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Abstract

While usually the generation of a Stokes component is attributed to Raman
scattering, we present here experimentally and numerically a more fundamen-
tal mechanism which can be explained by the nonlinear Schrédinger equation
alone. It can be employed to excite new frequency components on the red
side, by using pulse splitting in the normal dispersion regime.

The nonlinear propagation of a pulse through an optical medium can result in con-
siderable changes to its temporal and spectral properties, due to interplay of different
physical effects acting on the pulse. For example the supercontinuum generation in
nonlinear fibers has been a subject of numerous investigations for years, see e.g.
the review [1], both because of the many applications of supercontinuum sources,
as well as the interesting nonlinear physics that is involved in the spectral broad-
ening process. There is a variety of effects leading to specific pulse and spectrum
characteristics, like soliton fission (SF), associated with the generation of dispersive
waves |2], modulation instability (MI) [3], Raman scattering, and other four-wave-
mixing processes. This situation makes it particularly difficult to identify the impact
of each physical process in a specific physical experiment. But SF and MI, which
are described solely by the fundamental nonlinear Schrodinger equation (NLSE) in
the anomalous dispersion regime with some perturbation, turn out to be the ba-
sic mechanisms. This reflects how inherent properties of the NLSE are of prime
importance for the propagation dynamics, even for ultrashort pulse propagation in
photonic-crystal fiber (PCF) with extremely high nonlinearity. To avoid the influ-
ence of MI and soliton effects, such as SF and self-frequency shift, the pump pulse
can be injected within the normal dispersion regime far from the zero-dispersion
wavelength. This enables one to investigate the effects of Raman-scattering. Ad-
ditionally, the normal dispersion regime provides parameter regions where the effi-
ciency of four-wave mixing is reduced and the signature of a discrete Raman cascade
can be clearly identified. Also the role of cross-phase modulation (XPM) and para-
metric four-wave-mixing can be investigated [4, 5|. But the fundamental properties
in the normal dispersion regime are suppressed or superimposed, so that it becomes
difficult to isolate the relative contributions of the involved physical parameters. In
this letter, we show for the first time that only dispersive effects are necessary to
generate a spectral broadening to the red side. Already a small amount of third-
order dispersion(TOD) in the normal dispersion regime can lead to a pulse-breakup
above a certain pulse power. The splitting is followed by an expansion of the spec-
trum towards longer wavelengths and the evolution of a broad Stokes component
without any impact of Raman scattering. The Stokes frequency depends strongly



on the third-order dispersion coefficient, enabling the transfer of energy to a broad
range of longer wavelengths. To understand the underlying mechanisms leading to
the red-shift, we have solved numerically the one-dimensional nonlinear Schrédinger
equation Eq. (1) with only additionally TOD and fourth-order dispersion (FOD).
We exclude in our numerical investigations any contribution from phase-matched
parametric four-wave mixing and from higher-order nonlinearities as Raman scat-
tering or self-steepening. This corresponds to the situation of a highly nonlinear
fiber (HNLF), with pulse durations exceeding several picoseconds and small input
powers so that the spectral bandwidth is much smaller than the Raman frequency
shift in fused silica and the pump pulses do not suffer significantly from intrapulse
Raman scattering as in the femtosecond case. It is assumed that the pulse propa-
gates along the z-axis within a retarded time frame 7 =t — z/v,, moving with the
group velocity v, of the pulse. The general form of the NLSE for the slowly varying
complex envelope A(z,7) of a pulse is given by
A ' A 1 93A ' 1A

O il a T L p T rinlapa. (1)
Our technique for solution of Eq. (1) is based on a standard de-aliased pseudospec-
tral method in which the dispersion parts are calculated in the frequency domain
and the nonlinearity is calculated as a product in the time domain. The integration
is performed for the whole equation in the frequency domain with an eigth-order
Runge-Kutta integration scheme with adaptive stepsize control [6]. The experimen-
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Figure 1: Experimental setup (abbreviations are defined in the text).

tal setup is shown in Fig. (1). A tunable mode-locked laser (EC MLL) was used to
generate pulse trains with a repetition rate of 10 GHz with timing jitter smaller than
100 fs (between 100 Hz — 10 MHz), and 1535-1565 nm tuning range. The direct
output of the EC MLL was amplified in a high-power erbium-doped fiber amplifier
(EDFA), which has a maximum average output power of 26 dBm. A pulse with a
sech? form is then propagated through a highly nonlinear fiber with a dispersion
flattened profile to minimize the TOD. The dispersion and its slope at 1550 nm is
approximately D = —0.09 ps/nm/km and S = 0.019 ps/nm?/km, respectively. The
HNLF has its zero dispersion wavelength (ZDW) centered at A = 1555 nm. The fiber
is 789 m long and has a nonlinear coefficient of v = 10.5 W ~'km™1, with a fiber loss
of 0.84 dB/km. In particular, we will first consider propagation of an initially hyper-
bolic secant pulse A(0,t) = /Pysech(t/7y) with 7o = 1.8ps injected at \, = 1535nm,
along a fiber with dispersion coefficients 35 = 0.53ps®/km, 83 = 0.03ps®/km, 3, = 0
and with nonlinear coefficient v = 10.5km ='W ~! for conditions similar to those of
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Figure 2: Spectra a) and pulse shapes b) for injected pulses with sech? forms with
widths 7 = 1.8ps and average powers Py of 23.0d Bm and 25d Bm after the HNLF
at \, = 1535nm with dispersion coefficients 8, = 0.53ps?/km and (3 = 0.03ps®/km.
The dashed black lines represent the simulation for the NLSE without TOD.

the experiments. Fig. 2a) shows the measured (shaded) and the calculated (lines)
spectra for average input power of P = 23dBm and P = 25dBm, showing a good
agreement. The spectrum and the shape for an input pulse with P = 23dBm prop-
agating in a fiber without TOD is presented for comparison (dashed line). The
spectrum at P = 23dBm (experiment: dark shaded, simulation: red line) shows an
asymmetry to the blue side, but also exhibits a broad pedestal on the red side. At
P = 25dBm (experiment: grey shaded, simulation: blue line) an increasing broad-
ening of the pedestal is observed, which results in a broad Stokes peak at 1580nm.
The pulse shapes in Fig. 2b) show that pulse splitting at the leading edge sets in.
The pulse-breakup phenomenon in the normal dispersion regime is described in [7].
The TOD leads to an asymmetric temporal development with an enhanced transfer
of power from the trailing portion of the pulse to the leading one. The spectrum
develops with a small asymmetric broadening towards the blue side. A narrow peak
builds up and an increase of the peak intensity at the front of the pulse can be ob-
served. Further propagation as well as a higher peak power leads to a sharp increase
of the peak intensity at the front of the pulse, which is halted by temporal pulse
splitting. After the splitting a small pedestal on the red side of the spectrum ap-
pears, which becomes more intensive with further propagation. The final spectrum
of the pulse is asymmetric with a pronounced red tail. The HNLF used in the ex-
periments exhibits a strong impact of TOD at the ZDW and has normal dispersion
below Ay = 1555 nm, but has anomalous dispersion above this wavelength. The
generated Stokes component is located in the anomalous dispersion regime, such
that further propagation is now overlapped by soliton effects. To exclude the im-
pact of possible anomalous dispersion on the observed phenomenon we changed to
similar constellations of fiber coefficients with completely normal dispersion over the
whole spectral range, which revealed qualitatively the same behavior. The critical
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Figure 3: Spectral (left) and temporal (right) evolution of a pulse with initially
To = 2.5ps and a peak power of Py = 1.6 along z = 800m HNLF with 3y =
0.2ps?/km a,b) B3 =0, B4 =0, ¢,d) 33 = 0.01ps®/km, B, = 0, e,f) B3 = 0.01ps®/km,
By =1.7x 10"*pst/km.

distance z.., where the pulse splitting sets in, is proportional to the nonlinear length
Ly = 1/(yP,) for fixed ratio Lp/L}, with dispersion lengths Lp = T#/|3;| and
L'p =T§/|3s] [8]. Changing the dispersion coefficients now to B, = 0.2ps?/km and
B3 = 0.01ps®/km allows us to compare the behavior in the pure normal dispersion
regime and the dynamics resulting from the intersection with the anomalos disper-
sion regime. The shift of the dispersion into the pure normal dispersion range can
be achieved by switching on already a small value of (.

Fig. 3a,b) present the propagation for the pure NLSE without any impact of TOD.
The pulse evolves first into a parabolic shape and broadens with further propaga-
tion nearly to a rectangular shape, thereby exhibiting optical wave breaking. The
spectrum is then broadened by self-phase modulation. Introducing TOD for the
same input pulse parameters leads to the pulse splitting phenomenon as described
above. Fig. 3c¢,d) represent the case exhibiting normal and anomalous dispersion
(B4 = 0) and Fig. 3e,f) the case for normal dispersion over the whole spectral range
(81 = 1 x 10~*ps?/km). The propagation behavior coincides for both cases, un-
til some of the broadened spectral components pass into the anomalous dispersion
regime. In Fig. 3c,d) the FOD is set to zero, so that the Stokes component lies in the
anomalous dispersion regime and soliton effects come into play. The further overall
observed behavior is now mainly influenced by soliton fission and the generation of
dispersive waves, leading to an additional blue shift in the spectrum |2, 3]. Soliton
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effects are excluded in Fig. 3e,f), the spectral extension to the blue side through the
transfer of energy to a resonant dispersive wave cannot be observed and the red-
shift is more pronounced. The spectral width saturates after a certain propagation
distance and remains in a well bounded domain with a fixed Stokes wavelength.
With an increase of the input power the pulse splitting sets in at a shorter critical
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Figure 4: Spectra at z = 170, 240, 280m for fixed input power Py = 1.6/ and pulse
width 70 = 2.5ps at 3 = 0.2ps?/km with increasing TOD.

distance z.., but does not lead to an enhanced spectral broadening to the red side.
In comparison a further broadening to the red side can be observed by an slight
increase of 3. The wavelength of the Stokes component strongly depends on (5.
Fig. 4 shows the spectra with an increase of (5. For (3 = 0.009ps®/km (Fig. 4a)
the Stokes component is located near the pump frequency and one observes only
a small extension to the red side. With an increase of 3 the Stokes component is
shifted further into the red side (Fig. 4a,b)). Contrary to the Raman scattering,
where the Stokes component is separated by ~ 137 H z from the pump frequency in
fused silica, the Stokes component here can be adjusted to an arbitrary wavelength
on the red side with an appropriate dispersion profile design.

In conclusion, we have demonstrated that the pulse breakup in the normal dispersion
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regime induced by third-order dispersion generates new wavelengths on the red-side
of the spectrum from the pump wavelength. This red-shift does not need explana-
tions like the impact of higher-nonlinearities as Raman scattering or self-steepening,
but follows from inherent properties of the NLSE with TOD as a perturbation.
This represents a mechanism how even small values of higher-order dispersion can
strongly affect the propagation dynamics in an optical fiber.

This work has been supported by DFG Research Center MATHEON.
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