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Abstract 

A countable system of linearly interacting diffusions on the interval [O, 1], 
indexed by a hierarchical group is investigated. A particular choice of the 
interactions guarantees that we are in the diffusive clustering regime, that 
is clusters of components with values all close to 0 or all close to 1 grow 
in various different scales. The latter phenomenon we studied in [11], while 
in the present paper we analyze the evolution of single components and of 
clusters over time. First we focus on the time picture of a single component 
and find that components close to 0 or close to 1 at a late time have had this 
property for a large time of random order of magnitude, which nevertheless 
is small compared with the age of the system. The asymptotic distribution 
of the suitably scaled duration a component was close to a boundary point is 
calculated. Second we study the history of spatial 0- or 1-clusters by means 
of time scaled block averages and time-space-thinning procedures. The scaled 
age of a cluster is again of a random order of magnitude. Thirdly, we construct 
an object we call a transformed Fisher-Wright tree, which (in the long-time 
limit) describes the structure of the space-time process associated with our 
system. All described phenomena are independent of the diffusion coefficient 
and occur for a large class of initial configurations (universality). 
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1 Introduction 
The present paper is a second step in our program started in [11] to understand 
better the long-term behavior of interacting systems with only degenerate equilibria 
(i.e. steady states concentrated on traps), which typically occurs in weakly interact-
ing (low dimensional) situations. Examples for this situation are branching models, 
voter model, linear systems in the sense of Liggett, and genetics models of the type 
we discuss here. 

The aim of this second step of the program is to develop a suitable scheme which 
enables us to deepen the understanding of the large scale correlation structure in 
time and space of an infinite interacting system of diffusions in [O, 1] in the regime 
of diffusive clustering. In the first step [11] we already obtained a detailed picture 
about the growth of clusters in space observed at single time points which get large. 
Furthermore we got a first rough insight in the time behavior of the process observed 
at a fixed finite collection of components. 

The purpose of the present paper is threefold: 
(i) A refinement in the analysis of the time structure of the component process which 
will reveal that the times spent close to the boundaries are diverging at a random 
order of magnitude as the observation time point gets large, but which is small 
compared to the system age. The distribution of this random order of magnitude 
will be identified. 
(ii) We want to get hold on the time-space structure of the cluster-formation, that 
is we want to understand the history of spatial clusters. In particular, we want to 
relate the time a component. was close to 0 or 1 to the spatial extension of clusters. 
(iii) To construct an object which contains the information about the time-space 
structure for the system on a "macroscopic" time-space scale. We call this object a 
transformed Fisher- Wright tree. 

As in [11], another important aspect is that the results are proved for a whole 
class of models (universality) allowing quite general diffusion coefficients and initial 
laws. In particular, the role of the transformed Fisher-Wright tree is not restricted 
to only interacting Fisher-Wright diffusions. The in~eraction term considered here 
corresponds to the d = 2 case in usual lattice models (whereas the equivalent to the 
d = 1 case behaves again different, compare Klenke [14]). Eventually having studied 
in detail enough models around, we hope to reveal some principles governing the 
time-space cluster-formation in linearly interacting systems. 

Related questions have been addressed for low dimensional branching systems 
in Iscoe (12] from the point of view of occupation times, and in Dawson and Fleisch-
mann [7] using a more refined approach. For the voter model which is exhibiting 
qualitatively similar behavior as the interacting diffusions, the phenomenon has been 
approached in Cox and Griffeath [4] by studying occupation times. In the present 
paper we will follow a different, more direct approach, for interacting diffusions. It 
is actually not too hard to use our results to study similar questions for the voter 
model on a hierarchical group. 

The analysis of clusters and their evolution in time, presented in§§ 1.3-1.7 below, 
will proceed by viewing single components in suitable time scales (Theorem 1), large 
spatial averages in various time scales (Theorem 2), and time-space thinned systems 
(Theorem 3). The transformed Fisher-Wright tree is defined in § 1.2. 

1.1 Model of interacting diffusions 
Start with introducing the model under consideration. For a discussion of the 
population genetics motivation for this model we refer to [11] and references therein. 
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Definition 1.1 (interacting diffusion) Let X = {Xe(t); e E 3, t ~ O} denote 
the interacting diffwion on the hierarchical group 3 with fixed drift parameters 
{CA:; k ~ 1} and diffusion coefficient g. This process is defined as follows: 

For each specified initial state in [O, lf~:, consider the unique strong solution X 
(Shiga and Shimizu [19]) of the following system of stochastic differential equations: 

The ingredients occurring in this equation are the following: 

(a) (hierarchical group) g denotes the collection of all sequences e = [e1, 6, ... ] 
with coordinates ei in the finite set {O, ... , N - 1} (with N ~ 2 fixed), which 
are different from 0 only finitely often. Moreover, 

11e11 := max{i; ei # o}, to be read as 0 if e = 0 = [ o, o, ... ] ' (2) 

denotes the "discrete norm" of e. Finally, E: is an Abelian group by defining the 
addition coordinate wise modulo N, and lle-Cll is the" hierarchical distance" 
of e and(. 

(b) (ball average) Xe,A: refers to the empirical mean (ball average) in a k-"ball": 

(3) 

{c) (driving Brownian motions) w = {we(t); e E B, t ~ O} is a system of 
independent standard Brownian motions in R. 

{ d) (diffusion coefficient) g belongs to the set go of all functions g : [ 0, 1] 1---)-

R+ (see Figure 1) which are Lipschitz continuow and satisfy 

g(O) = 0 = g(l) and g > 0 on (0, 1). (4) 

( e) {drift parameters) The sequence {CA: ~ O; k ~ 1} of drift parameters with 
values in R+ satisfies 2:1: CJ:/ N'l1: < oo. 0 

Definition 1.2 (initial state) We often use a random initial state X(O). Then 
X ( 0) is assumed to be independent of the system w of driving Brownian motions. 
The law .C(X(O)) is denoted by µ. In most cases we assume that µ belongs to 
the set Ts of all those distributions on [O, 1]8 which are shift ergodic with density 
8 E (0, 1), that is Jµ(dz) ze =: 8. Write Pµ :=Pt for the distribution of X ifµ is 
the initial law .C(X(O)), and P.s := P! in the degenerate caseµ= J:r;, z E (0, 1]8 .0 

Example 1.3 {interacting Fisher-Wright) The standard example is the inter-
acting Fisher-Wright diffiuion with diffusion parameter b where by definition 

g(r) := bf(r) with f(r) := r(l - r) and b > O; (5) 

see Figure 1. By an abuse of notation, in this case we also write P! and P! for the 
laws of X. 0 

~o I~ 
0 1 0 1 

Figure 1: Diffusion coefficients: General g and standard Fisher-Wright f 
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Example 1.4 (Ohta-Kimura) Another important case in genetics is the inter-
acting Ohta-Kimura diffusion where g = b/2. O 

Remark 1.5 (hierarchical group, X) We recall the following interpretation of 
g used in mathematical biology: e = [6,6, ... ] labels the 6-st member in a family, 
which is the e:i-nd family of a clan, ... , which is the 6:-th member of a le-level set. 
lie - Cll = k refers to relatives of degree k. 

The system (1) occurs as diffusion limit of genetics models with resampling and 
migration (Moran model). Then Xe can be interpreted as a gene frequency of the 
e-th component (colony) of the system. (See Sawyer and Felsenstein [17] or Chapter 
10 in Ethier and Kurtz (10].) O 

The basic features of the model stem from a competition between drift and noise. 
Namely, set for the moment CA: = 0, then all components Xe fluctuate independently 
according to diffusions with coefficient g. For instance in the Fisher-Wright case 
(5), Xe will be trapped at 0 or 1 in finite time, as indicated in Figure 2. 

l~Xe(t) 
Xe(O) 

0 -r-~~--~~~~~~-r~~~ 
t T 

Figure 2: Under CA: = 0: A single Fisher-Wright diffusion path trapped at 1 

On the other hand, if we set g = O, then X solves an infinite system of ordinary 
differential equations, which has the property that, under crc > O, for initial states 
in Te, the solution Xt converges as t-+ oo to the constant state fl that is fle = 8. 

Therefore in the case ck ;/:. O, g =f. O, the drift term is in competition with the 
basic feature of the diffusion of the single components to get trapped at {O, 1} and 
in fact prevents it from getting trapped at all in finite time (except if X starts 
already with either of the traps Q_ or 1). 

In the sequel we shall study only the case where CA: = a > O, which is the 
prototype displaying a specific "critical" behavior. Namely, this special choice of 
the drift parameter implies first of all that we are in the regime of clustering (for 
which :Erc c;1 = oo would suffice), that is 

P{IXe(t) - Xc(t)I ~ e} t:;! o, e,(EB, e>O. (6) 

Even more, the whole system X is in the regime of the so-called diffusive clustering, 
that is, the logarithm of the volume of clusters of neighboring components with val-
ues all close to 0 or close to 1 grow at a random linear speed if we observe the process 
in a suitable, in our case at an exponential, time scale; see Fleischmann and Greven 
(11]. Such behavior occurs typically if :E~=l c;1 diverges but not exponentially 
fast as n-+ oo, while the case of c;1 = c-.l: with c < 1 gives different behavior, see 
Klenke [14]. In order to keep notation reasonable we focus on CA: =a> 0 rather than 
putting conditions on :E:=l c;1. Above dichotomy is analogous to the d = 2, d = 1 
dichotomy in usual lattice models. See Cox and Griffeath (5] for the analogue of the 
voter model on 7l.2 • For the ergodic theory for general drift parameters CA: we refer 
to Cox and Greven [3]. For a description of the cluster-formation for general CA:, see 
Dawson and Greven [8] (concerning the mean field limit) and Klenke [14]. Much of 
the scheme we derive to study the cluster-formation in time can be performed as 
well for the label set 7l.4 • 
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1. 2 Transformed Fisher-Wright tree 

In order to discuss clustering phenomena, we want to introduce some objects which 
shall play a basic role in the description of the genealogy of clusters and is the 
analog of the backward tree in spatial branching theory. Start with the following 
basic ingredients. 

Definition 1.6 (Fisher-Wright) Fix 8 E (0, 1). 

(a) (standard Fisher-Wright diffusion Y 9 ) Let B be a standard Brownian 
motion, and Y 9 = {Y 9(t); 0 ~ t ~co} the strong solution of 

dY9 (t) = Jys(t) ( 1 - ys (t)] dB(t), 0 < t < co, Y 9 (0) = 8. (7) 

(b) (fluctuation times) We call the hitting time 

r := inf {t > O; Y 9(t) E {O, 1}} E (0, co) 

of the traps the fluctuation time of Y 9 ( cf. Figure 2). 

( c) (transformed Fisher-Wright diffusion Y 9 ) Set 

Y9(,B) := Y9 (log(l/,B)), 0 ~ .B ~ 1, 

(8) 

(9) 

and denote the marginal laws of this time-inhomogeneous Markov process by 

qs P := C (Y9 (.8)) ' 

(d) (holding time of Y 9 ) Introduce the holding time ofY9 : 

r := exp-r E (0, 1). 

(10) 

0 

Consequently, a path of the transformed Fisher-Wright diffusion Y 9 starts at 0 
or 1, namely with the law of Y 9(r), that is with 

(1 - 8)cSo + 8cS1 , (11) 

stays there for the random time r E (0, 1). After r, the path fluctuates as a 
standard Fisher-Wright diffusion but with time reversed and on a logarithmic scale, 
and :finally ends up at time .B = 1 at the deterministic value 8. (Read Figure 2 
backwards.) Note that (9) can alternatively be written as Y 9 (e-t) = Y 9(t), 0 ~ 
t ~co. 

Next we compose a whole tree of Fisher-Wright diffusions (see Figure 3): 

0
: :nkY~ 
~Y:._, 
0 

Figure 3: Fisher-Wright tree (only one branch trapped so far) 
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Definition 1.7 (Fisher-Wright tree ye) Fix 8E(0,1), k ~ 1, and (determin-
istic) time points 0 ~ SJc < · · · < s1 < so := oo. 

(a) (trunk) First we introduce the trunk of the tree. The trunk will be denoted 
by Y~ and is nothing else than ye from Definition 1.6 (a). 

(b) (branches) Next we define the branches of the tree. Given the trunk Y~ , 
let a branch Y!,. split away from the trunk at the time s1c. The branch is 
again assumed to be standard Fisher-Wright, but defined on the time interval 
[s1c, oo], that is starting at time SJc with Y!,.(s1c) = Y~(s1c). Proceed with 
the other Si accordingly. The branches Y:i leave only from the trunk Y~ 
and are constructed independently of each other, given the trunk. Hence, 
by definition all the branches Y:i, k ~ i ~ 1, are conditionally independent 
given Y~. Note that all the finitely many branches and the trunk end up in 
the set {O, 1} of traps after finite times. 

(c) (fluctuation time of the trunk) As in Definition 1.6(b), denote by r 
the fluctuation time of the trunk. Of course, given Y~(r) = 8 E{O, 1}, 
all branches Y!i with Si ~Tare trapped at a. 

( d) (law and filtration) For the fixed s1c, ... , s1, write pe for the law of the 
Fisher-Wright tree Y 8 and {.r(t); t ~ O} for the related filtration (with .r(t) 
describing the behavior of Y 8 in [O, t]). <> 

Remark 1.8 The somewhat unexpected index oo = so (instead of 0 or S1c+1) on 
the symbol Y~ for the trunk of the tree will become clear below when we switch 
to a transformed tree. This also indicates that one could read the trunk in back-
ward direction while then the branches, starting with Y!

1
, split off in time viewed 

forward. This is (for good reason) the same as with the backward tree in branching 
theory, see for instance Chapter 12 in Dawson [6]. - Note also that for typographi-
cal simplification we do not display the time points SJc, ••• , s1 in the notation of ye 
orPe. <> 

In analogy with the transformed Fisher-Wright diffusion Y 8 defined in (9), we 
will introduce a transformed Fisher-Wright tree Y 8 , see Figure 4, by switching to 
the time scale e-• =: /3 E [O, 1]. 

trunk Y 8o 

Figure 4: Transformed Fisher-Wright tree 

Definition 1.9 (transformed Fisher-Wright tree Y 8) Fix 8 E (0, 1), k ~ 1, 
and 0 =: f3o < · · · < f31c ~ 1. 
(a) (trunk) The trunk of the transformed Fisher-Wright tree is 

Y 80 := Y~(log(l/·)) = Y 9 (log(l/·)) = ys. 

(b) (branches) The branches Y 8 th , ... , Y 8p,. are defined by 

(12) 
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Since a = 0 is included, the trunk and all branches2tart from the traps 
{O, 1} and stay there for a positive time. The branch yef3i termin~es at the 
(deterministic) time /3;, when it coalesces with the trunk; hence yef3i(/3;,) = 
yeo(/3;,). Consequently, ye can be considered as a coalescing ensemble of 
transformed Fisher- Wright diffusions. 

( c) (holding time of the t~nk) As in Definition 1.6 ( d), denote by r the 
holding time of the trunk ye0 • Note that 

- -yef3i(a) = yeo(a) if O ~a~ /3;, ~ r, (13) 

i.e. branches with terminal time bounded by r are trapped at the trunk. 
( d) (filtration) Set F(/3) := F(log(l//3)), 0 ~ f3 ~ 1, (with F(/3) describing the 

behavior of ye in [J3, 1]). 0 

1.3 Time structure of components: Expected phenomena 
We start by discussing the phenomena to be described. The formal set-up and 
related results will be contained in the next two subsections. 

For the remainder of the introduction we require: 

Assumption 1.10 (initial state) X starts off with a shift ergodic law µ, with 
fixed density 8 E (0, 1), that is µ, E To. 0 

The basic theorem for the interacting diffusion in the regime of clustering is 

.C(X(t)) t~ (1- 9)'5Q. + 9'51 , for .C(X(O)) = µ, E 7s, (14) 

(where the symbol=> refers to weak convergence); see Cox and Greven [3]. 
Nevertheless, if we fix a label e in the hierarchical group 3, we proved in [11, 

Theorem 5] that for the corresponding component process {Xe(t); t ~ O} in [O, 1], 

limsup Xe(t) = 1 and liminf Xe(t) = 0 a.s. 
t-400 t-400 

(15) 

In this sense, opposed to a system of independent diffusions,· each component Xe 
oscillates "between both traps" infinitely often. As a rule it actually even spends 
asymptotically fraction one of the time close to the traps {O, 1}, [11, Theorem 4]. 

We now want to know more about the durations for which Xe is close to 1 or 
close to 0 (life times of clusters, or alternatively correlation length in the time of 
our system). This should be closely related to the spatial cluster-formation. 

The cluster extensions in space we studied in [11, Theorem 3]: At time Nf3t (as 
t -+ oo ), the spatial clusters are of "size" at, where a is a random element of the 
open interval (0,/3) (with f3 > 0 fixed which could be set to 1 by scaling). More 
precisely, we have a = f3T with r the holding time of the transformed Fisher-Wright 
diffusion (Definition 1.6 (d)). 

Or from another point of view, at time scale Nf3t correlations in space are built 
within distances of order at, with the same random a. Or turned around, clusters 
of a spatial extension over a ball of radius at need at least time N(a+e)t to be 
formed with positive probability, for some e > 0. Combined with (15) this means 
that smaller clusters keep being overturned or melted with other smaller ones. This 
suggests that in order to describe the sequence of holding times of values close to 
1 or close to 0 on a large scale, we should encounter four interesting phenomena. 
Namely the holding times should be 
- of a random order of magnitude, 
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small compared with the age of the system and 
(stochastically) monotone and of increasing order of magnitude, within the cor-

relation length, 
comparable with the correlation length. 
To see that the correlation length is of a smaller order than the system age, look 

at {Xe(.Bt); 0 < ,B ~ 1} (for the fixed e). The law of this process converges as t-+ oo 
to a "stationary" 0-1-valued noise; see Proposition 6.1 at p. 39. (Compare this 
phenomenon of a noisy behavior in time with the occurrence of a spatial "isolated 
Poissonian noise" in the analysis of the clumping in the time-space picture for 
branching systems in low dimensions [7].) 

To elaborate on this point look at the exponential scale Nf3t and at a component 
process { Xe(Nf3t); 0 < ,B ~ 1} (for the fixed e). Ast-+ oo we get the same limiting 
"stationary" 0-1-noise. That is, the limit is independent in each "macroscopic" time 
point ,B, where the common one-dimensional marginal is just (11), with (} E (0, 1) 
the initial density of the system. The latter fact follows from (14). 

This indicates that in order to capture time correlations we have to study Xe 
after very long times but on a much finer scale than ,B as it appears in Nf3t. To 
accomplish that, we will look backwards from late time points fiT in time scales of 
smaller order. This will be incorporated formally by the following set-up. 

1.4 Time structure of components: Results 
To capture the structure of the correlations in time of the component process, we 
look at an asymptotically small neighborhood of a late time point. Indeed, for fixed e E 8 and T > O, we define the scaled component process, 

0 ~ .B < 1, (16) 

that is ,B E [O, 1) becomes the "macroscopic backward time". Consequently, from 
the "terminal time" ~we look backwards for the amount Nf3T where ,B varies in 
[O, 1). Note that~ -Nf3T - fiT as T-+ oo, so that the whole process rJT indeed 
describes the behavior "close to" ~. 

Recall that g E go and µ E T9 with (} E (0, 1). We denote by ~ weak 
convergence of all finite-dimensional distributions. Now we describe the behavior 
of a single component Xe in time based on the definitions (16) of rP and 1.6 of ye 
and 'T. 

Theorem 1 {scaled component process) Fiz a label e E 8. 
(a) (convergence) There is a {O, 1}-valued process U00 on the (macroscopic back-

ward) time interval [O, 1) such that 

uT ~ U00 as T -+ oo. 

{b) (characterization of U00
) Fork ~ 0 and 0 ~ .Bo < .81 < ... < .B1r. < 1: 

{ } (
- - ) - lr.+1 p u;:, = ... = u;:. = 1 = E ye(.Bo) ... ye(.B1r.) = E(Ye(.81: )) . 

Consequently, the distribution of U00 is a mizture of B.!,moulli product laws: 
First realize the transformed Fisher-Wright diffusion ye and then built the 
infinite product law with marginals 

(1- ye(,8))80 + ye(,B) 81, 0~,8<1. (17) 

In particular, the one-dimensional marginals £(U;') are given by (11), for 
all ,B E [O, 1). 
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( c) (qualitative description of U00
) Consider the holding time sup {.BE [O, 1); 

u; = UQ'} E (0, 1) of the initial state UQ'. Then 

.c([U0 , hu]) = .c([Ye(o), r]). 

Furthermore, beyond hu the process U00 is a "mizture" of instationary 0-1-
noise: For 8E{O,1} and the .Bi as in (b), 

.c{[up,>, ... ,up;: J J Uc\"' =a, hu < .81} 
= E{ rr:=l [ (1- Y 9(,8;))5o + Y 9(,8;)51] J Y 9(0) =a, T < ,81 }· 

Remark 1.11 Note that the holding time hu is measurable on the u-algebra of all 
(backward) paths with a non-empty starting interval of constant value. <> 

The theorem says three things: (i) If we look back from time~ in time scale 
NfJT, the component we focus on has been "close" to its state a for a time of random 
order of magnitude. (ii) This order is (strictly) smaller than the age of the system 
and has a law as given in (c). (iii) Later changes occur in times of a smaller order 
of magnitude (conditional noise), within the correlation length. 

Remark 1.12 (time average of components) Note that since the correlation 
length is small compared with the age of the system, one could prove that objects 
of the form r 1 J; ds Xe(s) converge in law to 8. This is characteristic for the case 
of drift parameters {ci:} not decaying exponentially fast (the analog of the d = 2 
case in lattice models). Compare ([4]). <> 

1.5 Time structure of components: An open problem 
A very natural question is, how the holding times close to time points ~ behave 
in the limit T ~ oo. To be a bit more specific, for a fixed e E (0, !) we introduce a 
sequence ofrandom (backward) times (see Figure 5): 

{NT - L Hf; n~ 1}. 
l~i~n 

Here H'[ is by definition the (first) hitting (backward) time of the boundary [O, e] 
1 

1-e 

0 

Figure 5: Alternating sequence of "holding times" 

if we start off at time ~ in [1 - e, 1], or vice versa. H'f is then defined as the 
hitting (backward) time increment of the opposite boundary region starting at time 
~ - H'[, etc. At this stage we agree to set a hitting time increment H'f (together 
with the subsequent Jtf, j > i) equal to 0 if the time interval [O, ~] is exhausted. 

For our purpose, the increments H'[, H'f, ... may serve as the (backward) holding 
times of the component process Xe at the boundaries, since the fraction of time the 
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component process spends in [e, 1- e] converges to 0 in probability as T -r oo; see 
Theorem 4 in [11]. 

Incorporating the scaling suggested by the result of Theorem 1, define the 
rescaled holding times 

-.T ·- log JI'{ 
H;. .- TlogN (18) 

(that is NH'fT = It[) which for our purpose describe the order of magnitude of 
It{ . What one would like to do now is the following: 
- Show that c{ ft[; i ~ 1} has a limiting law, say r. 
- Identify the law r via the transformed Fisher-Wright tree. 
- Show that r is concentrated on decreasing sequences. 

In order to carry out such an analysis, which involves joint laws of holding 
times rescaled by functions of different order of magnitude, requires more than 
controlling moments of the time-space diagram. What is needed is a representation 
of the interacting system via particle systems in the sense of the work of Donelly 
and Kurtz [9]. Such analysis is outside the scope of the present paper. 

1.6 Spatial ball averages in their time dependence: Results 
We want to combine the previous set-up describing a single component during time 
with our results in [11] about the spatial structure at a fixed (late) time, and this 
way to obtain a better picture how the clusters evolve in time. We approach this 
phenomenon from two angles. Namely in the present subsection we consider spatial 
ball averages in their time dependence whereas in the next one we shall deal with 
thinned-out time-space fields. 

For fixed e ES and a E [O, 1) consider the following spatial ball averages 

1 
"Vpa,T := N[aT] . I: Xc (NT - Nf3T)' 

(: llC-ell~aT 
0 ~ /3 < 1, (19) 

as processes in the macroscopic backward time f3 E [O, 1). As T -r oo, a limiting 
process ya,oo on [O, 1) will exist whose law depends on a. Since NfJT = o(~) (for 
f3 < 1 fixed), we stay again within the correlation length, and the one-dimensional 
marginal distribution of ya,oo is again independent of /3, but is now given by the 
law QB a of the transformed Fisher-Wright diffusion Y 8 of (9) at a; see [11, Theorem 
2]. 

The next theorem deals with this time-scaled process of spatial ball averages. 
Recall that µ E 18 and 0 < 9 < 1. 

Theorem 2 (time-scaled spatial ball averages) Fiz 0 ~ a < 1. 
(a) (convergence) There e:eists a [0, 1]-valuedprocess {Vpa,oo; 0 ~ f3 < 1} with 

ya,T ~ ya,oo - as T -r oo. (20) 

(b) (characterization of ya,oo) Fiz le, mo, ... , m1: ~ 0 and 0 =: f3o < · · · < /31: < 
1. Then 

with ys the transformed Fisher-Wright tree of Definition 1.9, and 

J := min { i; a~ {3;., 1 ~ i ~ le+ 1 }. (21) 
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( c) (qualitative description of va,co) 

(cl) The marginal laws £(Vpa,co) are given by Q9a of Definition 1.6 (c), for 
all /1 E [O, 1). 

(c2) Consider hv :=sup {/3 E (0, 1); VfJa,co = V0a' 00
}, the holding time of 

va,oo (recall Remark 1.11). Then £(hv) = £(a v r) (see Definition 
1.6(d)). 

( c3) Beyond hv I the finite-dimensional distributions of va,oo are equal to 

(with the f3i from (b)). The r.h.s. is the following mizture of product 
laws: 

j R;11~ ••• p,. ( d [ 81 1 ... , fhc]) Q91 a/ p1 X • • • X Q911 a/ p,. , 

with R;11~ ••• fJ,. denoting the conditional distribution of (0 (/11 ), ••• ,Y9 (/3A:)] 
given (a VT)< /31, and with Q9ia/fJi as in (10). 

This theorem says that the spatial ball average has remained in its terminal 
value at least a time of order NaT. However, this holding time is larger than a 
if the whole a-ball is covered by a 0- or 1-cluster at the terminal time !tr (this 
event has positive probability), in which case (depending on the random size of 
that cluster) the empirical mean had been in the same state as at time !tr for a 
random time. The order of magnitude is a V r. Looking back further gives us then 
conditionally (given a VT) independent observations since the time grid is too large 
to detect earlier and hence small holding times. Theorem 2 ( c) combined with the 
conjectures in § 1.5 and a result in [11] suggests that a specific value in the order 
of magnitude of the holding time of a component (viewed backwards from a late 
time point) corresponds to the existence of a cluster at that late time which has 
a corresponding order of magnitude. Roughly speaking, on the used macroscopic 
scales, the spatial cluster size gives the holding time of a typical component in that 
cluster. This will be made precise in Theorem 3. 

1. 7 Time-space thinned systems: Results 
A second approach to investigate the history of a spatial cluster found at time !tr 
and to relate the order of spatial size of the cluster to order of the holding time of 
a component, is the following. Choose a spatial network of points having distances 
aT. Consider a new field obtained by observing the system through time only at 
this network of observation points. Do this however only in a network of time points 
which also spread apart suitably as the system ages. We formalize this point of view 
as follows which will verbally be explained in Remark 1.14. 

Definition 1.13 (thinning procedures) 

(a) (inverse level shift operators s;1 and spatial thinned systems s;1z) 
For n ~ O, e E Band z E (0, 1]8 , set 

if j > n 

if l~j~n 
(22) 
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(b) (space-time thinned systems) Fix k ~ 0 and 1 > {31 > · · · > /31c ~ a > 
0 =: /3o . Set ~ := [/31 , ... , /31c] and 

wtt·T := (S(;;i1X)t [(N7' - ,t,;;/P"T)J. {ES, 0:5i:5k, T> 1. (23) 
0 

Remark 1.14 S;1 shifts all coordinates (levels) of e by n steps, and fills in the 
newly created coordinates by 0. Hence, e = O is a fixed point, and if llell = m # O 
then llS;1el1 = m + n. In particular, S;1 increases nonzero distances of pairs of 
labels by n. Applied to a whole configuration z E [O, 1r~, we can view s;1z as a 
spatially thinned system since each fixed pair of labels has distance n. 

For the fixed scaling parameters /3 ~ a, we consider [e, i] E S x{O, ... , k} as 
new, macroscopic space-" time" variables of the random fields W~,a,T. As T-+ oo, 
these fields will have a {O, 1}8 x{o, ... ,1c}_valued limiting field denoted by W~,a,oo. It 
describes the evolution of clusters both in time and space. O 

Theorem 3 (time-rescaled thinned systems) Fiz scaling parameters /3 ~ a as 
in Definition 1.13(b). -
(a) (convergence) There ezists a {O, l}sx{o, ... ,.e}_valued random field W~,a,T on 

S x {O, ... , k} such that 

w~,a,T ~ w~,a,oo as T -+ oo. 

(b) (characterization of W~'a'00 ) Fiz natural numbers mo , ... , m1c ~ 0 and, for 
each i E {O, ... , k}, labels ei,1, ... , ei,m..o in B. Then 

with Y 9 the transformed Fisher-Wright tree of Definition 1.9 (and /3o = 0). 

( c) (qualitative description of W~1a100 ) {w[;~a,oo; e E B, 0 ~ i ~ k} is an 
associated collection of {O, 1}-valued random variables. Its law can be written 
as (with !1. denoting the configuration identically equal to a) 

L:a=0,1 P(Y9(r) =a, T ~ log(l//31))8~ 

+ E 9 
{ TI~=O [ (1- Y 9p,(a))do + Y 9p,(a)d1 ]''; T < ,81 }· 

I.e., W~,a,oo is a "mizture" of independent fields; with probability P(r ~ /31) 
it is even a constant field !1. '(with random 8). 

Theorem 1 (c) and 3 (c) reflect the fact that clusters have a space-time extension 
with an order of magnitude (a, a) where a is random. That is, the spatial cluster 
size is aT (in the hierarchical distance), whereas a "typical" component of that 
cluster lived for a time NaT. Or turned around, at time ~, spatial clusters of 
size aT have an age of order NaT. Hence, in the time-space diagram of the process 
viewed back from the end ~ in an exponential time scale, we see at large times 
clusters of a size comparable with a square of a random size. 

Remark 1.15 Both marginals of the fields are mixtures of product laws, and the 
mixing distributions are expressed via Fisher-Wright tree quantities. 0 

The most important feature of our analysis is that the large scale behavior of our 
model does not depend on the diffusion coefficient g, and in particular the trans-
formed Fisher-Wright tree is an universal object in the class of models considered: 
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Corollary 1.16 (universality) The limiting objects U, V, and {in the sense of 
finite-dimensional distributions) W depend essentially on the initial density 8 E 
(0, 1), but are otherwise independent of the "input parameters" a> 0, g E go and 
µ E Te of the interacting diffusion X, and of the parameter N of the label set S. 

1.8 Strategy of proofs and outline 
The proofs of the Theorems 1~3 will follow the strategy, to first reduce the general 
results by coupling and comparison techniques to the case of interacting Fisher-
Wright diffusions starting in a product law. Then we can use a generalized duality 
relation with a delayed coalescing random walk {} with (deterministic) immigra-
tion, their approximation by an (instantaneous) coalescing random walk TJ with 
immigration, and scaling limits for the latter model. 

For this purpose, in Section 2 we study some random walk systems, in particular 
coalescing random walks. In Section 3 we introduce an extension of Kingman's 
coalescent. We call this object A an ensemble of log-coalescents. It occurs in 
certain scaling limits of coalescing random walk (e.g. Theorem 4). On the other 
hand, it is in duality with the transformed Fisher-Wright tree Y 8 (Theorem 5 in 
Section 4), our crucial object for the description of the space-time structure of 
interacting diffusions. In Section 5 other basic techniques like the duality of X 
and{}, coupling and moment comparison are compiled, culminating in the universal 
conclusion Theorem 6. In 6 we finally prove our Theorems 1-3 .and with Theorem 
7 a rather general version of a scaling limit for thinned X-systems. 



Interacting diffusions: Time-space analysis 15 

2 Preliminaries: On coalescing random walks 
A basic tool for our study of the interacting Fisher-Wright diffusion X will be 

a generalized duality relation with a delayed coalescing random walk with immi-
gration. As a preparation for this, in the present section we develop the relevant 
random walk models and some of their properties. 

2.1 Random walk Z on the hierarchical group 
Let Z = {Zt; t ~ O} denote the continuous-time (right-continuous) random walk in 
3 with jump rate 

aN2 

"':=-N2 -1 
(25) 

(where a is the drift parameter a= CA: of the interacting diffusion of Definition 1.1 
and N the "degree of freedom" in the hierarchical group 3) and jump probabilities 

1 t-t.r h -N-1 PM := N211(-€11 , ~ ..,.. ':., ence Pe,e = -w- . (26) 

Let ze refer to Z starting with Z(O) = e E S (at time 0). The law of Z = ze 
is denoted by P( For convenience sometimes we also write Z(t) instead of Zt 
(similarly we proceed for other processes). 

We recall from (11, Lemma 2.21 and Proposition 2.37] that Z is a recurrent 
random walk and that the hitting time distribution of the origin starting from a 
fixed point e f. 0 has tails of order 1/ logt as t ~ oo. For a detailed study of this 
random walk we refer to Section 2 of (11]. 

2.2 Delayed coalescing random walk iJ 
Let{)= {iJe(t); e E 3, t ~ O} denote the (right-continuous) delayed coalescing ran-
dom walk in S with coalescing rate b > 0 (which corresponds to the diffusion pa-
rameter of the interacting Fisher-Wright diffusion, recall (5)). By definition, in the 
delayed coalescing random walk {) the particles move according to independent ran-
dom walks of the previous subsection ezcept when two particles meet. In the case 
of such a collision, as long as the two particles are at the same site, they attempt 
to coalesce to a single particle with (exponential) rate b. 

Write {)1/J if{) starts (at time 0) with 1/J E 'P'. Here lP C :z=; denotes the set of all 
those particle configurations 1/J = {1/Je; e ES} which are finite: 111/Jll :=:Ee 1/Je < oo. 
The configurations .,P with 111"11 = 1 (unit configurations) are denoted by 8€ where e E 3 is the position of the particle. Set 

supp1/J := {e ES; 1/Je > 0}. (27) 

For a detailed description and discussion of{) we refer to § 3.a in (11] where the 
model is called coalescing random walk with delay. ( {) is the dual of the interacting 
Fisher-Wright diffusion, see ( 64) at p. 34 below.) 

Write TJ = TJ"', cp E 4?, for the (instantaneous) coalescing random walk obtained 
by formally setting the coalescing rate b to oo. Here 4? denotes the set of all (finite) 
populations cp E lP with at most one particle at each site, that is cpe ~ 1 for all e; see § 3.c in (11] for a detailed exposition. (Recall that TJ is the dual of the voter 
model on 3 with interaction described by "'PM of (25) and (26); see Liggett [15, 
Chapter 5].) 

By an abuse of notation (no confusion will be possible), the distributions of TJ"' 
and {)1/J are written as P"' and pi/J, respectively. 
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2.3 Delayed coalescing random walk with immigration 
As introduced above, the delayed random walk fJ't/I starts at time to = 0 with 
iJ(O) = .,P. Now we modify the model in the following way. Consider a finite 
sequence to, ... , ti: E R of (deterministic) time points and related (deterministic) 
populations .,p0, ... , 1/Ji: E ..P-, respectively. Start the delayed random walk at time 
t* := to /\ ... /\ t'/c with the related population 1/J*, but let at the remaining time 
points of to, .•. , t'/c additionally immigrate the related given populations of 'ljJ0 , ... , 1/J'/c. 
The arising (right-continuous) delayed coalescing random walk with (deterministic) 
immigration is again denoted by iJ but we exhibit the immigration parameters in 
the notation as follows: 

iJ _ f},po, ... ,1/1'° p't/Jo, ... ,1/J.,. 
- to, ... ,t.,. ' to 1 ••• ,t.,. ' to, ... , t1c ER, 'ljJ0 , ••• , 1/Jlc E ..P-. 

In particular, the starting time point is also viewed as an immigration time point. 
Of course, in the case Jc = 0 and t0 = 0 we are back to the original delayed coalescing 
random walk: Pt = P"'1. 

Note that this family of (time-inhomogeneous) Markov processes has an obvious 
generalized time-homogeneity property: 

Pfo~:::;t~,. { Dt.,.+t E . I Dt.,.- = 1/J'} = pVi' +Vi" { Dt E . }, (28) 

to, ••. , t'/c-1 :5 t'/c, t ~ O, 'ljJ0 , ••• , 1/J1c, 1/J' E ..P-. 
Similarly we define 1], the (instantaneous) coalescing random walk with immi-

gration (where b = oo) and use the notation 

· R o 1c ;J. to, ... , t1c E , cp , ••• , cp E ":!!. 

These processes have a generalized time-homogeneity property analogous to (28). 
In this case one should have in mind a picture as shown in Figure 6. 

0 T/O = cpo 

Figure 6: Coalescing random walk with immigration ( 0 = t 0 < t1c < ti: +t, Jc= 1) 

The delayed coalescing random walk process with immigration is in a generalized 
duality with the interacting Fisher-Wright diffusion process, see Proposition 5.1 at 
p. 34, whereas the (instantaneous) coalescing random walk with immigration is 
in a generalized duality with the voter model on 8. The word generalized refers 
here to the fact that we consider the whole path up to time t. (In the case of 
8 = za. with interaction determined by the simple random walk kernel PM , the 
latter generalized duality was developed in Cox and Gri:ffeath [4] using the name 
"frozen" random walks instead of ones with "immigration".) 

2.4 Basic coupling 
Throughout the paper it will be useful to define the relevant random walk models on 

0 ,. 

a common probability space. For comparison we shall also need a system z~,:::;t~ 
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of independent random walks with immigrating populations x0 , ••• , xk E w at the 
times to, ... , t1r., respectively, defined as 'M'-valued process in the obvious way. Finally 
we give the following basic coupling principle: 

Construction 2.1 (basic coupling) Choose a basic probability space [n, :F, P] in 
such a way that it supports all three {time-inhomogeneous} Markov families 

zxo , ... ,x11 191/Jo , ... ,1/J11 and 'Po , ... ,cp11 
to 1 ... 1t11 ' to 1 ... 1t11 ' 11to1 ... ,t11 ' 

where k 2:: O, to, ... , t1r. E R, x0, ... , x\ .,P0 , ... , 'l/Jk E 'M' and cp0 , ... , cpk E <P, and that 
these families satisfy 

zxo , •.• ,x11 (t) > -01/Jo , ... ,,p11 (t) > rpo , ... ,rp11 (t) 
to 1 ... 1t11 - to 1 ... 1t11 - 11to1 ... 1t11 ' t 2:: t* := to /\ ... /\ t1r. , 

whenever xi 2:: 'I/Ji. 2:: 'Pi for all 0 ~ i ~ k. 

Proof (existence of the basic coupling) First construct a probability space 
o II 

which supports the family of independent random walks with immigration Zfc,,:::;f~ . 
Then at time t* we start I Ix* I I independent walks placed according to the related x*, 
at all the remaining times t;, we additionally start llx;, II independent walks placed 
according to x;,. But in addition every immigrating particle (including at time t*) 
gets an internal degree of freedom, by definition one of the numbers O, 1 or 2. The 
rules are as follows: If the immigrating particle belongs to one of the <pi it gets the 
0-mark, in the case of particles from .,pi - <pi we adjoin the mark 1, and for xi - .,pi 
we take 2. The mark of a particle is preserved during its evolution except for the 
following two situations: 

• If two particles meet which have both the mark O, then one of them (chosen 
at random) instantaneously gets the mark 1. 

• If a pair of particles with mark in {O, 1} (except if both are 0) stays at the 
same site, then at exponential rate b one of them having mark 1 is chosen at 
random (if we have two of them) and increases it's mark from 1 to 2. Here 
we let all possible pairs (at the same site) act independently. 

Then at time t 2:: t* count the particles as follows: 
~.o a. ZA , ... ,x (t) 

to 1 ... 1t11 particles of all marks 

fi1/J 0100
•

11/J
11
(t) particles with marks 0 or 1 to1 ... 1t11 ·-

O II -::!P , ••• , rp (t) '1t0 , ••• ,t,. ·- particles with mark 0. 

Apparently these processes satisfy Z(t) 2:: ;9(t) 2:: fi(t), t 2:: t*, and are a version of 
Z, fi, 11 as wanted. D 

Note that the trivariate process [Z, fi, 11] is not Markov. (In defining [z, fi, Ti] by 
deleting· the internal marks, the Markov character is lost.) 

2.5 Approximation by (instantaneously) coalescing walks 
Doubtless, (instantaneous) coalescing random walks with immigration are easier to 
handle than the corresponding delayed ones. On the other hand, we want to show 
now that in our context of a recurrent Z asymptotically the delayed coalescing 
random walk with immigration can be replaced without loss of generality by the 
corresponding system with instantaneous coalescence. On an intuitive level this is 
justified by the following argument: If two particles (with possibly escaping starting 
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points) do not meet, then the coalescing rate bis irrelevant and can be set to oo. 
On the other hand, once two particles meet and do not coalesce before one of them 
will jump away, then by recurrence they will meet again and again until they will 
:finally coalesce. (Caution: This heuristic argument has to be refined since it does 
not take into account that one of these two particles could meanwhile be "absorbed" 
by another particle.) 

To put this idea on a firm base, first associate with each ,,P E '11 the "truncated" 
element ,,P /\ 1 E ~ defined by (1/J /\ l)e := 1/Je /\ 1, e E B. The following result is a 
refinement and generalization of the approximation Proposition 3.6 of [11]. 

Proposition 2.2 (approximation of{} by TJ) F~ integers k 2 O, mo, ... ,mi: 2 
1. For t > 1 let be given populations 

1 ~ i ~ k, 

and time points 

so(t) < · · · < si:(t) < si:+1(t) with Sj (t) - Si(t) -7 00 if j > i. 
t~oo 

Then on our b<l3ic probability space [O, :F, P] (recall Construction 2 .1), the event 

{}'l/Jo, ••• ,.,p"(s ) - .y,o/\l, ... ,.y,",u(s ) 
10, ••• ,1 11 k+l - T/10 , ••• , 111 k+l (29) 

ha3 P-probability converging to 1 <l3 t -t oo. {Sometimes we do not di3play the 
t-dependence.) 

Remark 2.3 The approximate equivalence of{} and TJ explains via duality, why (in 
the recurrent case) interacting Fisher-Wright diffusions and the voter model on S 
have a similar large scale behavior. 

Proof The proof proceeds by induction over k, the number of immigration time 
points. 

1° (initial step of induction) Let k = 0. Then the.processes are time-homogeneous, 
and for simplicity we may set s0 (t) = 0. We treat this case k = 0 by doing again an 
induction, namely over the number mo of initial particles. For convenience, write 
mo =: m, .,p0 =: 1/J. Without loss of generality we may assume that s1(t) = Nt 
is satisfied (otherwise change the notation of .,P(t)). Fix representations ,,P(t) =: 
c5((l,t) + · · · + c5((m,t). Trivially, the claim holds for m = 1. For the induction step, 
recall the coupling Construction 2.1 and assume that the statement is true for some 
m - 1 2 1. Write 

Em := { {}'l/J (Nt) = TJ.y,"1(Nt)} 

for the event (29) (in the case k = 0). Define E;::_1 as Em except replacing ,,P by 
,,P - 15((m,t). For a fixed i < m, let Ci,t(s) and Mi,t(s) denote the events that the 
walks Z((i,t} and Zc(m,t) coalesce respectively meet by time s. 

Let u(t) denote the first collision time of zC(i,t} and zC(m,t) after at least one 
of them jumped away from its initial state. Recall that the difference of the inde-
pendent walks zC(i,t) and zC(m,t) is a random walk of the same kind except twice 
the jump rate. Define a(t) by a(t)t = llC(i, t)-((m, t)ll· By the hitting probability 
Proposition 2.43 of [11], we have for 'YE (0, 1) fixed, 

(30) 

(In fact, apply this proposition twice, namely with f3(t) = 1 and u(t) = -oo or 
u(t) ='Yi respectively.) 
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Consider a subsequence t' ~ oo such that the limit a( oo) := limt'~oo a(t') exists 
in [O, oo]. If a( oo) ~ 1 then by the same proposition we have 

P{o-(t') < Nt'} --t 0. 
t'~oo 

(31) 

In the opposite case a( oo) < 1, the latter probability has a positive limit, and the 
statement (30) implies 

{ ( t' t') I t' } P M;.,t' N - NY M;. t'(N ) --t 1. ' t'~oo 

But then due to recurrence of the random walk (cf. Lemma2.21 in [11]) we conclude 

and therefore 
(32) 

On the other hand, from (31) we know that (32) holds also under a(oo) > 1. 
Summarizing (32) is true whenever t = t' ~ oo. 

Dropping in no.tation the time argument Nt, we use the decomposition 

c,:;_1 = ( c,:;_1 n _LJ M;,,) u ( C,::_1 n c _LJ M;,,) 
i<m i<m 

(33) 

(where CA denotes the complement of the event A). By the induction hypothesis 
P{ ~-i} tends to 1 as t ~ oo, so the probability of the event on the r.h.s. of (33) 
tends to 1. By (32) we can replace in that event LJi<m M;.,t by LJi<m C;.,t to get 
still 

This finishes the proof by induction on m since the latter event implies Em . Con-
sequently the claim in the proposition holds in the case le = 0. 

2° (induction step) Using that the pair [fi, 1J] is a simple functional of a (bivariate) 
Markov process (see § 2.4) and exploiting generalized time-homogeneity as in (28), 
the induction step is fairly alike to the argument for le = 0 by considering the process 
starting with the configuration at the moment of the k-th immigration. D 

2.6 Speed of spread of random walks 
Our random walk Z in B has the following property: At time scale Nt the speed of 
growth of the norm llZ(Nt)ll of Z(Nt) is of order 1 as t ~ oo. To formulate with 
Lemma 2.6 a more precise statement, for r, c ~ O, set 

and introduce the subsets 

l( ). ·- NV log[r] 
r ·- logN ' (34) 

B[r, c] := {e E B; 11e11 ~ [r] + cl(r)}, S[r, c] := {e E S; 111e11- [r] I ~ ci(r)}, (35) 

of B which consists of all labels e, up to a specific logarithmic error, of at most or 
exactly norm [r]. Note that the ring B[r, c] is contained in the ball S[r, c], and that 
both are monotone in c. These sets have the following simple property. 
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Lemma 2.4 (spread of sums) Fiz comtants a.,/3, c, d ~ 0 with a.< /3. Fort> 1 
let e(t) E S[a.t, c] and ((t) E B[/3t, d] be given. Then, for all t sufficiently large, 

e(t) + ((t) E B[/3t, d]. (36) 

Remark 2.5 (cancellation) The assumption a. < /3 cannot be dropped. For in-
stance, if a=/3= 1, c=d=O and e(t) :=-((t) then e(t)+((t)::O ~B(t, O]. 0 

Proof of Lemma 2.4 From the definition (35) we conclude 

lle(t)ll ~ [at]+ cl(a.t), llC(t)ll ~ [/3t] - dl(/3t). 

Then a. < /3 yields lle(t)ll < llC(t)ll for all t ~ t~ say. Hence, lle(t) + C(t)ll = llC(t)ll 
for these t by the definition of addition in 3. Consequently, (36) holds fort ~ to, 
finishing the proof. D 

The announced speed property of our random walk now reads as follows. Note 
that we choose Z(O) itself t-dependent. 

Lemma 2.6 (walk speed) Fiz constants a., a.1 ~ 0 and /3, e, c > 0. Fort> 1, let 
g(t) E [ - oo, /3 - i], e(t) E S[a.t, c], and ((t) E S(a.'t, c] be given. In the case 
a.> /3, require even that e(t) and e(t) + C(t) both belong to B[a.t, c]. Then 

P{ ((t) + zW> (Nfit - Ne(t}t) E 3 [(a v a' v /3)t, 2c]} t~ 1. . (37) 

In particular, if llZ(O)ll is t-dependent and has a speed of order a. then the speed 
of llZW>(Nfit)ll is of order a. V f3 as t--+ oo; that is, the time correction term Ne(t)t 
is negligible. 

Proof Without loss of generality, in (37) we may set ((t) = 0. In fact, C(t) + z€(t} 
coincides in law with ze<t>+W>, and e(t) E S(a.t, c], as well as ((t) E S(a.'t, c] imply 
e(t) + ((t) E B((a v a')t, c], so we can rename e(t) and ((t). Moreover, in the case 
a > /3 we additionally assumed e(t) + ((t) E B(a.t, c] (which by the way implies 
a' ~ a), so again we can rename. 

Now, under ((t) = O, the case a ~ /3 directly follows from Lemma 2.26 in 
[11]. It remains to treat a. > f3. For the moment, consider the walk z0 starting 
at the origin 0 of B. By the first case a. ~ /3 of the lemma, we may assume that 
z 0 (Nfit - Ne(t)t) belongs to B[/3t, 2c]. Then, by Lemma 2.4, fort suffici~ntly large, 
z 0 (Nfit _Ne(t)t) +e(t) E B[a.t, c]. Hence, ze<t> (Nfit _Ne(t)t) E B[a.t, c] ~ B[a.t, 2c] 
with probability converging to 1 as t--+ oo. This finishes the proof. D 

Remark 2. 7 (non-cancellation) In the case a. ~ /3, the cancellation effect of 
Remark 2.5 cannot happen in the situation of Lemma 2.6, since it is negligible that 
the walk will meet a prescribed point at a particular late time. 0 

2. 7 Speed of spread of coalescing random walks 
The above speed property of families of single random walks (Lemma 2.6) has con-
sequences for the coalescing random walk with immigration, since we are interested 
in the latter system at late times and for time-dependent initial and immigration 
populations. To describe the situation we need some notation (which is verbally 
explained below): 
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Definition 2.8 (spreading multi-colonies) Fix natural numbers l, mo, ... , ml ;::: 
0 as well as non-negative constants ao, ... ,al, c. Write g_ := [a0, ... al] and m := 
[mo, ... , ml]· For t > 1, denote by "¥t[f!, m; c] the set of all those populations 
cp = cp( t) E 4? which can be represented as cp = cp0 +··+cpl where the er} = er} ( t) E g?, 
0 :::; j :::; l, have the following properties (recall (35)): 

(a) llcrJ (t)ll = m; · 
(b) If cSe :::; er} then e = e(t) has to belong to S"[a;t, c]. 
( c) If cSe+ cS( :::; er} then we must have e - ( E S[a;t, c]. 
( d) If cSe :::; er} and cS( :::; er}' where j # jl then e - ( E 8 [(a; V a;1)t, c]. 
If in (b) the balls S[a;t, c] are even replaced by the smaller rings S[a;t, c] then 
write 4?t[f!, m; c] instead of ¥t[f!, m; c]. (Note that 4?t[f!, m; c] ~ ¥t[f!, m; c].) 
Finally, write ¥t[g_,~m;c] and 4?t[g_,~m;c] if in (a) only llcrJ(t)ll = n;:::; m; for 
some n;. <> 

Consequently, cp E 4?t [ g_, m; c] (or cp E ¥t [ g_, m; c]) is a superposition of l + 1 
subpopulations cp0 , ••• ,cpl of size mo, ... , ml ~ O, respectively, with the following 
properties (up to specific logarithmic errors): 

• Particles from the j-th subpopulation spread at (respectively at most at) speed 
a; (see (b )). 

• Pairs of particles from the j-th subpopulation spread with relative velocity a; 
(cf. (c)). 

• Mixed pairs of particles from [er}, er}'] spread at relative speed a; V a;1 (see 
(d)). 

Now we are in a position to formulate the main point of this subsection con-
cerning the speed of spread of multi-colonies in the coalescing random walk with 
spreading immigration populations. (A verbal description follows below.) 

Proposition 2.9 (speed of spread for multi-colonies) F~ integers k, lo, ... ,lJ: 
~ O, constants c ~ 1, 0 :::; f3o < · · · < f3A:+1, a vector f!i := [ai,o, ... , ai,tJ ~ 0 and 
an integer-valued vector m, := [T11i,o, ... , T11i,LJ ;::: 0. Assume that 

if 

Consider immigrating populations cp'(t) satisfying (recall Definition 2.8) 

t > 1, 0:::; i:::; k. 

If for some i, 0 :::; i :::; k, not all ai,o , ... , ai,l, are smaller than A+i , and in the case 
i > 0 smaller than all of the (ai',oV/3i), ... , (ai',l,, V/3i), 0:::; i' < i, we even require 
cpi(t) E 4?t[f!i, mi; c]. Set Si = Si(t) := Nfht, 0:::; i:::; k + 1. Then the event 

(39) 

has probability converging to 1 as t--)- oo. Here we abbreviated mlc := [ m 0 , ... , m1c] 
and gl: V f3A:+1 := (g_0, ... , f!Jc] V /3Jc+i· 

In words (simplified): Suppose at all the times si(t), i :::; k, we have an immi-
gration by populations being a superposition consisting of 4 + 1 subpopulations 
of T11i,o , ... , T11i,t, particles with velocities determined by ai,o, ... a,,l,, respectively. 
Then the terminal population at normalized time f3Jc+1 is a superposition of sub-
populations which spread apart with the velocities ai,; V /3Jc+i, 0 :::; j :::; l;, (all 
except some logarithmic error terms and as described in Definition 2.8). Concerning 
the parameter restriction (38), see Remark 2.11 after the proof. 
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Proof The proof will be by induction over k, the number of immigration time 
points. 

1° (initial step of induction) Consider k = 0 (no additional immigration), and 
drop the index 0 in notation. Consider a pair e(t), ((t) of "particles" taken from 
the initial population t.p = t.p(t), that is tSe + aC ~ t.p. Recall that the difference 
Z := ze - zC of independent walks is a random walk in S of the same kind but 
with twice the jump rate. 

Now there are two cases possible: The pair e, (of particles originates 
(i) from a subpopulation qj of t.p related to the speed a;, 
(ii) from two different subpopulations qj and qj' of t.p (i.e. a "mixed" pair). 

(i) By assumption on qj we have e -( E B[a;t, c] (recall condition ( c) of Definition 
2.8). Hence we may apply the walk speed Lemma 2.6 (with {} = f3o) to conclude 
that Z(s1) E S[(a; V /31)t, 2c], with probability converging to 1 as t --)- oo. In 
particular, we know that the event 

ze (s1(t)) - zC (s1(t)) E 3 ((a; V /31)t, 2c] (40) 

has a probability converging to 1 and hence conditioning on this event is harmless. If 
now the coalescing mechanism is additionally applied (recall the coupling principle 
2.1), then on the event (40) there are two cases. If the walks meet, then they 
coalesce, and we may apply the walk speed Lemma 2.6 to the surviving random 
walk starting with a particle e from qj which case has to be considered anyway. 
Then we get the correct position ze(s1 ) E B[(a; V f31 )t, 2c]. On the other hand, if 
the walks do not meet, then the pair e, ( of particles survives by time S1 , and its 
relative position is in B[(a; V f31)t, 2c], since we are in the event ( 40). Summarizing, 
the walks starting in the pair e,' from qj' end up at time s1(t) in a subpopulation 
corresponding to the (relative and absolute) speed a; V /31 • 

(ii) Now consider a mixed pair e, (from qj, qj'. By assumption (recall condition 
( d) of Definition 2.8), it has relative speed a; Va;', say a; without loss of generality. 
Again by the walk speed Lemma 2.6, we may assume that (40) holds. Hence, we 
may continue to argue as in (i). 

Combining (i) and (ii), we see that 

P{11r0° (s1) E ~t (g0 V /31, sm0.; 2c]} --+ 1. 
- - t~oo 

2° (induction step) Consider k ~ 1. By the Markov property of the process TJ 
and generalized time-homogeneity as formulated in (28) at p. 16 for the process iJ, 
the population considered in (39) can be thought of as arising from a process which 
starts in the population 

0 111-1 L L L 

TJ 'P , ••• ,rp (s -) + m,..,, =: X,..,, + ,,,,..,, 
•01•••1•111-1 1: T T (41) 

and running as a coalescing random walk for the time NfJ111+1 t - Nf1 111 t. 
Now we use that the claim is true for some k - 1 ~ 0 (induction hypothesis). 

Then by (39) we may restrict our consideration to the case that x11 belongs to 

(42) 

We take a pair e, ( of particles from x11 + t.p11 • The cases that both particles belong 
either to Xie or to t.ple can be dealt with as in the first step of induction. The only 
difference is that we apply now the walk speed Lemma 2.6 with {} = /31: instead of 
{} = f3o. 
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Thus it remains to consider the mixed case if one of the particles belongs to 
each of the sub-multi-populations. Say e belongs to x'/c whereas ( is related to 
cp'/c. Then e E B[(ai,J V f3k)t, 2'/cc] for some i = O, ... , le - 1 and j = O, ... , ~, and 
( E S[a'Jc,J't, c] for some i' = O, ... , l'/c. Now the condition (38) comes into the play, 
namely for i' = k. It guarantees that by the spread of sums Lemma 2.4 the speed 
of 11e-(ll can be determined bye-( E B[((ai,j v f3k) v CC'fc,j' )t, 21:c]. Then one 
can continue as in the other two cases just described. 

Summarizing, under the induction hypothesis, at the normalized time f3'fc+1 we 
end up in the event as written in (39), with probability converging to one. This 
completes the proof by induction. D 

Remark 2.10 The condition cpi(t) E <.Pt[Q.i, mi; c] says roughly that all absolute 
positions are of specified orders. This was required as soon as just one "violation" of 
parameter restrictions occurs. This is stronger than actually needed. But otherwise 
one would need a refined notation in order to describe the situation. 0 

Remark 2.11 (speed reduction) The condition (38) in Proposition 2.9 cannot 
be dropped. In fact, consider the following e;i,ample, see Figure 7. Set le = 1, 

2t 3t 
N2t - TJ(N2t) 

3t 
Nt TJ(Nt-) +cpl 

N°=1 cpo 
0 e ' 3t 3t 

0 1 
Figure 7: Counterexample related to condition (38): 1J = TJ'frd~t 

I 

lo = l 1 = O, and drop the second index. Moreover, c = 1, /31 = 1, /32 = 2, 
a 0 = a 1 = 3, mo = m1 = 2. Let cp0 = cSe +cS' = cp1 with e = e(t) = S~tj[o, 1, O, 0, ... ] 
and ( = ((t) = S(at)[o, O, 1, O, O, ... ] (the inverse level shift operators s;;/ had been 
introduced in (22) at p. 12). Note that e, (, and e - ( all belong to B[3t, 1], hence 
cp0 , cp1 E <.Pt[3, 2; 1]. By the walk speed Lemma 2.6 we may assume that TJ(Nt-) 
belongs <.Pt [3, 2; 2], that is, by time Nt the particles did not yet meet and have kept 
the velocity and relative speed 3t. But now the cancellation effect of Remark 2.5 
comes into the play: A mixed pair of particles from TJ( Nt-) and cp1 may have a 
"small" relative velocity. Indeed, consider at time Nt the left pair in the figure: 
zf (Nt) - e g_ zr(Nt) has only speed 1. In the case the walks continuing from this 
mixed pair of points do not meet as drown in the figure (note that this event has 
asymptotic probability l by the hitting probability Proposition 2.43 of [11]), then 
the corresponding particles at time N 2t have a relative speed of only 2t, and not 
3t as written in (39). - On the other hand, (38) could be weekend to exploit the 
non-cancellation effect mentioned in Remark 2. 7. 0 
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3 Ensemble of log-coalescents with immigration 
In this section we study coalescing random walks with immigrating multi-colonies: 
We consider later and later time points and let the initial and immigrating popu-
lations spread apart. There exists a limiting object which we call an ensemble of 
log-coalescents wi'th immigration. The crucial result is Theorem 4 at p. 27. 

3.1 A log-coalescent ~ with immigration 
The purpose of this subsection is to introduce some death process on a logarithmic 
time scale, which we call the log-coalescent. In the next subsection we shall relate 
it with a scaling limit of a system of coalescing random walks with spreading initial 
populations (Proposition 3.2). 

Start by recalling Kingman's [13] coalescent A := Pt; t ~ to} with coalescing' 
rate b > 0. By definition, this is a (time-homogeneous right-continuous Markov) 
death process starting at time t0 E R where a jump from m ~ 0 to m-1 occurs with 
rate b (1;). The process A describes the evolution of finite populations of particles 
without locations, where each pair of particles coalesces into one particle with rate 
b, independently of all the other present pairs. 

We agree to mean in the case t 0 = -oo, that the process started with a (finite) 
state A-co ~ 0 is defined as At =: A-co /\ 1 on R. 

From now on in this section we set the coalescing rate b to one (standard King-
man 's coalescent). Next we define the log-coalescent>:= {Xa; a:~ o:o} by setting 

Aa := A log a , (43) 

This is a time-inhomogeneous Markov jump process starting at time o:o. (We call 
it the log-coalescent, to avoid confusion with Kingman's coalescent.) 

The transition probabilities of>: are denoted by 

P1:(f3, n) := P{ Xp = n I Xa = m}, 0 ~ a: ~ {3, m, n ~ 0. 

From the time-homogeneity of .A follows that 

p~(c/3, n) = p":)(/3, n), c> 0. (44) 

Since the transition probabilities of Kingman's coalescent .A can be calculated ex-
plicitly (see for instance Tavare [20, formula (6.1)]), we get for the transition prob-
abilities of>: (restricting to m ~ n ~ 1): 

m(/3 n) = ~ (-l)i-n (2i - lHi + n- ~)! (7) (~)(;) 
Pa ' L.J 1 ( _ l)I (" _ )' (m+i-1) f3 ' if 0 < a: ~ {3, ( 45) 

i=n n. n . i n . i 

and PW(f3, 1) = 1 if 0 =a: < {3. 
We now additionally allow a (deterministic) immigration of particles in the log-

coalescent >: . 

Definition 3.1 (log-coalescent>: with immigration) At times o:o, ... ,at we let 
mo, ... , mt particles immigrate, where the initial time point O:o /\ ... /\ O:t =: a:* is 
again considered as an immigration time point. We write this log-coalescent with 
immigration and its transition probabilities as 

}:J!!(/3) = ): mo , ... 1mt (/3) 
- a 0 , ••• ,a, ' ra (/3 n) = Pmo , ... ,m'(/3 n) 

- ' ao, ... ,a, ' ' (46) 

l, n ~ O, Q. := [o:o, ... ,at] ~ O, f3 ~ a:*, m := [mo, ... , mt] ~ 0. 
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Using the Markov property, one can easily establish the following recursion 
formula: 

mo+ .. ·mt 

Pmo , •.. ,mt+1 ({3 n) = 
ao , ... 1at+1 ' """"' pmo , ... ,mt(a n') n'+mt+1 ({3 ) L.J ao , ... ,at l+i, Pat+i 'n ' (47) 

n'=l 

where 0 :5 ao, .. ., al :5 al+l :5 {3, and where the last probability is given by ( 45) 
(process without immigration). 

Obviously, ( 44) generalizes to 

X~(cf3) = X;({3), ~ (c{3, n) = ~({3, n), c > 0. (48) 

3.2 Coalescing walk starting in spreading multi-colonies 
Before we proceed further, in this subsection we demonstrate first in a simpler situ-
ation the role the log-coalescent with immigration. Indeed, we restate a limit propo-
sition concerning a coalescing random walk starting in (spreading) multi-colonies. 
In fact, Proposition 3.28 of [11] (which is analogous to Theorem 6 in [5]), with the 
now obvious identification of the limit probabilities, can be specialized as follows 
(formally we also include the case 171.i = 0). Recall the rings S[r, c] of (35). 

Proposition 3.2 (scaling limit for multi-colonies) Fiz integers i,mo, ... , ml~ 
0, and e > O, c ~ 1, 0 :::; ao,. . .,al :::; {3 with {3 > 0. Fort > 1 let g(t) E 
[ - oo, {3 - I). Moreover, for 0 :5 j :5 i let finite populations 

be given with the property that 

(/1u(t) - (;',v (t) E S [(a; V a;1 )t, c] whenever [j, u] :f:. [j', v], ( 49) 

and that the superposition cp(t) := cp0 (t) + · · · + cpl(t) belongs to <P. Then 

pi,o(t) (TJ(Nf3t _ Ne(t)t) = n) ---+ pmo , ... ,mt(f3 n) 
t~oo ao , ... ,al ' ' n~O, 

with p the transition probability of the log-coalescent with immigration, satisfying 
the recursion formula ( 4 7). 

Roughly speaking, start the coalescing random walk 1J with a superposition 
of i + 1 subpopulations cp0 , .. ., cpl where pairs of particles from cpi(t) spread with 
the relative velocity a; whereas pairs from different subpopulations cpi and cpi' 
spread with the relative speed a; Va;'. Then the number of particles at the late 
time Nf3t is approximately given by the log-coalescent X = X:0°,~:::~t at time {3, 
with immigration of mo, ... , ml particles at times ao, .. ., al, respectively. Note that 
only requirements on the relative position of particles in the initial populations are 
involved (in contrast to the scaling limit Theorem 4 below on the coalescing random 
walk with immigrating multi-colonies). 

Remark 3.3 If the condition a 0 , .. ., at:::; {3 in Proposition 3.2 is violated by some 
a; then the walks starting with particles of this speed a; cannot react by time Nf3t 
(with probability converging to 1 as t-->- oo). So they simply evolve independently, 
and in the limit these particles have to be added to the number of particles arising 
from the log-coalescent. Consequently, that condition is natural in that it is adapted 
to the actual range of interaction of the coalescing random walk. <> 



26 K. Fleiachmann &; A. Greven 

3.3 Ensembles A of log-coalescents with immigration 
In this subsection we introduce the limiting object for coalescing random walks with 
immigration of spreading populations. To avoid repeatedly cumbersome notation, 
we formulate a condition which we call the as,B-Condition (recall Remark 3.3). 

Condition 3.4 (as,B-condition) Fix integers k, lo, ... , l;; ~ O, constants 0 ~,Bo < 
· · · < ,61c+1, vectors g_i := [ai,o, ... , Cti,tJ ~ 0 and mi := [~,o, ... , ~,tJ ~ O, and 
suppose 

and <> 
We now want to introduce what we call an ememble of log-coalescents with 

immigration, see Figure 8. It will be used in the next subsection to describe a more 

~!!!.1 ~ f!.1 

~m.o~··· 
.!!o a() /31c /31c+i 

Figure 8: Ensemble A of log-coalescents with immigration 

general version of Proposition 3.2 above, namely a scaling limit for the coalescing 
random walk with immigrating multi-colonies. 

Roughly speaking several log-coalescents with immigration evolve independently 
until they reach certain prescribed deterministic times /31 < · · · < /31c , respectively. 
In addition, we have a tagged population (related to the horizontal lines in the 
figure). From the times ,61 , ... , f31c on, the log-coalescents start to interact with the 
tagged population. 

Definition 3.5 (ensemble A of log-coalescents with immigration) 

(a) (parameters) Fix a constant c ~ 1. Suppose the as,B-Condition 3.4. Set 

g=glc:= [g,0, ... ,Q.i:], m=mk:= [m0, ... ,m1c], ~=~'Jc:= f/h, ... ,,B;;] (50) 

and ai := Cti,o /\ • • • /\ Cti,li • 

(b) (independent branches/random immigrants) Let ~~1 , ••• )~,. be in-
dependent log-coalescents with immigration, running during the time intervals 
[ai, A], 1 ~ i ~ le, respectively. 

( c) (tagged population) We now define a process (tagged population) on the time 
interval [a0, /3i:+i] given the log-coalescents (branches) ~~1 , ••• , 3:~11 with im-
migration. On the subinterval [a0, .81) we set it equal to ~fo0 , that is, we let 
(only) run a log-coalescent with immigration determined by m 0 , g,0 • Then 
at the time interval [.81, ... , .B1c+i] we continue with the log-coalescent, but 
with an additional immigration of~~1 (,81 ), .•• , ~~:(f31c) particles at the times 
.81 , ... ,.Bi: , respectively. 

( d) (ensemble A oflog-coalescents with immigration) Using the ingredients 
(a) - (c), we denote by 
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the number of living particles in the tagged population (with random immi-
gration) at time {3. In particular, A(/3.t+i) denotes the terminal number of 
particles in the whole system. We call A the ensemble of log-coalescents with 
immigration and parameters g, m, ~. O 

By a generalized time-homogeneity, the following recursion formula holds: 

(51) 

k ~ 1, n ~ 0. Note that the number of non-vanishing terms in the sum is bounded 
by :Ei,j ~,j hence finite. Clearly, ( 48) generalizes to the following homogeneity 
property: 

c> 0. (52) 

Definition 3.6 (ensemble of coalescents without immigration) If lo = · · · = 
i.t = 0 in the as/3-Condition 3.4 and in Definition 3.5 then we call A an ensemble 
of coalescents without immigration, and write simply Ali!!!. 0 

Remark 3. 7 Note that the term" without immigration" refers only to the fact that 
within the (randomly) immigrating branches of Definition 3.5 (b) no immigration 
occurs. 0 

3.4 Coalescing walk with immigrating multi-colonies 
Now we will formulate the announced scaling limit theorem for the coalescing ran-
dom walk with immigrating multi-colonies spreading moderately (recall the Defi-
nition 2.8 at p. 21): On a macroscopic scale the latter behaves as an ensemble of 
log-coalescents with immigration. (Recall (50).) 

Theorem 4 (scaling limit with immigrating multi-colonies) F~ a constant 
c ~ 1, and suppose the as/3-Condition 3.4. Consider immigrating multi-colonies 

t > 1, 0 ~ i ~le. 

Set Si = si(t) := Nfht, 0 ~ i ~ k + 1. Then for the terminal population size we get 

(53) 

with A= A~;g; the ensemble of log-coalescents with immigration. 

Remark 3.8 Note that the limit process A is independent of the jump rate K, of 
the underlying random walk and the parameter N of B. - Also, the limits are non-
degenerate except some boundary cases as e.g. if k =lo = 0 and mo,o = 1 implying 
A(/3)::: 1. - Recall that the limit law satisfies the recursion formula (51). 0 

Proof The proof is by induction over the number k of immigration time points. 
The case 'Jc= 0 (no immigration) follows from the scaling limit Proposition 3.2 for 
multi-colonies at p. 25 (with fl = f3o), since cp0 (t) E ¥t[~0 , m 0 ; c] is sufficient for 
the assumptions there. 

For the induction step, with le~ 1 consider 

p'PO{t), •.. ,ip'°{t){ II ( (t)) II } •o{t), ... ,.r,.(t) TJ S.t+1 = n , 
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By the Markov property and generalized time-homogeneity as in (28) at p. 16 we 
can rewrite the expression as 

= E'Po, ... ,rp•-1 p11(•1a-)+rp•{llTJ,(s1c+1 - s1c)ll = n} •o , ... ,•Ja-1 (54) 

with TJ 1 denoting an independent copy of TJ. By the speed of spread of multi-colonies 
Proposition 2.9 at p. 21 we may assume that the subpopulation TJ(s1c(t)-) belongs 
to the set 

whereas for the other subpopulation, cplc(t) E ¥t [g1c, m1c; c] ~ ¥t [g1c, m1c; 2Jcc] 
holds by assumption. Moreover, by the walk speed Lemma 2.6 at p. 20, the rel-
ative speed of mixed pairs e, ( of particles can uniformly be determined: e - ( E 
B[B1ct, 2Jcc], since e arises from a walk starting at time SJc-1 with a particle having 
a speed ~ f31c-1. 

Altogether, the two subpopulations related to the two summands in TJ(s1c-)+cp1c 
fulfill the requirements in the scaling limit Proposition 3.2 for multi-colonies (with 
e = f31c). Hence, given ll11(s1c(t) - )II= n1

, the probability expression appearing in 
(54) has a limit which is given by pi".~P:' ({3Jc+i, n) (recall (46) for the latter). 

Now by the induction hypothesis the statement on the population sizes is true 
for some k -1 ~ 0. Then 

p'Po, ... ,r,o•-1{llTJ(s1c-)jj = n,} -+ P(Ag•~1;g;•-1(f31c) = n1). •o , ... ,•Ja-1 t-too ~Ja 1 
Combined with the previous convergence statement for the probability conditioned 
on llTJ(s1c-)ll = n1

, we arrive at the r.h.s. of the recursion formula (51), since the 
number of terms over which we sum is finite. This completes the proof by induction. 

D 

3.5 Coalescing walk with immigrating colonies of common 
speed 

Occasionally the a~{3-Condition 3.4 is not satisfied, therefore we prepare now a tool 
to treat such a situation. This comes up when at a sequence of time points single 
colonies immigrate which spread at a common speed a : On a macroscopic scale, 
by time a such coalescing random walk with immigration behaves like a system of 
non-interacting particles, and from time a on like an ensemble of log-coalescents 
without immigration( recall Definition 3.6). 

Proposition 3.9 (immigrating colonies of common speed) Fiz integers k,mo, 
... , m1c ~ O, and constants 0 < a < 1, 0 =: f3o < · · · < f31c+ 1 := 1, c ~ 1. Fort > 1 
and 0 ~ i ~ k consider colonies cpi = cpi(t) E ~ such that 

llcpi(t)ll = T11i and cp0 +···+epic E ~t [a, mo + · · · + m1c; c]. 
Put Si= si(t) := Nflit, 0 ~ i ~ k. Then 

with A the ensemble _A[a, ... ,a]; [mo+···+mJ-l 'mJ , ••• ,m1a] o1 log-coalescents without im-
[,8J , ••• ,tJJa] 'J 

migration, and with J defined in (21), p. 11. 

].'he limit object looks as follows: The tagged population and all the branches 
of A start at time a, namely with mo + · · · + m1_1 , m1, ... , m1c particles, respec-
tively. They evolve independently as log-coalescents without immigration, until the 
branches coalesce with the tagged population at the times f31, ... , f31c, respectively. 
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Proof Since all the immigrating particles have absolute and relative speed a , by 
time Nat non of them can interact by the walk speed Lemma 2.6. More precisely, 
by that lemma, 

rpo(t), ... ,rp'"(t)(Nat) E if',. [ + + 2J ] TJ,o(t), ••• ,.s,.(t) ':l:"t a, mo . . . mJ-1, c 

with probability converging to 1 as t -+ oo. But starting with time Nat, we may 
apply Theorem 4, specialized to "single-colonies", to get the claim of the proposition. 

D 

Remark 3.10 The speed reduction effect of Remark 2.11 cannot happen in the 
situation of the previous proposition since pairs of particles which immigrate at 
different times have a distance of order at by assumption. 0 

3.6 Coalescing walk with exponential immigration time m-
crements 

Here we deal with a different time regime: Single populations with a common 
spreading speed immigrate, but now the immigration time increments are of the 
form NPt, and actually of a decreasing order. The limit is again an ensemble of 
log-coalescents without immigration. 

Proposition 3.11 (exponential immigration time increments) F~ integers 
k, mo, ... , m1: ~ O, as well as constants 

1 > f31 > · · · > f31: ~ a > 0 (55) 

and c ~ 1. Fort > 1 and 0 ~ i ~ k let colonies <pi = <pi(t) E ¥t[a, m;,; c] be given. 
Set 

0 ~ i ~ k. 

Then 
(56) 

with A the ensemble ,A[a, ... ,a]; [m,. , ... ,mo] of log-coalescents without immigration. [p,., ... ,,81] 

In the limit object, the tagged population and all the branches of A start at 
time a, namely with m1c , ••. , mo particles, respectively. They evolve independently 
as log-coalescents without immigration, until the branches coalesce with the tagged 
population at the times f31c , ••• , f31, respectively. 

Proof The proof proceeds in two qualitatively different steps: First we analyze 
the evolution up to time s1:(t), and then we provide the final step from time s1:(t) 
to Nt. 

1°( initial population) By the speed of spread Proposition 2.9 and the scaling limit 
Proposition 3.2, we conclude that after the first step: 

1]~0° ( s1 - ) E <Pt f.81, no; 2c] with random no = :\~0 (/31) 

(with probability converging to 1 as t -+ oo ). In the following time steps of macro-
scopic size {3;, < f31 , this subpopulation TJf

0
° ( s1 - ) further behaves (asymptotically) 

as a system of independent random walks (walk speed Lemma 2.6), which at time 
s1: satisfies 
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(repeated use of Proposition 2.9). 
2°(second immigration) By definition, cp1 E ~t[a, m1; c] additionally immigrates 
at time s1 • By the parameter assumption (55), during the subsequent time incre-
ments, these new particles cannot interact with the subpopulation of 1 ° (Lemma 
2.6). On the other hand, their own evolution is similar to that of the initial popu-
lation: cp1 results at time s1c into a subpopulation 

x1 E cf?tL82,n1;21c-lc] s; cf?tL82,n1;21cc] with random ni = X:1 (,82). 

3° (all immigrants) Continuing arguing in this way, at time s1c- we finally get k 
independent subpopulations 

0 :5 i :5 k - 1, 

(with probability converging to one). 
4° (final step) Define u(t) by s1c(t) = Ne(t)t. For the final step from time s1c to 
Nt, we may apply the scaling limit Proposition 3.2 for multi-colonies with cp0, ••• , cpl 
replaced by x0 ' ••• , xlc-l, epic' given no' ... , n1c-1- In fact, also mixed pairs of particles 
from the total population at time s1c satisfy the spreading condition ( 49), by the 
walk speed Lemma 2.6. Therefore, 

£ ( r.p 0
, ••• ,r.p"(Nt)) => £(>:no , ... 1n1a-1,m11 (l)) = £ (Xm,. ,n1a-1 1 ••• 1no(l)) 

1110 , ••• ,,,. t~oo {Ji , ••• ,p,. ,a a,p,. , ... ,{J1 

where [no, ... , n1c-i] is random, is independent of the evolution, and equals in law 
with the independent vector 

But according to the Definition 3.5 of the ensemble of log-coalescents, specialized 
to the case without immigration, this limiting object can be described as claimed, 
finishing the proof. D 
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4 Duality of Y 8 and A 
In Theorem 4 of the previous section we learned that on a large space and time scale 
the coalescing random walk with immigrating multi-colonies can be described by an 
ensemble of log-coalescents with immigration. In order to calculate probabilities for 
this limit process we use a duality relation with an object much simpler to handle. 
In fact, the main result of this section (Theorem 5) says that the limiting system is 
in duality with .the transformed Fisher-Wright tree of Definition 1.7. 

4.1 Duality of ye and A, and properties of ye 
Let Y = { Y ( t); 0 ~ t ~ oo} denote the Fisher-Wright diffusion with diffusion 
parameter b > 0. By definition this is a diffusion process on the interval [O, 1] 
with generator determined by the differential operator ~ b (r - r 2) ~, 0 ~ r ~ 1. 
Recall that the terminal state Y(oo) E {O, 1} is reached already after a finite time. 

Consider the function h( n, r) := r10
, n ~ O, 0 ~ r ~ 1. If we apply the generator 

of Kingman's coalescent A with coalescing rate b > O, introduced in§ 3.1, to h(·, r) 
then we get 

(n) 1 a2 b 2 [h(n - 1, r) - h(n, r)] = 2 b (r - r 2
) ar2 h(n, r). (57) 

Consequently, recalling the action of the Fisher-Wright generator on h( n, ·), the 
generators of the (time-homogeneous) Markov processes A and Y are in duality 
and we get the well-known duality between Kingman's [13] coalescent A and the 
Fisher-Wright diffusion Y (both with parameter band starting at time 0): 

8 E [O, 1], n ~ O, t ~ O, (58) 

(Tavare [20]). 
Switch to the standard situation b = 1. Turning to a logarithmic scale, we will 

generalize (58) in Theorem 5 below. 
The announced duality relation will tell us that the generating function of the 

terminal number of particles in the ensemble A of coalescence with im~igration 
can be expressed via moments of the transformed Fisher-Wright tree Y 9 • (The 
definitions of ye and A were given in 1.9 and 3.5 at pp. 7 and 26, respectively.) 

Theorem 5 (duality of Ys and A) Suppose the a~J3-Condition 3.4 at p. 26 with 
f3o := 0 and ,B'/c+l := 1. Set m = m'/c := [ m0 , ••• , m'/c], g = g'/c := [g0 , ••• , f!'Jc], and 

~ = t := rfi1, ... ,,B'Jc]. Then the generating function of the terminal number A(l) 
- -a111 ·m111 

of particles in the ensemble A = AP,. '= of log-coalescents with immigration and 
parameters g, m, ~ is given by -

0 ~ 8 ~ 1, with y9 the transformed Fisher-Wright tree of Definition 1.9. 

Example 4.1 In the special case 4. = O, 1'11i,o = 1'11i ~ 1, the r.h.s. of (59) simplifies 
to 

E(Y9(f3o))""0 
••• (Y9(,B'Jc))""" = E (Y 9(,B'Jc))""0 +···+m1o (60) 
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with the transformed Fisher-Wright diffusion Y 8 defined in (9). In fact, condition 
first on the trunk. Then all branches become conditionally independent. Next, for 
all i with Tni = 1, we can use the martingale property of the Fisher-Wright diffusion 
to replace the (conditional) expectation over the k independent branches by their 
termination points Y 813,(/3i) = Y 80 (f3i) = Y8(f3i), 1 ~ i ~ k. This gives the l.h.s. of 
(60). Then apply again the martingale property. - Note in particular, that here the 
ai,o are irrelevant. This is immediately clear from the ensemble of log-coalescents 
since there is only at most one particles in each branch, which cannot react before 
its termination time, hence its "age" is irrelevant. 0 

The proof of this theorem will follow in the next subsection. As a preparation 
we mention some elementary properties of the Fisher-Wright tree Y 8 from 1.7: 

Lemma 4.2 (elementary properties of Y 8 ) With respect to P 8: 

(a) (exchangeability) Given a splitting point Y~(si) for a branch, the corre-
sponding branch Y!, and the trunk from Si on have the same law: 

(b) (time-homogeneity) Fiz k ~ i > 1. Given the u-field J=(si), the vector 
[Y:,_1 , ••• , Y:J of i - 1 branches is equal in law to 

where 8' := Y~(si)· 

(c) (conditional independence) Fiz k > 1. Then [Y~Jo, {Y~Jo-l, ... , Y~J] is 
an independent pair, given J=( S'ft:.). 

For later reference, we rewrite Lemma 4.2 for the transformed Fisher-Wright 
tree (defined in 1. 9): 

Lemma 4.3 (some elementary properties of Y 8 ) With respect to P 9 : 

(a) (exchangeability) For fized i E {1, ... , k}, 

(b) (homogeneity) Fiz 1 < i ~ k. Given the u-field F(f3i), the vector of branches 
[Y9p1 , ••• , Y~,_1 ] is equal in law with 

where 81 := ye13,(f3i) = y90(f3i) = YB(f3i). 

(c) (conditional independence) Fiz k > 1. Then [{YB131 , ... , ye13Jo_J, Y 9pJo] 
is an independent pair, given F(/3'ft:.). 
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4.2 Proof of the duality Theorem 5 

The proof is again by induction on k, the number of immigration time points of A 
(the number of branches in ys). 
1° (initial step of induction) In the case k = 0 the ensemble A reduces to a single 
log-coalescent :\: = :\:fo0 with immigration. By formula (6.2) in [11], the generating 
function related to its terminal number :\:(1) is given by 

oo lo 
Lp(:\~0°(1) =n)en = E9 II (YB(ao,;))mo.;. 
n=l i=O 

(61) 

--- ---Recalling Y 9 0 = Y 9 yields (59) in the case k = 0. 
2° (induction step) Let k ~ 1. Then by the recurrence formula ( 51) and the 
homogeneity property (52) the l.h.s. of (59) can be written as 

(62) 

By the initial step of induction (recall (61)), the innermost sum equals 

E' [ (Y'o(.B•l( fi (Y'o(a-.;)r··;] = E' [ (Y'o(.B•l( fi (Y'p.(a•.;lr·.;]. 

where we used Lemma 4.3 (a) (with i = k). Inserting this into (62), interchanging 
the expectation E 9 with the summation, and further rearranging yields 

E'E' { fi (Y'p.(a;.;)) m•,; ~P(Af::::::;;g;-• (1) = n')(Y'o(P•l) "'I J(p+ 

where we additionally used the homogeneity property (52) with c = l/f3-1r.. 
Assume now that (59) is valid for some k - 1 ~ 0 (induction hypothesis). Then 

the latter sum equals 

E'' [!:{ft (Y''p,/p.(a;,;/P•lr"l where 8' := Y'o(P.;). 

By Lemma 4.3 (b) (with i = k), given F(f3Tc), this coincides with 

Finally, by the conditional independence property 4.3 ( c) we can write the resulting 
expression 

as expected conditional expectation 

But this is equal to the r.h.s. of (59), finishing the proof by induction. D 
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5 Duality, Coupling and Comparison 
In this section we compile some basic methods to prove limit theorems for the 
interacting diffusion X as introduced in § 1.1. The basic tools combined will allow 
us to prove the key result of this section, Theorem 6, which asserts the universality 
of the limits obtained for the special case of interacting Fisher-Wright diffusions 
starting with product initial laws. Furthermore, using Section 4 and 2 we actually 
see in Theorem 6 that everything boils down to coalescing random walks with 
immigration, an object studied in Section 3. 

The methods needed are the following: a generalized duality of interacting 
Fisher-Wright diffusions which is in particular useful in the case of i.i.d. initial 
components, a successful coupling enabling us to generalize from product measure 
to any initial state in Te , and a moment comparison to provide the step from 
Fisher-Wright g = bf to general diffusion coefficients g in go. 

5.1 Generalized duality of X and fJ 
It is convenient to write the defining equation ( 1) for X in the form 

dXe(t) = K, L (Pe,c - 8e,c)X,(t) dt + Jg(Xe(t)) dwe(t), 
(ES 

(63) 

with migration rate K. and migration probabilities p defined in (25) and (26), re-
spectively, and with 8e,c = 1 if e = ,, and 8e,( = 0 otherwise. 

We now develop a generalized duality between the interacting Fisher-Wright 
diffusion X (with diffusion parameter b) and the delayed coalescing random walk {} 
with immigration (with coalescing rate b). 

First recall that a single Fisher-Wright diffusion and Kingman's coalescent are 
in duality as written in (58). Taking into account that the drift term in the inter-
acting diffusion (63) is related to a continuous time random walk determined by 
K.q, relation (58) generalizes to Shiga's [18] duality relation between the interacting 
Fisher-Wright diffusion X and the delayed coalescing random walk {} as follows: 

E! Xf = E1/I z,,\ z E [O, 1]3, 1/J E '1', t ~ 0. (64) 

(Here the notation z'l/I := Ilees zte is used.) This relates all the moments of Xt 
with the generating functions of {}t • 

Since we want to study not only the law of the interacting diffusion at a single 
time t, but rather the whole path up to time t, we actually need the distributions 
of the process X viewed backwards from a "late" time point, say tA:+l • Hence we 
want to calculate moments of the form E! xt:i -to··· xt:i -t1a with backward time 
points 0 =: to < ti < ... < tH1 (viewed from tA:+i)· These moments can again 
be expressed via generating functions of a delayed coalescing random walk but now 
with immigration of particles exactly at those fixed time points t 1, ••• , tA:. Here is 
the needed generalization of duality to multiple time points: 

Proposition 5.1 (generalized duality of X and fJ) For z E [O, 1]3 , k ~ O, 
1/J0 , ••• , 1/JA: E '1t and 0 ~to < ... < tA:+l the following duality relation holds: 

(65) 

Consequently, the duality formula (65) relates the moments of the interacting 
Fisher-Wright diffusion X (starting at z) of orders 'ljJ0 , ••• , 1/JA: at times looked back-
wards from tA:+l , namely at the times tA:+l - t 0 , ••• , tA:+l - tA: , with the generating 
functions of the delayed coalescing random walk {} with immigrating populations 
1/J0, ••• , 1/JA: at the forward times to, ... , tA:, respectively. 



Interacting difi'uaiona: Time-apace analyaia 35 

Remark 5.2 Only the "antiton" order in the duality relation (65) is important, 
that is one can interchange the role of forward and backward times. <> 
Proof of Proposition 5.1 The proof is by induction. For le= 0 we are back to 
the original duality relation (64) since X and iJ without additional immigration are 
both time-homogeneous. Let k ~ 1. Apply the Markov property at the "earliest 
forward" time tk+l -tk, and the time homogeneity of X to get for the I.h.s. of (65) 

b ,p" ,po ,pJa-1 _ b ,p" b -.,po -.,pJa-1 
E.: Xt,.+1-t,.Xt,.+1-to • • • Xt,.+1-t1a-1 - E.: Xt,.+1-t1a Ex(t1a+1-t1a) Xt,.-to • • · Xt,.-t,._1 

where X is an independent copy of X. Now assume that the assertion (65) is true 
for some k - 1 ~ 0 (instead of le). Applying (65) to X we can continue with 

= Eb x"'" E't/lo , ... ,,p"-1 X1'(t1a) = E,po, ... ,,p"-1 Eb x,p"+1'(t1a) • 
.z t1a+1-t1a to , ... ,t1a-1 t1a+1-t1a to , ... 1t1a-1 .z t1a+1-t1a 

Apply the original duality relation (64) (that is the initial step of induction) to 
arrive at = E,po, ... ,,p"-1 E,p"+1'(t1a) z"''(t1a+1-t1a) 

to , ... 1t1a-1 
where iJ' is an independent copy of iJ. The interior generating function expression 
can be reformulated usi~g the generalized time-homogeneity as in (28). This finishes 
the proof of (65) by induction. D 

If one specializes (65) to a one-component space B = {O}, then one gets the 
generalized duality relation between the Fisher-Wright diffusion and Kingman 's 
coalescent with immigration. Such formulas occur already in the literature, see for 
instance Cox [1, formula (6.5)]. 

5.2 Successful coupling in the Fisher-Wright case 
Coupling will actually be used twofold. Namely in the first place to get rid of 
independence assumptions concerning the initial state X(O) for which the duality 
(65) is still tractable. But also to truncate initial states in order to be able to handle 
some restricted interacting Fisher-Wright diffusions needed in § 5.3. To prepare for 
the second case we first want to modify a bit our basic model introduced in§ 1.1. 

Definition 5.3 (diffusion coefficients in g) Let g :J g0 denote the set of all 
diffusion coefficients g which are defined as in go (recall ( d) at p. 4) e~cept that we 
require strict positivity of g on a non-empty subinterval of (0, 1) only. Note that 
the definition of the interacting diffusion X as strong solution to (63) still makes 
sense for these general g E g. <> 
Definition 5.4 (coupling principle) Fix g E g and two initial laws µ, v on 
[O, 1]3. Let r be a distribution on [O, 1]8 x [O, 1]3 with marginals µ, v. Choose 
[X(O), X(O)] according tor, and solve (63) separately starting with X(O) and X(O), 
respectively, but using the same collection {we; e E S} of driving standard Brown-
ian motions (recall that we work with the unique strong solution of (63)). Then the 
bivariate process [X, X] is called the coupling of the interacting diffusions X and 
X with diffusion coefficient g and joint initial law r. Write Pf. for its distribution, 
and p[~,y] in the degenerate case r = d: x dy. <> 

We now use this coupling concept to control the effect of a particular truncation 
of the initial state. For this purpose, for 0 ::; e ::; ~ and z E [O, 1 ]8 define the 
truncated configuration zg E [e, 1- e]8 by 

zge := E v ze I\ (1- e), e E :=:. 
Moreover, if z is distributed according to µ then we write µg for the "truncated 
law", that is for the distribution of zg. 
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Lemma 5.5 (truncation of initial states) Let 0 ~ E ~ ~ • 

(a) (error control) For the coupling [X, X] starting in [z, ze], 

gEg, zE[O,ll::, ees, t~O. 

(b) (truncation in Te) If µ belongs to the set Te of shift ergodic laws with in-
tensity (} E (0, 1), then the truncated µe belongs to Te~ for some 9e E [e, 1- e] 
with 9e -+ 9 as E i 0. 

Proof For (a), see the proof of Lemma 4.6 in [11], whereas (b) is obvious. D 

Now we come to the main point of this subsection concerning interacting Fisher-
Wright diffusions, namely to recall Proposition 5.11 of [11]. It says, roughly speak-
ing, that coupled processes started with the same initial density (} approach each 
other as time increases, due to the fact that the same driving Brownian motions 
are used: 

Lemma 5.6 (successful coupling of interacting Fisher-Wright diffusions) 
Assume that g =bf, b > 0. Letµ, v E Te. Then the coupling [X, X] of interacting 
Fisher- Wright diffusions with joint initial lawµ x v is successful, that is 

E~xv IXo(t) - Xo(t) I ---+ 0. t-+oo 

Successful coupling will enable us to switch from product initial lawsµ in Te to 
general v E Te . 

5.3 Comparison with restricted Fisher-Wright diffusions 
Since the limit processes U, V and W of the Theorems 1,2,3 do not depend on 
the diffusion coefficient g E go, our basic method to get this universality in g is a 
comparison principle with (restricted) interacting Fisher-Wright diffusions. This is 
a special case of a general comparison principle proved in [2]. 

0 1-e 1 

Figure 9: (restricted) Fisher-Wright bounds for g E go 

The starting point is the fact (see Figure 9) that for each e E (o, l] a given 
g E go can be bounded as follows: 

(66) 

for· some constants be, b1 > 0 where 

Q ~ r ~ 11 0 ~ E ~ ~ 1 (67) 

(recall that g is strictly positive on (0, 1) and Lipschitz). Here ge belongs to the 
more general set g :J g0 of diffusion coefficients introduced in Definition 5.3. We 
call ge a restricted Fisher-Wright diffusion coefficient. It is needed for the case of a 
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diffusion coefficient g with a vanishing derivative at a boundary point of [O, 1] (as 
for instance in the Ohta-Kimura diffusions case g = J2). 

The moment comparison principle of [2] we want to exploit says,. roughly speak-
ing, that larger diffusion coefficients lead to larger moments of X : 

Proposition 5. 7 (comparison of mixed moments) For e E [ O, ~], let positive 
comtanb b6 and b1 be given. Assume that g E g sati8fies 

g6 = b6 r ~ g ~ bl f (68) 

with /6 defined in ( 67). Then the following higher moment inequalities hold: 
~ 1/Jl 1/J,. 1/Jl 1/J,. bl 1/Jl .1,lo E9 xt · · · xt < E9 xt . · · xt < E x ... X"' (69) z 1 Ja - z 1 Ja - z ti t,. 

'= 1 .k for all z E [O, lh k ~ 1, 1/J , ••• , 1/J E W, and 0 ~ tl ~ ... ~ t.k. 

Next we want to justify why gg is called a restricted Fisher-Wright diffusion 
coefficient. For 0 ~ e ~ ~ set 

Lgr := [:;6 , 0 ~ r ~ 1, (70) 
which gives a map 

L6 : [O, 1] 1-7 [- 1~2e, 1
1
:;6 ] =:le £; [-1, 2]. (71) 

Applying coordinate-wise, Lg can be considered as an affine mapping Lg : [O, 1]3 i-+ 
I;. 
Lemma 5.8 (restricted Fisher-Wright) If z belongs to the set [e, 1 - e]3 of re-
stricted states, then under P(, the tramformed process LgX has the law Pr~z. 

In fact, 
g6 (r) = (1- 2e)2 b6 f ( ;:;g), r E [e, 1- e]. 

Consequently, for truncated initial states, LgX is an interacting Fisher-Wright dif-
fusion on [O, 1]3 with diffusion parameter b6

• 

5.4 Universality conclusion 
The purpose of this subsection is to demonstrate how coupling and comparison are 
combined to prove universality statements on interacting diffusions, that is to reduce 
proofs to the Fisher-Wright case starting with a product initial law. The latter 
case amounts using the generalized duality relation (65) and the approximation 
Proposition 2.2 to showing a limit assertion on coalescing random walks 1J with 
immigration. 

Theorem 6 (universality conclusion) Fiz natural numbers k ~ O, fl.i ~ 1ni ~ 
O, 0 ~ i ~ k. Fort > 1, let time poinb so(t) < · · · < S_k+1(t) be given such that 
Si' - Si -+ oo as t-+ oo if i' >i. Furthermore, for 0 ~ i ~ k, pick 

Assume the coalescing random walk 1J with immigration sati8fies 

Erpo(t), ... ,rpll(t) 8ll'7(•1a+1(t))ll --+ Amo , ... ,m,.(8) 
a0 (t), ... ,a,.(t) t-+ex> ' 0<8<1. (72) 

Then, for every g in g0 and µ E Te , 0 < 8 < 1, the corresponding interacting 
diffusion X satufies 

E9 X'l/Jo(t) ... x'l/J"(t) --+ Amo , ... ,m"(8). 
µ •1a+1(t)-•o(t) •11+1(t)-•1a(t) t-+ex> (73) 



38 K. Fleischmann & A. Greven 

Proof Step 1° We show that without loss of generality, in (73) we may restrict 
to the Fisher-Wright case g =bf, b > 0. Indeed, put 0 < e ~ i and, for the given 
g E go, choose be, b1 > 0 such that ge = be /6 ~ g ~ b1 f. Apply the moment 
comparison (69) to see first that we have to deal only with the lower bound 

once we know (73) in the Fisher-Wright case. 
By the truncation Lemma 5.5, except some uniform e-error O(e), we can replace 

µby thee-truncated law µe E Tee with 9e -+ 8 as e-+ 0. 
Next we use that for fixed m 2::: O, 

(74) 

uniformly in z E [O, 1]8 and 1/J E W with 111/Jll = m (the maps Le had been defined 
in (70)). Therefore from X we may switch to L6 X, again except some uniform 
e-error O(e). But by Lemma 5.8, the transformed process LeX is an interacting 
Fisher-Wright diffusion on [O, 1 ]8 with diffusion parameter be. Hence, 

with Leµ,e the law of L6 z if z is distributed according to µ6
• Since the limit ex-

pression in (73) (or (72)) is continuous in 8E(0,1), and (8e - e)/(1- 2e)-? 8 as 
e -+ O, we get the same limit Amo , ... ,m.1a(8) for the lower bound after e -+ O, once 
we know (73) in the Fisher-Wright case. This proves the claimed reduction to the 
Fisher-Wright case. 

Step 2° Since we now are in the Fisher-Wright case g =bf, b > O, we may apply 
the successful coupling Lemma 5.6, to reduce (73) to product initial lawsµ, E 19, 
that is if µ, E Te has the form 

fµe(dr) r = 8. (75) 

On the other hand, by the generalized duality (65), we rewrite the l.h.s. of (73): 

By the approximation Proposition 2.2 we may replace the r.h.s. by 

Jµ(dz) E'P0 
, ... ,rp.1a z'1(•.1a+i) = E'P 0 

, ... ,rp.1a 9l171 (•.1a+i)ll 
•o , •.. ,,... •o , .•. ,•Ja ' 

where we used the fact that by assumption the initial state has i.i.d. components 
with expectation 8. However, this is the l.h.s. of (72), and the proof is finished. D 
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6 Limit statements for interacting diffusions 
The purpose of this section is to use the results of the Sections 2-5 to prove the 
Theorems 1-3 and additional claims made in the introduction. 

6.1 Noise property of a single component process 
In this subsection we want to prove the noise property of a single component process 
mentioned in § 1.3 above (p. 9). Fix 8E(0,1) and recall that 79 denotes the set of 
all shift ergodic initial distributions with density 8. · 

Proposition 6.1 {stationary 0-1-noise of components) Letµ E 79 and g E 
go. Fiz e ES, k ~ 0 and 0 < f31 < ... < f31c+1· Then 

Pt { [xe(f31t), ... , Xe(f31c+1t)] E ·} t~ [(1- 8)<fo + 8<f1] 1:+1. 

Consequently, here the limiting process is independent in each point and sta-
tionary. Actually this property essentially follows from the fact that in the Fisher-
Wright dual, namely the delayed coalescing random walk with immigration no par-
ticle will interact in the present scaling regime. 

Proof Fixµ, g, e, k and f31, ... , f31c+1 as in the lemma. Without loss of generality, 
assume f31c+1 = 1, t = .N'1', and e = 0. We apply the method of moments. Choose 
integers n1, ... , n1c+1 ~ 1. It suffices to show that 

(76) 

According to Remark 5.2, one can interchange the antiton order in the generalized 
duality Proposition 5.1. Applied to Theorem 6 with 't/Ji = 11.ido and s0 (T) = 0, this 
means that (76) will follow if for the coalescing random walk fJ: 

(77) 

where ui(T) := .N'1' -AN'1' = (1-f3i).N'1', 1~i~k+1. 
However, by the walk speed Lemma 2.6 at p. 20, at the first immigration time 

ui:(T) = (1 - f31:).N'1' the initial particle (starting at time u1:+1(T) = 0 at 0) has 
approximately got a position in S[T, 1] as T --7 oo. Consequently, it is of order 
T + o(T) away from the next immigrating particle. In the time u1:-i(T) - u1:(T) = 
({31: -f31:-i).N'1' until the next immigration, the resulting difference walk moves away 
again of order T + o(T). Hence these particles will not meet and will both be away 
from the origin. Continuing to argue in this way we see that ll11(NT)ll = k + 1 with 
probability converging to 1 as T --7 oo. Hence (77) holds, finishing the proof. D 

6.2 Time-space thinned systems and Proof of Theorem 1 
We shall deduce Theorem 1 from a somewhat more general statement which is 
interesting in its own. 

In the following, for r.p E <p, we also write X"' for the family { Xe ; e E S, r.pe > 0}. 
Recall the Definition 2.8 at p. 21 on spreading multi-colonies. 

Theorem 7 {time-space thinned systems) Assume µ. E 79, 8 E (0, 1), and 
g E go. Fiz a constant c ~ 1, and assume the a.~f3-Condition 3.4 at p. 26 with 
f3o := 0 and f31:+i := 1. Consider spreading multi-colonies 

T > 1, 0 ~ i ~ k. 
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(a) 

(b) 
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(convergence of spreading families of components) Then the distribu-
tions 

P: { [Xcpo(T) (NT -Nf3°T), ... , Xcp,.(T) (NT -N,8i.T)] E ·} (78) 

have a limit law as T-r oo, denoted by L = Lf fil, concentrated on {O, l}lg;J. 
Here g, m and~ are defined as in (50) at p. 26, and lml := Ei,j Tni,j. The 
limit distribution L depends on the initial density 8 but is otherwise indepen-
dent of the "input data" N, a, g, µ, of X. 

a•m 
(characterization of the limit laws) This family of limit laws Lp'= is 
characterized by the fact that the probability for all components to be equal to 
1 is given by 

(79) 

with Y 8 the transformed Fisher- Wright tree of Definition 1.9 at p. 7. 
In particular, the distribution of the limit array is a m~ture of Bernoulli 

product laws: First realize the "weights" 

{ Y 8,a.(a· ·)· 0 < i < k 0 < 1· < 4} .. ,,,, ' - - ' - -

according to the distribution P 8 of the transformed Fisher-Wright tree Y 8 , 
and then form the product laws with marginals 

0 ~ i ~ k, 0 ~ j ~ 4 . 

Remark 6.2 From the point of view of the interacting diffusion X, the a5,8-Condi-
tion 3.4 at p. 26 just reflects the natural range of growth of clusters. 0 

Proof (a) Set Si (T) := N.BiT, 0 ~ i ~ k. In order to apply the method of mo-
ments, take "T-independent multiples" 1/J"(T) of cp"(T), that is 1/J"(T) E 'P' satisfying 
1/J"(T) /\ 1 = cp"(T), and where the multiplicities 1/J~(T) > 0 are independent of T. 
We want to show that 

A: 
E! II xVii(T} (NT -si(T)) 

i=O 
--+ 

T-+oo 

00 

LP(Affil(l) = n)en (80) 
n=l 

with A the ensemble of log-coalescents with immigration of Definition 3.5. Accord-
ing to the universality conclusion Theorem 6, it suffices to show (80) with the l.h.s. 
replaced by 

Ecpo(T), ... ,cpi.(T) 9ll11(N'I')ll 
•o(T), ... 11,.(T) 

(recall that 1/J" /\ 1 = cp"). But then by the scaling limit Theorem 4 on coalescing 
random walks with immigrating multi-colonies the claim (80) follows. Hence, the 

a·m I~ 
limit law Lp'= exists and is concentrated on {O, 1}- since the limit expression in 
(80) is independent of the orders 1/J~(T) > 0 of moments at the l.h.s. of (80). 
(b) Using additionally the characterization (59) at p. 31 of the duality Theorem 
5, we get the limiting probability of all components to be 1 as claimed in (79). This 
finishes the proof. 0 

Proof of Theorem 1 Specialize the assumptions in Theorem 7 as follows: 4 = O, 
Tni,o = Tni ~ 1, ai,o = 0 and cp" = tSe if Tni = 1. Then the claims (a) and (b) of 
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Theorem 7 imply the corresponding ones in Theorem 1, as in particular already 
explained in Example 4.1 at p. 31. 

It remains to show the claim (c). The marginal laws are given by the basic 
ergodic theorem (14). Since we can map r 1-7 1 - r, we may fix our attention on 
the case UQ' = a = 1. For the next statement in ( c) we have to show that 

0</3<1. (81) 

The l.h.s. coincides with the monotone limit 

j~~ P(u~_ .. 13 = 1, 0 ~ k ~ 2n), 

which by the identity in (b) equals to 

lim E(Yl)m with t := log(l//3). 
m--too 

If we restrict the latter expectation additionally to the event from the r.h.s. of (81), 
then Y/ = 1, and we actually arrive at the r.h.s. of (81). The remaining part of the 
expectation can be bounded from above by 

which converges to 0 as m-+ oo, by bounded convergence. This verifies (81), and 
shows that [UO', hu] has the claimed law. But combined with (b ), the remaining 
claim of ( c) follows immediately. This finishes the proof. D 

6.3 Time-space thinned systems: Proof of Theorem 3 
1° (convergence and characterization) Fix µ E Te, 0 < 8 < 1, natural numbers 
k, mo, ... , mk ~ O, and constants 1 > /31 > ··· > f3k ~a> 0 = f3o. For i E {O, ... , k}, 
consider xi E {P with llxill = m&. For T > 1, write si(T) := :El$i'$i N/3i'T and 

i _ i(T) ·- 8 -1 i ·-"" ..s[:~ 1 e <fJ - 'P ·- [aT]X ·- L..te: x~ >O c> 

for the spread-out population giving the particles of x an asymptotic distance aT, 
as in the thinning procedure of Definition 1.13 (a). As in the Proof of Theorem 7, 
apply the method of moments, and take "T-independent multiples" ,,pi E 'W of <pi. 
In order to determine the limit in law as T -+ oo of the array of variables 

{--~1a1T. t i k} we:i , «a E supp xe, O ~ i ~ (82) 

we look at the moments 

(83) 

According to the universality conclusion Theorem 6, we need to study 

Erpo (T)1•••11P"(T) 9l111(NT )II 
•o(T)1 ... 1111(T) " 

By Proposition 3.11 at p. 29, this generating function in 8 converges as T-+ oo to 
the one of the ensemble x~:i···ia]/3; []mll I'" Imo] of log-coalescents without immigration. 

IJ"ll 1•••1 1 
But according to the duality Theorem 5, the latter generating function is given by 

(84) 
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Hence, the moments (83) have the limit (84), and we conclude for the existence of a 
limiting field W~,a,oo. Moreover, since (84) is independent of the orders 1/J~(T) > 0 
of the moments, the limit w~,a,oo is {O, 1}8 X{O, ••• ,A:}_valued. Altogether, we got the 
claims (a) and (b) of the theorem. 

2° (a moment estimate) Consider (84) and condition on F(/3A:)· Then all fac-
tors become independent, and we can switch to a product of conditional moments. 
Moreover, by Jensen's inequality, these conditional moments can be bounded below 
by corresponding powers of first moments. But by the martingale property of the 
Fisher-Wright diffusion, these expectations can be computed arriving altogether at 
the lower estimate 

- -for (84). Since Y 9tJi.(f3A:) = Y 90 (f3A:), we actually reduced (84) by one factor. Hence, 
by induction, we will end up with the lower estimate r 0 +···+m1a for (84). Conse-
quently, from (24), 

E II ~,a,oo 
e,i 

eesuppx~ I o::;i::;A: 

__ JJ,a,oo 
where 8 = EW[i . (85) 

3° (association) By definition, a countable family of variables is associated if ev-
ery two non-decreasing functions of this family, depending only on finitely many 
components and being square integrable with respect to the law of the family, are 
non-negatively correlated. Our last formula implies that for events C, D of the form 

{wtt 00 = 1 fore EA and i E B}, (86) 

where A, B are finite subsets of B and {O, ... , k }, respectively, 

P(C n D) ~ P(C) P(D). 

According to [16] it suffices to have this property for all increasing events (depending 
only on finitely many components). Since the variables are 0-1-valued, all increasing 
events are of the form (86), and the needed property follows. Hence, the limit field 
w~,a,oo is associated. 

4 ° (representation) The claimed representation immediately follows from the char-
acterization (24) combined with the trapping property (13), finishing the proof. D 

6.4 Spatial ball averages: Proof of Theorem 2 
Fix g E 9°, µ, E Te, (J E (0, 1), and 0 ~a< 1. Recall the definition (19) of ya,T. 
If a = o, then ya,T = ur. Hence, for the proof of the convergence statement we 
may restrict to 0 <a< 1. By spatial homogeneity, we may also set e = 0. 

1° (asymptotic moment formula) The process ya,T takes on values in [O, 1] only, 
thus we can again use the method of moments. Fix k, mo, ... , mA: ~ 0 and 0 =: f3o < 
· · · < /3A:+i := 1, and consider 

(87) 

In order to evaluate this moment, we insert the definition (19) of ya,T as average 
over components Xe of X to get 

= N-M.[aT] L: - E! [ fI . ii Xw,J(NT -N"'T)] (88) 
e(1), ... ,e(M1a) E .=. .. T '=O Ji=Mi-1+1 
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where Er:= {e E B; llell ~ r} and M;. := mo + · · · + m;., i = -1, O, ... , k. We may 
assume that M1c ~ 1. Set s;,(T) := NfJ;,T, 0 ~ i ~ k. 
2° (restriction of the range of summation) Asymptotically as T -+ oo we may 
restrict the range of summation in (88) requiring additionally 

lle(i)ll /\ lle(i) - e(i')ll ~ (aT] - l(aT), j :f:; j', 1 ~ j, j' ~ M1c (89) 

(recall the definition (34) of l(r) at p. 19). Roughly speaking, we sum only over 
labels with absolute and relative speed a. To justify this restriction, first note that 
all terms of the sum in (88) are uniformly bounded by 1. Moreover, the number of 
labels excluded this way is bounded by 

C( m) NM,. [aT]-l(aT) = o(NM1o[aT]) as T-+ 001 

where the combinatorial constant C( m) only depends on m := [mo, ... , m1c]. In 
fact, we have C( m) N(M,.-l) [aT] possibilities to fix e(j'), then the coordinates 
e;.(j) of e(i) with i ~ (aT] - l(aT) have to be 0 or coincide with the corresponding 
ones of e(i) in order to violate the inequality in (89); this gives further [aT]-l(aT) 
possibilities. 

3° (convergence) Set cpi := tSe(Mi- 1+1> + ... +tSe(M;,)' 0 ~ i ~ k, with the e(j) of the 
range of summation in (88) but with the restriction (89). Note that cp0 +···+epic 
belongs to Cf?T[a, M1c, 1] for all sufficiently large T. (We applied the Definition 2.8 
of spreading multi-colonies, specialized to a single colony.) Then a typical term in 
the sum in (88) can be written as 

(90) 

In order to calculate the limit of (90) as T-+ oo which then gives the limit of (88), 
we want to apply the universality conclusion Theorem 6. Therefore we look at 

E"°o , ... ,cp• ell11(N'l' >II. 
ao , .... ,a11 (91) 

Then by Proposition 3.9 at p. 28, as T -+ oo we get the following limit for the 
generating function (91): 

'°'oo P(Aa, ... ,a,MJ-1,mJ, ... ,m,. (l) = n)Bn 
L.in=O {JJ , .... ,p,. ' (92) 

with J defined in (21). Consequently, (90) hence (87) converges to (92) by the 
universality conclusion Theorem 6. This shows that indeed a process ya,oo on [O, 1) 
exists such that (20) holds, and the statement (a) of Theorem 2 is proved. 

4° (limiting moments) By the duality relation (59) of Theorem 5, the limiting 
moments of (87) as T-+ oo, coincide with (92) and hence fulfill the identity claimed 
in (b ). 

5° (marginals) Specializing the moment formula of (b) to k = 0 (implying J = 1 ), 
we immediately see that the random variables Vt 00 and Y 90(a) = Y 9(a) coincide 
in law. Thus, by (10) we get the marginals as claimed in the beginning of (c). 

6° (holding time and conditional noiSe) From the case J = k + 1 in the moment 
identity of (b) we conclude that the limit process ya,oo i~onstant at least on the 
interval [O, a) (where the constant is random with law Q9 a)· That is, hv ~ a. 
Moreover, putting J = 1 in the moment formula of (b), we see that for 0 < a ~ 
/31 < .. ·/3'1r. < 1, 

[ Voa,oo' Vp~,oo' ... , v;~oo] f::. [Y9o( a), yefJ1 (a), ... , yep,. (a)]. (93) 
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By definition of the (transformed) Fisher-Wright tree Y 9 , given the trunk Y 90 , the 
(backward) branches Y 9p1.:..:, .. , Y 9p,. are independent. Hence, if we condition the 
r.h.s. of (93) to the trunk Y 9o and restrict additionally to /3Tc ~ r, then 

yso(a) = ysP1(a) = ... = ysp,.(a), 

by (13). Hence, Y 8p(a) = Y80(a) whenever a ~ f3 ~ r. (Actually, for such a 
statement one has to extend the definition of the trees, switching to an un~untable 
collection of branches.) That is, the holding time of the "process" f3 1-7 Y 8p(a) on 
[a, 1) is at least rVa. Our aim is to demonstrate that this holding time is actually 
exactly r V a. 

Given the trunk and restricting to (a VT) < /31, the termination positions 

of the (conditional) independent branches Ysp1 , ••• , Y 8p,. are interior points of (0, 1] 
implying that the corresponding branches are non-degenerate. More precisely, given 
()i , by homogeneity as in the property (b) of Lemma 4.3 at p. 32, and then switching 
to the trunk we get 

(94) 

which by definition has the law Q8'a./p,. This verifies that the conditional distribu-
tion 

.c{ [ysP1 (a), ... , ysp,. (a)] I (a v r) < /31} 
of the "section" of the transformed Fisher-Wright tree is just a mixture of product 
laws as claimed in (c). 

Coming back to the holding time:_..Given the trunk, we choose e > 0 such that 
(a v r) + e < 1. Then, abbreviating Y 8o(a) = :r, 
P 8 {r = Y 8pl (a) = ... = Y 8p,. (a) I Y 8o; (a v T) < /31 < .. ·/3Tc < (a v r) + e} 

= n:=l Q9'a./Pi ({r}), 
which equals 0 if r < a i~atisfied, and converges to 0 as k -t oo otherwise. Thus, 
the holding time of /3 1-7 Y 8p(a) on [a, 1) is exactly rV a, and by (93) we conclude 
that hv = r Va in law. This completes the proof of (c) and finishes the proof of 
Theorem 2 altogether. D 
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