kingman-oalesent,and whose restrition to the �rst n positive integers is the n-oalesent. To see this, note that therestrition of any n-oalesent to {1, . . . , m}, where 1 ≤ m ≤ n, is an m-oalesent. Hene theproess an be onstruted by an appliation of the standard extension theorem.
Λ-oalesents. Pitman [P99℄ and Sagitov [S99℄ introdued and disussed oalesents whih allowmultiple ollisions, i.e. more than just two bloks may merge at a time. Again, suh a oalesentwith multiple ollisions (whih will be later alled a Λ-oalesent) is a P-valued Markov-proess
{Π(t), t ≥ 0}, suh that for eah n, its restrition to the �rst n positive integers is a Pn-valuedMarkov proess (the �n-Λ-oalesent�) with the following transition rates. Whenever there are bbloks in the partition at present, eah k-tuple of bloks (where 2 ≤ k ≤ b ≤ n) is merging to forma single blok at rate λb,k, and no other transitions are possible. The rates λb,k do not depend oneither n or on the struture of the bloks. Pitman showed that in order to be onsistent, whihmeans that for all 2 ≤ k ≤ b,

λb,k = λb+1,k + λb+1,k+1,suh transition rates must neessarily satisfy
λb,k =

∫ 1

0

xk(1 − x)b−k 1

x2
Λ(dx), (1.1)for some �nite measure Λ on the unit interval. Note that (1.1) sets up a one-to-one orrespondenebetween oalesents with multiple ollisions and �nite measures Λ. Indeed, it is easy to see that the

λb,k determine Λ by an appliation of Hausdor�'s moment problem, whih has a unique solutionin this ase.Due to the restrition property, the Λ-oalesent on P (with rates obtained from the measure Λ asdesribed above) an be onstruted from the orresponding n-Λ-oalesents via extension.Note that the family of Λ-oalesents is rather large, and in partiular it annot be parametrisedby a few real variables. Important examples inlude Λ = δ0 (Kingman's oalesent) and Λ = δ1(leading to star-shaped genealogies, i.e. one huge merger into one single blok). Later, we willbe onerned with two important parametri sublasses of Λ-oalesents, namely the so-alledBeta-oalesents, where Λ has a Beta(2 − α, α)-density for some α ∈ (1, 2], and simple linearombinations of atomi measures of the type Λ = c1δ0 + c2δy for some onstants c1, c2 > 0 and
y ∈ (0, 1]. To avoid trivialities, we will heneforth assume that Λ 6= 0.Remarks (Multiple ollisions and reprodution events).1. An important di�erene between the lassial Kingman-oalesent and oalesents whih allowmultiple ollisions should be pointed out here. Roughly speaking, a Kingman oalesent arises asthe limiting genealogy of a so-alled Cannings population model ([C74℄, [C75℄), if the individualsprodue a number of o�spring that is negligible when ompared to the total population size (inpartiular, this requires that the variane of the number of o�spring per individual onverges to a�nite limit). More general oalesents with multiple mergers arise, one the o�spring distribution issuh that a non-negligible proportion, say x ∈ (0, 1], of the population alive in the next generation2



goes bak to a single reprodution event from a single anestor in the present generation. In thisase, x−2Λ(dx) an be interpreted as the intensity at whih we see suh proportions x. Preiseonditions on the underlying Cannings-models and the lassi�ation of the orresponding limitinggenealogies an be found in [MS01℄.2. In [EW06℄, Eldon and Wakeley assume that there are extreme reprodutive events, whihaount for non-negligible proportions of the population in a single reprodution event, in thepopulation dynamis of the Pai� Oyster. In fat, many marine speies seem to exhibit suhbehaviour (see also [A04℄ and [BBB94℄). 2Remarks (�Coming down from in�nity�).1. Not all Λ-oalesents seem to be reasonable as models for biologial populations, sine some donot allow for a �nite �time to the most reent ommon anestor� of the entire population (TMRCA).This is equivalent to �oming down from in�nity in �nite time�: it means that, given any initialpartition in P , and for all ε > 0, the partition Π(ε) a.s. onsists of �nitely many bloks only.Letting
λb =

b
∑

k=2

(k − 1)

(

b

k

)

λb,k,Shweinsberg [S00℄ proves that if either Λ has an atom at 0 or Λ has no atom at zero and
λ∗ :=

∞
∑

b=2

λ−1
b < ∞, (1.2)then the orresponding oalesent does ome down from in�nity (and if so, the time to ome downto only one blok has �nite expetation).2. An important example for a oalesent, whih (only just) does not ome down from in�nity isthe Bolthausen-Sznitman oalesent, where Λ(dx) = dx is the uniform distribution on [0, 1]. Thisis the Beta(2−α, α)-oalesent with α = 1, and it plays an important role in statistial mehanismodels for disordered systems (see e.g. [Bo06℄ for an introdution).3. However, it should be observed that all n-Λ-oalesents (for �nite n) do have an a.s. �nite

TMRCA. 2Examples for oalesents whih satisfy (1.2) are the proess onsidered in [EW06℄, orrespondingto
Λ = c1δ0 + c2δy, c1 > 0, c2 ≥ 0 (1.3)for y ∈ (0, 1) (in partiular Kingman's oalesent if c1 = 1, c2 = 0; but note that [EW06℄ alsoonsider a senario where c1 = 0), the so-alled Beta(2 − α, α)-oalesents with α ∈ (1, 2), where

Λ(dx) =
Γ(2)

Γ(2 − α)Γ(α)
x1−α(1 − x)α−1 dx, (1.4)(even though the right-hand side of (1.4) makes no sense for α = 2, Kingman's oalesent an beinluded as the weak limit Beta(2 − α, α) → δ0 as α → 2), and a oalesent disussed in Durrettand Shweinsberg [DS05℄,

Λ(dx) = c1δ0 + c2xdx, c1, c2 ≥ 0, c1 + c2 > 0, (1.5)whih they propose to desribe the genealogy at a neutral lous whih is suitably linked to seletedloi undergoing reurrent seletive sweeps.It is easy to interpret the behaviour of the population orresponding to the oalesent assoiatedwith (1.3). The �rst atom stands for a Kingman-omponent, i.e. essentially reprodution with3



�nite variane. The seond atom means that with rate c2, a single individual an produe 100×y%of the population urrently alive in a single reprodution event.Populations with extreme reprodutive behaviour. Reently, biologists have studied thegeneti variation of ertain marine speies with rather extreme reprodutive behaviour, see, e.g.,Árnason [A04℄ (Atlanti Cod) and [BBB94℄ (Pai� Oyster). Eldon and Wakeley [EW06℄ analysedthe sample desribed in [BBB94℄ and proposed a one-parameter family of Λ-oalesents, whihomprises Kingman's oalesent as a boundary ase, namely those desribed by (1.3), as modelsfor their genealogy. Inferene is then based on a simple summary statisti, the number of segregatingsites and singleton polymorphisms. They onlude that ([EW06℄, p. 2622):For many speies, the oalesent with multiple mergers might be a better null modelthan Kingman's oalesent.In this paper, we obtain a method to ompute the full likelihood of sequene observations underthe in�nitely-many sites model for general Λ-oalesents. This method an then be used to obtainmaximum-likelihood estimators for demographi and mutational parameters.We apply our method to the speial ase of the one-parameter family of Beta(2−α, α)-oalesentsfrom (1.4), where α ∈ (1, 2], and illustrate its use on simulated datasets. These oalesents ariseas limits of genealogies of a lass of neutral models, where the probability that the individuallitter size exeeds k ∈ N dereases like C × k−α for some C > 0 ([S03℄, [BBC05℄). See Setion 8for further details. Still, it appears an open problem to determine whih Λ-oalesent is mostsuitable in whih biologial senario.For an appliation of our method to real sequene data and a more thorough disussion ofunderlying biologial assumptions, we refer to a forthoming artile.Inferene for Kingman's oalesent. E�ient likelihood-based inferene methods for King-man's oalesent, some solving reursion (4.4) approximately via Monte Carlo methods, others us-ing MCMC, have been developed sine the beginning of the 1990ies, see [EG87℄, [GT94a℄, [GT94b℄,[GT94℄, [GT96a℄, [GT96b℄, [GT97℄, [FKY99℄, [DIG04a℄, [SD00℄. In [SD00℄, Stephens and Don-nelly provide proposal distributions for importane sampling, whih are optimal in some sense, andompare them to various other methods. Their importane sampling sheme seems, at present, tobe the most e�ient tool for inferene for relatively large datasets.1.2 Outline of the paperIn Setion 2, we disuss some ombinatorial properties of observations omplying with the in�nitely-many-sites model whih we will require subsequently.In Setion 3, we present the probabilisti neutral oalesent model that gives rise to our data.Setion 4 ontains reursions for the type probabilities assuming a given underlying Λ-oalesent.In Setion 5, we brie�y state reursions of the above kind in the �nite- and in�nite-alleles ases.A detailed derivation of the �nite-alleles reursions an be found in [BB07℄. For ompleteness, wereall the reursion obtained by Möhle in [M06℄ for the in�nite-alleles model.In Setion 6, we derive proposal transitions for a Markov hain that we then use to obtain aMonte Carlo sheme for the type probabilities resp. likelihoods obtained in Setion 4 under the
Λ-oalesent in the in�nite-sites model.Setion 7 ontains an urn-like algorithm for onvenient generation of datasets under the generaloalesent model. 4



Figure 2.1: Forbidden sub-patterns in the IMS
0 1
1 0
1 1(a) 0 0

0 1
1 0
1 1(b)(a) Known anestral types, (b) Unknown anestral typesIn Setion 8, we disuss population models whose genealogies are naturally approximated by Beta-oalesents, and present some likelihood-surfaes, obtained by applying our Monte Carlo methodto several simulated datasets.Finally, in Setion 9 (the Appendix), we inlude the original genetrees orresponding to our samplesthat lead to the likelihood-surfaes in Setion 8.2 Combinatoris of the in�nitely-many-sites modelThe in�nitely-many-sites (IMS) model ([K69℄, [W75℄) is a popular model in population genetis todesribe the variability in DNA samples. It assumes that the lous under onsideration onsists ofa(n in theory in�nitely long) sequene of ompletely linked sites and that eah site is hit at mostone by a mutation in the entire history of the sample. It may e.g. be justi�ed by onsidering asuitable limit of diverging sequene lengths and small mutation rates. In this setion, we disusssome ombinatorial properties of observations omplying with the IMS model whih we requirelater. See e.g. [EG87℄, [H90℄, [GT95℄ or [T01℄ for an overview.Observations onsist of n aligned sequenes, where at most two di�erent bases are visible at eahsite, and say s sites are segregating. To �x notation, we think of numbering the samples and thesegregating sites in some (arbitrary) fashion.2.1 Known anestral types and rooted genealogial treesAssuming that anestral types are known, e.g. by omparing with a sequene from a suitableoutgroup, the data is represented by an n × s matrix S = (sij), where sij = 0 if sample i has theanestral type at segregating site j, and sij = 1 if it has the mutant type. It is natural to ondensethis matrix by removing idential rows (orresponding to types whih were observed more thanone in the sample). Enumerate the, say d ≤ n, di�erent types in some (arbitrary) way. Thenthe data an be equivalently desribed by a d × s-matrix S together with an ordered partition

a = (a1, . . . , ad) of {1, . . . , n}, where ai are the (numbers of the) samples of type i. The data areompatible with the IMS model if no sub-pattern as in Figure 2.1 (a) or any of its row permutationsappears in S; equivalently, if Oj denotes the set of types whih arry mutation j, we must havefor any pair k, j that Oj ∩Ok 6= ∅ ⇒ Oj ⊂ Ok or Ok ⊂ Oj . Violations of the IMS assumption anbe aused by parallel or bak mutations or by reombination. A data matrix S ompatible withIMS an be equivalently desribed by (the partition a and) a rooted genealogial tree t, wherethe leaves orrespond to observed sequenes and internal nodes to mutations. A possible way toenode suh trees is via
t =

(

x1, . . . ,xd

)

, (2.1)where xi = (xi0, xi1, . . . , xij(i)) is the sequene of mutations observed when traing from type ibakwards to the root. The fat that t is a rooted tree is equivalent to the following onditions:1) Coordinates within eah sequene xi are distint.5



2) If for some i, i′ ∈ {1, . . . , d} and j, j′ we have xij = xi′j′ , then
xi,j+k = xi′,j′+k, for all k.3) There is at least one oordinate ommon to all sequenes.It is ustomary to number mutations by {1, . . . , s} and take xij(i) = 0 for the �root mutation�. Inorder to reover S from t, simply put 1s in row i at all olumns xik, 0 ≤ k < j(i). A onstrutiveway of obtaining t from the matrix S is Gus�eld's algorithm ([G91℄): Interpret the olumns of

S as binary numbers (with the �rst row as the most signi�ant bit) and re-order them aordingto dereasing size (with the largest in the leftmost olumn, and ties resolved arbitrarily). Theentries of xi are found by �reading o�� from right to left the olumns j with sij = 1. Note that thisimpliitly puts a temporal order on the observed mutations, and orders mutations aording to this�age�, whih is not neessarily ompletely determined by the atual sequene data. This is harmlessbeause we will later �fator out� the mutation labels by onsidering appropriate equivalene lasses:Introdue equivalene relations on the set of types by writing
(x1, . . . ,xd) ∼ (y1, . . . ,yd), (2.2)if there is a bijetion ξ : N0 → N0 with yij = ξ(xij), i ∈ 1, . . . , d; j = 0, 1, . . . . Furthermore, write
(x1, . . . ,xd) ≈ (y1, . . . ,yd), (2.3)if there is a bijetion ζ : N0 → N0 and a permutation σ on {1, . . . , d}, suh that yσ(i),j = ζ(xij), i =

1, . . . , d; j = 0, 1, . . .Under �∼�, the onrete labels of mutations are irrelevant. Note that in what follows, we suppressthe distintion between suh an equivalene lass, denoted by [t], and a representative, denotedby t. Under �≈�, tags of types beome irrelevant, too.Example: A dataset of eight alleles, whih is onsistent with the above rules.
1 : (6, 1, 0) 5 : (7, 1, 0)

2 : (6, 1, 0) 6 : (8, 5, 1, 0)

3 : (10, 1, 0) 7 : (4, 3, 2, 0)

4 : (7, 1, 0) 8 : (9, 4, 3, 2, 0)Note that the alleli types (6, 1, 0) and (7, 1, 0) appear twie in the example, i.e. have multipliitytwo. For notational onveniene, our sequenes all end in 0, this re�ets the existene of a ommon�root�. The labels of the mutations and the root are by no means required to be dereasing, thisis just suitable onvention.Given a sample of size n, we will now write (t,n) for the pair onsisting of the set of di�erent types
t = (x1, . . . ,xd), d ≤ n, and the multipliity vetor n. In the above example, we have d = 6 and

(t,n) =
(

(

(6, 1, 0), (10, 1, 0), (7, 1, 0), (8, 5, 1, 0), (4, 3, 2, 0), (9, 4, 3, 2, 0)
)

, (2, 1, 2, 1, 1, 1)
)

.If we take numbered samples into aount, i.e. if we let ai ⊂ {1, . . . , n}, i ∈ {1, . . . , d} denote theset of the numbers of the sequenes with type xi, then one an also onsider the set of types andordered partitions (t, a), where a = (a1, . . . , ad), in the above example given by
(t,a) =

(

(

(6, 1, 0), (10, 1, 0), (7, 1, 0), (8, 5, 1, 0),(4, 3, 2, 0), (9, 4, 3, 2, 0)
)

,

(

{1, 2}, {3}, {4, 5}, {6}, {7}, {8}
)

)

.The probabilisti mehanism behind these data and the neessary equivalene relation will bedisussed in detail in Setion 3. 6



Figure 2.2: Rooted and unrooted tree orresponding to the example.
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(b) Unrooted tree2.2 Unknown anestral types and unrooted genealogial treesIf anestral types are not known, the data matrix S is only spei�ed up to �ips of its olumns.As above, it su�es to onsider the ondensed data matrix, whih we again denote by S with d(pairwise di�erent) rows together with the partition a. The data are ompatible with the IMSmodel in this ase if and only if no sub-pattern as in Figure 2.1 (b) or any of its row permutationsappears in S (the so-alled �four gamete rule�). If they are ompatible in this sense, they orrespondto an unrooted genealogial tree, and a valid �polarised� data matrix (or equivalently, a rooted tree
t) an be obtained by �ipping in suh a way that in eah olumn, 0 is the more frequent type.All other possible polarisations (resp. ompatible rooted trees) an be obtained by passing to anunrooted tree, and subsequent re-rooting.To build an unrooted tree Q from a(n equivalene lass of) rooted tree(s) t as enoded in (2.1),proeed as follows: Verties orrespond to observed and inferred sequenes (types), where aninferred type represents an internal node of degree ≥ 3 in t; edges of t are merged at internalnodes of degree 2 (whih were �internal� mutations in t), and the resulting edges of Q are markedby the number of mutations they arry. Thus, Q is desribed by

• its set of verties V (together with an ordered �meta-partition� a desribing whih samplesorrespond to whih vertex, where possibly some verties, namely the inferred types, aremarked by ∅), and
• a matrix (mij), where mij is the number of mutations between verties i and j (with thestipulation that mij = 0 if there is no edge between i and j in Q).Note that this tree need not be binary. Two (equivalene lasses under ∼ of) rooted genealogialtrees t, t′ (with the same enumerated types and the same set of mutation labels) are equivalentas unrooted trees, in symbols t ∼u t′, if they lead to the same unrooted tree in the onstrutionabove.Alternatively, given an unpolarised d × s observation matrix S one an ompute the pairwisedi�erene matrix with entries

Dij := #
{

1 ≤ k ≤ s : Sik = 0, Sjk = 1 or Sik = 1, Sjk = 0
}

. (2.4)7



It is easy to see that the four-gamete rule for S implies that this metri D on the set of typessatis�es the �four-point ondition�:any four elements an be named x, y, u, v suh that
Dxy + Duv ≤ Dxu + Dyv = Dxv + Dyu.

(2.5)Thus, the pairwise distane (Hamming) metri D is additive, and orresponds to a unique unrootedtree Q with integer branh lengths (see e.g. [WSS77℄, or use neighbour-joining [SK88℄).These two methods of obtaining an unrooted tree from an unpolarised observation matrix S areequivalent. Sine a rooted tree t = (x1, . . . ,xd) ompatible with a polarisation of S also gives riseto (the same) pairwise distane matrix C(t) on the d types with entries
cij(t) := #{k : xik 6∈ xj} + #{k : xjk 6∈ xi}, 1 ≤ i, j ≤ d(with an obvious abuse of the � 6∈�-notation), this follows from the uniqueness of the tree de�ningan additive metri. Thus we have

t ∼u t′ ⇐⇒ C(t) = C(t′). (2.6)For a given unrooted tree Q with γ sequenes (inluding inferred sequenes) with mj mutationsouring on edge j (j = 1, . . . , |E|) and s segregating sites altogether (i.e. s =
∑

j mj), there are
γ +

∑

j

(

mj − 1
)

= s + 1 (2.7)possible positions of the root (and thus this many di�erent rooted trees orresponding to Q): theroot ould be at any of the γ sequenes or between any two mutations on any edge.3 In�nite sites data and Λ-oalesent treesTo obtain an n-sample under the in�nite-sites model from a oalesent tree, we perform the follow-ing probabilisti experiment. Note that by duality, this desribes the distribution of a sample ofsize n from the stationary distribution of a Λ-generalised Fleming-Viot proess ([DK99℄, [BLG03℄)with mutation proess as in [EG87℄.(i) Run an n-Λ-oalesent. Obtain a rooted oalesent tree.(ii) On this rooted tree with n leaves (numbered from 1 to n), plae mutations along the branhesat rate r (note that in the �Kingman world�, this parameter is ustomarily alled θ/2).(iii) Label these mutations randomly: Given there are s mutations in total, attah randomly(i.e. aording to the uniform distribution) the labels from 1, . . . , s to these mutations.(iv) Turn this oalesent tree with labelled mutations and numbered leaves into a �genetree� bybreaking edges at mutations, resulting in verties of degree 2, and then moving the branhingpoints inwards until they reah the nearest mutation. Ignore the lengths of the edges.(v) A type is the sequene of labels of mutations observed following the path bakwards froma leaf to the root. Enumerate the di�erent types randomly to obtain a set of sequenes
{x1, . . . ,xd}, where d ≤ n is the number of di�erent types.In the following, we suppress the distintion between t and its equivalene lass [t] under�∼� de�ned in (2.2). 8



Figure 3.1: Two oalesent trees onsistent with the example from Subsetion 2.1.
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(b) Coalesent tree with multiple ollisions(vi) Let Ai ⊂ {1, . . . , n} be the random set of the numbers (being attahed to leaves in Step 2)whih have type i ∈ {1, . . . , d}. We obtain a random pair (T,A), where A = (A1, . . . , Ad) isan ordered random partition.(vii) Finally, let
p(t,a) := P{(T,A) = (t,a)}.Note that, by the symmetry of the oalesent,

p
(

t, (a1, . . . , ad)
)

= p
(

t, (π(a1), . . . , π(ad))
) for any permutation π ∈ Sn. (3.1)We all suh pairs (t,a) a numbered sample on�guration with ordered types. Later, it will be usefulto onsider only the frequenies of the ordered types, i.e. de�ne a map

φ : (t,a) 7→ (t,n),where n = (n1, . . . , nd) := (#a1, . . . , #ad), i.e.∑d

i=1 ni = n. We denote its probability distributionby
p0
(

(t,n)
)

:= p
(

φ−1(t,n)
)

=
n!

n1! · · ·nd!
p
(

(t,a)
) (3.2)for any (t,a) ∈ φ−1(t,n) by the observation in (3.1).For notational simpliity, we introdue the following slightly ambiguous operations: By a − ei,we mean a partition obtained from a by removing one element from the set ai (with impliitadjustments so that the result is a partition of {1, . . . , n− 1}). Note that we will not be onernedwith the fat whih element we atually remove, sine, by (3.1), the type probability p will notdepend on the atual hoie. Similarly, by a− (k − 1)ei we mean the partition obtained from a byremoving k − 1 elements from ai (ertainly, this only makes sense if #ai ≥ k). Finally, a + ei willbe the partition obtained from a by adding an arbitrary element of N to the set ai that is not yetontained in any other set al, l = 1 . . . d. 9



4 Genealogial tree probabilities for Λ-oalesents in thein�nite-sites modelIn this setion, we obtain reursions for the probability of given type on�guration of a samplebased on the probabilisti model disussed above. These reursions then lead to a Monte-Carlomethod to (approximately) ompute the probability of on�gurations under various Λ-oalesents.We will distinguish two ases. In the �rst ase, we will onsider ordered labelled samples of type
(t,a), whih take the full information ontained in the partition a into aount. In the seond ase,we restrit to numbered ordered on�gurations of the type (t,n), whih only ount the multipliities
n.4.1 Ordered labelled samplesIt is in priniple possible to ompute the exat probabilities of a given type on�guration (t,a) viaa reursive formula.Theorem 4.1. We have, for given (t,a),

p(t,a) =
1

nr +
∑n

k=2

(

n
k

)

λn,k

∑

i: ni≥2

ni
∑

k=2

(

ni

k

)

λn,k p(t,a− (k − 1)ei)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1, xk0 distinct

s(xk) 6=xj ∀j

p(sk(t),a)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1,

xk0 distinct

∑

j:s(xk)=xj

p(rk(t), rk(a + ej)), (4.1)where ej denotes j-th unit vetor, sk(t) deletes �rst oordinate of the k-th sequene in t, s(xk)removes the �rst oordinate from the sequene xk, rk(t) removes k-th sequene from t, and xk0`distint' means that xk0 6= xij for all (i, j) 6= (k, 0). The boundary ondition for the root is
p({0}, (1)) = 1.Proof. Similar to the Kingman-ase by onditioning on the last event in the oalesent history,taking multiple mergers into aount. The �rst term on the right-hand side orresponds to a(multiple) ollision of lineages of the same type, hene requiring multipliity at least two, theseond term refers to the event that a mutation is removed from a type (neessarily a singleton),whose anestral type is not visible in the sample at present. Finally, the third term orrespondsto removing a mutation from a type whose anestor is already present in the sample. 24.2 Numbered ordered samplesReall from (3.2), using the notation of Theorem 4.1, that

p0(t,n) =
n!

n1! · · ·nd!
p(t,a). (4.2)

10



Thus, for the types and multipliities (t,n), we obtain
p0(t,n) =

1

nr +
∑n

k=2

(

n
k

)

λn,k

∑

i: ni≥2

ni
∑

k=2

(

ni

k

)

× λn,k

n!

n1! · · ·nd!

n1! · · · (ni − k + 1)! · · ·nd!

(n − k + 1)!
p0(t,n − (k − 1)ei)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1, xk0 distinct

s(xk) 6=xj ∀j

p0(sk(t),n)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1,

xk0 distinct

∑

j:s(xk)=xj

n!

n1! · · ·nd!

×
n1! · · · (nj + 1)! · · ·nd!

n!
p0(rk(t), rk(n + ej)).Sine

(

ni

k

)

n!

n1! · · ·nd!

n1! · · · (ni − k + 1)! · · ·nd!

(n − k + 1)!

=
ni!

k!(ni − k)!

n!(ni − k + 1)!

ni!(n − k + 1)!
=

(

n

k

)

ni − k + 1

n − k + 1
,rearrangement leads toCorollary 4.2. For given (t,n), we have

p0(t,n) =
1

nr +
∑n

k=2

(

n
k

)

λn,k

∑

i: ni≥2

ni
∑

k=2

(

n

k

)

λn,k

ni − k + 1

n − k + 1
p0(t,n − (k − 1)ei)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1, xk0 distinct

s(xk) 6=xj ∀j

p0(sk(t),n)

+
r

nr +
∑n

k=2

(

n
k

)

λn,k

∑

k: nk=1,

xk0 distinct

∑

j:s(xk)=xj

(nj + 1)p0(rk(t), rk(n + ej)), (4.3)with the usual boundary ondition for the root, i.e. p0({0}, (1)) = 1.Remark. Regarding our seond equivalene relation �≈�, de�ned in (2.3), the probability
p∗([t]≈,n) of observing a partiular unordered and unlabelled tree is related to p0(t,n) via aombinatorial fator

p∗([t]≈,n) =
1

a(t,n)
p0(t,n),where, with tσ := (xσ(1), . . . ,xσ(d)), nσ = (nσ(1), . . . , nσ(d)),

a(t,n) = #
{

σ ∈ Sd : tσ ∼ t,n = nσ

}is the number of permutations of the types whih leave the ombinatorial struture unhanged(see [GT95℄). 2

11



Remark. In the ase of Kingman's oalesent, we reover from (4.3) the following reursion, whihis due to Ethier and Gri�ths, see [EG87℄ and [G89℄ (and replae r by θ/2):
p0(t,n) =

1

nr +
(

n
2

)

∑

k: nk≥2

(

n

2

)

nk − 1

n − 1
p0(t,n − ek)

+
r

nr +
(

n
2

)

∑

k: nk=1, xk0 distinct

s(xk) 6=xj ∀j

p0(sk(t),n)

+
r

nr +
(

n
2

)

∑

k: nk=1,

xk0 distinct

∑

j:s(xk)=xj

(nj + 1)p0(rk(t), rk(n + ej)) (4.4)wit the same boundary ondition as above. 2Remark. For samples of size n = 2, the reursion (4.3) an easily be solved expliitly (and ofourse independently of Λ, as long as Λ([0, 1]) = 1): We have
p0
(

(0), (2)
)

=
1

1 + 2r
and (4.5)

p0
(

(x1,x2), (1, 1)
)

= 2

(

j(1) + j(2)

j(1)

)

( r

1 + 2r

)j(1)+j(2) 1

1 + 2r
(4.6)for x1 = (x10, . . . , x1j(1)), x2 = (x20, . . . , x2j(2)) (and all entries distint exept x1j(1) = x2j(2) = 0).

24.3 Unrooted genealogial treesIf the anestral types at segregating sites are not known, the data only determine an unrooted tree
Q, as disussed in Subsetion 2.2. The probability of an observation (Q,a) is then given by

p(Q,a) =
∑

T :C(T )=C(T0)

p(T, a), (4.7)where T0 is any rooted tree ompatible with Q (and the sum has no. of segregating sites + 1summands), or with unlabelled samples
p0(Q,n) =

∑

T :C(T )=C(T0)

p0(T,n). (4.8)By ombining (4.8) and (4.3) and re-arranging as in [GT95℄, Set. 2.2, we obtain
p0(Q,n) =

1

nr +
∑n

ℓ=2

(

n
ℓ

)

λn,ℓ

∑

i: ni≥2

ni
∑

k=2

(

n

k

)

λn,k

ni − k + 1

n − k + 1
p0(Q,n − (k − 1)ei)

+
r

nr +
∑n

ℓ=2

(

n
ℓ

)

λn,ℓ

∑

k: nk=1, |k|=1

k→j, mkj>1

p0(Q − ekj ,n)

+
r

nr +
∑n

ℓ=2

(

n
ℓ

)

λn,ℓ

∑

k: nk=1, |k|=1

k→j, mkj=1

∑

j:s(xk)=xj

(nj + 1)p0(Q − ekj , rk(n + ej)), (4.9)12



where |k| = 1 means that the degree of vertex k is 1, k → j means that vertex k is joined to vertex
j, and �nally, in the last term on the right-hand side, vertex k is removed from Q. The boundaryondition is p0(Q, (1)) = 1 for the tree onsisting of one vertex only.Remarks 1.) Note that it may be possible to draw inferene about anestral states at some or allsegregating sites by omparing likelihoods for various positions of the root.2.) As above, reursion (4.9) an be solved expliitly for samples of size n = 2. In fat, the onlyinformation about the two sequenes in the in�nitely-many-sites model is then aptured by thenumber of segregating sites (i.e. the number of mutations), say, s. Hene, by a slight abuse ofnotation, we have

p0((0), (2)) =
1

1 + 2r
,and

p0((s)), (1, 1)) = 2

(

2r

1 + 2r

)s
1

1 + 2r
, s = 1, 2, . . . (4.10)in keeping with the idea that two samples are separated by a geometri number of mutations. 25 Finite- and in�nite alleles reursionsIn this setion, we provide similar reursions for the �nite- and in�nite alleles models of mathemat-ial genetis. The �nitely-many-alleles reursions an either be derived using Donnelly and Kurtz'[DK99℄ modi�ed lookdown onstrution, assuming a given underlying generalised Λ-Fleming-Viotproess, or via alulations based on the generator of the population model, as in desribed[DIG04a℄ for the Kingman-ase. A detailed derivation of the reursions, using both approahes,an be found in [BB07℄.Here, we onsider type hanges, or mutations, ourring at rate r > 0, and let P = (Pij) denote astohasti transition matrix on the orresponding �nite type spae E with #E =: d ≥ 1, and withequilibrium µ. This means that if a mutation ours, type i mutates to type j with probability Pij .Silent mutations are allowed (i.e. Pjj ≥ 0). Due to exhangeability, we will merely be interestedin the type frequeny probability p0(n). So, the only relevant information is (of ourse) how manysamples were of whih type. For n = (n1, . . . , nd) ∈ Zd

+, denote #n := n1 + · · ·+ nd. Let p0(n) bethe probability that in a sample of size #n, there are exatly nj of type j, j = 1, . . . , d.Theorem 5.1. Abbreviate n := #n, and write ek for the k-th anonial unit vetor of Zd. Then,the reursion for p0 is
p0(n) =

r

rn

d
∑

j=1

d
∑

i=1

(ni + 1 − δij)Pijp
0(n − ej + ei)

+
1

rn

d
∑

j=1
nj≥2

nj
∑

k=2

(

n

k

)

λn,k

nj − k + 1

n − k + 1
p0(n− (k − 1)ej) (5.1)with boundary onditions p0(ej) = µj . In the Kingman ase, this agrees with (3) in [DIG04a℄.In the in�nitely-many alleles ase, one assumes that every mutation, whih ours along the oa-lesent tree with rate r > 0, leads to an entirely new type, no other information is being retained.If we take a sample of n ∈ N genes, it is natural to ask for the probability p0(n) to sample aspei�, non-ordered allele on�guration n = (n1, . . . , nℓ), where ℓ ≤ n is the number of di�erenttypes observed in the sample, and ni, for i ∈ {1, . . . , ℓ} is the number of times that type i is being13



observed. Let ñj = (n1, . . . , nj−1, nj+1, . . . , nℓ). Using oalesent arguments, it is possible obtainthe following reursion, see [M06℄, Theorem 3.1.Theorem 5.2 (Möhle). The probability of a non-ordered allele on�guration n = (n1, . . . , nℓ)satis�es the reursion given by p0(1) = 1 and
p0(n) =

nr
∑n

k=2

(

n
k

)

λn,k + nr

ℓ
∑

j=1
nj=1

1

ℓ
p0(ñj)

+
1

∑n

k=2

(

n
k

)

λn,k + nr

n
∑

k=2

ℓ
∑

j=1
nj≥k

(

n

k

)

λn,k

nj − k + 1

n − k + 1
p0(n− (k − 1)ej). (5.2)In the Kingman-ase, this reursion an be solved expliitly and leads to an alternative formulationof the famous Ewens sampling formula, see [E79℄. It seems that the only other ase in whih anexpliit solution is known is the ase Λ = δ1, in whih the genealogy is star-shaped.6 A Monte Carlo method for the omputation of the likeli-hoods in the in�nite-sites modelWe �rst derive a simple Monte-Carlo approximation of the exat sampling probabilities in thein�nite-sites model by simulating a Markov hain bakwards along the sample paths of the oales-ent (essentially based on [GT94b℄, see also [T01℄). Note that this an be viewed as an integrationover all paths of Algorithm 1 (see Setion 7.2) whih lead to the observed on�guration � theseorrespond to �oalesent histories� as onsidered in [SD00℄, [DIG04a℄.6.1 An unbiased estimator for p0(t,n)Given ordered types and frequenies (t,n), we de�ne the tree omplexity of (t,n) as

c[(t,n)] =
d
∑

i=1

ni +
d
∑

i=1

#xi ∈ N, (6.1)where, for 1 ≤ i ≤ d, #xi denotes the length of the sequene xi (exlusive of the root).Note that the tree omplexity is the sum of the sample size and the number of segregating sites.This de�nition transfers in the obvious way also to the pair of ordered types and partitions (t,a).It is lear that the tree omplexity is independent of the hoie of a representative t from theequivalene lass [t] and hene well-de�ned. If c[(t,n)] = 1, the minimum for a non-vanishing tree,then the tree onsists only of its root with multipliity one, i.e. (t,n) = ({0}, (1)) =: t0. We write
(t′,n′) ≺ (t,n)if (t′,n′) an be reahed from (t,n) by either removing one mutation or a oalesene event, seebelow. In this ase, c[(t′,n′)] < c[(t,n)]. Hene observe that the reursions (4.4) and (4.3) areproper reursions in the sense that they stritly derease the tree omplexity in eah step.The following lemma is an appropriate version of the orresponding Lemma 6.1 in [T01℄.Lemma 6.1. Let {Xk, k ≥ 0} be a Markov hain on the spae of ordered types with orrespondingfrequenies, denoted by (T ,N ), and with transitions Q = (q(t,n),(t′,n′)) suh that the hitting time

τ = inf
{

k ≥ 0 : Xk = ({0}, (1))
}14



for any given initial state (t,n) in (T ,N ) is bounded by some onstant 0 ≤ K1(t,n) < ∞. Let
f : (T ,N ) → [0,∞) be a measurable funtion and de�ne

u(t,n)(f) = E(t,n)

τ
∏

k=0

f(Xk) (6.2)for all X0 = (t,n) ∈ (T ,N ), so that
u({0},(1))(f) = f

(

{0}, (1)
)

.Then
u(t,n)(f) = f

(

(t,n)
)

∑

(t,n)∈(T ,N)

(t′,n′)≺(t,n)

q(t,n),(t′,n′)u(t′,n′)(f) (6.3)for all (t,n) ∈ (T ,N )\({0}, (1)). Conversely, the unique solution of (6.3) is given by (6.2).Remark. If the transitions Q = (q(t′,n′),(t,n)) are only positive if c[(t′,n′)] < c[(t,n)], then
τ = inf

{

k ≥ 0 : Xk = ({0}, (1))
}is always bounded from above by the tree omplexity of the initial state. 2Proof. Sine τ ≤ c[(t,n)], the expeted value remains �nite for eah initial ondition. Now,ompute

u(t,n)(f) = E(t,n)

τ
∏

k=0

f(Xk)

= f(t,n) E(t,n)

[

E(t,n)

[ τ
∏

k=1

f(Xk)
∣

∣

∣X1

]

]

= f(t,n) E
[

uX1(f)
]

= f(t,n)
∑

(t′,n′)∈(T ,N)

(t′,n′)≺(t,n)

q(t,n),(t′,n′)u(t′,n′)(f),as required. 2The result provides a simulation method for solving reursions of type (6.3): simulate a trajetoryof the hain X starting at (t,n) until it hits the root ({0}, (1)) at time τ , ompute the valueof the produt ∏τ

k=0 f(Xk) and repeat this many times. Averaging these values provides anunbiased and onsistent estimate of u(t,n)(f) in terms of an approximation of the expeted value
E(t,n)

∏τ
k=0 f(Xk) by the strong law of large numbers. Lemma 6.1 states that this expetation isa solution to the reursion in question.Corollary 6.2. For ordered types and frequenies (t,n), de�ne

u(t,n)(f) = p0(t,n)and for c[(t,n)] > 1, put
f(t,n) =

1

rn

(

∑

k: nk=1, xk0 distinct

s(xk) 6=xj ∀j

r +
∑

k: nk=1,

xk0 distinct

∑

j:sk(xk)=xj

r(nj + 1)

+
∑

1≤i≤d: ni≥2

ni
∑

k=2

(

n

k

)

λn,k

ni − k + 1

n − k + 1



 , (6.4)15



where
rn = nr +

n
∑

k=2

(

n

k

)

λn,k. (6.5)Furthermore, let
u({0},(1))(f) = f

(

{0}, (1)
)

= 1. (6.6)Consider a Markov-Chain {Xl = (t(l),n(l))} on (T ,N ) with transitions
(t,n) →























(sk(t),n) w. p. r
rnf(t,n) if nk = 1, xk0 dist., s(xk) 6= xj ∀j,

(rk(t), rk(n + ej)) w. p. r(nj+1)
rnf(t,n) if nk = 1, xk0 dist., s(xk) = xj ,

(t,n − (k − 1)ei) w. p. 1
rnf(t,n)

(

n
k

)

λn,k
ni−k+1
n−k+1 if 2 ≤ k ≤ ni.Then,

p0(t,n) = E(t,n)

τ
∏

l=0

f(t(l),n(l)). (6.7)Proof. This is the immediate appliation of Lemma 6.1, noting that, as in the last remark,starting from (t,n), the stopping time τ is bounded by c[(t,n)] < ∞. Note that one might preferto stop at n = 2 in view of (4.5 � 4.6). 2Simulating independent opies and taking the average now yields an unbiased estimator of p0(t,n).Note that a similar result holds for the reursion w.r.t. (t,a).To ompute p0(Q,n) in the unrooted ase, one an either estimate eah term in (4.8) using themethod above, or implement an analogous Monte-Carlo sheme based on (4.9) and a Markov-Chain
{Y (l), l = 0, 1, 2, . . .} on the spae (Q,N ) of unrooted trees with node multipliities as below. Notethat the omplexity of a tree as de�ned in (6.1) does not depend on the position of the root, andis thus well-de�ned for unrooted trees.Corollary 6.3. With the notation of Subsetion 4.3, put f((0), (1)) = 1, and for (Q,n) ∈ (Q,N )with c[(Q,n)] > 1, set

f(Q,n) =
1

rn

(

∑

i: ni≥2

ni
∑

k=2

(

n

k

)

λn,k

ni − k + 1

n − k + 1

+
∑

k: nk=1, |k|=1

k→j, mkj>1

r +
∑

k: nk=1, |k|=1

k→j, mkj=1

∑

j:s(xk)=xj

r (nj + 1)

)

where rn is de�ned in (6.5). Consider a Markov-Chain {Yl = (Q(l),n(l))} on (Q,N ) with transi-tions
(Q,n) →























(Q − ekj ,n) w. p. r
rnf(t,n) if nk = 1, |k| = 1, k → j, mkj > 1

(Q − ekj , rk(n + ej)) w. p. r(nj+1)
rnf(t,n) if nk = 1, |k| = 1, k → j, mkj = 1

(Q,n− (k − 1)ei) w. p. 1
rnf(t,n)

(

n
k

)

λn,k
ni−k+1
n−k+1 if 2 ≤ k ≤ ni.Then, with τ := min{l : (Q(l),n(l)) = ((0), (1))},

p0(Q,n) = E(Q,n)

τ
∏

l=0

f(Q(l),n(l)).16



6.2 Simulation of likelihood surfaes with pre-spei�ed driving values.It is possible to obtain simultaneous likelihoods for a variety of values for (r, Λ) using a singlerealization of the Markov-hain X only.Lemma 6.4. Let {Xk, k ≥ 0} be a Markov hain with state spae (T ,N ) and with transitions
Q = (q(t,n),(t′,n′)) suh that the hitting time

τ = inf
{

k ≥ 0 : Xk = ({0}, (1))
}for any given initial state (t,n) in (T ,N ) is bounded by some onstant 0 ≤ K2(t,n) < ∞. Let

g : (T ,N ) × (T ,N ) → [0,∞) be a measurable funtion and de�ne
u(t,n)(g) = E(t,n)

τ−1
∏

k=0

g(Xk, Xk+1) (6.8)for all X0 = (t,n) ∈ (T ,N )), with u({0},(1))(g) = 1. Then, for all (t,n) ∈ (T ,N )\({0}, (1)),
u(t,n)(g) =

∑

(t,n)∈(T ,N)

(t′,n′)≺(t,n)

g
(

(t,n
)

, (t′,n′))q
(

(t,n), (t′,n′)
)

u(t′,n′)(g) (6.9)and this set of equations has the unique solution (6.8).Proof. Similar to the proof of Lemma 6.1. 2We follow the spirit of Corollary 6.2 and suitably rewrite (4.3). To this end, de�ne p0
(r,Λ)(t,n) tobe the probability of observing the unordered, labelled tree (t,n) if the underlying mutation rateis r and the genealogy is governed by a Λ-oalesent.Corollary 6.5. Let (r, Λ) and (r∗, Λ∗) ∈ R+×M([0, 1]) be given. For ordered types and frequenies

(t,n), de�ne f(r,Λ)(t,n) through (6.4) � (6.6) and similarly f(r∗,Λ∗)(t,n). Consider a Markov-Chain {Xl = (t(l),n(l))} on (T ,N ) with transitions q(r∗,Λ∗) given by
(t,n) →























(sk(t),n) w. p. r∗

r∗
nf(r∗,Λ∗)(t,n) if nk = 1, xk0 dist., s(xk) 6= xj ∀j,

(rk(t), rk(n + ej)) w. p. r∗(nj+1)
r∗

nf(r∗,Λ∗)(t,n) if nk = 1, xk0 dist., s(xk) = xj ,

(t,n − (k − 1)ei) w. p. 1
r∗

nf(r∗,Λ∗)(t,n)

(

n
k

)

λ∗
n,k

ni−k+1
n−k+1 if 2 ≤ k ≤ ni.Then, de�ning

g(r,Λ),(r∗,Λ∗)((t,n), (t′,n′)) = f(r,Λ)(t,n)
q(r,Λ)

(

(t,n), (t′,n′)
)

q(r∗,Λ∗)

(

(t,n), (t′,n′)
) ,one has

p0
(r,Λ)(t,n) = E

(r∗,Λ∗)
(t,n)

τ−1
∏

k=0

g(r,Λ),(r∗,Λ∗)(Xk, Xk+1), (6.10)provided that the parameters (r, Λ), (r∗, Λ∗) ful�l the ondition
f(r,Λ)(t,n)q(r,Λ)

(

(t,n), (t′,n′)
)

> 0 ⇒ q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

> 0. (6.11)17



Again, this gives rise to a simulation algorithm, this time based on (r∗, Λ∗) rather than the�target� (r, Λ).Proof. We may rewrite (4.3) as
p0
(r,Λ)(t,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

f(r,Λ)(t,n)q(r,Λ)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′) (6.12)for the obvious hoie for q(r,Λ). Furthermore, using (6.11), (6.12) may be reast as
p0
(r,Λ)(t,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

f(r,Λ)(t,n)
q(r,Λ)

(

(t,n), (t′,n′)
)

q(r∗,Λ∗)

(

(t,n), (t′,n′)
)q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′),(6.13)hene
p0
(r,Λ)(t,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

g(r,Λ),(r∗,Λ∗)((t,n), (t′,n′))q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′), (6.14)so that Lemma 6.4 may diretly be applied to equation (6.14) and the Markov hain Xl =
(t(l),n(l)) with driving values r∗ and (λ∗

n,k)2≤k≤n (oming from Λ∗) and transitions as above.Thus we arrive at the representation
p0
(r,Λ)(t,n) = E

(r∗,Λ∗)
(t,n)

τ−1
∏

k=0

g(r,Λ),(r∗,Λ∗)(Xk, Xk+1),as required. 2With this result, many estimators for p0
(r,Λ)(t,n) for various values of (r, Λ), respeting theabsolute ontinuity ondition (6.11), an be obtained by simulating just one realization of theMarkov hain with driving values (r∗, Λ∗). This seems omputationally muh more e�ient thanusing di�erent driving values. However, one should be aware that one obtains orrelated estimatesand that the variane of the estimator for p0

(r,Λ)(t,n) depends on (r∗, Λ∗).Remarks. 1.) The same approah an be used to extend Corollary 6.3.2.) There are obvious improvements of this method. Combining likelihoods in approximatelyoptimal linear ombinations of the (ri, Λi) leads to a further redution in variane (see [T01℄ fordetails). More advaned tehniques suh as a sophistiated importane sampling in the spirit of[SD00℄ or bridge sampling are urrently under investigation by the authors and part of an ongoingresearh projet.7 An urn-like algorithm for generating samples7.1 Reversing the blok-ounting proessIn this setion, we show how the so-alled blok ounting proess, whih keeps trak of the numberof bloks of a oalesent-proess, an be used to derive the site frequeny spetrum for an n-samplein the in�nite-sites model. The time-reversal of this proess will later be useful in order to obtainurn-like algorithms to produe samples under the �nite- and in�nite-alleles model.18



Let {Πt}t≥0 be a Λ-oalesent. We denote by {Yt}t≥0 the orresponding blok ounting proess,i.e. Yt = # of bloks of Πt is a ontinuous-time Markov hain on N with jump rates
qij =

(

i

i − j + 1

)

λi,i−j+1 , i > j ≥ 1.The total jump rate while in i is of ourse −qii =
∑i−1

j=1 qij . We write
pij :=

qij

−qii

(7.1)for the jump probabilities of the skeleton hain, noting that (pij) is a stohasti matrix. Note thatin order to redue i lasses to j lasses, an i − j + 1-merger has to our. Let
g(n, m) := En

[ ∫ ∞

0

1{Ys=m} ds

] for n ≥ m ≥ 2 (7.2)be the expeted amount of time that Y , starting from n, spends in m. Deomposing aording tothe �rst jump of Y , we �nd the following set of equations for g(n, m):
g(n, m) =

n−1
∑

k=m

pnkg(k, m), n > m ≥ 2, (7.3)
g(m, m) =

1

−qmm

, m ≥ 2. (7.4)Let us write Y (n) for the proess starting from Y
(n)
0 = n. Let τ := inf{t : Y

(n)
t = 1} be the timerequired to ome down to only one lass, and let

Ỹ
(n)
t := Y

(n)
(τ−t)−, 0 ≤ t < τbe the time-reversed path, where we de�ne Ỹ

(n)
t = ∂, some emetery state, when t ≥ τ .Proposition 7.1 (Time-reversal). With the above de�nitions, Ỹ (n) is a ontinuous-time Markovhain on {2, . . . , n} ∪ {∂} with jump rates

q̃
(n)
ji =

g(n, i)

g(n, j)
qij , j < i ≤ n,and q̃

(n)
n∂ = −qnn, where g(n, m) is as in (7.2). The starting distribution of Ỹ (n) is given by

P{Ỹ
(n)
0 = k} = g(n, k)qk1,for eah k.Proof. The result follows from Nagasawa's Formula, see e.g. [RW87℄, and the observation

P{Ỹ
(n)
0 = k} = Pn

{

Ỹ (n) hits k, jumps to 1 from there}
= Pn

{

Ỹ (n) hits k
} qk1

−qkk

= g(n, k)qk1.Note that unless Λ is onentrated on {0} (Kingman-ase), the dynamis of Ỹ (n) does depend on
n. 219



7.2 Generating samplesThe stohasti mehanism desribed in Setion 3 allows in priniple to generate random samplesin a two-step proedure by �rst simulating a Λ-oalesent tree with real branh lengths, and thensuperimposing mutations along the branhes at rate r. However, from a omputational point ofview, it is more e�ient to generate the genealogy �in one pass� from the root forwards to theleaves of the oalesent tree with the help of the reversed blok ounting proess. This is ahievedby the following algorithm. We write #n :=
∑d

i=1 ni, and denote q̃
(n)
k := −q̃

(n)
kk .Algorithm 1.1) Draw K aording to the law of Ỹ

(n)
0 , i.e. P{K = k} = g(n, k)qk1. Begin with the a single�anestral type� with multipliity K, i.e. t = (x1),x1 = 0,n = ((K)), and so d = 1. Set

s := 1.2) Given (t,n), let k := #n, and draw a uniform random variable U on [0, 1].
◦ If U ≤ kr

kr+q̃
(n)
k

, then draw one type, say I, aording to the present frequenies.- If nI = 1, replae xI by (s, xI0, . . . , xIj(I)), inrease s by 1.- If nI > 1, reate new type xd+1 = (s, xI0, . . . , xIj(I)), set nd+1 := 1, inrease s and
d eah by one, derease nI by one.

◦ If U > kr

kr+q̃
(n)
k

, then:- If #n = n, go to 4).- Otherwise, pik J ∈ {k + 1, . . . , n} with P{J = j} = q̃
(n)
#n,j/q̃

(n)
#n

. Choose one of thepresent types i (aording to their present frequeny), and add J − #n opies ofthis type, i.e. replae ni := ni + J − #n.3) Repeat 2).4) Finally, in order to reate a numbered sample on�guration with ordered types (t,a) from
(t,n), pik uniformly an ordered partition a with #ai = ni, i = 1, . . . , d.Remark. It is easy to adapt this algorithm to work in the �nite- and in�nitely-many allelesases. In the ase of parent-independent mutation, one an also use an algorithm whih runs�bakwards in time�. Indeed, in order to simulate suh a sample one follows lineages bakwards.�Ative� anestral lineages are lost either by (possibly multiple) oalesene or when hitting their�de�ning� mutation. Details an be found in [BB07℄. 28 Illustration and disussion8.1 Beta-oalesentsReall that the genealogy of a sample from a large but �nite population model of size N in thedomain of attration of the lassial Fleming-Viot proess is asymptotially desribed by Kingman'soalesent, if time is measured (bakwards) in units of N/σ2 generations, where σ2 is the varianeof the number of o�spring per individual. Thus, if the variability of individual o�spring numbersis very high, this limit may be inappropriate, and a multiple merger oalesent ould be a morereasonable model for the genealogy of the sample under onsideration.20



The one-parameter family of multiple-merger oalesents desribed by (1.4) with α ∈ (1, 2) an beused to desribe the genealogy of a sample at a neutral lous in a senario with (asymptotially)in�nite variane of o�spring distributions, and the parameter α desribes the algebrai deay of thetail of the individual o�spring distribution. This an be justi�ed either by onsidering the time-hanged genealogy of a (ontinuous-state) branhing proess of index α as in [BBC05℄, or morediretly by a sequene of Cannings-type models as in [S03℄: In eah generation, let individualsgenerate potential o�spring as in a superritial Galton-Watson proess, where the tail of theo�spring distribution varies regularly with index α, i.e. the probability to have more than k hildrendeays like Const.×k−α. Among these, N are sampled without replaement to survive and form thenext generation. Then ([S03℄, Thm. 4 and Lemma 13), if time is measured in units of Cα × Nα−1generations, the genealogy of a random sample is desribed by a Beta(2 − α, α)-oalesent inthe limit N → ∞. In both approahes, the situation with �nite variane of individual o�springnumbers an be inluded as the boundary ase α = 2, whih orresponds to Kingman's oalesent.Intuitively, smaller α orresponds to more extreme variability among o�spring numbers.Note that impliitly, the hoie of α �xes the saling of the individual mutation probability µ pergeneration: in a population of size N , this translates to a rate
r = CαNα−1µwith whih mutations appear on the (limiting) Beta(2 − α, α)-oalesent. In the ase α = 2, thisis the familiar formula r (= θ/2) = 2Nµ.8.2 Likelihood surfaesThe Monte Carlo algorithm desribed by Corollaries 6.2 and 6.5 is implemented in beta genetree,whih is, together with a tehnial report doumenting the program, available from [B07℄. Byrepeated alls of the program, it an be used to (approximately) ompute likelihood surfaes forparametri families of oalesents. Here, we illustrate this by an appliation to four arti�ial(in�nitely many sites) datasets, eah of size n = 100, generated randomly using the algorithmdesribed in Subsetion 7.2 for a Beta(2−α, α)-oalesent, with α = 1.25, 1.5, 1.75, 2.0 and mutationparameter r = 2.0. The rooted genetrees orresponding to the four datasets, drawn with theprogram treepi from Bob Gri�th's genetree software suite, an be found in the appendix.Figure 8.2 shows (approximately) the logarithm of the probability of observing eah of the fourdatasets under a Beta(2 − α, α)-oalesent, on whih mutations appear with rate r, as a funtionof (α, r) ∈ (1, 2] × (0, 4]. Computation was based on a grid of 25 × 25 points in the α-r-plane, thevalue at eah point is alulated by replaing the expeted value on the right-hand side of (6.7) byan empirial average using 107 independent runs of the Markov hain.Suh likelihood surfaes an be used to �nd maximum-likelihood estimators for the parameters

(α, r). Positions of maxima are given in the table below.Dataset (a) (b) () (d)true value of (α, r) (1.25, 2.0) (1.5, 2.0) (1.75, 2.0) (2.0, 2.0)ML estimator (α̂, r̂) (1.4, 2.67) (1.54, 3.0)∗ (1.63, 1.67) (2.0, 2.17)
∗there is a omparable value at (1.3, 1.67).These results appear promising in that it seems possible to (at least on the prinipal level) reover

α and r from a sample, and in partiular to distinguish between Kingman- and multiple mergeroalesents. Note that in the ases (a) � (), orresponding to multiple merger behaviour, themaximal likelihood is assumed well away from the �Kingman axis� α = 2, and the maximal valueis at least two orders of magnitude larger than the highest value on the Kingman axis.Remarks 1.) Investigation of statistial properties of these ML-estimators and omparison withestimators based on likelihoods of summary statistis (as in [EW06℄) and on moment-estimators21



Figure 8.1: Likelihood-surfaes for α = 1.25, 1.5, 1.75 and 2 (Kingman ase).
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9 Appendix9.1 Underlying genetreesFigure 9.1: Genetrees orresponding to the four datasets analysed in Subsetion 8.2 (α =
1.25, 1.5, 1.75 and 2 (Kingman ase)).
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