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Abstract 

New approach to construction of weak numerical methods, which are intended 
for Monte-Carlo technique, is proposed for a stochastic system with small noises. 
The theorem on estimate of method error in terms of product hicj (his a time 
increment, € is a small parameter) is proved. Various efficient weak schemes 
are derived for a general system with small noises and for systems with small 
additive and small colored noises. The Talay-Tubaro expansion of the global 
error is considered for such systems. The efficient approach to reduction of the 
Monte-Carlo error is proposed. The derived methods are tested by calculation of 
Lyapunov exponents and by simulation of a bistable dynamical system for which 
multiplicative stochastic resonance is observed. 
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1. Introduction 

Naturally, for specific systems peculiar numerical methods may be more effective than 
general methods. One of the important particular cases of a stochastic system is 
stochastic differential equations with small noises because often fluctuations, which 
affect a dynamical system, are sufficiently small. 

In the previous paper [11] mean-square approximation for stochastic differential 
equations with small noises was systematically considered. As is known, mean-square 
numerical methods are used for trajectory simulation of a stochastic dynamical system, 
for the problem of estimating parameters, and they are the basis for construction of 
weak schemes. Weak methods [7], [8], [9], [10], (14], (18] are simpler for realization 
than mean-square ones, and they are effectively applied to calculation of the expec-
tation for functionals of the solution of a stochastic system. For example, by weak 
schemes it is possible to simulate moments, evaluation of Wiener function space inte-
grals, and to solve problems of mathematical physics by Monte-Carlo technique. That 
is, weak methods are sufficient for most physical problems. Moreover, weak methods 
are always efficient as to simulation of needed random variables, while in the case of a 
general system efficient mean-square schemes have been obtained only with time order 
1/2 . However, in the case of a general system third order weak methods already re-
quire laborious calculations. Besides, there are no sufficiently efficient high-order weak 
Runge-Kutta schemes. 

Herein we systematically consider weak numerical methods for a stochastic system 
with small noises 

q 

dX = a(t, X)dt + c L o"r(t, X)dWr, X(t 0 ) = X 0 , t E [t 0 , T] (1.1) 
r=l 

where X (X1,X 2 , ••• ,Xn), a(t,x) (a 1(t,x), ... ,an(t,x)) and 
o"r(t,x) = (a~(t,x), ... ,a~(t,x)), r = 1, ... ,q, are n-dimensional vectors, vVr, r = 
1, ... , q, are independent standard Wiener processes, and c is a small parameter. 

In the paper we propose an approach to construction of weak methods for a system 
with small noises; we prove a theorem on relation between properties of one-step weak 
approximation and estimate of error of the corresponding weak method on the whole 
interval; we derive various peculiar weak schemes for a system with small noises in-
cluding explicit Taylor-type methods, implicit methods and Runge-Kutta schemes; the 
concept of the Talay-Tubaro expansion of the global error is applied to a system with 
small noises; a method for efficient reduction of the Monte-Carlo error is proposed. 

As in the case of mean-square approximation (11], here errors of the proposed meth-
ods are also estimated in the terms of product hic:i, where his a step of a discretization. 
That is, estimates of errors on the whole interval have a form 

IE[f(X(T)) - J(X(T))]I = O(hP + L h1c:J(l)) 
res 

where f is a function from a sufficiently wide class, X(T) is an approximation of the 
exact solution X(T), pis a natural number, Sis a subset of positive integers l < p, and 
J( l) is a decreasing function with natural values. Time-step order of such a method is 
equal to l0 = minzes l (of course, if Sis not empty) which may be low. But under small 
c the sum :Z:::: h1c:J(l) is also small and, therefore, the method error is sufficiently low. 
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It gives us an opportunity to construct effective weak methods the time-step order of 
which is not high but which nevertheless have low errors. 

The paper is organized as follows. In Section 2 we briefly explain an approach to 
construction of weak methods for the system ( 1.1) and in Section 3 the theorem on 
estimate of a method error is stated (see Appendix (Section 13) for the proof of the 
theorem). 

Section 4 is devoted to Taylor-type methods for a general system with small noises 
where weak schemes with errors from O(h2 + c, 2 h) up to O(h4 + c,4 h2 ) are proposed. 
Section 5 deals with Runge-Kutta methods for a general system with small noises. We 
write down full (derivative free) Runge-Kutta methods with the errors from O(h2 +c,2 h) 
up to 0( h4 + c,4 h ). Runge-Kutta schemes without derivatives of the drift coefficients 
(semi-Runge-Kutta schemes), which may be useful in the case of simple functions 
ar(t, x), are also considered. We obtain the semi-Runge-Kutta schemes with the errors 
from O(h3 + c,2 h2 ) up to O(h4 + c,4h2 ). In Section 6 we propose implicit schemes 
O(h2+ .. . ). In Section 7 a Stratonovich system with small noises is considered. Sections 
8 and 9 are devoted to systems with small additive and colored noises. For a system 
with small additive noises we propose Taylor-type methods from O(h2 + c,2h) up to 
O(h4 + c,4 h3 ) and full Runge-Kutta methods from O(h2 + c,2 h) up to O(h4 + c,4 h2 ). For 
a system with colored noises we obtain Taylor-type methods from 0( h2 + c: 2 h) up to 
0( h4 + c, 4h3 ) but we do not write down them because firstly they follow easily from the 
corresponding schemes for a system with additive noises, and secondary we propose 
Runge-Kutta schemes from O(h2 + c,2h) up to O(h4 + c,2h3 ) which are more effective, 
as to calculation expenses, than the Taylor-type ones. Note that here we obtain full 
Runge-Kutta method with the error O(h3 ), i.e., the scheme which has the third weak 
order for a general system with colored noises (c, = 1). Such a method has not been 
proposed in the previous papers (see ref. [12] and refs. therein). Thus, in Sections 4-9 
we write down various methods which, as we believe, would be useful for applications. 
In the paper we do not give derivations of all methods. We restrict ourselves to the 
detailed derivations only of two methods for a general system with small noises: the 
Taylor-type scheme with the error O(h4 + c,4 h2 ) [see Section 14] and the semi-Runge-
Kutta scheme with the error O(h4 + c,2 h2 ) [see Section 15]. These derivations, jointly 
with Section 2, have all typical features and receptions to derive the other methods of 
the paper. 

In Section 10 we apply the Talay-Tubaro concept [20] of expansion of the global 
error which is similar to the Runge estimation method for a deterministic system. In 
contrast to the Talay-Tubaro expansion, according to which the global error is expanded 
in powers of time increment h, we present the global error in terms of c,i hi. We prove 
a theorem on such an expansion for one of our methods in Appendix (Section 16). As 
it follows from the proof, the similar expansion can be obtained for the other methods. 

As is known, dealing with Monte-Carlo technique we have two errors: error of a 
weak method and the Monte-Carlo error. The second error can be reduced by increasing 
the number of independent realizations of the solution. However, it leads to heavy 
calculation expenses. In Section 11 the effective approach to reduction of the Monte-
Carlo error by conversion from the original system to another system with small noises 
is proposed. 

In Section 12 numerical tests of the proposed methods are presented. 
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2. Preliminary consideration 

In connection with the system (1.1) let us introduce an equidistant discretization /j.N 
of the interval [t 0 ,T]: /j.N ={ti: i = O,l, ... ,N;t0 <ti< ... < tN =·T}; the time 
increment h = ti+l - ti; the approximation xk or X(tk) of the exact solution X(tk); 
operators 

Ito integrals 

where ii, ... , ii are from the set of numbers {O, 1, ... , q} and dW0 ('l9i) designates d'l?i. 
We assume that restrictions on the coefficients of the system ( 1.1) are so that they 

ensure the existence and uniqueness of the solution on the whole time interval [t 0 , T]. 
For construction of high-order methods the coefficients must be sufficiently smooth 
functions. 

To estimate a method error on the whole interval we need properties of the cor-
responding one-step approximation. According to Theorem 3.1, which will be stated 
and proved below, under one-step approximation error 

IEJ(Xt,x(t + h)) - EJ(Xt,x(t + h))I::;; J<(hP+l + L hL+icJ(L)) (2.1) 
LES 

the error of the corresponding method on the whole interval [t 0 , T] is estimated as 

IEJ(X(tk)) - Ef(Xk)I ~ I<(hP + L h1c:1 (
1)) (2.2) 

LES 

Thus, to prove error of a weak method we need estimate (2.1 ). By Taylor expansion 
of function f it is possible to obtain that if the inequalities 

m m 
IE II ~ii - E II l_ii I ::;; I<(hP+l + L hL+ic:J(L)), ii= 1, ... , n, m = 1, ... , s -1 (2.3) 

j=l j=l LES 

s 
E IT I fl ii I ::;; I<( hP+l + L hL+lc:J(L)), ii = 1, ... , n (2.4) 

j=l LES 

are fulfilled for the corresponding s which depends on p then the estimate (2.1) holds. 
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To construct a one-step approximation the expansion of the exact solution in Ito 
integrals (the stochastic Taylor-type expansion [7], [10], [21]) is usually used. For 
instance, in refs. [9], [10] on the base of such an expansion one""'step approximation 
with the time-step order 3 was derived for a general system ( c= 1) which in the case 
of the system ( 1.1) has the form 

q q q 

X(t + h) = X + € L arlr +ha+ c2 L Awrlir + € L(L1 + c2 L2)arlor+ 
r=l i,r=l r=l 

q 

+ € L Aralro + h2(L1 + c2 L2)a/2 + p (2.5) 
r=l 

The coefficients ar, a, Aiar, etc. in (2.5) are calculated at the point (t,x), and the 
remainder p has the properties 

(2.6) 

Then, it can be proved that the error of the one-step approximation X ( t + h) = 
X(t + h) - pis equal to O(h3 ). 

As is known, the important advantage of weak approximations is that they give 
an opportunity to avoid the problem of simulation of complicated random variables. 
For instance, the approximation X contains multiple Ito integrals which are difficult 
to simulate. But on the base of the approximation X the following weak method can 
be derived (see refs. (9], (10]) 

q q q 

xk+I = xk+ch1!2 L(arer)k+hak+c2h L (Aiareir)k+ch312 L[(L1+c2 L2)ar(er-1Jr)h+ 
r=l i,r=l r=l 

q 

+ ch312 L)Ara1Jr]k + h~(L1 + c2 L2)ak/2 (2.7) 
r=l 

where the random variables en 1Jr and eir are such that the inequalities (2.3), (2.4) 
hold with the right sides equal to I< h3 • To fulfill these inequalities it is sufficient to 
simulate 2q independent random variables er and (r according to the simple laws 

P(e = o) = 2/3, P(e = -V3) = P(e = V3) = 1/6, 

P(( = -1) = P(( = 1) = 1/2 (2.8) 
Due to fulfilling of (2.3) and (2.4) with p = 2 and empty S, the error of the method 
(2. 7) on the whole interval is equal to 0( h2 ) [see (2.2)]. 

As it has been mentioned in Introduction, the system (lr.1) is the peculiar one 
because error of a method, constructed for this system, can be expanded not only in 
powers of time increment h but also in powers of small parameter c. Like it was done in 
ref. [11], we can transfer some sufficiently simply simulated terms from a remainder to 
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a method thereby reducing the error. And vice versa, terms, simulated in a complicated 
way and multiplied by sa, can be transferred from a method to its remainder; such a 
procedure reduces (that, of course, is important for applications) calculation expenses 
but according to smallness of s it does not lead to substantial increasing· of the error. 

For instance, we can transfer from the remainder p to the method (2. 7) the term 
h3 Lia/6 (see details in Section 14). As it turns out, by this way we obtain the method 

(2.9) 

where Xk+i is from (2.7). The error of this method is equal to O(h3 + s 2h2 ) on the 
whole interval. Although the method (2.9) has time-step accuracy order 2, just as the 
method (2.7), but h2 in the error of the method (2.9) is multiplied by e,2 • ·That is why, 
the new method has lower error than the method (2.7). 

By transferring most complicated (from the computational point of view) terms, for 
instance, s3 h312 L2arer/2 if the diffusion coefficients O"r are composite functions, from 
the method (2.9) to its remainder we obtain another method for the system (1.1). It 
is found that such a method has order 0( h3 + s4 h). Moreover, if after transferring of 
the terms s3 h312 L2arer/2 we omit the terms s2 hAiareir in the method (2.9) then it can 
be proved (such a proof essentially uses the expressions Eeir = 0, Eeirei = 0) that the 
accuracy of the method, in the sense of smallness with respect to both h and c, does 
not reduce. As a result we write down the method 

q q q 

xk+l = xk + ch1
/

2 2:(arer)k + hak + e,h3l 2 2:[L1arer]k/2 + e,h3l 2 L[Araer]k/2+ 
r=l r=l r=l 

(2.10) 

the accuracy order of which is equal to 0 ( h 3 + e,4 h). For its realization it is sufficient 
to simulate only q independent random variables er according to the law P( e = -1) = 
P(e = 1) = 1/2. Time-step accuracy order of the method (2.10) is equal to 1, i.e., it is 
lower than time-step order of the methods (2.7) and (2.9). Nevertheless, under small 
c the method (2.10) has sufficiently low error. For instance, if we choose time-step h 
so that h = Cea, 0 < o: < 4, the method (2.10) even exceeds the method (2.7) in 
the sense of smallness order with respect to s. Further, if we choose time-step h so 
that h = Cea, 0 < o: :::; 2, the method (2.10) does not yield to the method (2.9) in 
the same sense. It is important to emphasize that in addition the method (2.10) has 
essentially lower calculation expenses on account of both fewer number of simulated 
random variables and fewer number of calculated operators. 

Thus, we briefly explain the concept of construction of weak methods for a system 
with small noises. Let us mention that to prove new methods strictly one must thor-
oughly analyze the remainder, prove relations like (2.6) and the inequalities (2.3), (2.4) 
for the appropriate p, S and J(l), and apply Theorem 3.1. 

3. The theorem on estimate of a method error on the whole 
interval 

Let us consider more general Ito system with small noises than the system (1.1) 
q 

dX = a(t, X)dt + e,2b(t, X)dt + c L O"r(t, X)dWr, X(to) = Xo, t E [to, T] (3.1) 
r=l 
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where b(t, x) is n-dimensional vector, the other notation is the same as in (1.1). A 
system like (3.1), even with ar = 0, r = 1, ... , q, is significant by itself. Besides, the 
reason of the generalization is the following: a Stratonovich system with small noises 
can be easily rewritten in the form of the system (3.1) [see Section 7]. 

The operator L for the system (3.1) has the form 

where L1 and L2 are the same as above. 
Definition. A function f ( x) belongs to the class F, f E F, if constants f{ > 0 and 

"' 2:: 0 are such that the inequality 

lf(x)I ~ K(l + lxn (3.2) 

is fulfilled for any x E nn. A function f(s, x), which depends both on x E Rn and on 
a parameter s E Q, belongs to the class F (with respect to x) if the inequality {3.2) 
uniformly fulfills with respect to s E Q. 

Note that below the same letter f{ is used for various constants, and the same 
notation f{ ( x) is used for various functions. 

Theorem 3.1 Let us assume that the following conditions are fulfilled 
(1) The coefficients of the system (3.1) are continuous and satisfy the Lipschitz 

condition, they and their partial derivatives up to sufficiently high order belong to the 
class F; 

{2) The error of a one-step approximation Xt,x( t+ h) of the exact solution Xt,x( t+ h) 
of the system (3.1) with initial condition X(t) = X(t) = x is estimated as 

IEf(Xt,x(t + h)) - Ef(Xt,x(t + h))I ~ I<(x)[hP+l + L h1+1cJ(l)], I<(x) E F (3.3) 
lES 

where function f ( x) and its partial derivatives up to sufficiently high order belong to 
the class F, S is a subset of positive integers I which are less than natural number p, 
J (l) is a decreasing function with natural values; 

{3) For sufficiently large number m the moments EIXk Im exist and are uniformly 
bounded with respect to N, k = 0, 1, ... , N, and O~ c ~ c0 for some number c 0 > 0. 

Then for any N and k = 0, 1, ... , N 

IEf(Xto 1X 0 (tk)) - Ef(Xt0 ,xJtk))I ~ I<[hP + L h1cJ(l)] (3.4) 
LES 

where the constant f{ depends on the random variable X 0 and on T. 
Although the proof of Theorem 3.1 is distinguished from the proof of the weak con-

vergence theorem of refs. [9], [10] in a small way, for completeness of the presentation 
we provide the detail proof of this important theorem in Appendix (see Section 13). 

Remark. If a method is so that it satisfies to the inequality (3.3) either with p 2:: 1 
and min1es l 2:: 1 in the case of not empty subset S or with p 2:: 1 and empty S then 
from Theorem 3.1 it follows the convergence of such a method. However, the primary 
meaning of Theorem 3.1 is to estimate error of a method on the whole interval in terms 
of hand£. 
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4. Taylor-type weak methods for a general system with small . noises 

Our aim is to construct weak methods which have low errors under the condition that 
E is a small parameter and which are sufficiently effective as to calculation expenses. 
Herein we present weak methods for the system (3.1) the errors of which are estimated 
from O(h2 +c2h) up to O(h4 +c4h2 ). By the developed approach it is possible to derive 
methods O(h5 + ... ), O(h6 + ... ),etc. But we do not write down them because most 
popular deterministic schemes have orders not higher than four. It is also possible to 
derive the methods O(h3 + c6h2), O(h3 ), O(h4 + c6 h2), O(h4 + Eah3 ), o: == 2, ... , 8, but 
they are not proposed for the system (3.1) because of their heavy caleulation expenses. 

Proofs of the proposed methods are based on estimate of one-step errors and on 
Theorem 3.1 as it is done in Appendix (see Section 14) for the Taylor-type method 
O(h4 + c4h2). 

Let us introduce the notation R for error of a method on the whole interval. 
Note that used random variables are mutually independent. 

4.1. Euler method 

Method O(h) coincides with the well-known weak Euler method. 

4.2. Methods O(h2 + ... ) 
The first method, which is the simplest one among schemes O(h2 + ... ),has the form 

q 

Xk+1 == Xk + ch1f 2 L(arer)k + h(a + c2 b)k + h2 Liak/2, 
r=l 

R == O(h2 + c2h) 

where the random variables er are simulated as 

P(e == -1) == P(e == 1) == 1;2 

The second method is 
q q 

Xk+i == Xk + ch1
/

2 L(arer)k + h(a + c2 b)k + ch3
/

2 L(L1arer)k/2+ 
r=l r=l 

q 

( 4.1) 

(4.2) 

+ ch3
/

2 L(Araer)k/2 + h2 Li(a + c2 b)k/2 + c2 h2 l 2ak/2, (4.3) 
r=l 

R == O(h2 + c4h) 
where the random variables er are simulated by the law ( 4.2). 

The method O(h2 ) has been written down above [see Section 2, the formula (2.7)) 
for the system (1.1). For the system (3.1) it can be easily rewritten by substituting 
a + c2 b instead of a (note that the operator L 1 contains a). 
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4.3. Methods 0( h3 + ... ) 
The first method, which is the simplest one among schemes O(h3 + ... ),has the form 

q . 

Xk+i = Xk + ch1
/

2 L) o-rer)k + h( a+ c2 b)k + h2 Liak/2 + h3 Liak/6, ( 4.4) 
r=l 

where er are from ( 4.2). 
The second method is 

q q 

Xk+i = Xk + ch112 L(arer)k + h(a + c2 b)k + ch3
/

2 L(L1arer)k/2+ 
r=l r=l 

q 

+ ch3
/

2 l:(Araer)k/2 + h2 L1(a + c2b)k/2 + c2h2 L2ak/2 + h3 Liak/6, (4.5) 
r=l 

where er are from ( 4.2). 
The third method is 

q q 

xk+l = xk + ch1l2 l:(arerh + h(a + c2b)k + c2h L (AiO'reirh+ 
r=l i,r=l 

q q 

+ch3
/

2 L([L1 + c2 L2]arer )k/2 + ch312 l:(Ar( a+ c2b)er )k/2+ 
r=l r=l 

+ h2[L 1 + c2 L2](a + c2b)k/2 + h3 Liak/6, 
R = O(h3 + c2 h2

) 

where the random variables er and eir are simulated according to either [9]' [10] 

P(e = o) = 2/3, P(e = -V3) = P(e = V3) = 1/6, 

{ 
-1, i < r eir=(eier-/ir(i(r)/2, /ir= l .> , P((=-l)=P((=l)=l/2 

' i - r 

or [18] 
P(e = o) = 2/3, P(e = -V3) = P(e = v'3) = 1/6, 

P((ir = -1) = P((ir = 1) = 1/2,i < r 

( 4.6) 

(4.7) 

(4.8) 
The fourth method, which is the most accurate one among the proposed schemes 0( h3 + 
... ) , has the form 

q q 

xk+l = xk + ch1l2 l:(arer)k + h(a + c2b)k + £
2h L (AiO'reirh+ 

r=l i,r=l 

q q 

+ch3
/

2 L([L1 + £
2 L2]0-r(er - µr)h + ch3

/
2 L(Ar(a + £ 2b)µr)k+ 

r=l r=l 
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q 

+h2[L1 + £ 2 L2](a + £ 2 b)k/2 + e,h5l2 L((Liar + LiAra + ArL1a)er)k/6+ 
r=l 

32 2 23 - -+ h L1(a + £ b)k/6 + £ h (L1L2 + L2L1)ak/6, ( 4.9) 

R = O(h3 + c,4 h2
) 

where er' eir and µr are simulated according to either 

P(e = 0) = 2/3, P(e = -v'3) = P(e = v'3) = 1/6, µr = er/2 + (r/./12, 

or 
P(e = o) = 2/3, P(e = -v'3) = P(e = v'3) = 1/6, 

eir = (eier -(ir)/2,(ii = 1, (ir = -(ri,i #- r, P((ir = -1) = P((ir = 1) = 1/2,i < r, 

µr = er/2 + T/r, P(17 = -1/./12) = P(17 = 1/./12) = 1/2 (4.11) 

4.4. Methods 0( h4 + ... ) 
The first method, which is the simplest one of the family O(h4 + ... ),has the form 

q 

Xk+i = Xk +ch1l 2 "2~J arer )k + h( a +c2b)k + h2 Liak/2 + h3 Liak/6 + h4 Liak/24, ( 4.12) 
r=l 

where er are from ( 4.2). 
The second method is 

q q q 

xk+l = xk+£h1l 2 2:(arer)k+h(a+c2 b)k+c,h3l 2 'l:)L1arer)k/2+e,h3l 2 L(Araer)k/2+ 
r=l r=l r=l 

+ h2L1(a + c2 b)k/2 + £2h2 L2ak/2 + h3 Liak/6 + h4 Lfak/24, (4.13) 

R = O(h4 + c,2 h2 + e,4 h) 

where er are simulated as in ( 4.2). 
The third method is 

q q 

xk+l = xk + e,h1l2 L(arer)k + h(a + c2b)k + ch312 L(L1ar(er/2 -17r))k+ 
r=l r=l 

q 

+ch312 "fJAra(er/2 + T/r ))k + h2 Li(a + c2 b)k/2 + c2h2 L2ak/2+ 
r=l 

q 

+ch512 l:((Liar + L1Ara + ArL1a)er)k/6 + h3 Li(a + c2 b)k/6+ 
r=l 

2 3 - - 4 3 + c h (L1L2 + L2L1)ak/6 + h L1 ak/24, (4.14) 

R = O(h4 + c4h) 
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where the random variables er and 'T/r are simulated as 

P(e = -1) = P(e = 1) = 1/2, P(TJ = -1/vl2) = P(TJ = 1/vl2) = 1/2 ( 4.15) 

The fourth method is 
q q 

xk+l = xk + sh112 L(O'rerh + h(a + s2b)k + s2h L (Awreirh+ 
r=l i,r=l 

q q 

+ch312 L([L1 + £
2 L2]arer )k/2 + c,h3l2 l:(Ar( a+ s2b )er )k/2+ 

r=l r=l 

+ h2[L1 + s2 L2]( a+ s2b)k/2 + h3 Liak/6 + h4Liak/24, ( 4.16) 
R = O(h4 + s2h2

) 

where the random variables er and eir are simulated according to either ( 4. 7) or ( 4.8). 
The fifth method, which is the most complicated and the most accurate one among 

the proposed Taylor-type schemes for the system (3.1), has the form 
q q 

xk+l = xk + ch1
/

2 l:(arer)k + h(a + s2b)k + s2h L (AiO'reir)k+ 
r=l i,r=l 

q q 

+sh312 L([L1 + s2L2]ar(er - µr))k + c,h3l2 L(Ar(a + s2b)µr)k+ 
r=l r=l 

q 

+h2 [L1 + c, 2 L2](a + s2b)k/2 + sh512 L((Liar + L1Ara + ArL1a)er)k/6+ 
r=l 

32 2 23 ~ - 43 + h L1(a + s b)k/6 + c h (L1L2 + L2L1)ak/6 + h L1ak/24, (4.17) 
R = O(h4 + s·4 h2) 

where the needed random variables are simulated either as in (4.10) or as in (4.11). In 
Appendix (see Section 14) the method ( 4.17) is derived in details in the case of b = 0. 

4.5. Remark on selection of increment h depending on s 

Let us illustrate selection of time increment h depending on parameter c, by the methods 
of Subsection 4.4. 

Let us choose time increment h so that h = Csa. Then error of a method on the 
whole interval can be estimated in powers of small parameter c, 

where 
,8 =min {ap, min( al+ J(l))} 

IES 

If h = Csa, the method ( 4.17) gives R = O(c4et + c,2a+4), and the method ( 4.12) has 
R = O(c,4et + c,a+2). In the case of 0 < a ~ 2/3 both errors are estimated by O(s4a), 
and so, both methods have the same order with respect to s. However, if a > 2/3, 
the method ( 4.17) has higher order with respect to c, than ( 4.12) [for instance, if 
a= 2, we have O(c,8 ) for (4.17) and O(s4 ) for (4.12)]. Thus, in the case of selection of 
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comparatively large time increment h with respect to c (it may be interesting in the 
case of sufficiently small c, when an error, estimated by cfJ, is not large), complicated 
methods like ( 4.17) and sufficiently simple methods like ( 4.12) have the same order 
with respect to c. And, usually, in such a situation simple methods are preferable 
because of considerably lower calculation expenses. But, if one wants to reach high 
order error with respect to c, complicated methods are preferable. 

5. Runge-Kutta weak methods for a general system with small . noises 

To reduce calculations of derivatives in the methods of Section 4 we propose Runge-
Kutta schemes. Herein we consider (i) full (derivative free) Runge-Kutta schemes, (ii) 
Runge-Kutta schemes without derivatives of the coefficients a(t, x) and b(t, x) but with 
derivatives of the diffusion coefficients o"r(t, x) (semi-Runge-Kutta schemes) which may 
be useful in the case of simple functions a r. 

As is known [7], [10], in the case of a general system ( c = 1) there are no sufficiently 
constructive high-order Runge-Kutta schemes. Here we obtain full Runge-Kutta meth-
ods with the errors O(h2 + c2 h), O(h2 + c4 h), O(h3 + c2 h), O(h3 + c4 h), O(h4 + c2 h), 
O(h4 +c2 h2 +c4 h) and O(h4 +c4 h). For higher orders we have succeeded in construction 
ofsemi-Runge-Kuttaschemeswith the errors O(h3 +c2h2), O(h3 +c4 h2), O(h4 +c2 h2) 

and O(h4 + c4 h2 ). 

In Appendix (see Section 15) we give the detailed derivation of the semi-Runge-
Kutta scheme O(h4 +c2 h2 ). The other Runge-Kutta methods are obtained in the same 
way. 

To construct the Runge-Kutta methods for the system (3.1) we use as a subsidiary 
tool deterministic Runge-Kutta methods. To this end we select most convenient, from 
our point of view, concrete deterministic schemes. Obviously, it is possible to derive 
families of stochastic Runge-Kutta methods which are similar to the proposed ones but 
which use other deterministic Runge-Kutta schemes. 

5.1. Methods O(h2 + ... ) 
The first method, which is the simplest one, has the form 

q 

xk+l = xk + ch112 I)arer )k + c2 hbk + h[ak + a(t + h, xk + hak)]/2, (5.1) 
r=l 

where er are from ( 4.2). 
The second method, which has the same error as the Taylor-type method ( 4.3), is 

q . 

Xk+i = Xk + ch1l 2 ~]ar(tk, Xk) + ar(tk+i, Xk + hak)]erk/2 + h[ak+ 
r=l 

q 

+ a(tk+l, xk + ch1l 2 l:(arer )k + h(a + c2 b)k)]/2 + c2 h[bk + b(tk+l, xk + hak)]/2, (5.2) 
r=l 

where er are from ( 4.2). 
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5.2. Methods 0( h3 + ... ) 
The first method is 

q 

Xk+l = xk + c:h1l 2 L(arerh + c:2hbk + [k1+4k2 + k3]/6, (5.3) 
r=l 

where 

and er are from ( 4.2). 
The second method is 

where 

q 

xk+l = xk + c:h1l 2 L[ar(tk, Xk) + O"r(tk+1, xk + hak)]erk/2+ 
r=l 

+ [k1 + 4k2 + k3]/6 + c2 h[bk + b(tk+l, xk + hak)]/2, 

R = O(h3 + c:4h) 

q 

ki = hak, k2 = ha(tk+i/2,Xk + a1ch1i 2 L(arer)k + ki/2), 
r=l 

q 

k3 = ha(tk+I,Xk + a2ch1l 2 l:(arer)k - ki + 2k2 + 3c:2hbk), 
r=l 

and er are from ( 4.2). 
The third method is 

q q 

xk+l = xk + ch1/2 2)ar(tk, Xk) + O"r(tk+l, Xk)]erk/2 + c2 h L (Awreir )k+ 
r=l i,r=l 

q 

(5.5) 

(5.6) 

+ c:2h[bk + b(tk+I,Xk + c:h1/2 l:(arer)k + h(a + c:2b)k)]/2, (5.7) 
r=l 

R = O(h3 + c:2 h2
) 

where ki, i = 1, 2, 3, are from (5.6) and the needed random variables er, eir are simulated 
as in the method (4.6). The method (5.7) contains the operators with first and second 
derivatives of the diffusion coefficients O"r with respect to x. 

We have obtained the semi-Runge-Kutta method with the error R = O(h3 + c;4 h2). 

But it requires the same number of coefficient recalculations as the semi-Runge-Kutta 
method O(h4 + c;4 h2 ) which is provided below [see (5.17)]. So, here we do not write 
down the Runge-Kutta scheme O(h3 + c;4 h2). 
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5.3. Methods 0( h4 + ... ) 
The first method, which is the simplest Runge-Kutta scheme among methods O(h4 + 
... ) , has the form 

q 

xk+l = xk + ch1/2 l:(O"rerh + c2hbk + [k1 + 2k2 + 2k3 + k4]/6, (5.8) 
r=l 

where 

(5.9) 
and er are from ( 4.2). 

The second full Runge-Kutta method, which has the same error as the Taylor-type 
method ( 4.13), is 

q 

xk+l = xk + ch1/2 L[<7r(tk, Xk) + O"r(tk+l, xk + hak)]erk/2+ 
r=l 

+ [k1+2k2 + 2k3 + k4]/6 + e,2h[bk + b(tk+i,Xk + hak)]/2, (5.10) 

R = O(h4 + e, 2h2 + e,4 h) 

where 
q 

ki = hak, k2 = ha(tk+112, xk + kif2), k3 = ha(tk+i/2, xk + ch112 2:::( O"rer h + k2f2), 
r=l 

q 

k4 = ha(tk+i,Xk + e,h1l 2 L(O"rerh + k3 + 3e,2hbk), (5.11) 
r=l 

and er are from ( 4.2). 
The third full Runge-K utta method is 

q 

xk+l = xk + ch1/2 L[<7r(tk, Xk)(er + 67Jr )k + 4<7r(tk+1/2, xk + k2/2)erk + 
r=l 

q 

+O"r(tk+i,Xk + ki)(er - 67Jr)k]/6 + h[a(tk,Xk + e,h1!2 L(O"r'T/rh)-
r=l 

q 

- a(tk,Xk - e,h1l2 L(O"r'T/rh)]/2 + [k1+2k2 + 2k3 + k4]/6 + c2[li + 312]/4, (5.12) 
r=l 

where 

q 

k3 = ha(tk+l/2, xk + ch1l2 l:(O"rer )k + k2/2 + c2~li/4 + 3c2l2/4), 
r=l 
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q 

k4 = ha(tk+1, xk + ch112 I: a-r(tk+l, xk + ki)~rk + k3 + c2ti), 
r=l 

(5.13) 

and ~r, T/r are simulated as in (4.15). This full Runge-Kutta method requires six 
recalculations of the function a ( t, x), three recalculations of the functions a-r ( t, x) and 
two recalculations of the function b( t, x). 

The fourth method, which contains first and second derivatives of the functions O"r 
with respect to x, is 

q q 

xk+l = xk + ch1/2 l:)o-r(tk,Xk) + O"r(tk+i,Xk)]erk/2 + c2h L (AiO"reir)k+ 
r=l i,r=l 

q 

+ c; 2h[bk + b(tk+l, xk + c;h1l 2 l:(o-rer h + h(a + c2b)k)]/2, (5.14) 
r=l 

R = O(h4 + c;2h2) 
where ki, i = 1, ... '4, are from (5.13) and the needed random variables er, ~ir are 
simulated as in the method (4.16). The method (5.14) is derived in Appendix (see 
Section 15). 

Let us note that in the case of one noise ( q = 1) we succeeded in constructing of 
the full Runge-Kutta method with the error estimated by O(h4 + c2h2). It has the 
form 

Xk+i = Xk +ch1l 2 { a-(tk, Xk)(~)k + a-(tk+i, Xk - c;h 1l 2a-(tk, Xk) + h(a + c; 2 b)k)[~ - e+ 

+l)k/2 + a-(tk+i, Xk + c;h1 l 2a-(tk, Xk) + h(a + c; 2b)k)[e + e - l]k/2} /2 + [k1 + 2k2+ 

+ 2k3 + k4]/6 + c2 h[bk + b(tk+i,Xk + ch1 l2~(tk,Xk)(e)k + h(a + c2 b)k)]/2, (5.15) 

R = O(h4 + c;2h2
) 

where 

k4 = ha(tk+i,xk + c;h1f2(a-e)k + k3 + 3c2hbk), 
and the needed random variables e are simulated as 

P(e = o) = 2/3, P(e = -v'3) = P(e = v'3) = 1/6 

The last semi-Runge-Kutta scheme is 
q 

xk+l = xk + ch1/2 I]o-r(tk, Xk)(er + 6'f/r )k + 40-r(tk+i/2, xk + k2/2)erk + 
r=l 
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q 

+a°r(tk+i,Xk + ki)(er - 617r)k]/6 + h[a(tk,Xk + c:h1f 2 :l)O"r1Jr)k)-
r=l 

q q 

-a(tk,Xk - ch1
/

2 l:(O"r1Jr)k)]/2 + c2 h 2::: (AiO"r~ir)k+ . 
r=l i,r=l 

(5.17) 
r=l 

where 

q 

k3 = ha(tk+i/2,Xk + ch1
/
2 l)O"r~rh + k2/2 + c2li/4 + 3c2l2/4), 

r=l 
q 

k4 = ha(tk+l, xk + c:h1!2 I: O"r(tk+l, xk + ki)erk + k3 + c2l1), 
r=l 

q 

li = hb(tk,Xk + c:h1f2(l + v13) L(O"rerh/2), l2 = hb(tk + 2h/3,Xk + 2c:2li/3+ 
r=l 

q 

+ 2ki/9 + 4k2/9 + c:h1l 2(3 - v13) l:( O"rer )k/6) (5.18) 
r=l 

and the needed random variables are simulated as 

{ 
-1, i < r /10 

~ir=(eier-!ir(i(r)/2, /ir= 1 .> , 7Jr=(r/vl2, 
' i - r 

P(e = 0) = 2/3, P(e = -v13) = P(e = v13) = 1/6, P(( = -1) = P(( = 1) = 1/2 
(5.19) 

6. Implicit weak methods for a general system with small . noises 

We write down implicit methods only with the orders O(h2 + c; 2 h) and O(h2 + c:4h). 
Some implicit methods for a general system (c = 1} may be found in refs. [7], [10]. We 
do not write down implicit methods which under c = 0 have time-step orders higher 
than 2 because, as is known, increasing of time-increment order leads to deterioration 
of stability properties of a method. 

The family of implicit methods with R = O(h2+c2 h) is the following 

q 

xk+l = xk + sh112 :L(O"rer)k + h[aak + (1 - a)ak+iJ + s2 h[abk + (1 - a)bk+iJ+ 
r=l 

+ h2 /3(2o: - 1 )L1 ak/2 + h2 (1 - /3)(2o: - 1 )L1 ak+i/2 
where 0 :s; a :s; 1, 0 :s; /3 :s; 1, and er are from ( 4.2). 
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The family of implicit methods with R = O(h2+c4h) has the form 

q 

xk+l = xk + ch112 l:(o-rerh + h[aak + (1 - a)ak+i] + c2 h[abk + (1-:- a)bk+i]+ 
r=l 

q 

+ch312 L[(L10-r + (2a - l)Ara)er]k/2 + h2 /3(2a - l)(L1 + c2l2)ak/2+ 
r=l 

+h2 (1 - /3)(2a - l)(L1 + c2 l 2 )ak+i/2 + c2h2/3(2a - l)L1bk/2+ 

+ c;2h2(1 - /3)(2a - l)L1bk+i/2 
where 0 :::; a :::; 1, 0 :::; /3 :::; 1, and er are from ( 4.2). 

(6.2) 

These methods follow from the corresponding implicit schemes of ref. [10] by omit-
ting of the terms which do not influence on the one-step errors 0( h3 + c2 h2 ) and 
O(h3 + c4 h2 ) of the methods (6.1) and (6.2) respectively. 

Under a equal to 1/2 we obtain the simplest schemes of the families (6.1) and 
(6.2). In this case the method (6.1) becomes the derivative free implicit Runge-Kutta 
scheme. Under a = 1/2 the method (6.2) contains derivatives of the diffusion co-
efficients o-r(t, x) but it is possible to obtain the derivative free implicit Runge-Kutta 
scheme with R = O(h2+c4h) 

q 

xk+l = xk + c:h112 :L { o-r(tk) + o-r(tk+l, xk + hakn erk/2+ 
r=l 

(6.3) 
where er are from ( 4.2). 

7. Stratonovich system with small noises 

It is known that a stochastic system in the Stratonovich sense (marked by"*") 

q 

dX = a(t, X)dt + t:2 c(t, X)dt + c L O"r(t, X) * dWr, X(to) = Xo, t E [to, T] (7.1) 
r=l 

is equivalent to the following system in the Ito sense 
q 

dX = a(t, X)dt + c2 b(t, X)dt + c L <7r(t, X)dWr (7.2) 
r=l 

where 
1 q 80-r 

b(t,x) = c(t,x) + 2 :Lax (t,x)o-r(t,x) 
r=l 

(7.3) 

In Sections 4-6 we have proposed weak methods for the Ito system in the form of (7.2). 
Thus, the methods of Sections 4-6 are also appropriate for the Stratonovich system 
(7.1). Let us note that the full Runge-Kutta methods of Section 5 are not full for 

the system ( 7 .1) because b( t, x) in ( 7 .3) contains derivatives ~: . But if the diffusion 
coefficients O"r are simple functions, the methods of Section 5 may be efficient and 
useful for the Stratonovich system (7.1). Nevertheless, in some cases we obtain the full 
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Runge-Kutta schemes for (7.1). Here we restrict ourselves to the proposition of the 
full Runge-Kutta method with R = O(h4 + c2 h2 ) for the Stratonovich system with one 
noise 

where 

n3 = ch1l 2a(tk+l, xk + n2/2 + ki + li)(e)k, n4 = ch1l 2a(tk, xk + n3)(e)k, 

ki = hak, k2 = ha(tk+l/2, xk + ki/2), k3 = ha(tk+i/2, xk + k2/2 + n2), 

k4 = ha(tk+l, xk + k3 + n2 + 3/i), li = c2 hck, l2 = c2 hc(tk+i, xk + li + ki + n2) 

and ek are simulated as in (5.16). 

8. Weak methods for a system with small additive noises 

The important particular case of the system with small noises is the system with small 
additive noises 

q 

dX = a(t, X)dt + c L O'r(t)dWr, X(to) = Xo, t E [to, T] (8.1) 
r=l 

Here for simplicity we restrict ourselves to the system with b = 0 (note that in the 
case of additive noises the Stratonovich system coincides with the Ito one). For the 
system (8.1) we obtain methods with the errors estimated by O(h3 + c6 h2), O(h3), 
O(h4 + c2h3 + c6 h2), O(h4 + c6h2), O(h4 + c2 h3 ), O(h4 + c4h3 ) and also with the same 
orders as in Section 4. Let us note that methods O(h4 + c6 h3 ) and O(h4 + c8 h3 ) are 
too complicated, and therefore we do not write down them. 

Methods for the system (8.1) with the same orders as in Section 4 follow from the 
corresponding methods for a general system with small noises taking into account that 
for the system (8.1) we have 

8.1. Taylor-type methods 

Nlethods O(h2 + ... ) easily follow from the corresponding methods of Section 4, and 
here we do not write down them. 

Methods O(h3 + ... ),except methods O(h3 + c6 h2 ) and O(h3 ), can be also written 
down from the corresponding methods of Section 4. 

The method 0( h3 + c6h2) is written as 
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q 

+ch3
/

2 :L (Ara(er/2 + TJr))k + h2(L1 + c2 L2)ak/2+ 
r=l 

q q q d2 (]' 
+s2h2 LL (AiAra(eier - (i(r )h /6 + c:h5l 2 L(( d 2r + (L1 + c2 L2)Ara+ 

r=l i=l r=l t 
+ Ar(L1 + c:2 L2)a)er )k/6 + h3 (L1 + c,2 L2)2ak/6 (8.2) 

where the random variables er, T/r and (r are simulated as 

P(e-= o) = 2/3, P(e = -v'3) = P(e = v'3) = 1/6, 

P(r; = -1/02) = P(r; = 1/02) = 1/2, 
P(( = -1) = P(( = 1) = 1/2 (8.3) 

The method O(h3 ) has the same form (8.2) but requires simulation of the needed 
random variables by the laws 

P(e = o) = 1/3, P(e = -1) = P(e = 1) = 3/10, P(e = -v'6) = P(e = v'6) = l/3o, 

P(r; = -1/02) = P(r; = 1/02) = 1/2, P(( = -1) = P(( = 1) = 1/2 (8.4) 

This method coincides with the third order weak method proposed in refs. [9], [10] for 
a general system with additive noises (c = 1). 

Methods O(h4+ .. . ) for the system (8.1), except the methods O(h4 + c,2h3 + c:6h2), 
O(h4 +r:;6 h2), O(h4 +c,2h3 ), O(h4 +c:4h3 ), are obtained from the corresponding methods 
of Section 4. 

For instance, the method O(h4 + c:4 h2) follows from the scheme ( 4.17) and has the 
form 

q q d2a 
+ch3

/
2 L (Ara(er/2 + T/r ))k + h2(L1 + c2 L2)ak/2 + ch5

/
2 L(( dt2r + LiAra+ 

r=l r=l 
+ ArL1a)er)k/6 + h3 Liak/6 + c:2h3 (L1L2 + L2L1)ak/6 + h4L~ak/24 (8.5) 

where er and T/r are simulated as 

P(e = o) = 2/3, P(e = -v'3) = P(e = v'3) = 1/6, 

P(r; = -1/02) = P(17 = 1/02) = 1/2, 
The method O(h4+c2 h3 +r:;6 h2) is written as 

xk+l = xk + eh1!2 ~(arer h + hak + eh312 ~ ( d;; (er/2 -11r)) k + 

q 

+r:;h3 l 2 L (Ara(er/2 + r;r)h + h2 (L1 + c2 L2)ak/2+ 
r=l 
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+ Ar(L1 + c,2 L2)a)er )k/6 + h3(L1 + c,2 L2)2ak/6 + h4Lrak/24 (8.7) 
where the random variables are simulated by the laws (8.3). 

The method O(h4+c,6 h2) has the form 

q 

+ch312 L (Ara(er/2 + TJr)h + h2(L1 + c2 L2)ak/2+ 
r=l 

q q q 

+c2 h2 LL (AiAra(eier - (i(r )h /6 + ch512 L ( (L1 + c2 L2)Ara~r) /6+ 
r=l i=l r=l k 

+c:h512 ~ (A,( L1 + c: 2 L2)a( e,/6 + T/r /2)) k + c:h5l2 ~ ( d;;r ( e, /6 - T/r/2)) k + 

+h3(L1 + c,2 L2)2ak/6 + c,h7l2 t [(A,Lia + L1A,L1a + LiA,a + d;~') er] /24+ 
r=l t k 

(8.8) 
where the random variables are simulated according to the laws (8.3). 

The method O(h4+c,2h3 ) has the form (8.7) but the random variables are simulated 
as in (8.4). Note that this method distinguishes from the method O(h3 ) only by the 
additional term h4 Lrak/24. 

The method O(h4+c,4 h3) has the same form (8.8) as the method O(h4 + c,6h2) but 
the needed random variables are from (8.4). 

8.2. Runge-Kutta methods 

Herein we restrict ourselves to full (derivative free) Runge-Kutta schemes. 
Methods O(h2+ ... ) easily follow from the corresponding methods of Section 5. 
Methods O(h3+ .. . ) also follow from the corresponding methods of Section 5. Note 

that the semi-Runge-Kutta method (5.7) in the case of additive noises becomes full 
Runge-Kutta scheme and has the form 

q 

Xk+l = xk + c,h1l 2 L(ar(tk) + O"r(tk+i))erj2 + (k1+4k2 + k3)/6 (8.9) 
r=l 

where 
q 

ki = hak, k2 = ha(tk+i/2, xk + a1ch112 I) arer h + kif2), 
r=l 

q 

k3 = ha(tk+i,Xk + a2ch1/2 2:(arerh - ki + 2k2), 
r=l 

Ct.1 = (6 ± v'6)/10, Ct.2 = (3 + 2v'6)/5 (8.10) 

and er are simulated as 

P(e = o) = 2/3, P(e = -J3) = P(e = v13) = 1/6 (8.11) 
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We also obtain the full Runge-Kutta method 0( h3 + c4h2). But it requires five recalcu-
lations of the function a(t, x) and three recalculations of the functions o"r(t) while the 
full Runge-Kutta method O(h4 + c4h2 ) (see (8.14) below) requires six recalculations of 
the function a(t, x) and three recalculations of the functions a"r(t). Therefore, we do 
not write down it. 

Methods O(h4+ ... ) follow from the corresponding methods of Section 5. Fortu-
nately, the methods (5.14) and (5.17) for the system with additive noises become full 
Runge-Kutta schemes and for reader's convenience we write down them below. 

The full Runge-Kutta method O(h4 + c2h2 ) has the form 

q 

xk+I = xk + ch112 I)ar(tk) + ar(tk+1))erk/2 + (k1 + 2k2 + 2k3 + k4)/6 (8.12) 
r=l 

where 

q q 

+ ch112 I) arer )k), k4 = ha( tk+I, xk + k3 + ch112 2:::( arer )k) (8.13) 
r=l r=l 

and er are simulated according to (8.11 ). 
The full Runge-Kutta method O(h4 + c4 h2 ) for the system (8.1) is written as 

q 

Xk+l = xk + ch1!2 L { O"r(tk)(er + 611r )k + 4ar(tk+i/2)erk + O"r(tk+i)(er - 611r )k} /6+ 
r=l 

h { a(tk, xk + c:h1f 2 ~( O"r1)r )k) - a(tk, xk - c:h1f2 ~(o-,17, )k)} /2+(k1 +2k2+2k3+k4)/6 

(8.14) 
where 

q q 

+ ch1/2 l::(arer)k), k4 = ha(tk+i,Xk + k3 + ch1l2 L ar(tk+i)erk) (8.15) 
r=l r=l 

and en 1Jr are simulated as in (8.6). 

8.3. Implicit methods 

The implicit methods for the system with additive noises (8.1) are easily obtained from 
the methods of Section 6, where the implicit methods for a general system with small 
noises have been proposed. 

9. Weak methods for a system with small colored noises 

For some physical applications it is preferable to model random perturbations by col-
ored noises (13). In previous papers (for instance, see refs. (11), (12) and refs. therein) 
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various peculiar methods for numerical solution of a system with colored noises were 
proposed. Herein we consider weak methods for a system with small colored noises 

dY = J(t, Y)dt + c:G(t, Y)Zdt, 

q 

dZ = A(t)Zdt +I: l'r(t)dWr 
r=l 

(9.1) 

where Y and J(t, Y) are !-dimensional vectors, Zand /r(t) are m-dimensional vectors, 
A(t) is mxm-matrix, G(t, Y) is lxm-matrix, Wr, r = 1, ... , q, are uncorrelated standard 
Wiener processes, and c; is a small parameter. 

By introducing new variable U = c;Z we obtain the system (9.1) in the convenient 
form 

dY = J(t, Y)dt + G(t, Y)Udt, 

q 

dU = A(t)Udt + c 2:: /r(t)dWr 
r=l 

(9.2) 

The system (9.2) is the simplified version of the system with small additive noises (8.1). 

For the system (9.2) we have X = [ ~ ] is the l +m-dimensional vector, i.e., n =I +m, 

a= [ f ~gu ] is then-dimensional vector, O"r = [ ~r ] is also n-dimensional vector, 

the first l components of which are equal to zero. For convenience we write down the 
operators 

a a a 
L1 = at+ (f(t, y) + G(t, y)u, ay) + (A(t)u, au)' 

(9.3) 

and the expressions 

(9.4) 

By the formulas (9.3)-(9.4) the methods of Sections 4-6 and 8 can be rewritten for 
the system (9.1 ). That is why, herein we do not write down Taylor-type explicit and 
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implicit methods. Below we provide the most useful full Runge-Kutta methods with 
the errors O(h3 + c6 h2 ), O(h3 ), O(h4 + c2h3 + c6 h2), O(h4 + c2h3 ). 

Runge-I<utta methods O(h2+ ... ) easily follow from the corresponding methods of 
Section 5, and we do not write down them. 

Runge-I<utta methods O(h3+ .. . ) are obtained from the methods of S~ctions 5 and 
8. However, for the system with colored noises ( 9 .1) we obtain suffi.cien tly effective full 
Runge-Kutta method with the error O(h3 + c6 h2 ) 

q 

Uk+1 = Uk+ sh112 L { /r(tk)(er + 677r )k + 41r(tk+i/2)erk + /r(tk+i)(er - 677r )k} /6+ 
r=l 

(9.5) 

where 

q 

+ki/2, Uk+ li/2 + sh1l 2 ··2~J1rer)k/2), k3 = hF(tk+I, Yk - ki + 2k2, Uk-
r=l 

q 

-li + 2l2 + sh1l 2 L /r(tk+i)(er + 67]r )k), li = h(AU)k, 
r=l 

q 

l2 = hAk+1;2(Uk + li/2 + sh1l 2 2:=C1rer )k/2), l3 = hAk+i (Uk-
r=1 

q 

- l1 + 2l2 + sh1l 2 L /r(tk+i)(er + 677r)k) (9.6) 
r=l 

and the random variables are simulated according to (8.6). 
The full Runge-I<utta method O(h3

) has the form (9.5) but the needed random 
variables are simulated as 

P(e = o) = 1/3, P(e = -1) = P(e = 1) = 3/10, P(e = -v'6) = P(e = v'6) = l/3o, 

P(17 = -l/Ji2) = P(17 = l/Ji2) = 1/2 (9.7) 

The method (9.5) requires only three recalculations of the functions f(t, y), G(t, y), 
A(t) and /r(t). For a general system with colored noises (s = 1) the full Runge-Kutta 
scheme (9.5) with the random variables simulated by (9.7) also has the accuracy O(h3 ). 

Note that third time-order full Runge-Kutta schemes for a system with colored noises 
were not obtained in the previous papers (see ref. [12] and refs. therein). 

Runge-I<utta methods O(h4+ .. . ) follow from the methods of Sections 5 and 8. But 
for the system {9.1) we also obtain effective Runge-Kutta methods O(h4 +s2 h3 +s6 h2 ) 

and O(h4 + s2 h3 ) which are provided below. 
The full Runge-Kutta method O(h4 + s2h3 + s6 h2) is written as 

q ' 

uk+l =Uk+ sh1l2 L { lr(tk)(~r + 611r h + 41r(tk+i/2)~rk + /r(tk+i)(~r - 611r )k} /6+ 
r=l 
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(9.8) 

where 
F(t, y, u) = f(t, y) + G(t, y)u, ki = hFk, k2 = hF(tk+i/2, Yk.+ 

q 

+ki/2, Uk+ li/2), k3 = hF(tk+1/2, Yk + k2/2, Uk+ l2/2 + ch1/2 L( /rer )k), 
r=l 

q 

k4 = hF(tk+i, Yk + k3, Uk+ l3 + c:h1l 2 L /r(tk+i)(er + 6TJr )k), l1 = h(AU)k, 
r=l 

q 

12 = hAk+i/2(Uk + li/2), l3 = hAk+112(Uk + 12/2+ ch1
/

2 I) /rer )k), 
r=l 

q 

[4 = hAk+i (Uk+ [3 + c:h112 L /r(tk+i)(er + 6TJr )k) (9.9) 
r=l 

and the random variables are simulated according to the laws (8.6). 
The Runge-I<utta method O(h4 +c:2h3) has the form (9.8) but the random variables 

are simulated as in ( 9. 7). This method requires three recalculations of the functions 
A(t) and {r(t), and four recalculations of the functions f(t, y) and G(t, y). 

10. Talay-Tubaro expansion of the global error 

In ref. [20] the authors prove that it is possible to expand error of a method for a 
stochastic system on the whole interval in powers of time increment h. Their approach 
is analogous to the Runge estimation method for ordinary differential equations and 
allows to estimate the global error and to improve the method accuracy. Herein we 
expand the global error not only in powers of time increment h but also in powers of 
small parameter £. Therefore, we cannot directly apply Talay-Tubaro theorems. 

Theorem 10.1 The error of the method (4.1} on the whole interval is equal to 

(10.1) 

where the functions Ci(c:), i = 1, 2, do not depend on h and are equal to Ci(c) = 
Cf+ O(c:2 ), and constants Cf(c:), i = 1, 2, do not depend on both h and c;. 

The proof of Theorem 10.1 and the expressions for the coefficients Ci(c) see in 
Appendix (Section 16). It follows obviously from the proof that in the same way as 
the expansion (10.1) of the global error for the method ( 4.1) is derived, the expansions 
of errors for other methods can be obtained. For instance, for the method (4.14) with 
the error 0( h4 + c:4h) we have 

The expansion like (10.1) can be used in the following way. Let us twice simulate 
ue(t0 ,X0 ) = EJ(X[

0
,xJT)) by the method (4.1) under the given c and with dif-

ferent time steps hi, h2 and obtain ue,h1 (t 0 ,X0 ) = Ef(X;~~kJT)), ue,h2 (t 0 ,X0 ) = 
E f (.X;~~l0 (T) ). We can write 

ue = ue,hi + C1(c:)hi + c:2C2(e)h1 + O(h3 + c: 2h2
) 
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ue = ue'h2 + C1(c)h; + c2C2(c)h2 + O(h3 + c2h2) 
Then the constant C2 ( c) is calculated as 

where 
c2C2(c) = (ue,h1 - u,e,h2)/(h2 - h1) 

(10.2) 

Using the method (4.1) under c = 0 with different time steps h1 , h2 we obtain 
u,o,h1 (t X ) = J(X0'h1 (T)) u,o,h2 (t X ) = J(X0'h2 (T)) where go,hi is the ap-o, 0 to,Xo ' o, O to,Xo ' to,Xo 
proximation of the solution Xi

0
,x

0 
of the deterministic system. Then by the Runge 

estimation method we find the constant Cf = C1 (0) 

Cf= Cf+ O(h) (10.3) 

where 
Cf= ( u,0 1h1 _ u,0 1h2) /(h~ _hi) 

By (10.2) and (10.3) we obtain the improved value iiimp with the accuracy order O(h3 + 
c2h2) 

(10.4) 
According to the approach to construction of weak methods for a system with small 
noises, we can transfer some terms, contribution of which to the error is proportional 
to hi.si, from a method to its remainder and vice versa. By calculation of the constants 
Ci( c) it is possible to estimate real weight of the terms and select the most appropriate 
scheme for solution of a certain system with small noises in the sense of calculation 
expenses and accuracy order. 

11. Reduction of the Monte-Carlo error 

Let us calculate the expectation Ef(X(T)) by Monte-Carlo technique using a weak 
method for solution of the system (3.1). Then; as is known, two errors arise: error ofa 
weak method, which is considered in the previous Sections, and the Monte-Carlo error 
which is discussed below. We have 

(11.1) 

where N is the number of independent realizations X(m) simulated by a weak method, 
and c is a constant. If the constant c is equal to 1, 2, or 3, the calculated value 
belongs to the interval defined by (11.1) with confidence probability 0.68, 0.95, or 
0.997 correspondingly. 

According to the closeness of Df(X(T)) to Df(X(T)), the Monte-Carlo error can 
be estimated by [Df(X(T))]112

• If Df(X(T)) is large, to reach the needed accuracy 
we must take sufficiently large N which leads to heavy calculation expenses. If instead 
of f(X(T)) we succeed in constructing a variable Z such that EZ = Ef(X(T)) but 
DZ ~ Df(X(T)), simulation of the variable Z instead of f(X(T)) would make it 
possible to obtain more accurate results with the same calculation expenses. 
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One of approaches to constructing Z was proposed in ref. [10]. As is shown below, 
this approach allows effectively reduce the Monte-Carlo error in the case of a system 
with small noises. 

Together with the system (3.1) let us consider the following system · 
q q 

dX = a(t, X)dt + c:2b(t, X)dt - c L µr(t, X)O"r(t, X)dt + c L O"r(t, X)dWr, 
r=l r=l 

q 

dY = c L µr(t, X)Y di 
r=l 

where µr and Y are scalars. 
According to the Girsanov theorem for any µr we have 

yE f(Xs,x(T)) 1(3.1) = E (Ys,x,y(T)f(Xs,x(T))) 1(11.2) 

The function u( s, x) = E f (Xs,x(T)) 1(3.1) satisfies the equation 

with the condition at the instant T 

u(T,x) = J(x) 

(11.2) 

(11.3) 

(11.4) 

(11.5) 

Under sufficiently wide conditions on the coefficients and the function f, the solution 
u(s,x) = ue(s,x) of the problem (11.4)-(11.5) has the form (see ref. [4, Chapt. 2]) 

(11.6) 

The function u 0 satisfies the first-order partial differential equation 

(11.7) 

with the condition (11.5). Obviously, the solution of (11.7) has the form 

u0
( s, X) = J (X~ x(T)) 

' 
(11.8) 

where X~,x is the solution of the Cauchy problem for the deterministic system of dif-
ferential equations 

dX 
-d = a(t,X), X(s) = x 

t ' 

Let us assume that the solution u(s,x) of the problem (11.4)-(11.5) exists. 

(11.9) 

By the Ito formula let us calculate the following expression with respect to the 
system (11.2) (note that Lu= 0) 
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Then 

t q ( au ) u( t, x.,x( t) )Y.,x,y( t) = u( s, x )y +I "f e( a., Ox) + µru y dWr( t) . (11.10) 

If we suppose that t == T, y = 1, µr = 0, we obtain 

. T q au 
f(Xs,x(T)) = u(s, x) + j e ~(a"' ax )dW,(t) 

8 r-1 

Therefore 
T [q a ]2 

DJ(Xs,x(T)) = e2 ! E "f (a., 8~) dt (11.11) 

because of u(s, x) == EJ(Xs,x(T))l(3.1)· 
Thus, if we calculate EJ(X(T)) by Monte-Carlo technique using a weak method for 

solution of the system (3.1), the Monte-Carlo error, evaluated by c[Df(X(T))/N]112 

and close to c[Df(X(T))/N] 112 , has the small factor equal to c:. 
As it follows from (11.3), the mean value EZ == E (Ys,x,y(T)J(Xs,x(T))) !(il.2) does 

not depend on µr but D (Ys,x,y(T)J(Xs,x(T))) 1(11.2) depends on µr. So, now our aim is 
to select functions µr, r == 1, ... , q, in such a way that the variance DZ would be less 
than the variance (11.11). 

Let us assume that J > 0. Then u 0 > 0. Note that if function f is not greater than 
zero but there exist constants I< and C such that ]{ f + C > 0 then for the function 
g == ]{ J + C this assumption holds. In this case we can simulate Eg and then easily 
obtain Ef. 

If we suppose that in the formula (11.10) t = T, y == 1 and 

c; ( au0

) µr == - uo O'r, ax ' r = 1, ... 'q (11.12) 

we obtain 

JT q [ au1 au0 u1] 
f(X.,x(T))Y = u(s, x) + s e3 "f (ar, ax ) - (ar, ax ) uo dW,(t) 

Therefore 

6 ~ q au 1 au 0 u 1 
T ( [ ])2 D [f(Xs,x(T))YJ = e f E E (<T,, fu) - (a,, fu) uo dt 

That is, the Monte-Carlo error for the system (11.2) with µr from (11.12) has the small 
factor equal to c;3 • 

The system (11.2) with µr from (11.12) is again the system with small noises, and 
all methods, proposed in the paper, are suitable for it. And even for not large number 
of simulations N the Monte-Carlo error for this system is small. Of course, to apply 
the approach we must know the function u0 (s, x). 
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12. Numerical tests 

12.1. Simulation of Lyapunov exponent of a linear system with small noises 

Lyapunov exponents are useful for investigation of stability of a dynamic stochastic 
system [1], [6]. The negativeness of upper Lyapunov exponent is an indication of 
system stability. Usually, it is impossible to obtain analytical expressions for Lyapunov 
exponents. That is why, a numerical approach to calculation of Lyapunov exponents 
is needed. Previously D.Talay [19] proposed such an approach which was based on 
ergodic property and allowed to calculate Lyapunov exponent by simulation of a one 
trajectory with the help of weak methods. This method is attractive because of its 
visuality and low calculation expenses. But it is difficult to analyze the errors arising 
in this approach. 

Herein we calculate Lyapunov exponent as a convenient example to illustrate cor-
rectness and effectiveness of the proposed methods. In addition we pay a certain 
attention to analysis of the errors. 

For our numerical tests we take the following two-dimensional linear Ito stochastic 
system 

q 

dX = AX di + c L BrX dWr (12.1) 
r=l 

where X is two-dimensional vector, A and Br are constant 2x2-matrices, Wr are inde-
pendent standard Wiener processes, c; > 0 is a small parameter. 

In ergodic case the unique Lyapunov exponent ,\ of the system (12.1) exists [6] and 

,\ = lim ~ Ep(t) = lim ~ p(t) a.s. 
t-+oo t t-+oo t 

where p(t) = ln IX(t)I, and X(t) 1 t ~ 0, is a non-trivial solution of the system (12.1). 
If D(p( t)) --? oo in the limit of t --? oo then [6] 

(12.2) 

where c.p(t) --? 0 in the limit of t --? oo. And it is not difficult to estimate that 
D(p(t)/t) --? 0 in the limit oft--? oo. From (12.2) and the equality 

we have 

(12.3) 

In refs. [2], [15] the expansion of Lyapunov exponent of the system (12.1) in powers 
of small parameter c; was obtained. Herein we consider the system (12.1) with the 
matrices A and Br which are such that 

(12.4) 
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In this case the Lyapunov exponent is exactly equal to [2] 

2 2 

,\ = a + €2 2: [ ( dr) 2 
- ( br )2] 

r=l 
(12.5) 

By Monte-Carlo technique we numerically calculate the function 

1 - 1 -
,\(T) = TEp(T) ~ ,\(T) = TEp(T), p(T) = ln IX(T)I (12.6) 

Let us remind that X(T) denotes an approximation of the exact solution X(T). The 
function ,\(t) in the limit of large time (t-+ oo) tends to the Lyapunov exponent ,\, 
In this case three errors arise: (1) method error, i.e., IEp(T)/T - Ep(T)/TI, which is 
estimated by Theorem 3.1 (the function f(x) from the theorem statement is equal to 
ln lxl/T), (2) the Monte -Carlo error which is estimated by [D(p(T)/T)]112 /.JR [see 
(11.1)], and (3) the error with respect to the choice of integration time T [see (12.3)]. 

As it follows from the computational results, in our tests the third error, i.e., l,\(T)-
,\1 = IE (p(T)/T) - ,\I, is negligibly small, at any rate for T 2:: 2, in comparison with 
the method error or/ and the Monte-Carlo error. 

In our case the function [D(p(T)/T)]11 2 tends to zero with the rate as 1/v'T. So, 
the Monte-Carlo error is proportional to 1 / J'fN'. Therefore, to reduce the Monte-
Carlo error we can increase N or T. As to calculation expenses it does not matter to 
increase N or T. But in practice for large time T some computational problems arise 
according to the fact that IX(T) I for the system (12.l) decreases to zero or increases 
to infinity exponentially fast. That is why, we prefer to increase N. It is clear that in 
our case the Talay's approach requires the same calculation expenses as simulation of 
Lyapunov exponent by Monte-Carlo technique. And by Monte-Carlo simulations we 
find not only Ep(T)/T but also D(p(T)/T) which is useful for estimation of the errors. 

We estimate the system (12.1) by four weak schemes. They are (1) the method (4.1) 
with the error O(h2 + c2 h) which is the simplest method among the schemes proposed 
in the paper, (2) the method (4.3) with the error O(h2 +c4 h), (3) the ordinary method 
(2.7) with the error O(h2 ), (4) the semi-Runge-Kutta scheme (5.17) with the error 
0( h4 + c4 h2 ) which is the most accurate (in the sense of product ci hi) scheme among 
the methods proposed in the paper for a general system with small noises. 

From Table I and Figures 12.1, 12.2 it follows that the proposed methods for a 
system with small noises require lower calculation expenses than ordinary methods. 

Table I. Lyapunov exponent. Computational results for Lyapunov exponent 
"5..(T) for a = -2, c = 1, b1 = b2 = 2, di = 1, d2 = -1, £ = 0.2, X 1(0) = 0, X 2(0) = 1, 
T = 10, and for various steps h with averages over N realizations, where N = 4·104 

for the methods O(h2 + ... )and N = 1·106 for the method O(h4 + £ 4h2 ). The exact 
solution is A = -2.12. 

i:f m~//m)(T)/T ±-JR i:f m~1 [p(ml(T)/T]2 - [i:f m~/ml(T)/Tr 1 ' 

h O(h2 + c2h) O(h2 + c4h) O(h2) O(h4 + c4 h2) 

0.3 -2.461 ± 0.004 -2.067 ± 0.002 -2.067 ± 0.002 -2.1228 ± 0.0004 
0.2 -2.290 ± 0.003 -2.106 ± 0.002 -2.097 ± 0.002 -2.1195 ± 0.0004 
0.1 -2.186 ± 0.002 -2.1198 ± 0.0018 -2.1140 ± 0.0017 -2.1192 ± 0.0004 
0.05 -2.150 ± 0.002 -2.1219 ± 0.0018 -2.1186 ± 0.0018 -2.1197 ± 0.0004 
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Figure 12.1: Lyapunov exponent. Time dependence of the function ~(T) = Ep(T)/T 
for time step h = 0.45. Other parameters are the same as in Table I. The solution 
of the system (12.1), (12.4) is approximated by (1) the method (4.1), (2) the method 
(4.3), (3) the method (2.7). Dashed line is the exact value of the Lyapunov exponent,.\ 
(,.\ = -2.12). The number of realizations N = 400 which ensures that the Monte-Carlo 
errors at T ~ 7 are not greater than 0.04 for the curve 1 and not greater than 0.02 for 
the curves 2,3 and are less than the method errors. 

From Fig. 12.1 one can conclude that the methods O(h2 + ... ) with the time step 
h equal to c112 , i.e., their errors are estimated by 0( c ), give similar results but our 
method ( 4.1) has the lowest calculation expenses and, therefore, is preferable. As is 
shown in Fig. 12.2, the methods ( 4.3) and (2. 7) under h = c and the method ( 5.17) 
under h = c112 (the errors of these methods are estimated by O(c2 )) give similar results. 
Obviously, in this case the semi-Runge-Kutta method (5.17) is preferable because it 
permits to safe CPU time. 

By the data of Table I it is possible to improve the methods O(h2 +c2 h), O(h2 +c4 h) 
and O(h2 ) by the Talay-Tubaro expansion (see Section 10). For instance, one can 
calculate the constants C1 and C2 from the expansion of the global error of the method 
(4.1) [see Section 10, Theorem 10.1] and obtain that C1 ~ 2.1 and C2 ~ 10.2. Let us 
note that if constants of the error expansion have opposite signs, the error becomes 
non-monotone function of time step h and can increase with decreasing of h. Such a 
behaviour is demonstrated in Table I [see the methods O(h2 + c4 h) and O(h4 + c4 h2)]. 

In Figure 12.3 we show the time dependence of the function p(T)/T in the case 
of the· Talay's approach to calculation of Lyapunov exponents, i.e., along a one weak 
trajectory. One can see that in this case our methods also give accurate results and 
allow to reduce computation expanses. However, we must.mentioned that the Talay's 
approach would give the same accuracy, as we reach by the Monte-Carlo simulations 
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Figure 12.2: Lyapunov exponent. Time dependence of the function ~(T) = Ep(T)/T 
simulated by (1) the method ( 4.3) with h = 0.2, (2) the method (2. 7) with h = 0.2, (3) 
the method (5.17) with h = 0.45. Other parameters are the same as in Table I. Dashed 
line is the exact value of the Lyapunov exponent ,,\ (.A == -2.12). The Monte-Carlo 
errors at T ~ 7 are not greater than 0.002 (N = 40000) and are less than the method 
errors. 

using the method (5.17) under h = 0.2 (see Table I), if the system (12.1) is solved 
during a period T rv 106 , which is difficult task from the computational point of view. 

In our tests to generate uniform random numbers we use the procedure RANI from 
ref. [16]. 

Remark. Note that the function ln lxl does not belong to the class F. If .A > 0 then 
to provide strictness it is possible to consider the function ln(l + lxl) instead of ln lxl. 
The function ln(l + lxl) already belongs to the class F, and limt_,00 ln(l + IX(t)l)/t = 
limt_,00 ln(IX(t)l)/t. As it follows from numerical tests, simulations of the function 
ln(l + lxl) give the same results as simulations of ln lxl. Under .A < 0 it is possible to 
consider either the function ln(l + 1/lxl) or the system 

q 

dX = (f J + AX)dt + c L BrXdWr (12.7) 
r=l 

instead of the system (12.1). The Lyapunov exponent of the system (12.7) is equal to 
I+ A, and if we choose I such that I+ .A > 0, we can again consider the function 
ln(l + lxl). 

12.2. Stochastic resonance 

Stochastic resonance (SR) is a term which describes a cooperative effect of noise and 
periodic forcing in a bistable system. It finds applications in a wide variety of physical, 
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TIME 
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Figure 12.3: Lyapunov exponent. Time dependence of the function p(T)/T computated 
along a one trajectory using (1) the method ( 4.3) with h = 0.1, (2) the method (2. 7) 
with h = 0.1, (3) the method (5.17) with h = 0.3. Other parameters are the same as 
in Table I. Dashed line is the exact value of the Lyapunov exponent ). (.\ = -2.12). 

physicochemical and biological systems (see, for instance, [17] and refs. therein). As is 
known, SR includes a variety of resonant effects which usually can be observed under 
small noises. Herein we illustrate effectiveness of our methods by simulation of the 
Stratonovich system with small noises which is similar to the system proposed in ref. 
[3] for description of multiplicative stochastic resonance in optical bistable system. For 

00 

the solution of this system, which has the expansion X(t) = L: an cos(nc2wt - <f>n) 
n=O 

on the interval [O, T], T = 27r / c2w, we calculate the mean values of amplitude a 1 and 
phase ¢>1 of the first harmonic. Under some parameters these mean values have non-
monotone behaviour with increasing of noise intensity. In ref. [3] the amplitude was 
investigated by numerical solution of the Fokker-Planck equation, and non-monotone 
behaviour of the amplitude was found. Phase shifts in SR is a subject of many year's 
studying (for instance, see [17, M.I.Dykman et. al. pp.463-4 78]). Previously, it was 
shown for bistable systems with additive noises that phase shifts accompany SR, and 
phase lag in SR varies non-monotonically with increasing of noise level. In our example 
we also observe these features of SR. 

We consider the following one-dimensional Stratonovich equation 

(12.8) 

where Wi, i == 1, 2, are independent standard Wiener processes and c is a small param-
eter. 
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Figure 12.4: Stochastic resonance. The dependence of the mean amplituda Eo:1 on the 
noise intensity 0-1 for y0 = 7, c = 6, c = 0.1, 0"2 == 1.2, w = 2, T = 4

7r , X(O) = 1, 
s 2w 

u(O) = 1, v(O) = 0. Dotted line - the Euler method with h = 0.5, dashed line - the 
Euler method with h = 0.1, and solid line - the semi-Runge-Kutta method (5.17) with 
h = 0.5. The Monte-Carlo error is not greater than 0.01 (N = 4000). 

To find the mean values of o:1 and ¢1 we additionally consider the equations 

dZ1 = X · cos(s2wt)dt, 

dZ2 = X · sin(s2wt)dt 

If we choose the integration time T such that T = ~7r then cW 

Eo:1 = 2E(Zi(T) + Zi(T))1f 2 /T, 

Ee.pi = E arctan(Z2(T)/Z1 (T)) 

(12.9) 

(12.10) 

To reduce calculation expanses we simulate cos( s2wt) and sin( c2wt) by the system 

(12.11) 

To find parametric dependence of Eo:1 and E¢1 on the noise intensity o-1 we use the 
Euler method with the error O(h) and the proposed in the paper semi-Runge-Kutta 
method (5.17) with the error O(h4 + s4 h2). The computational results are presented in 
Figures 12.4 and 12.5. We can add that under h = 0.1 the semi-Runge-Kutta method 
(5.17) gives visually almost the same curves as under h = 0.5. Thus, the curves of 
Figures 12.4 and 12.5, which correspond to the method (5.17) with h = 0.5, may be 
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Figure 12.5: Stochastic resonance. The dependence of the mean phase E¢>1 , grad, on 
the noise intensity a1 . The parameters and the notation are the same as in Figure 12.4. 
The Monte-Carlo error is not greater than 1.3 (N = 4000). 

considered as sufficiently accurate. For the Euler method such an accuracy is attained 
for the amplitude under h ~ 0.05 and for the phase under h ~ 0.01. The computational 
results are in a good quality agreement with the results of other authors. One can see 
that the proposed method (5.17) gives quite accurate results under large time step 
and, therefore, allows to safe CPU time. It is important for this problem because to 
investigate effects of SR one must integrate a system. during a long period of time and 
simulate sufficiently large number of independent realizations to reduce Monte-Carlo 
error. 

13. Appendix. Proof of Theorem 3.1 

Let us involve the function 
u(s, X) = EJ(Xs,x(tN )) (13.1) 

According to the conditions (1) and (2) of Theorem 3.1 the function u has partial 
derivatives with respect to x up to sufficiently high order, and the function u and its 
derivatives belong to the class F [5]. The function u(s, x) uniformly (with respect to 
s E [t 0 ,tN] and 0 :::; c :::; c0 for some number c0 > 0) satisfies such an inequality as (3.3). 

Because of Xo = Xo, xto,xJt1) = X(t1), Xti,Xto,Xo(ti)(tN) = X(tN ), we have 

(13.2) 
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E f (Xt1 ,X1 ( tN)) = E f (Xt2,Xt1,X1 (t2)( tN)) - E f (Xt2,X2 ( tN)) + E f (Xt2,X2 ( iN)) (13.3) 

Substituting (13.3) in (13.2) we obtain 

EJ(X(iN)) = EJ(Xti,Xto,Xo(ti)(iN)) - EJ(Xt1,X1(iN))+ 

+Ef(Xt2,Xt1,X1(t2)(tN))-Ef(Xt2,X2(tN)) + Ef(Xt2,X2(tN)) 
Continuing further in the manner as above, we write 

Then 

Ef(X(tN)) - EJ(XN) = ~
2 

{EE [t(X,,+1 ,x,,,x,(••+•l(tN)IX,,,x,(t;+1)]-

-EE [f(Xti+1.Xi+1(tN)IXti,xi(ti+1)]} + Ef(XtN-1.xN-1(tN))- Ef(XtN-1.xN-1(tN)) 
(13.5) 

According to the definition of the function u (see (13.1) ), from the expression (13.5) 
we have 

N-2 

I: [Eu(ti+i,xtj,.xj(ti + h))-Eu(ti+i,Xti,xi(ti + h))] + 
i=O 

N-2 

::; LE IE [u(ti+i, xtj,xj(ti + h)) - u(ti+i, xtj,xj(ti + h))IXi] I+ 
i=O 

+ E IE [J(XtN-11XN-l (tN )) - f(XtN-11XN-l (tN ))IXN-1] I (13.6) 
Let us assume that both for u(s,x) and for J(x) the function I<(x) of the inequality 
(3.3) has K = m (see Kin the definition of the class F, Section 3). Then from (3.3) and 
(13.6) we obtain 

IEJ(X(tN )) - EJ(XN )I S ~2 

J<(l+ EIX;im) [ hP+l + ~ h1+1e;J(/)] + 

+K(l + EIXN-1lm) [p+l + L h1+1cJ(l)] 
lES 

Hence, from the third condition of the theorem we have 

IEJ(X(tN )) - Ef(XN )I ::; ]{ [hP + L h1cJ(l)] 
. lES 

It is obvious that for any k < N the procedure, proposed above, can be carried out 
and the inequality (3.4) holds. Theorem 3.1 is proved. 
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14. Appendix. Construction of the weak method with the 
order O(h4 + c4h2) 

14.1. Construction of the one-step approximation 

As the point of departure we take the stochastic Taylor-type expansion [7], [10], [21] 
for the solution of the system (1.1) in the form 

q q q q 

Xt,x(t + h) = x + £ L O'rlr +ah+ c2 LL ArO'dri + f, l:(L1 + €2 L2)0'rlor+ 
r==l r=li=l r=l 

q q q q 1 
+£ L Aralro + € 3 LL L AsAiO'rlsir + 2(L1 + £2 L2)h2+ 

r=l r=li=ls=l 

(14.1) 

where 

x dWs ( {) 2)) dWi ( {)1)) dWr ( {)) + 

(14.3) 

Here x = X(t), O'r = O'r(t,x), a= a(t,x), h1 , ••• ,ii = Iii, ... ,ij(t,h), Ara= Ara(t,x), etc. 
Let us rewrite the expression p2 by the Ito formula in the form 

q q q 

P2 = £ L L~O'rloor + £ L L1Araloro + £ L ArL1afroo + P2 (14.4) 
r==l r=l r=l 

where 
q q 

P2 = £3 L(L1L2 + L2L1)0'rloor + £5 L L~O'rloor+ 
r==l r=l 
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(14.5) 

The last integral in the formula (14.1) we rewrite as 

(14.6) 

where 

r+h r't9 r't91 r't92 r't93 + it (it (it (it (it L 4a( {) 4, X( {) 4) )d{) 4)d{)3)d{)2)d{)1)d{) (14.7) 

By (14.1)-(14.7) we obtain 

q q q q 

Xt,x(t + h) = x + c L CYrlr +ah+ c2 LL Aie7rhr + c l:(L1 + c2 L2)e7rlor+ 
r=l r=li=l 

where 
q q q 

p = c3 LL L AsAiCYrlsir + p, 
r=li=ls=l 
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(14.8) 

(14.9) 

(14.10) 



Thus, in comparison with the ordinary approximation (14.1), which does not take into 
account smallness of noises, the main part of (14.8) contains the following new terms 
c:LiO"rloor, cL1Araloro, cArL1alroo, [Li+ c2(L1L2 + L2L1)] ah3 /6 and Lrah4 /24. As it 
will turn out below these additional terms do not lead to substantial. increasing of 
calculation expenses but in the case of small noises essentially increase accuracy of 
the method in the sense of product c;i hi. So, the peculiar features of the system with 
small noises give an opportunity to construct effective and accurate special numerical 
methods. 

Lemma 14.1 Let us assume that the Lipschitz condition 
q 

la(t, x) - a(t, y)I +I: IO"r(t, x) - O"r(t, y)I ~ I<(x - y) (14.11) 
r=l 

holds, and the coefficients a, O"r, r = 1, ... , q, and their partial derivatives up to suffi-
ciently high order belong to the class F. Then 

IEp2
j ~ I<(x) [h10 + c:4h4 + c:6 h3

], I<(x) E F, 

c:IEpiil ~ I<(x) [s2 h4 + c:4h3
], I<(x) E F, 

c:2 IEpiizl ~ I<(x)c:4 h3
, I<(x) E F, 

c:jEpiojl ~ I<(x) [c: 2 h5 + c:4 h3
], I<(x) E F, 

c:lEpljol ~ I<(x) [c:2 h5 + c:4 h3
], I<(x) E F, 

c: 2 jEpljltl ~ I<(x) [c: 2h6 + c:4 h3
], I<(x) E F, j, l = 1, ... , r (14.12) 

Proof of Lemma 14.1 is similar to the proof of the corresponding lemma in ref.[10] 
and is based on the following properties of Ito integrals 

Eli1 , ••• ,ii = 0, if at least one of the indices ik =/= 0, 

Eli1 , ••• ,ii = O(hi), if all indices ik = 0, 

[E(Iii, .. .,ij )2]112 = 0( hr), r = Zi + l2/2 (14.13) 

where li is the number of zero indices ik and l2 is the number of non-zero indices ik; 
and 

E(J. · ·I· ·) - 0 E(J. · ·I· · ·I ) - 0 i1 , ... ,im JI , ... ,Jz - ' i1 , ... ,im J1 , ... ,Jz r1 , ... ,rp - (14.14) 

if the number of non-zero integers among all indices is the odd number; 

(14.15) 

wheres, i, r and j are from the set {1, ... , q}. 
By Lemma 14.1 we obtain the following lemma. 
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Lemma 14.2. If the conditions of Lemma 14.1 are fulfilled, then we have the 
inequalities 

s s 
IE(II ~ij - II Liii)I::; I<(x)(h5 + c:4h3

), ii= 1, ... , n, s = 1, ... , 5, I<(x) ·E F (14.16) 
j=l j=l 

where ~ii is the ii-component of the vector~ = Xt,x(t + h) - x, and jiii is the 
ii-component of the vector Li= Xt,x(t + h) - x, Xt,x(t + h) = Xt,x(t + h) - p. 

Lemma 14.2 is proved by the following reasons: (1) the inequalities (14.16) for 
s = 1 and s = 2 directly follow from (14.12); (2) it is clear that the odd (third and 
fifth) moments have not less smallness orders than the first moments, and the fourth 
moments have not less smallness order than the second. 

The approximation X = X - p [see (14.8)) contains multiple Ito integrals Iri which 
cannot be easily simulated. That is why, we shall try to obtain another approximation 
X such that the inequalities 

s s 

IE(II Liii - II ~ii)I ::; I<(x)(h5 + c:4h3
), ij = 1, ... , n, s = 1, ... , 5, I<(x) E F, (14.17) 

j=l j=l 

~ = Xt,x ( t + h) - x, 
6 

E II l~ijl ::; I<(x)(h 5 + c:4 h3
), ii= 1, ... , n, I<(x) E F (14.18) 

j=l 

hold, but X contains only sufficiently simple random variables. It is clear that the 
inequalities 

s s -
IE(Il ~ii - IT ~ii)I::; I<(x)(h5 +c:4 h3

), ii= l, ... ,n, s = 1, ... ,5, I<(x) E F, (14.19) 
j=l j=l 

follow from Lemma 14.2 and (14.17). As it will turn out below in Theorem 14.1, 
the inequalities (14.18), (14.19) are sufficient to estimate error of a one-step weak 
approximation. 

Now let us construct the approximation X on the base of X in the form 
q q q q 

X = x + c:h1l 2 L arer +ah+ c:2 h LL Aiareir + c:h3 l 2 2:(L1 + c: 2 L2)ar[er - µr]+ 
r=l r=li=l r=l 

(14.20) 

where the random variables er, ein µr, {Jr are such that the following lemma takes 
place. 

Let us introduce the notation 

i t+h 
Gr = t ( Wr ( {)) - Wr ( t}) ( {) - t) d{) · 
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and remind that 8ij is the Kronecker delta. 
Lemma 14.3. Under the conditions of Lemma 14.1 the inequalities {14.18) and 

{14.19) hold if the random variables en eir, µr, and {)r satisfy the equalities 

Eerh1l 2 = Elr = 0, Eeirh = Elir = 0, Eµrh3l 2 = Elro = 0, 

E{)rh5l 2 = EGr = O; (14.21) 

Eeierh = EIJr = 8irh, Eeierih3l2 = EIJri = o, 
t 2 1 2 Er..,,rµjh = Efrljo = 2,brjh , 

E t t h2 EI I { ~ h2' if i = j, r = s, 
<..,,ir<..,,js = ir js = 0, otherwise, 

E t. µ ·h512 - EI· I· - 0 Eµ µ h3 E. I I l" h3 <..,,ir J - ir JO - , r j = ro jo = 3Vrj , 

EerO;h3 = EI,G; = ~8,;h3 ; (14.22) 
3 5 

Eeiereih2 = EIJrii = o, Eeieireszh2 = EIJjrlsz = o, 

{ 
~h2, if j #sand either i =j, r = s or i = s, r =J, 

Eeiereish2 = EIJrlis = h2, if i = r = j = s, 
0, otherwise, 

5 
Eeierµih2 = EIJrlio = O; 

I h2 , if { i, r, j, s} consists 
Et.t t .t h2 _ELI I.J _ of two pairs of equal numbers, 

<..,, i <..,, r C.,,J <..,, s - i r J s - 3 h 2, if i = r = j = S, 

0, otherwise, 

Eeiereieszh512 = EIJrljlsz = O; 

Eeierejesezh5l2 = EIJrljlsfz = o 

(14.23) 

(14.24) 

(14.25) 

Proof. The inequality (14.18) follows obviously from the expression (14.20) because 
each term of LS. = X - x has a smallness order with respect to h which is equal or 
greater than 1/2, and the term with order 1/2 is multiplied by c. 

The equalities (14.21 )-(14.25) have two parts. The right parts, which we need for 
construction of the random variables er, eir, µr and fJr, are proved in ref.[10]. The 
left parts of (14.21) are sufficient to fulfill the inequality (14.17) with s = 1; the left 
parts of (14.21 )-(14.22) give (14.17) with s = 2, and the left parts of (14.21 )-(14.23) 
are sufficient for s = 3; (14.21)-(14.24) for s = 4; and (14.21)-(14.25) for s = 5. As 
it has been mentioned above, the inequalities (14.19) follow from (14.17) and Lemma 
14.2. Lemma 14.3 is proved. 
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14.2. The theorem on estimate of the error of the approximation (14.20) 

Theorem 14.1. If the inequalities {14.18), {14.19) and the conditions of Lemma 14.1 
are fulfilled, a function f and its partial derivatives up to the sixth order belong to 
the class F, and the random variables er, ein µr and {Jr have sufficiently high finite 
moments then for X of {14.20), we have 

IEf(X) - Ef(X)I::; K(x)(h5 + £ 4h3
), K(x) E F (14.26) 

Proof. The proof is similar to the proof of the corresponding theorem on one-step 
approximation for a general system, i.e., c; = 1, with one-step weak accuracy order 3 
[10]. 

In the same way as (14.18) has been proved in Lemma 14.3, we obtain 

6 

E II l~ijl::; K(x)(h5 + £ 4h3
), ii= 1, ... , n, K(x) E F (14.27) 

j=l 

Let us expand f(x) in powers of ~i = Xi - xi about the point x by the Taylor 
formula with the Larangian remainder containing sixth-order terms. Analogously, let 
us expand f(X) in powers of 3_i = _Ki - xi. Then by the inequalities (14.18), (14.19) 
and (14.27) we obtain (14.26). Theorem 14.1 is proved. 

14.3. Simulation of the needed random variables 

Now we shall form the random variables ei, µi, fo, and 7J i, i, j = 1, ... , q, so that the 
expressions (14.21)-(14.25) hold. We propose the following two ways. 

The first way [9}, {10}. Let us present the random variables ei, µi, eii and 7Ji in the 
form 

(14.28) 

where the random variables ei and (i have all needed moments. 
Lemma 14.4. If the independent random variables ei and (i of (14.28) have the 

properties 

and 
E(i = E(l = 0, E(l = E({ = 1 

then the expressions (14.21)-(14.25) hold. 
The random variables, which satisfy Lemma 14.4, can be simulated as 

(14.29) 

(14.30) 

. P(e = 0) = ~' P(e = -v'3) = P(e = v'3) = ~' P(( = 1) = P(( = -1) = ~ (14.31) 
3 6 2 

The second way {18}. Let us present the random variables ei, µi, eii and {Ji in the 
form 

1 1 1 
µi = 2ei + T/i, fo = 2(eiej - cij), {Ji= 3ei (14.32) 

where the random variables ei, T/i, an.cl (ij have all needed moments. 
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Lemma 14.5. If the random variables ~i, 1]i, and (ij of {14.32) satisfy expressions 
{14.29) and 

E71; = 0, E71f = 1
1
2, E(;; = 0, E(f; = 1, i # j, 

(ij = -(ji, i =I= j, (ii = 1 

(14.33) 

(14.34) 
where the random variables ~i, 1]i, and (ij, i < j, are independent then the expressions 
{14.21)-(14.25) hold. 

One of the simplest ways to satisfy (14.29), (14.33) is to simulate the random 
variables so as 

2 1 
P(e = o) = 3, P(e = -V3) = P(e = V3) = 6, 

1 1 1 
P(17 = - Jl2) = P(17 = Jl2) = 2' 

P((;;=l)=P((;;=-1)=~, i<j (14.35) 

Proofs of both lemmas consist in direct checking of the expressions (14.21)-(14.25) 
and are distinguished from the proof of the corresponding lemma of ref.[10] in a small 
way. 

The first way requires to simulate 2r independent random variables at one step, and 
the second way requires r(r + 3)/2 independent random variables at one step. That is 
why, under large r the first way is preferable. 

As a result we obtain the following theorem. 
Theorem 14.2. Let us assume that the conditions of Lemma 14.1 hold and function 

f has the appropriate properties {see Theorem 14 .1). Then the one-step approximation 
q q q q 

X(t+h) = x+ch1l2 L arer +ah+c2h LL Awreir +c,h3l2 2:(L1 +c2 L2)ar[er -µr]+ 
r=l r=li=l r=l 

(14.36) 

where the random variables en eir and µr are simulated according to either {14.28), 
{14.31) or {14.32), {14.34), (14.35), has the error 

IEf(X) - Ef(X)I ~ J<(x)(h 5 + c,4h3
), J<(x) E F 

From Theorem 14.2 and Theorem 3.1 it follows that the method, which is based on the 
one-step approximation (14.36), has the error estimated by O(h4 + c,4h2 ) on the whole 
interval. 

15. Appendix. Derivation of the error estimate for the_ Runge-
Kutta method (5.14) 

In connection with the semi-Runge-Kutta method (5.14) let us consider the one-step 
approximation X = X ( t + h) of the exact solution X ( t + h) with the initial value 
X(t) = X(t) = x and introduce the notation 

~ = X(t + h) = x, ~ = X - x, ~ = X - x 
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where Xis the one-step approximation corresponding to the Taylor-type method ( 4.16). 
We shall prove the inequalities 

s s 

IE(Il L~> - IT Liii)I ::; I<(h 5 + c2h3
), ii= 1, ... , n, s = 1, ... , 5 (15.1) 

j=l j=l 

6 

E IT l~iil:::; I<(h 5 + c2h3
), ii= 1, ... , n (15.2) 

j=l 

because by these inequalities it is easy to obtain the error of the method (5.14). 
Indeed, the one-step approximation X can be estimated in the same way as the 

one-step error of the approximation (14.36) has been obtained in Section 14. So, for 
the approximation X we can derive 

s s 
IE(IJ ~ii - IT Lii1)1 :::; K(h5 + c2h3

), ii= 1, ... , n, s = 1, ... , 5 (15.3) 
j=1 j=l 

Then, as it has been done in Section 2, from (15.1 )-(15.3) we obtain the estimate of 
one-step error of the approximation X in the form 

IEf(X(t + h)) - Ef(X(t + h))I :::; I<(h5 + c; 2h3
) (15.4) 

From (15.4) and Theorem 3.1 it follows that the semi-Runge-Kutta method (5.14) has 
the error on the whole interval estimated as 

(15.5) 

for any N and k = O,l, ... ,N. 
Now let us prove the inequalities (15.1) and (15.2). The inequalities (15.2) evidently 

follow from the form of the one-step approximation X by reasoning similar to proving 
of the inequalities (14.18) in Lemma 14.3. 

To prove (15.1) let us expand the terms of X in powers of hat the point (t, x). For 
'the first term we have 

(15.6) 

where 
5 82

0"r er ( 7) 
P1r = ch2 at2 4 + 0 ch2 er 

It is clear that p1r has the properties 

E Plr = 0, r = 1, ... , q 

IEP1rPisl :::; ]{c;2h5, r, s = 1, ... , q 

h l IE t .. , }'.!" 2 h3 c 2 Plrl..,,S ::; \. c ' r's = 1, ... 'q (15.7) 

The term 
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is expanded as 

(15.8) 

Here A contains terms like Ajstc5 h ~ eieje1, Ajc3 h ~ ej, where Ajst and Aj are constants 
containing a, b, ar and their derivatives at the point (t, x ). 

Let us remain the mean value 

in the braces of (15.8) instead of the term ! LJ=l L:;=l L:f=1 L:/=1 aja~ejes a:i2;x1 • Then 
the expression (15.8) is rewritten as 

where 

For the remainder p2 we have 
IEP2I:::; Kc2h3

, 

IEp~I :::; K(c4h6 + csh4), 

ch~ IEP2em I :::; J( c4h3
, m = 1, ... , q, 

c2hlEp2emrl:::; K(c4h4 + c6h3
), m, r = 1, ... , q, 

c2hlEp2emerl :::; K(c4h4 + c6h3
), m, r = 1, ... , q, 

IEP1rP2I:::; Kc4hs, r: = 1, ... , q 

For ki, i = 1, ... , 4, of (5.13) we have 

1 12 132 l 43 

6(k1 + 2k2 + 2k3 + k4) =ha+ 2h L1a + 5h L1a + 24 h L1a+ 

where 

1 q q n n a2 
_ 2 2 2 2"" """""" i i c a A O(hs 2h3) p3 - --ch L2a+c h ~~~~aralr1.,,sa ia . + + +c 

2 r=ls=li=lj=l x xJ 
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(15.10) 

(15.11) 

(15.12) 



The expression A of (15.12) contains c:3 h~ Arsjeresej, sh~ Arer, where Arsj, and Ar are 
constants containing a, b, O"r and their derivatives at the point (t, x). 

The remainder p3 has the properties 

IEp3I ~ K(h5 + c2h3
), 

IEP;I ~ K(h10 + c:2hs + c:4h4), 

c:h~IEP3eml ~ Ks2h3, m = 1, ... , q, 

s2hjEp3emrl:::; I<c:4h3, m, r = 1, ... , q, 

c:2hlEp3emerl ~ Kc:4h3, m,r = 1, ... , q, 

IEp3p1rl ~ Kc:2h5, r = 1, ... , q, 

IEp3p2I ~ K(c:4h5 + €6h4) (15.13) 

From (15.6), (15.9), (15.11) and from the forms of the one-step approximations X and 
X we have 

q 

~ - ji = L Plr + P2 + p3 
r=l 

Then from (15.7), (15.10), (15.11), (15.13) and (15.14) we obtain (15.1). 

16. Appendix. Proof of Theorem 10.1 

Let us introduce the notation 

and note that 
ue(s, x) = u0 (s, x) + c: 2u1 (s, x; c) 

Similarly to the formula (13.6) we obtain 

N-1 

= 2:: { Eu(ti+i, XLti(ti+1)) - Eu(ti+1, x~,xi(ti+i))} = 
i=O 

N-1 

(15.14) 

(16.1) 

=EL E(u(ti+1,x;i,xi(ti+i)) - u(ti+l,x~,xi(ti+i))IXf) (16.2) 
i=O 

From ref.[10] we have 

and taking into account that L = L1 + c:2 L2 , we write 

Eu(t + h, x,,x(t+ h )) = u + h(L1 +c:2 L2)u + ~ h2(L1 + £ 2 L2)2u + ~h3 Lru + O(h4 + c:2h3
) 

(16.3) 
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At one step the method (4.1) has the form 

1 
P(e = -1) = P(e = 1) = -

2 
Expanding Eu( t + h, Xt,x( t + h)) by Taylor formula in powers of h, we obtain 

(16.4) 

Eu(t+h, X1,x(t+h )) = u+h(L1 +c:2 L2)u+~h2 Liu+c:2h2 A2+c:4 h2 A 3+h3 A1 +O(h4 +c:2 h3
) 

(16.5) 
where 

(16.6) 

All coefficients in (16.5) and (16.6) are calculated at (t,x) and depend on c. By (16.3) 
and 16.5) we have 

Eu(t + h, Xt,x(t + h))- Eu(t + h, Xt,x(t + h)) = c2h2 B2 +c4 h2 B3 + h3 B 1 + O(h4 + c2h3) 
(16.7) 

where 

Substituting the conditional variant of (16.7) in (16.2) we obtain 

N-l 
R =EL { B2(c; ti, Xf)c2h2 + B3(c; ti, Xi)c4h2 + B1 (c; ti, Xi)h3

} + O(h3 + c2h2
) 

i=O 
(16.9) 

Let us for each j = 1, 2, 3 consider the (n + 1)-dimensional system 

q 

dX =(a+ c2 b)dt + L O"rdWr, X(to) = Xo 
r=l 

(16.10) 

46 



where the first n equations are the original ones (see (3.1)) and the last equation 
describes Y. 

Solving the system (16.10) by the method (4.1) we obtain 

N-1 

+0(h2 + c:2h) = E 2:: Bi(c:; ti, Xt)h + O(h) 
i=O 

Therefore 
N-1 T 

E 2:: Bi(c:;ti,Xi)h = E 1 Bi(c:;{),Xe({)))d{) + O(h) 
i=O to 

(16.11) 

Substituting (16.11) in (16.9) we obtain 

R = C1(c:)h2 + C2(c:)c:2h + O(h3 + c:2h2) (16.12) 

where 

(16.13) 

The coefficients Ci( c;) do not depend on time-increment h but depend on c; (see (16.1)) 
as 

(16.14) 

Theorem 10 .1 is proved. 
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