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Abstract

We develop a stochastic simulation method for a numerical solution of the Lamé equa-

tion with random loads. To treat the general case of large intensity of random loads, we

use the Random Walk on Fixed Spheres (RWFS) method described in our paper [20]. The

vector random field of loads which stands in the right-hand-side of the system of elastic-

ity equations is simulated by the Randomization Spectral method presented in [16] and

recently revised and generalized in [8]. Comparative analysis of RWFS method and an

alternative direct evaluation of the correlation tensor of the solution is made. We derive

also a closed boundary value problem for the correlation tensor of the solution which is

applicable in the case of inhomogeneous random loads. Calculations of the longitudinal

and transverse correlations are presented for a domain which is a union of two arbitrarily

overlapped discs. We also discuss a possibility to solve an inverse problem of determina-

tion of the elastic constants from the known longitudinal and transverse correlations of the

loads.

1. Introduction

It is well known that the boundary value problems with random parameters are very interesting models

which become more and more popular in many fields of science and technology, especially in problems

where the data are highly irregular, for instance, like in the case of turbulent transport [10], flows in

porous medium [2], or evaluation of elastic properties of polymers and composites containing fibers

which are randomly oriented in a plane [11], [7], and in elastography imaging [13]. In [9], a stochastic

model that could realistically and accurately simulate wind loads that are generated by thunderstorm

downbursts for transmission line design is developed.

In conventional deterministic numerical methods, these problems are solved as follows: first one con-

structs a synthesized sample of the input random parameter; then the obtained deterministic equation is

solved numerically, say, by finite element method and give the solution in all points of the grid domain.

These two steps are repeated many times, so that the obtained statistics is enough to calculate the desired

averages accurate enough. In [1], [11], [14], [22], this approach is used in stochastic finite element meth-

ods. Obviously, this technique is generally time consuming, and to solve practically interesting problems

one needs supercomputers to extract sufficient statistical information.

In the Monte Carlo approach, the algorithms are designed so that the solution is calculated only in the

desired set of points without constructing the solution in the whole domain [4], [15], [17], [16]. To

evaluate different statistical characteristics of random boundary value problems we use the Double Ran-

domization technique (e.g., see [16]). This approach is possible if the desired statistical characteristics
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(e.g., the mean or the correlation tensor) can be represented in the form of a double expectation over the

input random parameters, and over the trajectories of a Markov process used in a stochastic estimator for

solving the deterministic equation. The advantage of this method is that we have no need to solve the

equation many times, hence, the cost of this method is drastically decreased compared to the stochastic

finite element method.

The approach we use in the present paper is based on the Poisson type integral formula written for each

disc of a domain consisting of a family of overlapping discs. We call this method a Random Walk

on Fixed Spheres algorithm (RWFS). The original differential boundary value problem is equivalently

reformulated in the form of a system of integral equations defined on the intersection surfaces (arches,

in 2D, and caps, if generalized to 3D spheres). To solve the obtained system of integral equations, a

Random Walk procedure is constructed where the random walks are living on the intersection surfaces.

Since the discs (spheres) are fixed, it is convenient to construct also discrete random walk methods for

solving the system of linear equations approximating the system of integral equations.

In [20] we have concluded that in the case of classical potential theory, the Random Walk on Fixed

Spheres considerably improves the convergence rate of the standard Random Walk on Spheres method.

More interesting, we succeeded there to extend the algorithm to the system of Lamé equations which

cannot be solved by the conventional Random Walk on Spheres method. Therefore, we are able to use

this method in our numerical analysis of the Lamé equation with random loads. The 2D vector random

load is assumed to be incompressible, isotropic and Gaussian, with a given form of the spectral tensor

which in the studied case is uniquely defined by one scalar function, the energy spectrum. To simulate

this vector random field we apply the Randomization Spectral Method presented in details in our recent

paper [8].

The paper is organized as follows. In section 2, we present shortly the Random Walk on Fixed Spheres

algorithm: in section 2.1 we give the integral formulation of the Lamé equation, and in section 2.2 we

describe a discrete approximation of the given integral equations and mention two stochastic methods

based on Random Walk algorithms for solving linear systems. This material can be found in more details

in our previous paper [20].

In this paper we deal with random loads, so a generalization of Random Walk on Fixed Spheres algorithm

to the Lamé equation with non-zero body forces is needed which is done in section 2.3. Here we present

in details a Direct and Adjoint stochastic algorithms.

In section 3 we describe the random loads, and the Randomization Spectral method for simulation these

vector random fields. Section 4 deals with an alternative method of calculation of the correlation tensor

of the solution of Lamé equation based on its closed representation in the form of an iterated integral

Green formula. The relevant boundary value problem for the correlation tensor is also derived.

Numerical results are presented in section 5. In section 5.1 we test the random field simulation method

by comparing calculations with exact results. The Random Walk on Fixed Spheres method for the case

of non-zero body forces is tested in section 5.2 by solving a test problem with known exact solution. The

main numerical results are presented in section 5.3 where we give the results of numerical calculations

of the longitudinal and transverse correlations of the displacement vector under random loads.
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Figure 1: Two overlapping discs illustrating the main notations.

2. The system of Lamé equations

In this section we extend the Random Walk on Fixed Spheres (RWFS) algorithm described in our pre-

vious paper [20] to the Lamé equation with non-zero body forces. To make the presentation closed, we

first describe shortly the method for the case of zero body forces.

2.1 Homogeneous case: zero body forces

In [20], we developed a Random Walk on Fixed Spheres algorithm for a special class of 2D domains

consisting of a set of overlapped discs. The main idea of the method can be explained for the simplest

case, when the domain consists of two overlapping discs.

Let us consider a finite two-dimensional elastic body D which consists of two overlapping discs K(x(1)
0 , R1)

and K(x(2)
0 , R2) centered at O1 = x(1)

0 and O2 = x(2)
0 (see Figure 1):

D = K(x(1)
0 , R1)∪K(x(2)

0 , R2); K(x(1)
0 , R1)∩K(x(2)

0 , R2) �= /0 . (2.1)

We denote by γ2 the part of the circle S(x(1)
0 , R1) = ∂K(x(1)

0 , R1) which belongs to the second disc while

Γ1 is the part of the circle S(x(1)
0 , R1) not belonging to the second disc; analogously γ1 and Γ2 are defined.

So the boundary of the domain D consists of Γ1 and Γ2, and γ = γ1 ∪ γ2 is the phase space of the integral

equation to be constructed. We also introduce angles θ∗1 and θ∗2 so that 2θ∗1 is the angle of view of the arc

γ2 from the centre of the first circle, and 2θ∗2 is the angle of view of the arc γ1 from the centre of the

second circle as shown in Figure 1.

Let D be a homogeneous isotropic elastic body with a boundary Γ = ∂D whose state in the absence of
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body forces is governed by the classical static elasticity equation, the Lamé equation, (e.g., see [18]):

Δu(x)+ αgraddiv u(x) = 0, x ∈ D, (2.2)

where u(x) = (u1(x1,x2),u2(x1,x2)) is a vector of displacements, whose components are real-valued

regular functions. The elastic constant α

α =
λ+ µ

µ

is expressed through the Lamé constants of elasticity λ and µ. It can be expressed through the Poisson

ratio ν = λ/2(λ + µ) as follows: α = 1/(1− 2ν). The Poisson ratio characterizes the relative amount

of the change of the transverse to longitudinal displacements. It is known that due to thermodynamical

reasons ν is bounded between −1 ≤ ν < 0.5. This implies for α: 1/3 ≤ α < ∞. So there are materials

with negative values of ν (α varies in 1/3 ≤ α ≤ 1), and materials with ν ≈ 0.5. The last case is very

difficult for conventional numerical methods.

The first boundary value problem for the Lamé equation consists in finding a vector function u∈C2(D)∩
C(D̄) satisfying the boundary condition

u(y) = g(y), y∈Γ (2.3)

where g ∈C(Γ) is a given vector-function.

Let us consider an arbitrary point x = (x1,x2) with polar coordinates (r,ϕ′) inside a disc K(x0,R) centered

at x0 = (x01,x02). The point y = (y1,y2) situated on the circle S(x0,R) has the coordinates (R,θ), where

θ = ϕ′ + β, and z is defined by z = y− x, β is the angle between the vectors x and y; ψ is the angle

between x and z. Define also the angle ϕ by ϕ = ϕ′ + ψ. The following statement given in [18] is a

generalization of the Poisson formula:

Theorem 2.1. The solution to the equation (2.2) satisfies the following spherical mean value relation, x

being an arbitrary point in K(x0,R):

ui(x) =
R2 −|x−x0|2

2πR

2

∑
j=1

Z

S(x0,R)

bi j(x,y)uj(y)
|x−y|2 dSy , i = 1,2, (2.4)

where bi j are functions of x,y, explicitly represented as the entries of the following matrix

B(x,y) =
α

α+ 2

⎛
⎜⎝

2
α + 2cos2 ϕ+ |x−y|

R cos (θ+ ϕ) 2cos ϕsinϕ+ |x−y|
R sin(θ+ ϕ)

2cos ϕsinϕ+ |x−y|
R sin(θ+ ϕ) 2

α + 2sin2 ϕ− |x−y|
R cos (θ+ ϕ) .

⎞
⎟⎠

Since by definition we have

cosθ =
y1 − x01

R
, sin θ =

y2 − x02

R
, cosϕ =

y1 − x1

|x−y| , sinϕ =
y2 − x2

|x−y| ,

we get for bi j = bi j(x,y), i, j = 1,2:
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b11 = 1+
α

α+ 2

[
(y1 − x1)2 − (y2 − x2)2

|x−y|2 +
(y1 − x1)(y1 − x01)− (y2 − x2)(y2 − x02)

R2

]
,

b22 = 1− α
α+ 2

[
(y1 − x1)2 − (y2 − x2)2

|x−y|2 − (y1 − x1)(y1 − x01)− (y2 − x2)(y2 − x02)
R2

]
,

b12 = b21 =
α

α+ 2

[
2

(y1 − x1)(y2 − x2)
|x−y|2 +

(y2 − x2)(y1 − x01)+ (y1 − x1)(y2 − x02)
R2

]
.

Let us define a function for points x in the first disc K(x(1)
0 , R1)

pR1(y;x) =
R2

1 −|x−x(1)
0 |2

2πR1
· 1
|x−y|2 . (2.5)

We note that pR1(x,y) is a probability density function of the variable y ∈ S(x(1)
0 , R1), for all x ∈

K(x(1)
0 , R1); sampling algorithm from this density is described in [6] and in a bit different form in [19].

Analogously, pR2(y;x) is defined for points x in the second disc K(x(2)
0 , R2).

In the notation of pR1(y;x), the relation (2.4) written for the points x in the first disc reads in the matrix

form:

u(x) =
Z

S(x(1)
0 ,R1)

pR1(y;x)B(x,y)u(y)dS(y) . (2.6)

Taking analogous representation for points of the second disc, we arrive at a system of 4 integral equa-

tions defined on the arches γ1 and γ2. Indeed, using the notations v(1)
1 (x) = u1(x) and v(2)

1 (x) = u2(x) for

x ∈ γ1, and v(1)
2 (x) = u1(x) and v(2)

2 (x) = u2(x) for x ∈ γ2 we get

v = Gv+ F, (2.7)

or, in more details, ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v(1)
1

v(2)
1

v(1)
2

v(2)
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 B11 B12

0 0 B21 B22

B̂11 B̂12 0 0

B̂21 B̂22 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v(1)
1

v(2)
1

v(1)
2

v(2)
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (1)
1

f (2)
1

f (1)
2

f (2)
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.8)

where the integral operators Bi j, i, j = 1,2 are defined, according to (2.4), for the points of the first disc

x ∈ K(x(1)
0 ,R1):

Bi j v( j)
2 (x) =

Z

γ2

pR1(y;x)bi j(x,y)v( j)
2 (y)dS(y), i, j = 1,2 ,

while the integral operators B̂i j, i, j = 1,2 are defined for the points of the second disc

x ∈ K(x(2)
0 ,R2):

B̂i j v( j)
1 (x) =

Z

γ1

pR2(y;x)bi j(x,y)v( j)
1 (y)dS(y), i, j = 1,2 .
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The functions f j
i are defined analogously:

f ( j)
i (x) =

2

∑
k=1

Z

Γi

pRi(y;x)bjk(x,y)gk(y)dS(y), i, j = 1,2 .

It should be noted that the equivalence of the system (2.8) and the boundary value problem (2.2), (2.3) is

not evident, in contrast to the case of the Laplace equation. Indeed, the L1-norm of the integral operator

G is generally larger than 1, so we have to use finer properties. Indeed, let us estimate the L1-norm. In

[20] we derived the following estimation

‖G‖L1 ≤
2+ 4

√
2α

α+ 2

(
1− θ∗1

π
− θ∗2

π

)
(2.9)

where θ∗1 and θ∗2 are the view angles defined above.

This estimation shows that ‖G‖L1 can be made less than 1 for a fixed value of α by a proper choice of

θ∗1, θ∗2 which would imply a restriction of the overlapping configuration. To be free of such a restriction,

the spectral radius should be estimated. In [20] we have used the result obtained by S.L. Sobolev [21] to

prove the following statement.

Theorem 2.2. The integral operator G of the system (2.8) is a Fredholm operator with kernels continuous

on x ∈ γ1 and y ∈ γ2, with the same type of singularities at the points of intersections of the arches γ1

and γ2 as the singularities in the case of Laplace equation (α = 0): p(y;x) � sin (θ∗1+θ∗2)
π |x−y| as x → y. The

spectral radius of G is less than 1 for any nonempty overlapping, which ensures the equivalence of the

system (2.8) and the boundary value problem (2.2), (2.3).

This result implies that: (1), instead of the original boundary value problem, we can solve the equivalent

integral equation (2.8), and (2), the Fredholm integral equation (2.8) can be approximated by a system

of linear algebraic equations.

2.2 Approximation by a system of linear algebraic equations

Let us approximate the system of integral equations (2.8) by a system of linear algebraic equations. We

choose a set of nodes x1, . . . ,xm1+1 uniformly on the arc γ1 and y1, . . . ,ym2+1 on γ2 generating by the

uniform polar angles distributions (the end points are included). These meshes subdivide γ1 and γ2 in the

set of arches γ(i)
1 , i = 1, . . . ,m1 and γ(i)

2 , i = 1, . . . ,m2, respectively. Of course, the nodes can be chosen

not uniformly, say, according to some distribution which generates the nodes more densely around the

singular points where the arches do intersect.

Since the Poisson kernel p(y;x) has a singularity, it is convenient to take the approximation in the form:
Z

γ1

pR2(x;yk)bi j(yk,x)v( j)
2 (x)dSx =

m1+1

∑
i=1

p(1)
i (xi,yk)bi j(yk,xi)v2(xi), k = 2, . . . ,m2,

and analogously,
Z

γ2

pR1(x
′;xk)bi j(xk,x′)v

( j)
1 (x′)dSx′ =

m2+1

∑
i=1

p(2)
i (yi,xk)bi j(xk,yi)v1(yi), k = 2, . . . ,m1,

6



where

p(1)
i (xi,yk) =

Z

γ(i)
1

pR2(y;yk)dSy , p(2)
i (yi,xk) =

Z

γ(i)
2

pR1(x
′;xk)dSx′ . (2.10)

These coefficients can be evaluated explicitly, see [20]. The same approximation is used to calculate the

right-hand side vector in (2.8) F = ( f (1)
1 , f (2)

1 , f (1)
2 , f (2)

2 )T in all grid points on Γ = Γ1 ∪Γ2.

Thus we come to a discrete approximation of the system of integral equations (2.8) in the form of the

following system of linear algebraic equations:

w(k) =
m1+m2

∑
i=1

aik w(k) + F(k), k = 1, . . . ,m1 + m2 , (2.11)

or in a matrix form w = Aw + F̂.

Here the column-vector w = (w(1)
1 ,w(2)

1 ,w(1)
2 ,w(2)

2 )T consists of four column-vectors which are the rel-

evant approximations of the solution v = (v(1)
1 ,v(2)

1 ,v(1)
2 ,v(2)

2 )T . The same for the vector-function F and

vector F̂.

Note that the matrix A is a square 2×2-block-matrix, it consists of zero diagonal blocks, and rectangular

blocks A12 and A21 relating the vectors (w(1)
1 ,w(2)

1 )T and (w(1)
2 ,w(2)

2 )T .

The linear system (2.11) can be solved numerically, by an iteration method, or even by a direct inversion

if the number of nodes on the arches is not too large. In [20], for a class of so-called DS2-domains we

developed an iteration procedure based on the SOR method, which converges much faster than the stan-

dard simple iterations. Based on this procedure, we constructed a Random Walk algorithm for solving

(2.11) which converges very fast.

Let us shortly describe the SOR procedure. Let L and U be the left- and right triangular matrices of the

matrix A. Since the diagonal blocks of A are zero blocks, we have A = L +U . Let ω be an arbitrary

parameter of the SOR method, then by simple transformations we arrive at the following equivalent form

of the equation (2.11):

w = Tωw + d

where

Tω = (I −ωL)−1[(1−ω)I + ωU
]
w,

and d = ω(I −ωL)−1F̂. We use here the notation I for the identity matrix.

Since however for the DS2-domains (our two overlapping discs belong to this class) we have the follow-

ing remarkable property: (I−ωL)−1 = (I + ωL), the new transition matrix is given explicitly by

Tω = (I + ωL)
[
(1−ω)I + ωU

]
,

and the right-hand side d = ω(I + ωL)F̂.

There are explicitly given relations between the eigenvalues of matrices A and Tω, see [12], [20]. As

to the convergence of the Random Walk algorithms, we illustrate it by the comparison of spectral radii

for the matrices A and T = Tω=1. Note that to have finite variance, these algorithms require also that

ρ(A2/p) < 1 for the standard Random Walk method, and ρ(T 2/p) < 1 for the SOR based Random Walk

7
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Figure 2: The spectral radii of the SOR operator T , and T 2/p, and for the simple iteration operator A

and A2/p, as functions of θ∗, for two overlapping discs of unit radii. The Lamé equation with α = 2.5.

algorithm. In Figure 2 we show all these spectral radii as functions of θ∗ = θ∗1 + θ∗2 which characterizes

the amount of overlapping of our two discs. It is seen that the standard Random Walk method can be

applied only for relative large overlappings while the SOR based Random Walk algorithm converges for

arbitrary overlappings, and moreover, the convergence is much faster.

Finally we note that our system of linear equations gives the solution only for the points on the arches

γ1 and γ2. For any other points, the solutions is obtained from the spherical mean representation formula

(2.4) in the relevant disc.

2.3 Lamé equation with non-zero body forces

Now we extend the method to the case when there are body forces. The state of the body with fixed

boundary is then governed by the following inhomogeneous Lamé equation

Δu(x)+ αgraddiv u(x)+ f(x) = 0, x ∈ D, u|Γ = 0. (2.12)

Here f(x) = g(x)/µ where g(x) describes the body forces.

The solution to the problem (2.12) can be represented through the solution of the problem (2.2). Indeed,

u(x) =
Z

D

G(x,y)f(y)dy . (2.13)

We take the Green tensor G(x,y) in the form

G(x,y) = Γ(x−y)+W(x,y) (2.14)

8



where the tensor Γ(x−y) is the fundamental solution of the Lamé equation which in 2D case is given by

[3]

Γ(x−y) =
1

8π

[
(ᾱ log |x−y|) I− β̄

|x−y|2 Qxy

]
. (2.15)

Here Qxy is a 2D-matrix with the entries Qi j = (xi − yi)(x j − y j), i, j = 1,2, I is an identity matrix, and

the constants ᾱ, β̄ are expressed through the constant α as follows:

ᾱ =
1+ α

0.5+ α
, β̄ =

α
0.5+ α

.

Let us introduce some notations. Let L = Δ + αgraddiv be the Lamé operator which is defined in (2.12

) as a differential operator acting on a column-vector function u(x). If W (x) is a 2× 2-matrix with the

first column W(1) and second column W(2), then we define LW (x) as a matrix whose first column is

LW(1)(x), and the second column is LW(2)(x). Analogously we define an “adjoint” operator L̂ which

acts on the rows of W , which actually implies that L̂W (x) = LW T (x).

Let us now consider the column-vectors consisting of the relevant entries of the matrices Γ and W in

(2.14): Γ(i) = (Γi1,Γi2)T , and W(i) = (Wi1,Wi2)T , i = 1,2.

From (2.14) it follows that the vector functions W(i)(x,y), i = 1,2 solve the following pair of boundary

value problems:

ΔW(i)(x,y)+αgrad div W(i)(x,y) = 0, x ∈ D, W(i)(x,y)|x→z∈∂D =−Γ(i)(z−y), i = 1,2 . (2.16)

The integral representation (2.13) can be very conveniently used for the Monte Carlo calculations. Let

us describe the method which we call a Double Randomization technique (for details, see [16]).

First, we rewrite the integral (2.13) in the form of an expectation. To this end, we introduce in the domain

D an arbitrary probability density function π(y) satisfying the condition that π(y) �= 0 for all points y ∈ D

where G(x,y)f(y) �= 0.

In particular, we could choose a uniform density so that the samples ỹ from π(y) are uniformly distributed

in D.

Let us denote by Eπ the expectation taken according to the distribution density π(y). Then (2.13) can be

written as follows

u(x) =
Z

D

G(x,y)f(y)
π(y)

π(y)dy = Eπ

[
G(x, ỹ)f(ỹ)

π(ỹ)

]
(2.17)

where the points ỹ are sampled in D from the density π(y). In view of (2.14) we get

u(x) = Eπ

[{
Γ(x− ỹ)+W(x, ỹ)

} f(ỹ)
π(ỹ)

]
(2.18)

where the entries of the matrix W (x,y) solve the boundary value problem (2.16). This problem is solved

by our Random Walk Method which conveniently finds the solutions on the arches γ1 and γ2 without

calculating the solution in the whole domain. We can use this feature to construct very efficient method

based on the representation (2.18) rewritten as follows. Indeed, using the spherical mean representation
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(2.4) for the vector functions W(i) defined in (2.16) and assuming they are already found on the arches

γ1 and γ2 we arrive at the following probabilistic representation

u(x) = Eπ

[{
Γ(x− ỹ)−〈 B(x, z̃)Γ(z̃− ỹ) | ỹ 〉z̃∈Γi

+ 〈 B(x, z̃)W (z̃, ỹ) | ỹ〉z̃∈γ j

} f(ỹ)
π(ỹ)

]
. (2.19)

Here the conditional expectation 〈B(x, z̃)Γ(z̃− ỹ) | ỹ〉z̃ is taken according to a distribution of random

points z̃ on the relevant circle, the distribution density being p(z;x) under the condition that the random

point ỹ (sampled in D from π(y)) is fixed: so if ỹ ∈ K(Oi,Ri), then the sampled random point z̃ lies on

the circle S(Oi,Ri), i = 1,2.

Let us rewrite (2.19) in a form more convenient for practical calculations:

u(x) = Eπ

[{
Γ(x− ỹ)+ 〈 B(x, z̃)V (z̃, ỹ) | ỹ〉z̃∈S(Oi,Ri)

} f(ỹ)
π(ỹ)

]
(2.20)

where the matrix V (x, z̃) equals to −Γ(z̃− ỹ) if the sampled point z̃ lies on the external boundaries Γ1 or

Γ2; if z̃ ∈ γ, then the matrix V (x, z̃) is set to be the known values of W (z̃− ỹ) calculated by the Random

Walk algorithm as explained above.

Note that the points z̃ can be sampled uniformly on the circles, then, instead of (2.20), the representation

has the form

u(x) = Eπ

[{
Γ(x− ỹ)+ 〈 2π p(z̃;x)B(x, z̃)V (z̃, ỹ) | ỹ〉z̃∈S(Oi,Ri)

} f(ỹ)
π(ỹ)

]
. (2.21)

It is clear that for calculations, (2.20) is more attractive, since the singularity of the integral equation is

here included into the density p(z;x); in addition, the simulation algorithm according to this density is

very simple and efficient (see [19]). However in some cases, it is desirable to use a distribution which is

the same for all points x, like the uniform distribution in (2.21).

Thus, let us describe a direct randomized calculation of the expectations in (2.20), which gives an ap-

proximate value of u(x) at a fixed point x.

A direct randomized evaluation of the expectations in (2.20) can be designed in a form of a simple and

efficient algorithm which we call here Direct algorithm. To present it in a detailed scheme, we first write

down a Direct unbiased estimator:

ξ(x, ỹ, z̃) =
[

Γ(x− ỹ)+ B(x, z̃)V (z̃, ỹ)
] f(ỹ)

π(ỹ)
(2.22)

where

V (z̃, ỹ) =

⎧⎨
⎩ −Γ(z̃− ỹ) i f ∈ Γi,

W (z̃, ỹ), i f ∈ γi (i = 1,2) .
(2.23)

So if we now assume that W (z̃, ỹ) is known on γ1 and γ2, then in view of (2.20) we conclude that the

estimator (2.22) is unbiased:

u(x) = Eỹ,z̃ ξ(x, ỹ, z̃) .

The entries of W (z̃, ỹ) solve the problem (2.16), hence they can be precalculated on γ as mentioned above,

by solving the linear algebraic equation (2.11) which approximates the integral equation (2.8). To solve
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(2.11), one of the following methods can be used: (1) SOR method, (2) direct inversion of the matrix A,

(3) a SOR based Random Walk as described in [20]. We note that (1) and (2) give the solution at the grid

points on γ = γ1 ∪ γ2 while the method (3) gives the solution at an arbitrary fixed point on γ. Clearly, all

these three methods produce a bias in the estimator ξ. This bias can be made smaller by increasing the

number of nodes on γ in the methods (1) and (2), or by increasing the number of Random Walks in the

method 3.

Thus assuming that W (z̃, ỹ) is calculated by one of these three methods described in [20], we present the

Direct algorithm as follows:

Direct algorithm.

0. Put the initial score as zero: Ξ(x) = 0.

1. Sample a random point ỹ in our domain D according to a density π(y) (say, uniformly in D), and

suppose the sampled point lies in the disc K(Oi,Ri) (i = 1,2).

2. On the circle S(Oi,Ri) one samples a random point z̃ according to the density pRi(z;x).

3. If the sampled point z̃ belongs to the external boundary, i.e., if z̃ ∈ Γi, then calculate

ξ(x, ỹ, z̃) =
[

Γ(x− ỹ)−B(x, z̃)Γ(z̃− ỹ)
] f(ỹ)

π(ỹ)
. (2.24)

If z̃ ∈ γ, then Γ(z̃− ỹ) should be replaced in (2.24) with −W (z̃, ỹ) precalculated as described above. Note

that when applying for this purpose the Random Walk method, we can replace W (z̃, ỹ) by the relevant

random estimator along one path of the Random Walk.

4. Ξ(x) := Ξ(x)+ ξ(x, ỹ, z̃)/N .

5. Repeating the steps 1-4 N times, N sufficiently large, we get the approximate solution as u(x) ≈ Ξ(x).

Note that in this algorithm we actually have to resolve the homogeneous boundary value problem (2.16

) for N different boundary functions −Γ(z− ỹ j), j = 1, . . . ,N. Hence if N is large, it may be time

consuming. But to achieve high accuracy, N should be large enough.

To improve the efficiency, we use the symmetry property of the Green tensor G(x,y) in accordance with

the so-called global Monte Carlo algorithm given in [16]. The symmetry property G(x,y) = GT (y,x)
implies that the evaluation of W (i)(x,y), i = 1,2 at the point x considered as the solution of the boundary

value problem (2.16) with boundary function −Γ(i)(·,y) (i = 1,2, y fixed ) is equivalent to evaluation of

W (i)(x,y), i = 1,2 in point y with the boundary function −Γ(i)(x, ·) (i = 1,2, x fixed).

In this method, when calculating the Green function G(x,y) in many points ỹ j, j = 1, . . . ,N we have to

solve only one boundary value problem with the boundary function −Γ(i)(x, ·) (i = 1,2, x fixed) but the

solution is to be calculated in many points ỹ j, j = 1, . . . ,N.

Formally written this means, we have to get the solution in ỹ j, j = 1, . . . ,N of the following two (i = 1,2)

boundary value problems (differential operators do here act on the variable y, while x is fixed)

ΔyW(i)(y,x)+ αgrad div W(i)(y,x) = 0, x ∈ D, W(i)(y,x)|y→z∈∂D = −Γ(i)(z,x) . (2.25)

Hence, we can write down an unbiased adjoint estimator.
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Adjoint estimator

η(x, ỹ, z̃) =
[

Γ(x− ỹ)+ B(y, z̃)V (z̃,x)
] f(ỹ)

π(ỹ)
(2.26)

where

V (z̃,x) =

⎧⎨
⎩−Γ(z̃−x) i f ∈ Γi,

W (z̃,x), i f ∈ γi (i = 1,2) .
(2.27)

From this we arrive at the adjoint algorithm.

Adjoint algorithm.

0. Put the initial score as zero: Ξ∗(x) = 0.

1. The same as in the Direct algorithm, sample a random point ỹ in our domain D according to a density

π(y) and suppose the sampled point lies in the disc K(Oi,Ri) (i = 1,2).

2. For this value of ỹ, one samples on the circle S(Oi,Ri) a random point z̃ according to the density

pRi(z; ỹ).

3. If the sampled point z̃ belongs to the external boundary, i.e., if z̃ ∈ Γi, then calculate

η(x, ỹ, z̃) =
[

Γ(x− ỹ)−B(ỹ, z̃)Γ(z̃−x)
] f(ỹ)

π(ỹ)
. (2.28)

If z̃∈ γi, then Γ(z̃−x) should be replaced in (2.28) with −W (z̃,x) precalculated as described above. Here

too, when applying for this purpose the Random Walk method, we can replace W (z̃,x) by the relevant

random estimator along one path of the Random Walk.

4. Ξ∗(x) := Ξ∗(x)+ η(x, ỹ, z̃)/N .

5. Repeating the steps 1-4 N times, N sufficiently large, we get the approximate solution as u(x)≈Ξ∗(x).

The main difference between the direct and adjoint algorithms can be explained as follows. In the direct

algorithm, the solution at a point x is obtained as an average over N solutions of N boundary value

problems with N random boundary functions Γ(z̃− ỹ) generated by N random points ỹ sampled in D,

evaluated at the fixed point x. In the adjoint algorithm, a solution of only one boundary value problem

with boundary function Γ(z̃−x) is calculated, but for N random points ỹ sampled in D with the density

π(y), and then one takes the spatial average over these N points.

Note that if we consider the Green tensor G(x,y) = Γ(x,y) +W (x,y) (as well as the direct estima-

tor ξ(x, ỹ, ·)) as a random field generated by the random boundary function −Γ(z− y) (in turn, gener-

ated by the distribution π(y)) then this field obeys an ergodic property in the sense that the average of

G(x,y) f (y)/π(y) over the ensemble of boundary functions Γ(z̃− ỹ) evaluated at a fixed point x equals

the average of G(y,x) f (y)/π(y) taken over spatial points y distributed in D with the density π(y).

Remark. The Adjoint algorithm is obviously efficient if the number of points x where the solution is

calculated is not large, say, it is desired to calculate the solution in several fixed points. This is the

case, when one calculates correlation functions along a chosen direction, for instance as in our case, the

longitudinal and transverse correlation functions.

The Direct algorithm is more efficient if the number of points where the solution is constructed is large

while the volume forces f are concentrated in a small subregion of D, or they are presented as a set of
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point sources.

This is a general heuristic comparative characteristics of the two methods. To compare their efficiencies,

one needs also to compare the costs of calculations of the direct and adjoint estimators, and their vari-

ances. Indeed, assume the variance of the adjoint estimator (2.26) is much larger than that of (2.22) due

to larger dispersion of the solution in the domain compared to the variance of the boundary functions.

This may discard the advantages of the adjoint method.

3. Random load fields

The random loads f(x) are considered as an isotropic vector gaussian random field with a given spectral

tensor Si j(k) defined as a Fourier transform of the correlation tensor Bi j(r)

Si j(k) =
1

(2π)2

Z

R2

Bi j(r)e−i(r·k)dr, i = 1,2 , (3.1)

hence

Bi j(r) =< fi(x) f j(x+ r) >=
Z

R2

Si j(k)ei(r·k)dk . (3.2)

The spectral tensor of the isotropic random field f(x) has the following general structure [10]:

Si j(k) = [SLL(k)−SNN(k)]
kik j

k2 + SNN(k)δi j , k = |k| . (3.3)

Here SLL and SNN are longitudinal and transversal spectra, respectively. We consider incompressible

random field f(x), for which div f(x) = 0. In this case, SLL(k) = 0 and Si j(k) = SNN(k)P(k), where

P(k) = (δi j − kik j

k2 ) is a projection tensor with δi j defined as the usual Kronecker delta symbol. Then

SNN(k) = E(k)/(2πk) , (3.4)

where E(k) is an energy spectrum. We choose

E(k) = σ2 2
√

L√
π

e−Lk2
, k = |k| ,

here L is a positive parameter, characterizing the correlation length.

For modelling the random field f(x), the Randomization spectral method for gaussian fields with given

energy spectrum E(k) can be applied. We use the following simulation formulae for the incompressible

random vector field [16]:

f(x) ≈ fm(x) =
σ√
m

m

∑
l=1

P(kl)
[
ξl cos(kl ·x)+ ηl sin(kl ·x)

]
, (3.5)

where σ2 =
R ∞

0 E(k)dk, k j = k j ω j, k j are independent random wave numbers are sampled according

to the density p = E(k)/σ2, and ωl , l = 1, . . . ,m is a family of mutually independent random vectors

distributed uniformly on the unit sphere in 2D; ξl, ηl l = 1, . . . ,m, are standard gaussian random vectors

mutually independent and independent of kl .
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To test the code written according the simulation procedure (3.5) described above we calculated the

correlation tensor Bi j. Since we deal with the isotropic case, the correlation tensor is defined uniquely

by two scalar functions, namely BLL and BNN , the longitudinal and transverse correlation functions,

respectively.

Bi j(r) = [BLL(r)−BNN(r)]
rir j

r2 + BNN(r)δi j , r = |r| . (3.6)

So it is enough to calculate the correlation tensor as a function of r1, for r2 = 0. Due to (3.6), along

the axes r1 the vectors f1 and f2 are uncorrelated, so we calculate the functions Bii(r1) = 〈 fi(0) fi(r1)〉,
i = 1,2. These functions can be evaluated explicitly.

Indeed, from (3.2), (3.3), and (3.4) we obtain after some evaluations of standard integrals (e.g., see [5])

Bi j(r1) =
Z

IR

Z

IR

Si j(k)ei(r·k)dk

=
σ2

√
L

π
√

π

∞Z

0

e−Lk2
dk

2πZ

0

eikr1 cos(ϕ)

(
sin2(ϕ) −cos(ϕ)sin(ϕ)

−cos(ϕ)sin(ϕ) cos2(ϕ)

)
dϕ

=
σ2

2
e−r2

1/8L

(
I0(r2

1/8L)+ I1(r2
1/8L) 0

0 I0(r2
1/8L)− I1(r2

1/8L)

)
(3.7)

where I0, I1 are the modified Bessel functions of the first kind.

Note that (3.7) does not imply that the correlation tensor Bi j is diagonal; it is diagonal only along the

chosen direction x = r1. From (3.6) and (3.7), B11 = BLL, B22 = BNN , so we will also call B11 and B22

longitudinal and transverse correlation functions, respectively. Note that BLL(0) = BNN(0) = 〈| f |2〉/2 in

accordance with the theory of isotropic random fields [23].

4. Random Walk methods and Double Randomization

Assume we have to solve a PDE which includes a random field σ, say in the right-hand side, in coeffi-

cients, or in the boundary conditions:

Lu(x,σ) = f (x,σ), u|Γ = uγ .

To solve this problem directly by constructing the ensemble of solutions via conventional numerical

methods like finite elements or finite difference schemes is a hard task, which is not realistic for most

practical problems. If however one of the Random Walk Methods can be applied, then a technique we

call a Double Randomization Method is very useful. Let us describe it shortly.

Suppose we have constructed a stochastic method for solving this problem, for a fixed sample of σ. This

implies, e.g., that an unbiased random estimator ξ(x|σ) is defined so that for a fixed σ,

u(x,σ) = 〈ξ(x|σ)〉

where 〈·〉 stands for averaging over the random trajectories of the stochastic method (e.g., a diffusion

process, a Random Walk on Spheres, or a Random Walk on Boundary, e.g., see [16]).
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Let us denote by Eσ the average over the distribution of σ.

The double randomization method is based on the equality:

Eσ u(x,σ) = Eσ〈ξ(x|σ)〉 .

The algorithm for evaluation of Eσ u(x,σ) then reads:

1. Choose a sample of the random field σ.

2. Construct a sample of the random walk along which the random estimator ξ(x|σ) is calculated.

3. Repeat 1. and 2. N times, and take the arithmetic mean.

Suppose one needs to evaluate the covariance of the solution. Let us denote the random trajectory by ω.

It is not difficult to show [16] that

〈u(x,σ)u(y,σ)〉 = E(ω1,ω2,σ)[ξω1(x|σ)ξω2(y|σ)] .

The algorithm for calculation of 〈u(x,σ)u(y,σ)〉 follows from this relation:

1. Choose a sample of the random field σ.

2. Having fixed this sample, construct two conditionally independent trajectories ω1 and ω2, starting at

x and y, respectively, and evaluate ξω1(x|σ)ξω2(y|σ)

3. Repeat 1. and 2. N times, and take the arithmetic mean.

Remark. Note that for the correlation function we can derive a closed equation. Indeed, assume that we

have a linear scalar PDE with random right-hand side and zero boundary values

Lu = f , x ∈ D, u|Γ = 0,

where the random field f (not necessarily homogeneous) has B f (x,y) as its correlation function.

The solution u can be represented through the Green formula

u(x) =
Z

D

G(x,y) f (y)dy

where G(x,y) is the Green function for the domain D.

Under certain smoothness conditions we can prove that the correlation function of the solution Bu(x,y) =
〈u(x)u(y)〉 and the input correlation function B f (x,y) = 〈 f (x) f (y)〉 are related by the iterated equation

Lx LyBu(x,y) = B f (x,y) (4.8)

with boundary conditions Bu|y∈Γ = 0, LyB(x,y)|x∈Γ = 0. Here Lx implies that the operator L acts with

respect to the variable x, for fixed y.
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This can be derived as follows. First, starting from the definition Bu(x,y) = 〈u(x)u(y)〉 we use the above

Green formula to evaluate this product for the points x and y, and change the product of integrals by the

double integrals over the domain D; then we take the expectation under the double integral sign. This

leads us to the representation

Bu(x,y) = 〈u(x)u(y)〉 =
Z

D

Z

D

G(x,y′)G(y,y′′)B f (y′,y′′)〉dy′dy′′ . (4.9)

It now remains to notice that the same expression is obtained by applying the Green formula successively

to the iterated equation (4.8).

These arguments work only in the case of scalar equations, e.g., in the case of Laplace operator L = Δ,

the boundary value problem (4.8) is

Δx ΔyBu(x,y) = B f (x,y)

with boundary conditions Bu|y∈Γ = 0, ΔyB(x,y)|x∈Γ = 0.

For systems of PDEs the relevant expressions are more complicated. Let us consider our system of Lamé

equations (2.12). In the notations used in (2.12)-(2.15) we consider the correlation tensor of the solution

B(u)(x,y) = 〈u(x)uT (y)〉, and the correlation tensor of the body forces B( f )(x,y) = 〈f(x)fT (y)〉. Let

L = Δ+αgraddiv be the Lamé operator. In accordance with (2.25), the Lamé operator L acts on a matrix

W column-wise. This means, the matrix equation LW = B (B is a matrix) is a pair of Lamé equations

written for the relevant first and second columns of matrices W and B.

Now we are in a position to present the generalization of (4.9) to the system of Lamé equations. Analo-

gously to the derivation of (4.9), after direct evaluations we arrive at

B(u)(x,y) =
Z

D

Z

D

G(x,y′)B( f )(y′,y′′)GT (y,y′′)dy′dy′′ . (4.10)

It is also possible to write down a differential relation between the input matrix B( f )(y′,y′′) and the

correlation matrix of the solution B(u)(x,y). Indeed, introduce a tensor V (x,y), and write the following

system of coupled systems

Lx B(u)(x,y) = V T (x,y), B(u)(x,y)|x∈Γ = 0,

LyV (x,y) = [B( f )(x,y)]T , V (x,y)|y∈Γ = 0 . (4.11)

To prove that (4.10) solves the system (4.11), it is enough to notice that the representation (4.10) can be

obtained by a successive application of the Green formula representation of the solutions to (4.11).

The system of equations (4.11) can be written as one system of 4-th order. Indeed, using the definition

L̂V = LV T we apply the operator L̂y to both sides of the first equation in (4.11). This yields

L̂yLx B(u)(x,y) = [B( f )(x,y)]T

with boundary conditions

B(u)(x,y)|x∈Γ = 0, Lx B(u)(x,y)|y∈Γ = 0 .
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Figure 3: Transverse and longitudinal correlations: L = 0.2 (left panel), and L = 1 (right panel).

In both cases, σ = 1, the number of harmonics m = 100, and N = 105 samples of random loads

5. Simulation Results

In this section we present the results of numerical experiments, and start with testing the used simulation

procedure based on the Randomized spectral method.

5.1 Testing the simulation procedure for random loads

Now we can compare the results obtained by direct Monte Carlo calculations based on simulation for-

mula (3.5) with the explicit functions (3.7). In Figure 3 we present the transverse and longitudinal

correlations obtained by using 105 samples (circles) compared with the exact values evaluated by (3.7)

(solid lines). It is seen that the accuracy is very high so that the calculated and exact results are practically

coincident in these figures. Thus the simulation formula (3.5) with the chosen number of harmonics is

accurate enough to use it in our numerical calculations.

5.2 Testing the Random Walk algorithm for non-zero body forces

To test the Random Walk algorithm described above in section 2.3 we solved the inhomogeneous problem

(2.12) for two overlapped discs of unit radii, with the body force function with components

f1(x1,x2) = 16(x2
1 + x2

2 − x1)−4+ α(12x2
1 + 4x2

2 −12x1 −2), f2(x1,x2) = 4αx2(2x1 −1) ,

the exact solution being u1 = (x2
1 + x2

2)((x1 −1)2 + x2
2 −1), u2 = 0.

In Figure 4 we compare the function u1 obtained by the Random Walk algorithm against the exact results.

The errors are less than 2.5%.
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the exact result (solid line); α = 2, the number of points sampled in the domain: N = 100000. Maximal

error less than 2.5%.

5.3 Calculation of correlations for the displacement vector

The calculations were carried out for the two equal overlapped discs of radius R = 1; the first disc is

centered at zero (0,0), the second disc is centered at the point (1,0). Thus the longitudinal coordinate

x = r1 varies from x = −1 to x = 2. In the numerical experiments we calculated the transverse and

longitudinal correlations of the displacement vector between the point x0 = −0.5 and the current point

x varying between −0.5 and 1.9. The elastic constant µ was set to 1, so the calculations were made for

different values of α = λ+ 1.

The random loads f1 and f2 (having zero mean values) were simulated by (3.5), with the intensity of

fluctuations σ = 1, and different correlation length L. Note that L = 1 implies that the loads are strongly

correlated since the radii of the discs are equal to 1, while L = 0.001 corresponds to an approximation of

Gaussian white noise. The cases L = 0.1−0.5 are intermediate. In all calculations, we used the Adjoint

algorithm.

In Figure 5 we present the transverse and longitudinal correlations for the displacement vector, normal-

ized by the variance at the point x0 = −0.5:

B(u)
11 (x) =

〈u1(x0)u1(x)〉
〈u2

1(x0)〉
(5.12)

for the longitudinal correlation, and

B(u)
22 (x) =

〈u2(x0)u2(x)〉
〈u2

2(x0)〉
(5.13)
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Figure 5: Transverse and longitudinal correlations: L = 0.1 (left panel), and L = 1 (right panel). In both

cases, σ = 1, the number of harmonics m = 100, and N = 105 samples of random loads

for the transverse correlations.

It is seen from Figure 5 (right panel) that in the case when the correlation length is L = 1, the longitudinal

correlation function has one maximum at a position about x = 0.55, and the transverse correlation func-

tion is positive. For L = 0.1 (left panel) this function becomes negative after x = 1.4, while the maximum

of the longitudinal correlation function is attained at x ≈ 0.4. Note that for larger value of L (equal to

0.5) the negative part disappears (see Figure 6, left panel), while for small values of L (equal to 0.001)

the negative part begins already after x = 0.2 (right panel). It should be noted that in the latter case we

have taken α = 10 which also makes a considerable contribution to the increasing of the negative part of

the transverse correlations. Indeed, for comparison, we present in Figure 7 the case of small correlation

(L = 0.001) for α = 2 (left panel) and α = 100 (right panel) which clearly shows when compared to the

figures in the right panel of Figure 6 that the larger the value of α, the larger the negative part of the

transverse correlations.

Comparison of the direct Monte Carlo with a method based on the representation (4.10)

To test our method which we used to get the results presented in Figures (5)-(7) we compared it with the

method based on the representation (4.10) and described above in section 4. In Figure 8, we compare

the longitudinal and transverse correlations obtained by these two methods: the solid lines are the results

obtained by the direct Monte Carlo algorithm, dots are the results obtained by the method of section 4.

The difference between the results is less than 1% .

We also applied these two methods for calculation of the mean displacements under the same random

loads f1 and f2 but having non-zero mean values: the curves of mean displacements presented in the left

panel of Figure 9 correspond to the mean loads 〈 f1〉 = 1, 〈 f2〉 = 1, while the curves in the right panel

were obtained for 〈 f1〉= 1, 〈 f2〉= 0. Note that in the latter case, the mean value of the second component

is zero along the axis x1. The results are in a good agreement, and the relatively large difference in the
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Figure 6: Transverse and longitudinal correlations: L = 0.5 (left panel), and L = 0.001 (right panel). In

both cases, σ = 1, the number of harmonics m = 100, and N = 105 samples of random loads
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Figure 7: The same as in Figure 6, but for L = 0.001 (left panel), and α = 100 (right panel).

transverse curves (right panel) can be decreased by increasing the number of trials.

The presented correlation functions can be informative enough to solve an inverse problem of finding the

elastic constant α assuming the relevant correlations are known. In Figure 10 we show the longitudinal

and transverse correlation functions for two values of α: α = 1 and α = 2 (left panel), and α = 10

and α = 11 (right panel). It seen from the curves of the left panel, that the longitudinal correlation

function as almost unchanged, while the transverse correlation function is informative enough to see a

clear difference between the cases α = 1 and α = 2. For larger values of α the longitudinal correlation

function is more informative (see the right panel) but the difference between α = 10 and α = 11 is

smaller. Note that this sensitivity analysis is made for the case of “white noise”, i.e., when L = 0.001.

We have repeated these calculations changing the value of L as L = 1, see the results in Figure 11. It is

seen that this leads to more expressed difference of curves for different values of α with the exception

that the longitudinal correlation functions for α = 10 and α = 11 almost coincide.
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Figure 8: Comparison of direct Monte Carlo calculations (solid lines) with the results obtained by a nu-

merical solution of the equation governing the correlation functions (dots) . The errors in calculations

were everywhere less than 1%.
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Figure 9: The vector of mean displacements. Left panel: dots - solution of the deterministic equation

for the mean displacements under the mean loads f1 = 1, f2 = 1; solid lines - the mean displacements

obtained by numerical simulation, for random loads with the same mean loads and gaussian fluctuations

with L = 1, σ = 1. Right panel: the same as in left panel, but for the mean loads f1 = 1, f2 = 0; in this

case the second component (u2) is zero along the axis x1 (not shown).

21



−0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

α=1

α=2

Longitudinal corr. B(u)
11

(x)

Transverse corr.B(u)
22

(x)

σ=1, L=0.001

x −0.5 0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

α=10

α=11

x

σ=1, L=0.001

Longitudinal corr. B(u)
11

(x)

Transverse corr.B(u)
22

(x)

Figure 10: Sensitivity to the elasticity constant α: the correlation functions for α = 1 (solid line) and

α = 2 (dots) are shown in left panel, and the case α = 10 and α = 11 is presented in the right panel.
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is presented in the right panel.
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6. Conclusion and discussion

A stochastic simulation method for a numerical solution of the Lamé equation with random loads is

suggested. To treat the general case of large intensity of random loads, we extend the Random Walk on

Fixed Spheres (RWFS) method described in our paper [20] to non-zero body forces. The vector random

field of loads is simulated by the Randomization Spectral method which takes explicitly into account the

divergenceless and isotropy of the gaussian random loads. Comparative analysis of RWFS method and

an alternative direct evaluation of the correlation tensor of the solution is made. We derive also a closed

boundary value problem for the correlation tensor of the solution which is also applicable in the case of

inhomogeneous random loads. Calculations of the longitudinal and transverse correlations are presented

for a domain which is a union of two arbitrarily overlapped discs. Sensitivity calculation show that an

inverse problem of determination of the elastic constants from the known longitudinal and transverse

correlations of the loads can be solved by the suggested method. The algorithm and the calculations are

given for a domain which is a union of two overlapping discs. However the method and the codes we

have written are working for 2D domains consisting of a set of overlapping discs. It should be mentioned

that for a special class of domains (the so-called DS2 domains, see [20]) the method is especially efficient.

The method suggested can be generalized to (1) elasticity problems with other boundary conditions, (2)

elasticity problems with random boundary functions, (3) problems with random elastic constants, (4)

external boundary value problems. These problems are studied in our future paper.
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