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Abstract

We investigate a thermomechanical model of phase transitions in steel. The
strain is assumed to be additively decomposed into an elastic and a thermal part as
well as a contribution from transformation induced plasticity. The resulting model
can be viewed as an extension of quasistatic linear thermoelasticity. We prove
existence of a unique solution and conclude with some numerical simulations.

1 Introduction

Every heat treatment is accompanied by distortion, i.e. alterations in size and shape of
the respective workpiece. In earlier investigations we have considered the relationship
between phase transition kinetics and temperature evolution with respect to modelling
and simulation [4, 5, 6] as well as with respect to process control [8, 9, 10].

To understand the distortion phenomena it is necessary to study the thermomechanical
evolution of a workpiece subject to a heat treatment. A first step in this direction including
a number of simplifications has been made in [7].

The goal of this paper is to derive and analyse a fairly complete thermomechanical phase
transition model. In the next section we will derive the thermomechanical model. Even
in the special case of materials without phase transitions the resulting nonlinear system
seems to be new. In Section 3 we will prove the existence of a unique weak solution.
To demonstrate the distortion effect of phase transitions the last section is devoted to
presenting some numerical simulations.

There is a vast literature on the mathematical analysis of thermomechanical models.
Besides classical works as the monograph [14] we would especially like to mention recent
results on thermo-viscoelasticity and thermoplasticity [1].

2 The mathematical model

To avoid technicalities, in contrast to [7], we consider only the cooling of a steel specimen
from high temperature phase austenite with phase fraction z0 to two different product
phases with fractions z1 and z2. This applies for instance to a plain carbon steel of
eutectoid composition, where two phase transitions may occur: one from austenite to
pearlite governed by carbon diffusion and another one from austenite to martensite. While
the first one admits a growth of the product phase pearlite also in isothermal situations,
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the latter one only admits a growth of the product phase martensite in the case of cooling.
A simple rate law to describe the behaviour is given by

ż1 = f1(θ, z, σ) = (1− z1 − z2)g11(θ)g12(σ) (2.1a)

ż2 = f2(θ, z, σ) = [min{m̄(θ), 1− z1} − z2]+g21(θ)g22(σ) (2.1b)

z(0) = 0 . (2.1c)

Here, z1 and z2 are the phase fractions of pearlite and martensite, respectively. The
bracket [x]+ denotes the positive part function [x]+ = max{x, 0}, m̄(θ) is the fraction of
martensite which can be attained at temperature θ. The term min{m̄(θ), 1−z1} represents
the maximal fraction that can be transformed to martensite.

The functions g12 and g22 describe the influence of stresses σ on the phase transition kinet-
ics. It has been found experimentally [2] that the growth rate decreases with increasing
hydrostatic pressure.

The displacement u (or velocity v = ut, respectively), the stress σ and temperature θ are
governed by the quasistatic momentum balance and the balance law of internal energy
e, which we formulate in the undeformed domain assuming that only small deformations
occur,

− div σ = F (2.2a)

%et + div µ = σ : ε(v) + h . (2.2b)

Here, % is the mass density, F an external force, h a heat source, µ the heat flux, and

ε(v) =
1

2
(Dv +DTv) (2.3)

the symmetric part of the strain rate tensor. The scalar product in R3,3 is denoted by ’:’
and the corresponding norm by |.|.
We employ the laws of Fourier and Hooke, respectively,

µ = −k grad θ (2.4)

σ = Kεel , (2.5)

with thermal conductivity k and the elastic strain εel. Moreover, K is the stiffness tensor,
assumed to be isotropic, i.e.

Kijke = λδijδke + 2µδikδje (2.6)

with the Lamé coefficients λ and µ. We assume that the strain

ε(u) = εel + εth + εtrip (2.7)

can be decomposed additively into an elastic part εel, a thermal one εth, and one describ-
ing additional plastic effects caused by the phase transitions.

Figure 1 shows the result of a dilatometer cooling experiment, where temperature is
plotted against length change of the specimen.
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Figure 1: Dilatometer curve with 2 product phases (Courtesy of IEHK, Aachen).

The straight parts of the curve represent the thermal expansion in the different phases
which is almost linear. Hence, an appropriate model for the thermal expansion in each
phase is

εth
i = qi(θ − θi

ref )

with a constant reference temperature θi
ref . The expansion coefficients q0, q1, q2, corre-

spond to austenite, pearlite and martensite, respectively. The overall strain is computed
from the mixture ansatz

εth = z1ε
th
1 + z2ε

th
2 + (1− z1 − z2)ε

th
0 .

Without loss of generality, in the sequel we assume

θ0
ref = θ1

ref = θ2
ref = 0 .

Then we obtain

εth = q(z)θ

where q(z) is given by

q(z) = q1z1 + q2z2 + q0(1− z1 − z2) .

The fact that the product phases pearlite and martensite have different expansion coef-
ficients leads to high internal stresses around phase boundaries. This is one of the main
reasons for distortions, i.e. undesired alterations of workpiece size and shape, during heat
treatments (see Section 5).

It is well-known that phase transition experiments with steel specimens under loading ex-
hibit an additional irreversible deformation even when the equivalent stress corresponding
to the load is far below the yield stress.
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A standard model to describe the transformation induced plasticity contribution of the
product phase zi is given by the following formula

εtrip
i,t = λi1(θ)

∂λi2(zi)

∂zi

zi,tS . (2.8)

From this we can infer that indeed the flow as in standard plasticity is in direction of the
deviator S, i.e. the trace free part of the stress tensor. It is volume preserving and grows
proportionally to the growth rate zi,t of phase zi. In [3] a review of various models for
λij can be found, as well as some micromechanical considerations to motivate the specific
form as given in (2.8). In the sequel, we will write the trip contributions as

εtrip
t = γ(θ, z, zt)S . (2.9)

Now our goal is to derive a constitutive relation for the internal energy. To this end
we introduce the Helmholtz free energy ψ and entropy s, related by the thermodynamic
identity

e = ψ + θs , (2.10)

and proceed in the spirit of [12, Section 2.4.2]. We assume the existence of a twice
continuously differentiable material function ψ̂ such that

ψ = ψ̂(εel, θ, z) , (2.11)

where the phase fractions zi turn up as internal variables.

Taking the derivative with respect to t in (2.11) we obtain

ψt =
∂ψ̂

∂εel
: εel

t +
∂ψ̂

∂θ
θt +

∂ψ̂

∂z
· zt (2.12)

where ′·′ denotes the scalar product in R3. A thermodynamically consistent model has to
satisfy the Clausius-Duhem inequality, which in the case of small deformations reads as
follows:

σ : ε(v)− %(ψt + sθ)− 1

θ
q · grad θ ≥ 0 . (2.13)

Inserting (2.4), (2.7), and (2.12), we obtain(
σ − %

∂ψ̂

∂εel

)
: εel

t − %

(
s+

∂ψ̂

∂θ

)
θt

+ σ :
(
εth

t + εtrip
t

)
− %

∂ψ̂

∂z
· zt +

1

θ
k|∇θ|2 ≥ 0 .

(2.14)

To exploit this inequality which holds for all solutions to the field equations, we first
consider a purely elastic deformation at constant and uniform temperature without change
of inelastic strains or phase fractions. Since (2.14) has to be valid for all elastic strain
rates, we obtain

σ = %
∂ψ̂

∂εel
. (2.15)
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Similar reasoning yields

s = −∂ψ̂
∂θ

. (2.16)

Moreover, we define the thermodynamic force associated with the internal variable zi as

Li = −∂ψ
∂zi

(2.17)

and call Li > 0 the latent heat of phase zi. Since zi,t ≥ 0, (2.14) finally reduces to

σ : (εth
t + εtrip

t ) ≥ 0 (2.18)

reflecting the fact that the intrinsic dissipation is necessarily positive.

Coming back to our goal of computing a constitutive relation for the internal energy e,
we differentiate (2.10) with respect to time, as well as (2.16), to obtain

%et = %ψt + %θts+ %θst (2.19)

and

st = − ∂

∂θ

(
1

%

)
: εel

t +
∂s

∂θ
θt +

∂L

∂θ
· zt . (2.20)

Assuming tacitly ∂L
∂θ

= 0 and defining the specific heat capacity at constant strain as

cε = θ
∂s

∂θ
, (2.21)

we can use (2.10), (2.12), and (2.20) to end up with

%et = σ : εel
t − %L · zt − %θ

∂

∂θ

(
1

%
σ

)
: εel

t + %cεθt . (2.22)

Remark 2.1 To simplify the further derivations, let us assume that the temperature de-
pendency of εtrip can be neglected, i.e. εtrip

θ ≈ 0.

Then we can use Hooke’s law (2.5) and (2.7) to infer

∂

∂θ

(
1

%
σ

)
=

1

%
σθ = −1

%
Kq(z)I = −3κ

%
q(z)I (2.23)

with the bulk modulus

κ =
1

3
(3λ+ 2µ) .

Substituting (2.22) and (2.23) in the energy balance (2.2b), we finally obtain the following
nonlinear parabolic equation:

α(θ, σ, z)θt − div (k grad θ) + 3κq(z)θ div v

= (%L+ trσθq̄ + 9κθ2q(z)q̄) · zt + γ(θ, z, zt)|S|2 + h ,
(2.24)

where α is defined as

α(θ, σ, z) = %cε − trσq(z)− 9κq(z)2θ . (2.25)

Here we define q̄ = ∇q = (q1 − q0, q2 − q0)
T such that βz(θ, z) = θq̄.
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3 Assumptions and main result

Let Ω ⊂ R3 with smooth boundary ∂Ω and Q = Ω × (0, T ) the corresponding time
cylinder. Throughout the paper we will assume

(A1) k, κ, cε, L are positive constants

(A2) γ is bounded and Lipschitz-continuous

(A3) q1, q2, q3 are positive constants

(A4) m̄ is Lipschitz-continuous satisfying m̄(ϑ) ∈ [0, 1] for all ϑ ∈ R

(A5) gij are bounded and Lipschitz-continuous.

Summarizing the model equations of Section 2, we consider the following boundary value
problem.

div σ = −F in Q (3.1a)

σ = K
(
ε(u)− β(θ, z)I −

∫ t

0

γ(θ, z, zτ )Sdτ
)

in Q (3.1b)

u = 0 on ∂Ω× (0, T )

zt = f(θ, z, σ) in Q (3.1c)

z(0) = 0 in Ω (3.1d)

α(θ, σ, z)θt − k∆θ + 3κq(z)θ div ut = h+ (%L+ trσθq̄ + 9κθ2q(z)q̄)zt (3.1e)

+ γ(θ, z, zt)|S|2 in Q (3.1f)

∂θ

∂n
= 0 on ∂Ω× (0, T ) (3.1g)

θ(0) = θ0 in Ω . (3.1h)

The function α is given by the formula

α(θ, σ, z) = %cε − trσq(z)− 9κq(z)2θ . (3.2)

and f = (f1, f2)
T denotes the right-hand side of (2.1a), (2.1b).

We are going to prove that under regularity assumptions for given data and smallness
of the derivative of β the considered problem possesses a unique weak solution. More
precisely, our main result is

Theorem 3.1 Suppose that F ∈ W 1,p(0, T ;Lp(Ω)) ∩ L2p(Q), θ0 ∈ W 1,p(Ω) and h ∈
Lp(Q), p > 4. If δ := max{q1, q2, q3} is sufficiently small then the problem (3.1a)–(3.1h)
possesses a unique solution (u, θ, z) such that

u ∈ Lp(0, T ;W 2,p(Ω)) , ut ∈ Lp(0, T ;W 1,p(Ω)) ,

θ ∈ W 2,1
p (Q), zi ∈ W 1,p(0, T ;W 1,p(Ω)), i = 1, 2 and z1 + z2 ∈ [0, 1] a.e. in Q.
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4 Proof of Theorem 3.1

The main idea of the proof is a fixed point argument. To do this we start with the
following auxiliary lemmas

Lemma 4.1 a) Assume that θ, σij ∈ Lp(Q) with p ∈ [1,∞] for i, j ∈ {1, 2, 3} then the
ordinary differential equation (3.1c), (3.1d) has a unique solution satisfying

‖ |z| ‖W 1,∞(0,T ;L∞(Ω)) ≤ C (4.1)

where the constant C does not depend on θ and σ. Moreover, z1 + z2 ∈ [0, 1] for a.e.
(x, t) ∈ Q. If additionally ∇θ,∇σij ∈ Lp(Q) then ∇z ∈ L∞(0, T ;Lp(Ω)).

b) Let zi be the solution from a) corresponding to σi, θi, i = 1, 2, then

‖ |z1 − z2| ‖W 1,p(0,T ;Lp(Ω)) ≤ Λ1‖θ1 − θ2‖Lp(Q) + Λ2‖σ1 − σ2‖Lp(Q) . (4.2)

Proof: Existence and uniqueness of solutions to the considered problem follow from the
theorem of Carathéodory [16]. The estimate for z is a consequence of the differential
inequality

z̄t ≤ (1− z̄)φ(t) , z(0) = 0 ,

where z̄ = z1 + z2 and φ(t) = g11(θ)g12(σ) + g21(θ)g22(σ). The estimate for the gradient
will be obtained from the system of ordinary differential equations for i = 1, 2,

∇zi,t = fi,θ(θ, z, σ)∇θ +
3∑

k,l=1

fi,σkl
(θ, z, σ)∇σkl +

2∑
l=1

fi,zl
(θ, zσ)∇zl

∇zi(0) = 0 .

According to the global Lipschitz continuity of f the result follows immediately. To prove
the last estimate we consider the difference

z1
t − z2

t = f(θ1, z1, σ1)− f(θ2, z2, σ2) , (z1 − z2)(0) = 0 .

Multiplying by z1 − z2 and using the Lipschitz continuity of f we have

|z1 − z2|t ≤ Λ1|θ1 − θ2|+ Λ2|σ1 − σ2|+ Λ3|z1 − z2| .

The Gronwall inequality completes the proof.

Remark 4.1 Let δ := max{q1, q2, q3}. Then

|q(z)| ≤ δ

and |q̄| =
√

(q1 − q0)2 + (q2 − q0)2 ≤ δ
√

2. Moreover, it is convenient to write

q(z) = q0 + q̄ · z .
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For k = 1, 2, let us denote by W k,1
p (Q) the space Lp(0, T ;W k,p(Ω)) ∩W 1,p(0, T ;Lp(Ω)).

If p > 5
2

then W 2,1
p (Q) ↪→ L∞(Q) (see for example [11]). In the next lemma we are

going to study the coupling of the elliptic equation for the displacement with the ordinary
differential equation for z assuming that the temperature is known and belongs to the
space W 2,1

p (Q).

Lemma 4.2 Let θ̂ ∈ W 2,1
p (Q), p > 4 and F ∈ W 1,p(0, T ;Lp(Ω)). Then the system of

equations

− div σ = F in Q (4.3a)

σ = K

(
ε(u)− β(θ̂, z)I −

∫ t

0

γ(θ̂, z, zτ )Sdτ

)
in Q (4.3b)

u = 0 on ∂Ω× (0, T ) (4.3c)

zt = f(θ̂, z, σ) in Q (4.3d)

z(0) = 0 in Ω (4.3e)

has a unique solution satisfying

‖u‖Lp(0,T ;W 2,p(Ω)) + ‖ut‖Lp(0,T ;W 1,p(Ω)) ≤ C1 + C2‖θ̂‖W 2,1
p (Q) . (4.4)

Proof: We are going to use a standard fixed point argument. Before we start with the
proof let us give the following regularity result for the elasticity system:

Let F ∈ Lq(0, T ;Lp(Ω)) and τ ∈ Lq(0, T ;W 1,p(Ω)) for p, q ∈ (1,∞). Denote by u the
weak solution of the problem∫

Ω

Kε(u) : ε(w)dx =

∫
Ω

τ : ε(w)dx+

∫
Ω

fwdx ∀w ∈ W 1,p′

0 (Ω) (4.5)

then u satisfies the estimate

‖u‖Lq(0,T ;W 2,p(Ω)) ≤ C1‖f‖Lq(0,T ;Lp(Ω)) + C2‖τ‖Lq(0,T ;W 1,p(Ω)) (4.6)

where the positive constants C1, C2 do not depend on u, f and τ . This regularity result
can be found in [13, Theorem 3.1.1] or in [15]. Let us define the set

KT =
{
ς ∈ W 1,1

p (Q) : ‖ς‖W 1,1
p (Q) ≤M

}
with a positive constant M . Then we define an operator

P : KT −→ Lp(0, T ;W 1,p(Ω)) , σ̂ 7→ σ = P(σ̂) , (4.7)

where σ is the weak solution of the problem

div σ = −F in Q (4.8a)

σ = K

(
ε(u)− β(θ̂, z)I −

∫ t

0

γ(θ̂, z, zτ )Ŝdτ

)
in Q (4.8b)

u = 0 on ∂Ω× (0, T ) . (4.8c)
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The function z is the solution of the ODE

zt = f(θ̂, z, σ̂) in Q , z(0) = 0 in Ω (4.9)

and Ŝ is the deviatoric part of σ̂. The goal is to show that for sufficiently small T > 0
and large M , P(σ̂) ∈ KT . By definition of σ we have∫

Ω

Kε(u) : ε(w)dx =

∫
Ω

Fwdx+ 3κ

∫
Ω

β(θ̂, z) divwdx

+

∫
Ω

∫ t

0

γ(θ̂, z, zτ )Ŝdτ : ε(w)dx .

(4.10)

Using the W 2,p-estimate (4.6) for solutions to the elasticity system we obtain

‖u‖Lp(0,T ;W 2,p(Ω)) ≤ C1‖F‖Lp(0,T ;Lp(Ω)) + C2

(
‖β(θ̂, z)‖Lp(0,T ;W 1,p(Ω))

+

∥∥∥∥∫ t

0

γ(θ̂, z, zτ )Ŝdτ

∥∥∥∥
Lp(0,T ;W 1,p(Ω))

)
.

(4.11)

Regularity of θ̂, z and the continuous embedding KT ⊂ L∞(Q) for p > 4 yield

‖β(θ̂, z)‖Lp(0,T ;W 1,p(Ω)) ≤ δ‖θ̂‖Lp(0,T ;W 1,p(Ω)) (4.12)

as well as ∥∥∥∥∫ t

0

γ(θ̂, z, zτ )Ŝdτ

∥∥∥∥
Lp(0,T ;W 1,p(Ω))

≤ T

(
‖γ(θ̂, z, zt)Ŝ‖Lp(Q)

+ ‖γθ∇θ̂ + γz∇z + γzt∇zt‖Lp(Q)‖Ŝ‖L∞(Q)

+ ‖γ(θ̂, z, zt)‖L∞(Q) · ‖ div Ŝ‖Lp(Q)

)
≤ C1TM + C2TM

2

(4.13)

where the constants C1, C2 > 0 do not depend on M .

Inserting the two last estimates into (4.11) we arrive at the inequality

‖u‖Lp(0,T ;W 2,p(Ω)) ≤ C̃1 + C̃2T
1/pM + C̃3TM + C̃4M

2T . (4.14)

According to the constitutive relation (4.8b) between stress and strain we obtain a similar
inequality for σ, i.e.

‖σ‖Lp(0,T ;W 1,p(Ω)) ≤ C1 + C2T
1/pM + C3TM + C4TM

2 . (4.15)

Next, we are going to prove an estimate for the time derivative of u. Hence, we have to
consider ∫

Ω

Kε(ut) : ε(w)dx =

∫
Ω

Ftwdx+ 3κ

∫
Ω

βt(θ̂, z) divwdx

+

∫
Ω

γ(θ̂, z, zt)Ŝ : ε(w)dx ∀w ∈ W 1,q
0 (Ω) .
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By (4.6) we have

‖ut‖Lp(0,T ;W 1,p(Ω)) ≤ C1‖Ft‖Lp(Q) + C2

(
‖βt(θ̂, z)‖Lp(Q) + ‖γ(θ̂, z, zt)Ŝ‖Lp(Q)

)
. (4.16)

Regarding the regularity of β we obtain

‖βt(θ̂, z)‖Lp(Q) ≤ δ‖θ̂t‖Lp(Q) +
√

2δ‖ztθ̂‖Lp(Q)

≤ C1 + C2T
1/p‖σ̂‖Lp(Q) .

(4.17)

To estimate the last term we see that

‖γ(θ̂, z, zt)Ŝ‖Lp(W ) ≤ C‖Ŝ‖Lp(Q) . (4.18)

Unfortunately, we cannot estimate ‖Ŝ‖Lp(Q) by M only, because the constant C in front
may not be small. We are going to prove that the operator P maps the set

RT = {ς ∈ Lp(Q) : ‖ς‖Lp(Q) ≤ R}

into RT for sufficiently large R and sufficiently small T . To do this we again utilize (4.6)
to obtain

‖u‖Lp(0,T ;W 1,p(Ω)) ≤ C1‖F‖Lp(Q) + C2

(
‖β(θ̂, z)‖Lp(Q) +

∥∥∥∥∫ t

0

γ(θ̂, z, zτ )Ŝdτ

∥∥∥∥
Lp(Q)

)
≤ C̃1 + C̃2TR (4.19)

where C̃1 and C̃2 do not depend on R. This result and Hooke’s law yield that a similar
inequality holds for σ, i.e.

‖σ‖Lp(Q) ≤ C̃1 + C̃2TR . (4.20)

Choosing T sufficiently small and R sufficiently large we obtain that P(σ̂) = σ ∈ RT .
Next we return to the estimate (4.16). Invoking (4.17), (4.18) and (4.20) yields

‖ut‖Lp(0,T ;W 1,p(Ω)) ≤ C1 + C2T
1/pM + CR (4.21)

where R is chosen such that P : RT → RT . The last estimate implies that

‖σ‖Lp(0,T ;W 1,p(Ω)) + ‖σt‖Lp(Q) ≤ C1 + C2T
1/pM + C3TM + C4TM

2 + CR . (4.22)

Hence, choosing T sufficiently small and M sufficiently large we have that

P : KT ∩RT −→ KT ∩RT .

To prove that the map P has a fixed point we want to use the Schauder theorem. Observe
that the set KT ∩ RT is compact and convex in the space Lp(Q). To end the proof we
have to show that P : Lp(Q) → Lp(Q) is continuous. Let σ̂n → σ̂ in Lp(Q), we are
going to prove that P(σ̂n) = σn converges to P(σ̂) = σ in Lp(Q). First we see that from
Lemma 4.1 we immediately have that the sequence {zn} defined by zn

t = f(θ̂, zn, σ̂n) in
Q, zn(0) = 0 in Ω, converges in the space W 1,p(0, T ;Lp(Ω)) to the solution of the ODE
zt = f(θ̂, z, σ̂) in Q, z(0) = 0 in Ω.
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Moreover, the Lipschitz continuity of β and γ gives that

β(θ̂, zn) −→ β(θ̂, z) in Lp(Q) ,

γ(θ̂, zn, zn
t ) −→ γ(θ̂, z, zt) in Lp(Q) .

Passing eventually to a subsequence we can assume that γ(θ̂, zn, zn
t ) → γ(θ̂, z, zt) pointwise

a.e. in Q.

Owing to Lebesgue’s theorem we infer∥∥∥(γ(θ̂, zn, zn
t )− γ(θ̂, z, zt)

)
Ŝ
∥∥∥

Lp(Q)
−→ 0

and hence,

‖γ(θ̂, zn, zn
t )Ŝn − γ(θ̂, z, zt)Ŝ‖Lp(Q)

≤ C1‖Ŝn − Ŝ‖Lp(Q) + ‖(γ(θ̂, zn, zn
t )− γ(θ̂, z, zt))S‖ −→

n→∞
0 .

Invoking (4.6) once again we obtain that un → u in Lp(0, T ;W 1,p(Ω)) and P(σ̂n) → P(σ̂)
in Lp(Q). The Schauder fixed point theorem completes the proof of existence.

We see that T does not depend on the value of σ(0) and therefore the solution can be ex-
tended on a finite time interval. To end the proof of the lemma we have to show uniqueness
of solutions. To this end, we denote by (σ1, z1), (σ2, z2) two solutions of the considered
problem and use the abbreviations βi(t) = β(θ̂(t), zi(t)), γi(t) = γi(θ̂(t), zi(t), zi

t(t)) and
estimate

‖σ1(t)− σ2(t)‖2
L2(Ω) ≤ C

(
‖u1(t)− u2(t)‖2

W 1,2(Ω) + ‖β1(t)− β2(t)‖2
L2(Ω)

)
+

∫ t

0

(
‖γ1(t)S1(τ)− γ2(t)S2(τ)‖2

L2(Ω)

)
dτ .

(4.23)

Using (4.2) we obtain

‖z1(t)− z2(t)‖L2(Ω) ≤ C

∫ t

0

‖σ1(τ)− σ2(τ)‖L2(Ω)dτ

and consequently

‖β1(t)− β2(t)‖2
L2(Ω) = ‖β(θ̂, z1)− β(θ̂, z2)‖2

L2(Ω)

≤ C

∫ t

0

‖σ1(τ)− σ2(τ)‖2
L2(Ω)dτ .

(4.24)

Moreover, according to the estimate ‖σi‖L∞(Q) ≤M where M depends on θ̂, we conclude
that∫ t

0

‖γ1(τ)S1(τ)− γ2(τ)S2(τ)‖2
L2(Ω)dτ ≤ C

(∫ t

0

‖γ1(τ)− γ2(τ)‖2
L2(Ω)‖S1(τ)‖2

L∞(Ω)dτ

+

∫ t

0

‖γ2(τ)‖2
L∞(Ω)‖S1(τ)− S2(τ)‖2

L2(Ω)dτ

)
≤ C̃

(∫ t

0

‖σ1(τ)− σ2(τ)‖2
L2(Ω)dτ

)
.
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Finally using the weak formulation of the elasticity system we have∫
Ω

Kε(u1(t)− u2(t)) : ε(u1(t)− u2(t))dx =

∫
Ω

(β1(t)− β2(t)) div (u1(t)− u2(t))dx

+

∫
Ω

∫ t

0

(γ1(τ)|S1(τ)|2 − γ2(τ)|S2(τ)|2)dτ : ε(u1(t)− u2(t))dx .

Hence, we obtain

‖u1(t)− u2(t)‖W 1,2(Ω) ≤ C

(
‖β1(t)− β2(t)‖2

L2

+

∫ t

0

‖γ1(τ)S1(τ)− γ2(τ)S2(τ)‖2
L2dτ

)
≤ C

∫ t

0

‖σ1 − σ2‖2
L2dτ .

(4.25)

Inserting this into (4.23) we have

‖σ1(t)− σ2(t)‖2
L2(Ω) ≤ C

∫ t

0

‖σ1(τ)− σ2(τ)‖2
L2(Ω)dτ . (4.26)

Since σ1(0) = σ2(0) we obtain σ1(t) = σ2(t) and consequently z1(t) = z2(t).

Now we are in position to study the complete nonlinear system (3.1a)–(3.1h).

Proof of Theorem 3.1: Let us first observe that for θ̂ ∈ W 2,1
p (Q) the solution from Lemma

4.2 satisfies H(σ, z, θ̂) = γ(θ̂, z, zt)|S|2 ∈ Lp(Q) and ‖H‖Lp(Q) does not depend on θ̂. This
follows from the additional assumption F ∈ L2p(Q). Let us define the set

M =

{
θ ∈ W 2,1

p (Q) : ‖θ‖Lp(0,T ;W 2,p(Ω)) + ‖θt‖Lp(Q) ≤ R ,

∂θ

∂n
= 0 on ∂Ω× (0, T ) and θ(0) = θ0

}
.

For the moment we assume that an arbitary function H ∈ Lp(Q) and ‖H‖Lp(Q) ≤ K is

given. Let us select θ̂ ∈M and consider the following initial-boundary value problem

%cεθt − k∆θ = (q(z)trσ + 9kβq(z)2θ̂)θ̂t − 3κq(z)θ̂ div ut + h (4.27a)

+ (%L+ trσθ̂q̄ + 9κθ̂2q(z)q̄)zt +H

∂θ

∂n
= 0 on ∂Ω× (0, T ) (4.27b)

θ(0) = θ0 (4.27c)

where (u, σ, z) depend on θ̂ according to Lemma 4.2. This means that the right-hand
side in the last equation is known. We are going to prove that for δ sufficiently small
θ ∈M. Using the maximal regularity estimate for solutions to linear parabolic problems
we obtain that

‖θt‖Lp(Q) + ‖θ‖Lp(0,T ;W 2,p(Ω)) ≤ C‖P‖Lp(Q) (4.28)
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where P denotes the right-hand side of the considered equation.

‖P‖Lp(Q) ≤ C1

(
δ‖σ‖L∞(Q) + δ2‖θ̂‖L∞(Q)‖θ̂t‖Lp(Q) + δ‖θ̂‖L∞(Q)‖ div ut‖Lp(Q)

+ δ‖σ‖L∞(Q)‖θ̂‖L∞(Q)‖zt‖Lp(Q)

+ δ‖θ̂‖2
L∞(Q)‖zt‖Lp(Q)

)
+ ‖H‖Lp(Q) + C2 ,

(4.29)

where C2 only depends on h, g, and L.

According to the estimate from Lemma 4.2 we conclude that for δ sufficiently small and
R sufficiently large θ ∈M. Hence, we have defined an operator

M3 θ̂ 7→ R(θ̂) = θ ∈M .

Next we prove that for δ small R is a contraction. Let us denote

θi = R(θ̂i) for i = 1, 2 .

Then we have

%c2(θ
1
t − θ2

t )− k(∆θ1 −∆θ2) = q(z1)trσ1θ̂1
t − q(z2)trσ2θ̂2

t + 9κq(z1)2θ̂1θ̂1
t

− 9κq(z2)2θ̂2θ̂2
t − 3κq(z1)θ̂1 div u1

t (4.30a)

+ 3κq(z2)θ̂
2 div u2

t + trσ1θ̂1q̄z1
t − trσ2θ̂2q̄z2

t

+ 9κ(θ̂1)2q(z1)q̄z1
t − 9κ(θ̂2)2q(z2)q̄z2

t + %L(z1
t − z2

t )

∂(θ1 − θ2)

∂n
= 0 on ∂Ω× (0, T ) (4.30b)

(θ1 − θ2)(0) = 0 . (4.30c)

Hence, we have to estimate the Lp-norm of the right-hand side of equation (4.30a). Let
us denote the six differences on the right-hand side by I1, .., I6. Then

‖I1‖Lp(Q) ≤ ‖q(z1)trσ1 − q(z2)trσ2‖L∞(Q)‖θ̂1
t ‖Lp(Q)

+ ‖q(z2)trσ2‖L∞(Q)‖θ̂1
t − θ̂2

t ‖Lp(Q) .

To estimate the first term we see that

‖q(z1)trσ1 − q(z2)trσ2‖L∞(Q) ≤ δ‖σ1 − σ2‖L∞(Q) +
√

2δ‖σ2‖L∞(Q)‖z1 − z2‖L∞(Q) .

According to the embedding W 1,1
p (Q) ⊂ C(Q) for p > 4 we can invoke Lemma 4.1 b) and

an estimate for σ1 − σ2 along the lines of estimates (4.11) and (4.13) to obtain

‖I1‖Lp(Q) ≤ Cδ‖θ̂1 − θ̂2‖W 2,1
p (Q) (4.31)

and C does not depend on δ and θ̂.

In the same manner we estimate I2, .., I6:

‖I2‖Lp(Q) ≤ C
(
‖q(z1)2θ̂1 − q(z2)2θ̂2‖L∞(Q)‖θ̂1

t ‖Lp(Q)

+ ‖q(z2)2θ̂2‖L∞(Q)‖θ̂1
t − θ̂2

t ‖Lp(Q)

)
≤ Cδ‖θ̂1 − θ̂2‖W 2,1

p (Q) ,
(4.32)
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‖I3‖Lp(Q) ≤ C
(
‖q(z1)θ̂1 − q(z2)θ̂2‖L∞(Q)‖ div u1

t‖Lp(Q)

+ ‖q(z2)θ̂2‖L∞(Q)‖ div u1
t − div u2

t‖Lp(Q)

)
.

Using (4.4) we arrive at the inequality

‖I3‖Lp(Q) ≤ Cδ‖θ̂1 − θ̂2‖W 2,1
p (Q) (4.33)

where C does not depend on δ and θ̂. Reasoning as before, we obtain

‖I4‖Lp(Q) ≤ C1δ‖σ1‖L∞(Q)‖θ̂1‖L∞(Q)‖z1
t − z2

t ‖Lp(Q)

+ C2δ‖z2
t ‖L∞(Q)‖σ1θ̂1 − σ2θ̂2‖Lp(Q)

≤ Cδ‖θ̂1 − θ̂2‖W 2,1
p (Q)

‖I5‖Lp(Q) ≤ C‖(θ̂1)2q(z1)q̄z1
t − (θ̂2)2q(z2)q̄z2

t ‖Lp(Q)

≤ Cδ‖θ̂1 − θ̂2‖W 2,1
p (Q) .

Owing to Lemma 4.1 we obtain for I6

‖I6‖Lp(Q) ≤ CT‖θ̂1 − θ̂2‖W 2,1
p (Q) . (4.34)

Hence, we conclude that for δ sufficiently small and T+ ≤ T small enough,

‖R(θ̂1)−R(θ̂2)‖W 2,1
p (QT+) ≤ Λ‖θ̂1 − θ̂2‖W 2,1(QT+) and Λ < 1 (4.35)

where QT+ = Ω× (0, T+).

Using the Banach fixed point theorem we have that there exists θ ∈M such thatR(θ) = θ
and again the solution can be extended to any finite time interval.

The last step in the proof is a study of the following problem

%cεθt − k∆θ = q(z)trσ + 9κq(z)2θ)θt − 3κq(z)θ div ut + h (4.36a)

+ (%L+ trσθq̄ + 9κθ2q(z)q̄)zt + γ̃|S̃|2

∂θ

∂n
= 0 on ∂Ω× (0, T ) , (4.36b)

θ(0) = θ0 (4.36c)

where (σ̃, z̃) is a solution according to Lemma 4.2 for θ̃ ∈ M, γ̃ = γ(θ̃, z̃, z̃t). Hence, we
have an operator

M3 θ̃ 7→ R̃(θ̃) = θ ∈M .

Note that γ̃|S̃|2 ∈ Lp(Q) and from the above step of the proof we have that R̃(θ̃) =
θ ∈ M. Moreover note that for θ̃ ∈ Lp(Q) the operator R̃ is also well-defined and
R̃(θ̃) ∈ W 2,1

p (Q) ⊂ Lp(Q).

We are going to prove that R̃ is a continuous map from Lp(Q) into Lp(Q). Let θ̃n → θ̃ in
Lp(Q) then we have that z̃n → z̃ in W 1,p(0, T ;Lp(Ω)), β(θ̃n, z̃n) → β(θ̃, z̃) in Lp(Q) and
pointwise a.e. in Q (eventually passing to a subsequence), γ(θ̃n, z̃n, z̃n

t ) → γ(θ̃, z̃, z̃t) in
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Lp(Q) and pointwise a.e. in Q and βz(θ̃n, z̃n) → βz(θ̃, z̃) in Lp(Q) and pointwise a.e. in Q.
Moreover, σ̃n → σ̃ in L2p(Q) because F ∈ L2p(Q) and β(θ̃n, zn) → β(θ̃, z̃) in L2p(Q) also.
Hence, in the same manner as at the end of Lemma 4.2 we prove that γ̃n|S̃n|2 → γ̃|S̃|2 in
Lp(Q). Consequently, using the main estimate from the first step of the proof we deduce
that R̃ is continuous from Lp(Q) into Lp(Q). The Schauder fixed point theorem completes
the proof.

To prove uniqueness we only have to show that in the last step the solution is unique.
From the derivation of (4.35) in the previous step we can also infer

‖θ1 − θ2‖W 1,2
p (Q) ≤ ‖H

1 −H2‖Lp(Q) (4.37)

where H1, H2 are given functions from Lp(Q). To end the proof we have to estimate

‖γ1|S1|2 − γ2|S2|2‖Lp(Q) = J (4.38)

where γi = γ(θi, zi, γi), i = 1, 2.

In the same manner as in the proof of Lemma 4.2 we show that

‖z1(t)− z2(t)‖Lp(Ω) ≤ C

(∫ T

0

‖σ1 − σ2‖Lp(Ω)dt+

∫ T

0

‖θ1 − θ2‖Lp(Ω)dt

)
(4.39)

and

‖σ1(t)− σ2(t)‖Lp(Ω) ≤ C

∫ T

0

‖θ1 − θ2‖Lp(Ω)dt . (4.40)

Next, we estimate

J ≤ ‖γ1‖L∞(Q)‖ |S1|+ |S2| ‖L∞(Q)‖S1 − S2‖Lp(Q)

+ ‖γ1 − γ2‖Lp(Q)‖ |S2|2‖L∞(Q) .
(4.41)

Using (4.39), (4.40), and (A2) we conclude that

‖θ1 − θ2‖W 1,2
p (Q) ≤ C

(
‖θ1 − θ2‖Lp(Q) +

∫ T

0

‖θ1 − θ2‖Lp(Q)dτ

)
.

According to the fact that θ1(0) = θ2(0) we have

‖θ1 − θ2‖Lp(Q) ≤
∥∥∥∥∫ t

0

(θ1
τ − θ2

τ )dτ

∥∥∥∥
Lp(Q)

≤ T‖θ1
t − θ2

t ‖Lp(Q) . (4.42)

Hence, for small T we obtain

‖θ1 − θ2‖W 1,2
p (Q) ≤ 0 ⇒ θ1 = θ2 .

Next, we observe that the length of the time interval do not depend on the initial data
θ0. Hence, we conclude the uniqueness result for all bounded time intervals.
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5 Numerical Results

In this section we present some numerical simulations to demonstrate the distortion ef-
fect of metallurgical phase transitions. We assume that the workpiece has already been
heated up to the high temperature phase austenite and consider only the cooling stage of
a heat treatment. For a sufficiently high cooling rate, i.e. close to the quenched boundary
parts where temperature descends very quickly, austenite is transformed into the hard
phase martensite (z2), whereas a slower temperature change, e.g. in the interior of a
big workpiece, causes the softer phase pearlite (z1) to grow. The correlation of tempera-
ture change and phase transformation can be obtained by isothermal and non-isothermal
time-temperature-transformation (ttt) diagrams which are attained by measurements.
In particular, one can find which time-temperature evolutions are feasible for sufficient
martensite formation. Due to the fact that the product phases pearlite and martensite
exhibit different thermal expansion their formation influences the deformation of the work-
piece as described in Section 2. This leads to the afore-mentioned distortion, for which we
will give concrete examples in the following simulations. The underlying model is based
on the equations (3.1a)–(3.1h). To achieve easily visible effects we consider a simple 2-
dimensional geometry, i.e. a steel slab of dimension 100mm × 20mm, and infer specific
cooling to obtain a corresponding phase distribution. As mentioned before we consider
only the cooling, not the prior heating process. Therefore we assume a sufficiently high,
homogeneous initial temperature and complete austenization.

In the model the workpiece is assumed to be fixed in only one single point to avoid
additional stress caused by mere thermoelastic effects. The fixation point is the upper
right corner, that is, the displacement in this point is set to be zero. We suppose further
that the workpiece is aligned at its right side such that the whole right boundary part
may only shrink vertically.

Material parameters are taken from data tables for the eutectoid carbon steel C 1080.
For simplicity and lack of precise data we have assumed g12(σ) = g22(σ) ≡ 1.

Figure 2: One-sided cooling of a hot slab.

To give a first impression of the phase induced thermomechanical effects, we consider a
steel slab which is quenched from the bottom, which corresponds to nonzero Neumann
conditions in (3.1g), the other three edges are assumed to be thermally insulated, see
Figure 2. The rapid cooling causes the austenite close to the quenched boundary parts to
transform to the hard and brittle steel phase martensite whereas the remaining austenite
cools down more slowly and therefore transforms to the softer phase pearlite. Figure 3
demonstrates the process at a sample of time steps. At time t = 0s, the specimen is
completely heated and stress-free. When quenching sets in, thermoelastic effects may be
observed at first. The picture for time t = 5s shows the shrinking of the quenched area.
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temperature martensite
t = 0s

t = 5s

t = 43s

t = 150s

Figure 3: Workpiece at times t = 0s, 5s, 43s, and 150s. Colours indicate temperature in
the left column, martensite fraction in the right column where blue corresponds to 0 %
and red to 100 % martensite, respectively. The background rectangle gives the initial
geometry, the deformation of the workpiece is magnified by factor 10.

As we assume that yield stress is not exceeded and no plastic deformation occurs, this
state of shape is only temporary and will be superseded by phase transformation induced
deformation. This can be seen in the third picture for t = 150s where the bulge points
exactly in the opposite direction. As the picture for the martensite fraction at t = 150s in
Figure 3 shows, the rapid cooling effected the growth of martensite in the lower part of
the specimen. The remaining part consists of the softer phase pearlite. Martensite has a
lower density and a higher expansion coefficient than pearlite. Hence, martensite takes a
bigger volume than pearlite and thus pushes the material outward which causes the bulge
in the fourth picture.

Figure 4: Inhomogeneous cooling of a hot slab.

Figure 4 depicts the second investigated configuration: the drops in the lower left and the
upper right indicate boundary sections where quenching is applied. The remaining parts
of the boundary are thermally insulated. Figure 5 shows the process at four time steps.
Again, the specimen is completely heated and stress-free at time t = 0s.
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t = 0s t = 5s

t = 40s t = 150s

Figure 5: Workpiece at times t = 0s, 5s, 40s, and 150s. Colours indicate temperature,
the background rectangle gives the initial geometry, the deformation of the workpiece is
magnified by factor 10.

t = 150s

Figure 6: Distribution of phase martensite at time t = 150s. Blue corresponds to 0 %
and red to 100 %, respectively.

The picture for time t = 5s shows that the quenched areas shrink and cause an antisym-
metric contraction, which results in a reverse S-shaped (antisigmoidal) geometry. As we
assume that yield stress is not exceeded and no plastic deformation occurs, this state of
shape is only temporary and will level out after a sufficiently long time, when a stationary,
homogeneous temperature distribution is achieved. Accordingly, the picture for t = 40s
shows a shrunk, but rectangular shape like the initial geometry. Finally, phase transfor-
mation induced deformation prevails as demonstrated in the fourth picture for t = 150s.
The inhomogeneous phase distribution and their different densities induce a completely
reversed situation compared to the thermoelastic effect. In the lower left and upper right
martensite is formed (see Figure 6) which pushes the material outward by its smaller
density and higher volume respectively. A lasting S-shaped (sigmoidal) deformation is
generated when workpiece temperature has adjusted to the ambient medium.
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[2] S. Denis, S. Sjöström, A. Simon, Coupled temperature, stress, phase transformation
calculation model numerical illustration of the internal stresses evolution during cool-
ing of an eutectoid carbon steel cylinder, Met. Trans. 18A (1987), pp. 1203–1212.

[3] F.D. Fischer, Q.-P. Sun, K. Tanaka, Transformation induced plasticity (TRIP), Appl.
Mech. Rev., 49 (1996), pp. 317–364.

18



[4] J. Fuhrmann, D. Hömberg, Numerical simulation of surface heat treatments, Intern.
J. Numer. Methods Heat Fluid Flow, 9 (1999), pp. 705–724.
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[6] D. Hömberg, Irreversible phase transitions in steel, Math. Methods Appl. Sci., 20
(1997), pp. 59–77.
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