
Weierstraß-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 – 8633

Transition between Airy1 and Airy2 processes and

TASEP fluctuations

Alexei Borodin1, Patrik L. Ferrari2,

Tomohiro Sasamoto3

submitted: March 12, 2007

1 California Institute of Technology

Mathematics 253-37

Pasadena, CA 91125, USA

E-mail: borodin@caltech.edu

2 Weierstraß-Institut

für Angewandte Analysis und Stochastik

Mohrenstraße 39

10117 Berlin, Germany

E-mail: ferrari@wias-berlin.de

3 Department of Mathematics and Informatics

Faculty of Science

Chiba University

1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan

E-mail: sasamoto@math.s.chiba-u.ac.jp

No. 1214

Berlin 2007

2000 Mathematics Subject Classification. 82C22, 60K35, 15A52.

Key words and phrases. Simple exclusion process, universality, KPZ class, Airy process, ran-

dom matrices.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
D — 10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

We consider the totally asymmetric simple exclusion process, a model in

the KPZ universality class. We focus on the fluctuations of particle positions

starting with certain deterministic initial conditions. For large time t, one

has regions with constant and linearly decreasing density. The fluctuations on

these two regions are given by the Airy1 and Airy2 processes, whose one-point

distributions are the GOE and GUE Tracy-Widom distributions of random

matrix theory. In this paper we analyze the transition region between these

two regimes and obtain the transition process. Its one-point distribution is a

new interpolation between GOE and GUE edge distributions.

1 Introduction

In the search of universal limit distribution functions and limit processes, we consider
the KPZ universality class (KPZ for Kardar-Parisi-Zhang) originally introduced for
stochastic growth models [13]. For growth in 1+1 dimensions the scaling exponents
of fluctuations, 1/3, and correlations, 2/3, can be (non rigorously) determined by
some involved arguments, see e.g. [16] for an extended discussion. However, to get
more insights into the limit laws and limit processes, one is led to consider solvable
models in the universality class.

One such model is the polynuclear growth (PNG) model in discrete time, which
has two interesting limits, where new processes have been discovered. The first
limit is the continuous time PNG model, for which it has been shown that the
surface growing in a droplet shape is, in the large time limit, governed by the Airy2

process [20]. The second one is the totally asymmetric simple exclusion process
(TASEP), in which quite recently the limit process of the particles positions starting
from a periodic initial conditions has been unravelled and called Airy1 process [2,21].
In the surface growth picture this corresponds to the flat initial conditions.

If xk(t) denotes the position of particle with label k, one of the usual geometric
representation of the TASEP in terms of surface growth is obtained by the graph
{(k, xk(t) + k)}, see Figure 1 (right) and also e.g. [5]. By universality it is expected
that the limit process in one-dimensional KPZ growth is the Airy2 process for the
curved regions of the limit shape, and the Airy1 process for the flat parts. However
initial conditions can easily generate limit shapes which have both curved and flat
regions. Therefore there exist transition regions where the limit shape smoothly
changes between curved and flat.

The novelty of this paper is the analysis of this transition region in the framework
of the TASEP. The observables we consider are positions of several particles at time
t. In [10], step-initial conditions (particles starting from Z−) have been considered
from the perspective of a growth model and it was proved that the Airy2 process
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Figure 1: Left: the density ρ for large time t is linearly decreasing from (0, 1/2) to
(t, 0). Right: The limit shape in an associated growth, obtained from the density
(k ∈ N is the label of the particle which starts at −2k and xk(t) is its position at
time t).

appears in the large time limit. In [1, 2] we considered periodic initial conditions
(particles starting from dZ, d = 2, 3, . . .) and obtained the Airy1 process as the limit
process.

To obtain both regimes and the transition region, we consider in this paper particles
starting from 2Z− as in [21]. There are four regions of interest as illustrated in
Figure 1 (left).

(1) Constant density region. The limit process of particle positions is given by
the Airy1 process A1. In particular, the one-point distribution is F1(2

2/3s), with F1

being the GOE Tracy-Widom distribution.

(2) Linearly decreasing density region. The limit process is the Airy2 process
A2, which has F2(s) as one-point distribution, with F2 being the GUE Tracy-Widom
distribution.

(3) Finite distance from the right-most particle. There the particle positions
are described via the GUE-minor kernel [12]. In particular, the n-th right-most
particle is distributed as the largest eigenvalue of the n-particle GUE ensemble.

(4) The transition region between (1) and (2). The fluctuations are governed
by a new process obtained in this paper: the transition process Airy2→1, which we
denote A2→1. In particular, the one-point distribution interpolates between F2(s)
and F1(2

2/3s) and the transition region has width which scales in time as t2/3.

The analysis is done by using the framework of signed determinantal point processes
introduced in [2]. This new approach allows us to analyze all four regions for our
initial conditions. This is contrasted to the previously used determinantal point
process issued by the RSK construction, by which only the step initial condition or
its variants could be analyzed [3,4,6,8–10,20,22]. We explain how the analysis has
to be done for all 4 cases, but the complete asymptotic analysis is presented only for
the transition region, the technically most difficult one, and the really new result of
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this paper. The result is a process, A2→1, interpolating between the Airy2 and the
Airy1 processes. For more details about the Airy processes, see the review [5].

The transition we discovered is not the first one between some GUE and GOE type
distributions, but it seems to be different from the one previously known for random
matrices, non-colliding Brownian motions with open boundary condition and so
on [7,14,19,22]. The main differences are the following. On the natural scale of the
problems considered, the final distribution is F1(2

2/3s) for our case and F1(s) in the
previous case. Secondly, in the previous case, the GOE-type distribution appears
at a single point, while in our case, the GOE-type distribution is on an extended
region. Moreover, our transition smoothly interpolates between F2(s) and F1(2

2/3s),
which is not the case for the other transition. In principle, we can not however yet
exclude that by a change of variable, with both the rescaling of fluctuations and
spatial correlations, the two transitions map one to the other.

Outline. In Section 2 we define the model we analyze and state the results. In
Section 3 we explain the finite time result and set the scaling limit. In Section 4 we
do the complete asymptotic analysis for the transition region and in Section 5 we
explain how to do the analysis for the other cases. Finally, we present an explicit
form of the transition kernel in terms of Airy functions in Appendix A and we
explain the correctness of the Fredholm determinants involved in B.
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2 Model and results

In this paper we consider the continuous-time totally asymmetric simple exclusion
process (TASEP) on Z. At any given time t, every site j ∈ Z can be occupied
at most by one particle. Thus a configuration of the TASEP can be described by
η = {ηj, j ∈ Z|ηj ∈ {0, 1}} ∈ Ω = {0, 1}Z. ηj is called the occupation variable of
site j, which is defined by ηj = 1 if site j is occupied and ηj = 0 if site j is empty.

The dynamics of the TASEP is defined as follows. Particles jump on the neighboring
right site with rate 1 provided that the site is empty. This means that jumps are
independent of each other and are performed after an exponential waiting time with
mean 1. More precisely, let f : Ω → R be a function depending only on a finite
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number of ηj’s. Then the backward generator of the TASEP is given by

Lf(η) =
∑

j∈Z ηj(1 − ηj+1)
(
f(ηj,j+1) − f(η)

)
. (2.1)

Here ηj,j+1 denotes the configuration η with the occupations at sites j and j + 1 in-
terchanged. The semigroup eLt is well-defined as acting on bounded and continuous
functions on Ω. eLt is the transition probability of the TASEP [18].

We denote by xk(t) the position of the particle number k at time t. As initial
condition we consider particles starting from 2Z−, i.e., xk(0) = −2k for k = 1, 2, . . ..
On the macroscopic level, the limit particle density u(ξ) is given by

u(ξ) =
d

dξ
lim
t→∞

1

t
E
(
#(k : xk(t) ≥ ξt)

)
=





1/2, ξ < 0,
1/2 − ξ/2, ξ ∈ [0, 1],
0, ξ > 1.

(2.2)

Thus for large time t the expected number of particle at site x, ρ(x), is close to
u(x/t), see Figure 1.

As observables we consider the positions of finite subsets of particles, {xi(t), i ∈ I}
for some I ⊂ N, |I| < ∞. The scaling limits we have to take depend on which of the
four regions described in the Introduction we focus on, see also Figure 1. The main
result of this paper is the description of the large time fluctuations in the transition
region, which now we describe.

(4) Transition region: the A2→1 process

The transition region has width of order t2/3, which is indicated by the fact that the
index of the particles which at time t are around x = 0 fluctuates on the t2/3 scale
around the macroscopic value t/4. Therefore we set

n(τ, t) = [t/4 + τ(t/2)2/3]. (2.3)

The density (2.2) changes in the transition region. The limit density can be used
to determine, on the macroscopic scale, the expected location at time t of a particle
with index n(a) = [t/4 + at] (of course a ≥ −1/4). The result is then

lim
t→∞

xn(a)

t
=

{
1 −

√
1 + 4a, a ∈ [−1/4, 0],

−2a, a ≥ 0.
(2.4)

By using (2.4) with at = τ(t/2)2/3 we are led to define the rescaled process of particle
positions by

τ 7→ Xt(τ) =
xn(τ,t)(t) − (−2τ(t/2)2/3 + min{0, τ}2(t/2)1/3)

−(t/2)1/3
. (2.5)

The main result of this paper is the convergence of Xt(τ) to the transition process
A2→1 defined below.
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Figure 2: An illustration of the paths γ+ and γ− in Definition 1.

Definition 1 (The Airy2→1 process). Let us set

s̃i =

{
si, τi ≥ 0,
si − τ 2

i , τi ≤ 0.
(2.6)

and define the transition kernel

K∞(τ1, s1; τ2, s2) = − 1√
4π(τ2 − τ1)

exp

(
−(s̃2 − s̃1)

2

4(τ2 − τ1)

)1(τ2 > τ1)

+
1

(2πi)2

∫

γ+

dw

∫

γ
−

dz
ew3/3+τ2w2−s̃2w

ez3/3+τ1z2−s̃1z

2w

(z − w)(z + w)
(2.7)

with the paths γ+, γ− satisfying −γ+ ⊂ γ− with γ+ : eiφ+∞ → e−iφ+∞,
γ− : e−iφ

−∞ → eiφ
−∞ for some φ+ ∈ (π/3, π/2), φ− ∈ (π/2, π−φ+), see Figure 2.

The Airy2→1 process, A2→1, is the process with m-point joint distributions at τ1 <
τ2 < . . . < τm given by the Fredholm determinantP( m⋂

k=1

{A2→1(τk) ≤ sk}
)

= det(1− χsK∞χs)L2({τ1,...,τm}×R) (2.8)

where χs(τk, x) = 1(x > sk). An explicit expression for K∞ in terms of Airy
functions can be found in Appendix A.

Remarks: A2→1(t+τ) becomes 2−1/3A1(2
2/3τ) as t → ∞ and A2(τ) when t → −∞.

The Fredholm determinant in (2.8) is well defined because, as proven in Proposition 9
of Appendix B, there exists a conjugate kernel of χsK∞χs which is trace-class on
H = L2({τ1, . . . , τm} ×R).

Now we can state precisely our main Theorem.

Theorem 2. The convergence of Xt to the transition process A2→1,

lim
t→∞

Xt(τ) = A2→1(τ), (2.9)

holds in the sense of finite-dimensional distributions.
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A remark on initial conditions. In this work as well as in many of the previous
papers in the field, the situations analyzed with deterministic initial conditions might
look quite peculiar: step-initial conditions [11], periodic with period 2 or more [1,2].
However, it is intuitively clear that small perturbations of the initial conditions do
not affect the large time behavior. This is indeed the case by a coupling argument.

Consider two TASEP initial conditions of N particles, X(0) = {xN (0) < . . . <
x2(0) < x1(0)}, Z(0) = {zN (0) < . . . < z2(0) < z1(0)} with X(0) ≤ Z(0) meaning
xk(0) ≤ zk(0), k = 1, . . . , N . By a standard coupling argument, see e.g. [17], for any
subset I ⊂ {1, . . . , N},P({xi(t) ≤ ai, i ∈ I}) ≥ P({zi(t) ≤ ai, i ∈ I}). (2.10)

We can apply (2.10) to our case to show that the limit result is unchanged if we do
any bounded perturbation of the initial condition. In Theorem 2 we started with
initial conditions xi(0) = −2i. Consider any other initial condition Z = {zi(0)} and
define

M = max{|xi(0) − zi(0)|}. (2.11)

Then, by (2.10), we haveP({xi(t) ≤ ai + M, i ∈ I}) ≥ P({zi(t) ≤ ai, i ∈ I})
≥ P({xi(t) ≤ ai − M, i ∈ I}). (2.12)

In the scaling limit (2.5), the first and last term in (2.12) have the same limit as
t → ∞ as long as limt→∞ M/t1/3 = 0. This holds in particular if Z is any bounded
perturbation of X, i.e., if M < ∞ is independent of t.

For completeness we state the results in the other three regions. In Section 5 we
outline how the asymptotic analysis for the transition region has to be modified in
order to obtain the results. The scaling is obtained using (2.4).

(1) Fixed particle number: GUE(n) minors

Consider particles with index not rescaled in time, i.e.,

n of order one, (2.13)

and the rescaled random variables

Xt(n) =
xn(t) − t

−
√

2t
. (2.14)

Then, in the t → ∞ limit, one gets the GUE-minors(n) given in [12],

lim
t→∞

Xt(n) = GUE-minors(n). (2.15)
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(2) Linearly decreasing density region: Airy2 process, A2

For 0 < α < 1, define
n(τ, t) = [αt/4 + τ(t/2)2/3], (2.16)

and the rescaled process

τ 7→ Xt(τ) =
xn(τ,t)(t) − ((1 −√

α)t − 2τα−1/2(t/2)2/3 + τ 2α−3/2(t/2)1/3)

−(t/2)1/3
. (2.17)

Then in the t → ∞ limit, one gets

lim
t→∞

Xt(τ) =
(2 −√

α)2/3

α1/6
A2(τα2/3(2 −

√
α)1/3). (2.18)

(3) Constant density region: Airy1 process, A1

For α > 1,
n(τ, t) = [αt/4 + τ(t/2)2/3], (2.19)

and the rescaled process variables

τ 7→ Xt(τ) =
xn(τ,t)(t) − ((1 − α)t/2 − 2τ(t/2)2/3)

−(t/2)1/3
. (2.20)

Then in the t → ∞ limit, one gets

lim
t→∞

Xt(τ) = 21/3A1(2
2/3τ). (2.21)

3 Kernel and its scaling limit

In this section we derive the expression of the joint distributions of particle positions
and then set the proper scaling limit.

Consider N particles starting at time t = 0 at positions xk(0) = −2k, k = 1, . . . , N .
In Theorem 2.1 of [2] we proved that the joint distribution of the positions of the
particles are given by a Fredholm determinant. The kernel is determined via a
certain orthogonalization, which for our initial conditions has been made in Lemma
4.1 of [2] (with z = x+2n−2N replaced by z = x+2n). Once the orthogonalization
is made, one can compute the kernel which is (4.11) of [2] (with zi = xi + 2ni − 2N
replaced by zi = xi + 2ni). This is summarized in Proposition 3.

Proposition 3. Let particle with label i start at xi(0) = −2i, i = 1, . . . , N . At time
t, the particles are at positions xi. Let σ(1) < σ(2) < . . . < σ(m) be the indices of
m out of the N particles. The joint distribution of their positions xσ(k)(t) is given
by P( m⋂

k=1

{
xσ(k)(t) ≥ ak

})
= det(1− χaKtχa)ℓ2({σ(1),...,σ(m)}×Z) (3.1)
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where χa(σ(k), x) = 1(x < ak). The kernel Kt is given by

Kt(n1, x1; n2, x2) = −
(

x1 − x2 − 1

n2 − n1 − 1

)1[n2>n1] + K̂t(n1, x1; n2, x2), (3.2)

where

K̂t(n1, x1; n2, x2) =
(−1)n1−n2

(2πi)2

∮

Γ0

dv

∮

Γ
−1

du
e−vt(1 + v)x2+n2

vn2
(3.3)

eutun1

(1 + u)x1+n1+1

1 + 2v

(u − v)(1 + u + v)

where Γ0, resp. Γ−1, is any simple loop, anticlockwise oriented, which includes the
pole at v = 0, resp. u = −1, satisfying −1−Γ0 ⊂ Γ−1, i.e., all the points of −1−Γ0

lie inside the loop Γ−1.

In order to prove Theorem 2, we need to focus at particles with number ni close to
t/4 since these particles will be in the transition region at time t. The transition
region has width which scales as t2/3. The limit density is constant to the left of
the transition region and it is decreasing linearly to the right of it. Therefore, the
scaling limit used to prove the main theorem is

ni = [t/4 + τi(t/2)2/3],

xi = [−2τi(t/2)2/3 − s̃i(t/2)1/3], (3.4)

where

s̃i =

{
si, τi ≥ 0,
si − τ 2

i , τi ≤ 0.
(3.5)

As a consequence the rescaled kernel writes

Kresc
t (τ1, s1; τ2, s2) = Kt(n1, x1; n2, x2)(t/2)1/32x2−x1 (3.6)

where 2x2−x1 is just a conjugation so that the kernel has a proper limit. We denote
by K̂resc

t the term of the rescaled kernel without the binomial contribution, which
then writes

K̂resc
t (τ1, s1; τ2, s2) = (t/2)1/3 1

(2πi)2

∮

Γ0

dv

∮

Γ
−1

du
1 + 2v

(u − v)(1 + u + v)

× exp(tf0(v) + (t/2)2/3τ2f1(v) + (t/2)1/3s̃2f2(v))

exp(tf0(u) + (t/2)2/3τ1f1(u) + (t/2)1/3s̃1f2(u) + f3(u))
, (3.7)

where the functions fi are given by

f0(v) = −v + 1
4
ln((1 + v)/v),

f1(v) = − ln(−4v(1 + v)),

f2(v) = − ln(2(1 + v)),

f3(v) = ln(1 + v). (3.8)

From now on the τi’s are some fixed values. With this preparation we can proceed
to the asymptotic analysis needed to prove Theorem 2.
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4 Asymptotic analysis

Proof of Theorem 2. The proof of Theorem 2 is identical to the one of Theorem 2.5
in [1], provided the following Propositions 4, 5, 6, 7, and 8 (convergence on bounded
sets and large deviations bounds) hold.

Proposition 4 (Uniform convergence on bounded sets). Fix any L > 0 and xi, si

with the scaling (3.4). Then, uniformly for (s1, s2) ∈ [−L, L]2,

lim
t→∞

K̂resc
t (n1, x1; n2, x2) = K̂resc

∞ (τ1, s1; τ2, s2) (4.1)

where

K̂∞(τ1, s1; τ2, s2) =
1

(2πi)2

∫

γ+

dw

∫

γ
−

dz
ew3/3+τ2w2−s̃2w

ez3/3+τ1z2−s̃1z

2w

(z − w)(z + w)
(4.2)

with the paths γ+, γ− satisfying −γ+ ⊂ γ− with γ+ : eiφ+∞ → e−iφ+∞, γ− :
e−iφ

−∞ → eiφ
−∞ for some φ+ ∈ (π/3, π/2), φ− ∈ (π/2, π − φ+).

Proof. The first step is to control the contribution away from the critical point given
by

df0(v)

dv
= − (1 + 2v)2

4v(1 + v)
= 0 ⇐⇒ v = −1/2. (4.3)

If we write v = x + iy, x, y ∈ R, then we can analyze

Re(f0(v) − f0(−1/2)) = −(x + 1/2) + 1
8
ln(((1 + x)2 + y2)/(x2 + y2)). (4.4)

This expression equals zero for
a) x = −1/2, y ∈ R,

b) y = ±g(x), with g(x) =
√

1+2x+x2(1−e8x+4)
e8x+4−1

.

If is easy to see that the solutions ±g(x) are symmetric with respect to v = −1/2
and they go around −1 and 0 once. Moreover, the loops leave the critical point
v = −1/2 in the directions e±iπ/6 and e±i5π/6, see Figure 3. We denote by D1, . . . , D4

the following regions: D1 is the region enclosed by ±g around −1, D2 is the rest
with real part less than −1/2, D4 is the symmetric image w.r.t. −1/2 of D1 and D3

of D2, see Figure 3. Then Γ0 can be chosen to be any simple anticlockwise oriented
finite length path staying in D3 and, similarly, Γ−1 is chosen to stay in D2 (except
at v = −1/2). The constraint −1 − Γ0 ⊂ Γ−1 is easily satisfied except that for Γ0

we have to go through D4 too, very close to v = −1/2. Moreover, we can take Γ0

leaving from −1/2 with an angle between −π/6 and −π/3. Similarly, Γ−1 leaves in
the direction from 2π/3 and 5π/6. This will simplify the argument for moderate
and large deviations.

Let us set Γδ
0 = {v ∈ Γ0, |v + 1/2| ≤ δ} and Γδ

−1 = {u ∈ Γ−1, |u + 1/2| ≤ δ}. Then
the integral is over Γ0 ∪ Γ−1 = Γδ

0 ∪ Γδ
−1 + Σ, where Σ is the rest of the contours.
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y

Figure 3: The signum of Re(f0(x + iy) − f0(−1/2)) is positive in D2 and D4 and
negative in D1 and D3.

Γ−1
−1 − Γ−1

Γ0

π/6

π/6

δt−1/3

Figure 4: The paths Γ0 and Γ−1 close to the critical point −1/2. The dashed lines
are the zeros of Re(f0(x + iy) − f0(−1/2)).

The first step is to bound the integral over Σ. For 0 < δ ≪ 1, we can choose Γ0 and
Γ−1 such that, for (u, v) ∈ Σ, |u − v|/δ and |1 + u + v|/δ are bounded away from

0. Then, on Σ,
∣∣∣ 1+2v
(u−v)(1+u+v)

∣∣∣ ≤ |u − v|−1 + |1 + u + v|−1 = O(1/δ) and, for some

c0 = c0(δ) > 0, Re(f0(v) − f0(−1/2)) ≤ −c0 and/or −Re(f0(u) − f0(−1/2)) ≤ −c0.
Thus, the integral over Σ can be bounded as

c1δ
−1t1/3 exp(−c0t + O(t2/3)) (4.5)

for some c1 > 0. For t large enough, both eO(t2/3) and c1t
1/3 are bounded by e−c0t/4.

Thus, for t large enough, we have the bound
∣∣∣∣
∫∫

Σ

· · ·
∣∣∣∣ ≤ δ−1e−c0t/2. (4.6)
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The second step is to control the integral over Γδ
0 ∪ Γδ

−1. Since δ is small, we can
apply Taylor series expansion on the functions fi defined in (3.8). For this we change
variables by setting

u = −1/2 + U, v = −1/2 + V (4.7)

and we denote γδ
+ = Γδ

0 + 1/2, γδ
− = Γδ

−1 + 1/2. We have

f0 = 1
2

+ iπ
4

+ 4
3
V 3 + O(V 4),

f1 = 4V 2 + O(V 4),

f2 = −2V + O(V 2),

f3 = − ln(2) + O(V ). (4.8)

Therefore the integral over Γδ
0 ∪ Γδ

−1 is given by

(t/2)1/3

(2πi)2

∫

γδ
+

dV

∫

γδ
−

dU
4V

(U − V )(U + V )

e
4

3
tV 3+(t/2)2/3τ24V 2−s̃2(t/2)1/32V

e
4

3
tU3+(t/2)2/3τ14U2−s̃1(t/2)1/32U

× eO(tV 4,t2/3V 4,Lt1/3V 2,tU4,t2/3U4,Lt1/3U2,U)

=
(t/2)1/3

(2πi)2

∫

γδ
+

dV

∫

γδ
−

dU
4V

(U − V )(U + V )

e
4

3
tV 3+(t/2)2/3τ24V 2−s̃2(t/2)1/32V

e
4

3
tU3+(t/2)2/3τ14U2−s̃1(t/2)1/32U

+R. (4.9)

To bound the remainder, R, we use |ex − 1| ≤ |x|e|x| applied to x = O(· · · ). More-
over, note that O(t2/3V 4) is dominated by O(tV 4). Therefore,

|R| ≤ c2t
1/3

∫

γδ
+

dV

∫

γδ
−

dU

∣∣∣∣
4V

(U − V )(U + V )

e
4

3
tV 3+(t/2)2/3τ24V 2−s̃2(t/2)1/32V

e
4

3
tU3+(t/2)2/3τ14U2−s̃1(t/2)1/32U

× eO(tV 4,Lt1/3V 2,tU4,Lt1/3U2,U)O(tV 4, Lt1/3V 2, tU4, Lt1/3U2, U)

∣∣∣∣. (4.10)

At this point we do the change of variables V = w(4t)−1/3 and U = z(4t)−1/3 and
obtain

|R| ≤ c3t
−1/3

∫

(4t)1/3γδ
+

dw

∫

(4t)1/3γδ
−

dz

∣∣∣∣
w

(z − w)(z + w)

ew3/3+τ2w2−s̃2w

ez3/3+τ1z2−s̃1z

× et−1/3O(w4,Lw2,z4,Lz2,z)O(w4, Lw2, z4, Lz2, z)

∣∣∣∣. (4.11)

By choosing δ small enough, we may assume that O(w4t−1/3) ≪ w3, O(zt−1/3) ≪ 1,
and for t large enough O(Lt−1/3) ≪ 1. Therefore, the exponential in the integral
in the w variable can be bounded by | exp(χ0w

3/3 + τ2χ1w
2 − s̃2χ2w)| for some

χ0, χ1, χ2. By choosing δ small enough, the χ’s can be made as close to 1 as desired.
More importantly, for δ small, one has χ0 > 0. Similar for the variable z for some
χ̃k. We have

|R| ≤ c3t
−1/3

∫

(4t)1/3γδ
+

dw

∫

(4t)1/3γδ
−

dz

∣∣∣∣
w

(z − w)(z + w)

eχ0w3/3+τ2χ1w2−s̃2χ2w

eχ̃0z3/3+τ1χ̃1z2−s̃1χ̃2z

× O(w4, Lw2, z4, Lz2, z)

∣∣∣∣. (4.12)
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The integral in (4.12), without the prefactor t−1/3, is uniformly bounded in t. In
fact, the only dependence on t is at the boundaries of the integrals, which are at
δe±iθ+ and δe±iθ

− with θ+ ∈ (π/6, π/3) and θ− ∈ (2π/3, 5π/6). The convergence is
ensured by the fact that Re(w3) = δ3t cos(3θ+), with cos(3θ+) < 0, and Re(−z3) =
−δ3t cos(3θ−), with cos(3θ−) > 0. Thus, the w3 and z3 terms dominate the others at
the boundary of the integrals and this domination becomes stronger while t increases.
The final result is that, we can set δ > 0 small enough and then for t large enough
we have

|R| ≤ c4t
−1/3. (4.13)

The last step is to analyze the first term in r.h.s. of (4.9). One does the same change
of variable as above and gets

1

(2πi)2

∫

(4t)1/3γδ
+

dw

∫

(4t)1/3γδ
−

dz
2w

(z − w)(z + w)

ew3/3+τ2w2−s̃2w

ez3/3+τ1z2−s̃1z
. (4.14)

We can extend the paths to t = ∞ and by doing so we gain the error term of order
O(e−c5δ3t) for some c5 > 0. With this extension the paths satisfy the conditions of
γ+ and γ− of the Proposition.

Just to summarize, the error term we have accumulated during the above procedure
is

O(δ−1e−c0t/2, c4t
−1/3, e−c5δ3t). (4.15)

Proposition 5 (Moderate deviations). For any L large enough, ∃ ε0(L) > 0 and
t0(L) > 0 such that, ∀ 0 < ε ≤ ε0 and t ≥ t0, the estimate

∣∣∣K̂resc
t (τ1, s1; τ2, s2)

∣∣∣ ≤ e−(s1+s2) (4.16)

holds for (s1, s2) ∈ [−L, εt2/3]2 \ [−L, L]2.

Proof. In this proof we introduce the notation, σi = s̃it
−2/32−1/3 ∈ (0, ε], i = 1, 2.

We divide the analysis in the cases s̃1 ≥ s̃2 and s̃1 ≤ s̃2. The strategy is the following.
First, for the case s̃1 ≥ s̃2, we choose the same paths Γ0 and Γ−1 as in Proposition 4
except for a small modification close to v = u = −1/2. We then see that in the
unmodified part of the paths one has the same integral as for the case σ1 = σ2 = 0
times a factor which can be simply bounded and gives the needed decay. Then we
consider the modified parts of the integration paths and see that the integral over
these has also the required decay. Secondly, for the case s̃1 ≤ s̃2, we first modify the
condition of the integral since, otherwise, the optimal paths for the exponential can
not be followed close to the critical points. The modification produces an extra ter
m, a residue, which is a simple integral and it can be bounded in a similar way.

Case σ1 ≤ σ2. The paths Γ0 and Γ−1 as represented in Figure 5.

The modification with respect to the ones in Proposition 4 is just one vertical piece,
given by Γvert = {−1/2 +

√
σ2(1 + iξ)/2, ξ ∈ [−a, a]} for some a ∈ (1/

√
3,
√

3).

12



Γvert

Γ−1

Γ0

−1 0

√
σ2

2

Figure 5: The paths Γ0 and Γ−1 used to obtain the bound in the moderate deviations
regime for σ1 ≤ σ2.

With respect to the case σ1 = σ2 = 0, the integrand in the integral representation
of the kernel K̂resc

t , see (3.7), has the extra factor

exp(−tσ2 ln(2 + 2v)) exp(tσ1 ln(2 + 2u)), (4.17)

whose magnitude is given by

|(4.17)| = exp(−tσ2 ln(2|1 + v|)) exp(tσ1 ln(2|1 + u|)). (4.18)

a) For the term (1 + 2v)/((u− v)(1 + u + v)), we can choose t ≫ 1 such that

dist(Γ0,−1 − Γ−1) =

√
σ2

2
≥

√
L

4t1/3
(4.19)

which is much better than in Proposition 4, where we had, see Figure 4
dist(Γ0,−1 − Γ−1) = δt−1/3. Therefore the term (1 + 2v)/((u − v)(1 + u + v)) does
not create any problems.
b) Similarly, Γ−1 can be chosen such that the maximum of |1 + u|, for u ∈ Γ−1, is
obtained at u = −1/2, thus

etσ1 ln(2|1+u|) ≤ 1. (4.20)

c) Γ0 can be chosen such that the minimum of |1 + v| for v ∈ Γ0 \ Γvert, is obtained
at Γvert for ξ = ±a. A simple computation leads to

e−tσ2 ln(2|1+v|) = e−tσ2 ln(1+
√

σ2+O(σ2)) = e−s̃
3/2

2
(1+O(ε))/

√
2 ≤ e−s̃

3/2

2
/2 (4.21)

for ε small enough.
d) Now we evaluate the integral over Γvert. As considered in the ξ variable, the
prefactor t−1/3 cancels out and ξ varies over an interval of order one. Therefore, to
estimate the integral it is enough to estimate the integrand. Since ε is small, σ2

is small too. Thus, Γvert is very close to −1/2 and we can apply Taylor expansion
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of the integrand. The term with the exponential in the v variable becomes (v =
−1/2 +

√
σ2(1 + iξ)/2)

exp
(
tf0(−1/2)+ 1

6
tσ

3/2
2 (1+iξ)3+τ2(t/2)2/3σ2(1+iξ)2−σ

3/2
2 t(1+iξ)+O(tσ2

2)
)
. (4.22)

By using σ2 = s̃2t
−2/32−1/3 and computing the real values of the exponent, we get

|(4.22)| ≤ exp
(
tf0(−1/2) + s̃

3/2
2 2−1/2(−5

6
− 1

2
ξ2 + O(

√
ε)) + 1

2
τ2s̃2(1 − ξ2)

)
. (4.23)

Here we have s2 ≥ L, thus s̃2 ≥ s2/2 for large L and s̃
3/2
2 ≫ s̃2. Therefore, the

integrand to be studied can be bounded by

etf0(−1/2)e−s̃
3/2

2
/2 (4.24)

for L large enough and ε small enough. The factor etf0(−1/2) is cancelled exactly
with the one coming from the integrand in the u variable.

For the case σ1 = σ2 = 0, the analysis of Proposition 4 leads to the bound on the
kernel K̂resc

t

(4.15) +
1

(2π)2

∫

γ+

dw

∫

γ
−

dz

∣∣∣∣
ew3/3+τ2w2

ez3/3+τ1z2

2w

(z − w)(z + w)

∣∣∣∣ ≤ c6 (4.25)

for some constant c6 > 0, as soon as t is large enough.

Putting together the results of a)-d), the kernel is bounded by c6 times the factor

e−s̃
3/2

2
/2. For L large, s̃2 ≥ L/2 and s̃2 ≥ s2/

√
2, therefore

c6e
−s̃

3/2

2
/2 ≤ c6e

−1
4

√
Ls2 ≤ c6e

−1
8

√
L(s1+s2) ≤ e−(s1+s2) (4.26)

where we used s2 ≥ s1.

Case σ1 ≥ σ2. To obtain the bound for this case, we use a different expression for
the kernel K̂resc

t , namely

K̂resc
t = (t/2)1/3 1

(2πi)2

∮

Γ0

dv

∮

Γ
−1

du
1 + 2v

(u − v)(1 + u + v)
(4.27)

× exp(tf0(v) + (t/2)2/3τ2f1(v) + (t/2)1/3s̃2f2(v))

exp(tf0(u) + (t/2)2/3τ1f1(u) + (t/2)1/3s̃1f2(u) + f3(u))
+ I2,

where

I2 = (t/2)1/3 −1

2πi

∮

Γ0

dvet(f0(v)−f0(−1−v))e(t/2)2/3(τ2f1(v)−τ1f1(−1−v))

× e(t/2)1/3(s̃2f2(v)−s̃1f2(−1−v))e−f3(−1−v), (4.28)

with the constraint Γ−1 ⊂ −Γ0 instead of −Γ0 ⊂ Γ−1. The term I2 comes from the
fact that, for any fixed v, the new constraint on the paths is obtained by deforming
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Γ−1 and during this process one passes via a simple pole at u = −1 − v, whose
residue is I2.

The analysis of the double integral term in (4.27) is the same as in the previous
case, where however (u, s1, τ1) play the role of (v, s2, τ2), so this time it is Γ−1

which is modified instead of Γ0 (symmetrically w.r.t. −1/2). We can then get as in
(4.26) the bound exp(−(s1 + s2))/2 and it remains to prove that I2 is bounded by
exp(−(s1 + s2))/2 too.

Denote h0(v) = f0(v) − f0(−1 − v). It is given by h0(v) = −1 + 2f0(v). Therefore
the regions where sign of Re(h0(v) − h0(−1/2)) is positive and negative are again
the ones of Figure 3. In the case σ1 = σ2 = 0, one can do essentially the asymptotic
analysis made to obtain the estimate on the integral over Γ−1 of Proposition 4 and
we get that the integral is bounded in the t → ∞ limit. The corrections to the limit
expression are of just order O(t−1/3, e−µt), for some µ > 0. But here we are in the
case s1 ∈ [L, εt2/3]. The difference with respect to the case σ1 = σ2 = 0 is a factor
of magnitude

exp(tσ1 ln(2|v|) − tσ2 ln(2|1 + v|)), (4.29)

in the integrand. The Γ0 used for the σ1 = σ2 = 0 asymptotic analysis can be chosen
such that, while going away from the critical point v = −1/2,
a) |v| decreases, thus ln(2|v|) decreases,
b) |1 + v| increases, thus − ln(2|1 + v|) decreases,
take for example −1 − Γ−1 of Figure 5.

Now we use the same trick as above, namely we modify Γ0 only in the neighborhood
of v = −1/2 as in Figure 5 (just this time the distance to v = −1/2 is

√
σ1/2 instead

of
√

σ2/2). We denote Γvert the vertical piece here too. Then, the contribution on
Γ0 \ Γvert carries an extra term (as in (4.21))

e−tσ1 ln(2|1+v|) ≤ e−s̃
3/2

1
/2, (4.30)

for ε small enough. Then, for L large enough, |(4.30)| ≤ −e−c7
√

L(s1+s2) for some
c7 > 0.

For the contribution of the integral over Γvert, we set v = −1/2 + V and do Taylor
expansion. Then set V =

√
σ1(1 + iξ)/2 with ξ ∈ [−a, a], for some a ∈ (1/

√
3,
√

3).
The integral over Γvert is an integral over [−a, a], which writes

(t/2)1/3−1

2π

∫ a

−a

dξ
√

σ1e
tσ

3/2

1
(1+iξ)3(1+O(

√
ε))/3e−(t/2)2/3(τ1−τ2)σ1(1+iξ)2(1+O(ε))

× e−(σ1+σ2)
√

σ1(1+iξ)t(1+O(
√

ε))eO(
√

ε). (4.31)

We then use
a) Re((1 + iξ)3) = 1 − 3ξ2,
b) Re((1 + iξ)2) = 1 − ξ2,
c)

√
σ1t

1/3 ≥
√

L,
d) 2/3 ≤ |1 + O(

√
ε)| ≤ 2, for ε small enough,
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to obtain that |(4.31)| is bounded by

∫ a

−a

dξc8

√
s̃1 exp

(
tσ

3/2
1

(
1
3
− ξ2 − c9(1 − ξ2)/

√
L

))
exp

(
− 2

3
(σ1 + σ2)t

√
σ1

)
. (4.32)

The integral (4.32) is bounded and, for L large enough, the integrand is maximal at
ξ = 0. Thus

(4.32) ≤ c10

√
s̃1 exp

(
1
3
tσ

3/2
1 − c9/

√
L − 2

3
(σ1 + σ2)

√
σ1t

)

≤ exp(−1
6
(σ1 + σ2)

√
σ1t) (4.33)

for L large enough. Reinserting the expressions for σ1 and σ2, we have

|(4.32)| ≤ exp
(
− c10(s̃1 + s̃2)t

√
s̃1

)
≤ exp

(
− c11(s1 + s2)t

√
L

)
(4.34)

for L large enough and some c11 > 0. This bound is good enough to get exp(−(s1 +
s2))/2 as bound for L large enough, ε small enough and t large enough.

Proposition 6 (Large deviations). Set ε > 0, then for t large enough we have

∣∣∣K̂resc
t (τ1, s1; τ2, s2)

∣∣∣ ≤ e−(s1+s2) (4.35)

for (s1, s2) ∈ [−L,∞)2 \ [−L, εt2/3]2.

Proof. One can do large deviations directly, but a shorter way is to use the result
of the moderate deviations. As in the proof of Proposition 5 we use the notation,
σi = s̃it

−2/32−1/3, i = 1, 2.

Case σ1 ≤ σ2. The term linear in t in the exponential is exp(tf0,σ2
(v) − tf0,σ1

(u)),
where f0,σ(v) = f0(v) − σ ln(2 + 2v). To obtain the bound we just remark that

f0,σ2
(v) = f0,ε/2(v) − (σ2 − ε/2) ln(2 + 2v). (4.36)

We take Γ0 to be the one used for moderate deviations with σ2 = ε/2. Γ0 satisfies
|1 + v| ≥ 1/2 +

√
ε/2/2. σ2 ≥ ε implies σ2 − ε/2 ≥ σ2/2. Therefore, for ε small

enough and t large enough,

| exp(−t(σ2−ε/2) ln(2+2v))| ≤ exp(−1
2
tσ2 ln(1+

√
ε/2)) ≤ exp(−c12t

1/3s2). (4.37)

The integral (3.7) with f0(v) = f0,ε/2(v) is finite by the same argument as for the
moderate deviations. The extra factor (4.37) together with s̃2 ≥ (s̃1 + s̃2)/2 leads
to the bound exp(−(s1 + s2)) for t large enough.

Case σ1 ≥ σ2. Using the representation as in the moderate deviation case, we have,
with respect to σ1 = ε/2, the extra factor

exp(1
2
tσ1 ln(1 −

√
ε/2)) ≤ exp(−c13t

1/3s1), (4.38)

from which we get the bound exp(−(s1 + s2)) as before.
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Proposition 7 (Uniform convergence on bounded sets). Fix any L > 0 and xi, si

with the above rescaling. Then, uniformly for (s1, s2) ∈ [−L, L]2,

lim
t→∞

(t/2)1/32x2−x1

(
x1 − x2 − 1

n2 − n1 − 1

)

=
1√

4π(τ2 − τ1)
exp

(
−(s̃2 − s̃1)

2

4(τ2 − τ1)

)1(τ2 > τ1). (4.39)

Proof. It is a special case of the first part of Proposition 5.1 of [1], where p is chosen
such that κ = 2−1/3 and (ri, si) are replaced by (τi, s̃i).

Proposition 8. For any s1, s2 ∈ R and τ2 − τ1 > 0 fixed, the bound

(t/2)1/32x2−x1

(
x1 − x2 − 1

n2 − n1 − 1

)
≤ c12e

−|s̃2−s̃1| (4.40)

holds for t large enough and c12 independent of t.

Proof. It is a special case of the first part of Proposition 5.5 of [1], where p is chosen
such that κ = 2−1/3 and (ri, si) are replaced by (τi, s̃i).

5 About the other three regions

(1) Constant density region.

To obtain the result in the constant density region we consider the scaling

ni = [αt/4 + τi(t/2)2/3],

xi = [(1 − α)t/2 − 2τi(t/2)2/3 − si(t/2)1/3] (5.1)

with α > 1 fixed. The rescaled and conjugate kernel is as before

Kresc
t (τ1, s1; τ2, s2) = Kt(n1, x1; n2, x2)(t/2)1/32x2−x1. (5.2)

The binomial term is easily estimated and controlled. The main term K̂resc
t is given

by the formula (3.7), with s̃i = si, f1, f2, f3 as in (3.8), and the new f0 is

f0(v) = −v +
2 − α

4
ln(1 + v) − α

4
ln(−v). (5.3)

The two critical points v−, v+ of f0 are now distinct, namely
v− = −α/2 < −1/2 = v+. The constraint between the integration paths
−1 − Γ0 ⊂ Γ−1 can not be satisfied if we want to choose Γ0 and Γ−1 opti-
mally, i.e., passing by v+ and v− respectively. For the analysis, one considers
another representation of K̂resc

t , the same used in (4.27). The first term is as before
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but with the constraint Γ−1 ⊂ −1−Γ0 and the second is the residue at u = −1− v,
namely equal to I2 in (4.28).

The first term is now controlled by choosing optimal paths for f0(v) and −f0(u),
which pass by v+ and v− respectively. f0(v+) < f0(v−), thus the first term is of
order O(exp(tf0(v+) − tf0(v−))) = O(e−at) for some a > 0. In particular, for α > 2
the first term vanishes identically (for t large enough), and as α ց 1, the first term
is O(e−t(α−1)3/12).

The second term is just I2, up to some 21/3 factors due to the slightly different
rescaling, the same kernel appearing in (5.5) of [2], where we already proved the
pointwise convergence. The moderate and large deviations are the ones of I2 in
(4.28) analyzed in Propositions 5 and 6. In the t → ∞ limit one then obtains

lim
t→∞

Kresc
t (τ1, s1; τ2, s2) = 2−1/3KA1

(2−2/3τ1, 2
−1/3s1; 2

−2/3τ2, 2
−1/3s2) (5.4)

with KA1
is the kernel of the Airy1 process.

(2) Linearly decreasing density region.

To obtain the result in the linearly decreasing density region we consider the scaling

ni = [αt/4 + τi(t/2)2/3],

xi =

[
(1 −

√
α)t − 2τi√

α
(t/2)2/3 +

τ 2
i

α3/2
(t/2)1/3 − si(t/2)1/3

]
(5.5)

with 0 < α < 1 fixed. The rescaled and conjugate kernel is

Kresc
t (τ1, s1; τ2, s2) = Kt(n1, x1; n2, x2)(t/2)1/3 (

√
α/2)n2−n1

(1 −√
α/2)x2+n2−x1−n1

. (5.6)

The main term of the kernel K̂resc
t writes as (3.7) with s̃i = si − τ 2

i /α3/2, f3 as in
(3.8), and

f0(v) = −v + (1 −
√

α + α/4) ln(1 + v) − (α/4) ln(−v),

f1(v) = (1 − 2/
√

α) ln(1 + v) − ln(−v) + ln(
√

α/2)

−(1 − 2/
√

α) ln(1 −
√

α/2),

f2(v) = − ln(1 + v) + ln(1 −
√

α/2). (5.7)

The function f0(v) has a double critical point at v = −√
α/2. The factor 1+u+v =

1−√
α at the critical point and the paths Γ0 and Γ−1 can be chosen such that 1+u+v

remains uniformly bounded away from 0. The leading term of the integral comes
from the neighborhood of the critical point. There, one applies the following change
of variables,

v = −
√

α

2
+

α1/6(2 −√
α)1/3

22/3t1/3
V, u = −

√
α

2
+

α1/6(2 −√
α)1/3

22/3t1/3
U. (5.8)
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Set Sh = α−2/3(2 −√
α)−1/3 and Sv = α1/6(2 −√

α)−2/3. Then, the leading term in
the main term of the kernel becomes

K̂resc
t (τ1, s1; τ2, s2) ≃

Sv

(2πi)2

∫
dV

∫
dU

1

U − V

eV 3/3+τ2ShV 2−s̃2SvV

eU3/3+τ1ShU2−s̃1SvU
. (5.9)

Thus
Kresc

t (τ1, s1; τ2, s2) → SvKA2
(Shτ1, Svs1; Shτ2, Svs2) (5.10)

as t → ∞. By adequate control for moderate and large deviations, one proves (2.18).

(3) Finite distance from the right-most particle.

From the discussion on the initial condition, in particular from (2.12), it follows that
the asymptotic result is unchanged if one considers step initial conditions instead of
our initial conditions. In [12] the case of step initial conditions was analyzed in a
closely related model (a kind of discrete time TASEP but from the growth point of
view). For step initial conditions, we have

Kt(n1, x1; n2, x2) = −
(

x1 − x2 − 1

n2 − n1 − 1

)1[n2>n1] + K̂t(n1, x1; n2, x2) (5.11)

with

K̂t(n1, x1; n2, x2) =

n2−1∑

k=0

Ψn1

n1−n2+k(x1)Φ
n2

k (x2), (5.12)

where

Ψn
k(x) =

e−ttx+2n

(x + 2n)!
Ck(x + 2n, t), Φn

l (y) = Cl(y + 2n, t), (5.13)

the Ck being the Charlier orthogonal polynomials [15]. This is obtained in the same
way as in Appendix B of [2]. Ψn

k(z) is the same as (B.7) of [2] with z − k replaced
by z = x + 2n, and consequently the matrix Sk,l becomes the identity matrix.

The Charlier polynomials converge to the Hermite polynomials Hk as follows

lim
t→∞

(2t)k/2Ck(t −
√

2tσ, t) = (−1)kHk(−σ) = Hk(σ). (5.14)

The scaling we have to use is

ni, xi = [t −
√

2tsi] (5.15)

and the kernel rescaled as

Kresc
t (n1, s1; n2, s2) =

√
2t

e−s2
2
/2+s2

1
/2

tn2/2−n1/2
Kt(n1, x1; n2, x2). (5.16)

It is easy to see that the binomial contribution converges to

−e(s2
1−s2

2)/22(n2−n1)/2

(n2 − n1 − 1)!
(s2 − s1)

n2−n1−11[s2>s1]. (5.17)
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Also, by (5.14), we have

lim
t→∞

Ψn
k(xi) =

e−s2
i

(2t)k/2
√

2πt
Hk(si), lim

t→∞
Φn

k(xi) =
(t/2)k/2

k!
Hk(si). (5.18)

The kernel is a finite sum, thus

lim
t→∞

K̂resc
t (n1, s1; n2, s2) = e−(s2

1
+s2

2
)/2

−1∑

j=−n2

√
(n1 + j)!

(n2 + j)!
hn2+j(s1)hn1+j(s2) (5.19)

where hk(s) = π−1/4k!−1/22−k/2Hk(s).

(5.17) plus (5.19) gives

lim
t→∞

Kresc
t (n1, s1; n2, s2) = KGUE(n2, s2; n1, s1) (5.20)

with KGUE the kernel defined in Definition 1.2 of [12]. (Here we just order the
entries differently).

A Explicit form of the limit kernel

Transition kernel in terms of Airy functions

Let us denote
s̃i = si − min{0, τi}2, ŝi = si + max{0, τi}2. (A.1)

Then

K∞(τ1, s1; τ2, s2) = K0(τ1, s1; τ2, s2) + K1(τ1, s1; τ2, s2) + K2(τ1, s1; τ2, s2) (A.2)

where

K0(τ1, s1; τ2, s2) = −e
2
3

τ3
2
+τ2s̃2

e
2
3

τ3
1
+τ1s̃1

1√
4π(τ2 − τ1)

exp

(
−(s̃2 − s̃1)

2

4(τ2 − τ1)

)1[τ2>τ1], (A.3)

K2(τ1, s1; τ2, s2) =

∫ ∞

0

dλeλ(τ2−τ1)Ai(ŝ2 + λ)Ai(ŝ1 + λ), (A.4)

and

K1(τ1, s1; τ2, s2) =

∫ ∞

0

dλeλ(τ2+τ1)Ai(ŝ2 + λ)Ai(ŝ1 − λ). (A.5)

Equivalently, one can see that

K1(τ1, s1; τ2, s2) = −
∫ 0

−∞
dλeλ(τ2+τ1)Ai(ŝ2 + λ)Ai(ŝ1 − λ)

+2−1/3Ai
(
2−1/3(s̃1 + s̃2 + 1

2
(τ1 − τ2)

2)
)
e−

1
2
(τ1+τ2)(ŝ2−ŝ1) (A.6)
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B Trace class and transition kernel

Proposition 9. The Fredholm determinant

det(1− χsK∞χs)H, (B.1)

with K∞ given in (2.7) or (A.2)-(A.5), is well defined, because there exists a conju-
gate kernel of χsK∞χs which is trace-class on H = L2({τ1, . . . , τm} ×R).

Proof. In this proof, let us choose a T0 such that −T0 < τ1 < τ2 < . . . < τm < T0.
Denote by Kconj a conjugate of χsK∞χs. Let Pk be the projector onto the space
{f ∈ H|f(τl, x) = 0 for l 6= k} and Kconj

k,l = PkK
conjPl. Then

‖Kconj‖1 ≤
m∑

k,l=1

‖Kconj
k,l ‖1. (B.2)

From (A.2) we have

Kconj
k,l (τk, x; τl, y) = 1[x≥sk]1[y≥sl]

ρ(τk, x)

ρ(τl, y)

∑

n=0,1,2

Kn(τk, x; τl, y) (B.3)

where the conjugation function ρ(τ, x) 6= 0 will be specified later.

The formula defining K0(τk, x; τl, y) is particularly nice in the s̃k = sk − [τk]
2
− vari-

ables (with [x]− = x for x ≤ 0 and 0 otherwise). Thus we use the variables s̃k instead
of sk. This is just a shift of the coordinate at the corresponding “time” τk. Thus,
if we prove that K̃conj

k,l (τk, x; τl, y) = Kconj
k,l (τk, x + [τk]

2
−; τl, y + [τl]

2
−) is trace-class for

all s̃k, k = 1, . . . , m, bounded from below, then Kconj
k,l will also be trace-class for all

sk bounded from below.

Therefore, we now work with the K̃conj kernels and choose the conjugation functions
(ρ̃(τk, x) = ρ(τk, x + [τk]

2
−)) to be

ρ̃(τk, x) = (1 + x2)2keτkx+
2
3

τ3
k . (B.4)

We analyze separately the three parts of the kernel. Let K̃n(τk, x; τl, y) = Kn(τk, x+
[τk]

2
−; τl, y + [τl]

2
−), n = 0, 1, 2.

Part a) K̃0(τk, x; τl, y). We have

K̃0(τk, x; τl, y)
ρ̃(τk, x)

ρ̃(τl, y)
1[x≥s̃k]1[y≥s̃l] (B.5)

= − 1[τl>τk ]√
4π(τl − τk)

1[x≥s̃k]1[y≥s̃l] exp

(
− (y − x)2

4(τl − τk)

)
(1 + x2)2k

(1 + y2)2l
.

In Lemma A.2 of [1], we proved that the operator with above kernel is trace-class
on L2(R). (Recall that τl > τk if and only if l > k).
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Part b) K̃2(τk, x; τl, y). We have

K̃2(τk, x; τl, y)
ρ̃(τk, x)

ρ̃(τl, y)
1[x≥s̃k]1[y≥s̃l] =

∫R dλA1(x, λ)A2(λ, y) (B.6)

with
A1(x, λ) = 1[x≥s̃k]1[λ≥0]ρ̃(τk, x)e−τkλAi(x + λ + τ 2

k ) (B.7)

and

A2(λ, y) = 1[λ≥0]1[y≥s̃l]
eτlλ

ρ̃(τl, y)
Ai(y + λ + τ 2

l ). (B.8)

Then we use ‖A1A2‖1 ≤ ‖A1‖2 ‖A2‖2. Thus we have just to prove that A1 and A2

are Hilbert-Schmidt operators. This is easy to see, since

‖A1‖2
2 =

∫R2

dxdλ|A1(x, λ)|2 (B.9)

=

∫ ∞

s̃k

dx

∫ ∞

0

dλρ̃(τk, x)2e−2τkλ|Ai(x + λ + τ 2
k )|2

≤ C(T0, s̃k) < ∞

because the integrand is bounded, and for large x and λ the decay is super-

exponential due to the Airy function (Ai(z) ≃ e−
2
3

z3/2

for z ≫ 1). Similarly one
shows that ‖A2‖2 < ∞.

Part c) K̃1(τk, x, τl, y). We have

K̃1(τk, x, τl, y)
ρ̃(τk, x)

ρ̃(τl, y)
1[x≥s̃k]1[y≥s̃l] =

∫R dλB1(x, λ)B2(λ, y) (B.10)

with

B1(x, λ) = 1[x≥s̃k]1[λ≥0]e
2
3

τ3
k (1 + x2)2keτkxe3T0λAi(x + λ + τ 2

k ) (B.11)

and

B2(λ, y) = 1[λ≥0]1[y≥s̃l]e
−2

3
τ3
l

1

(1 + y2)2l
f(λ)g(λ, y) (B.12)

with f(λ) = e(τl+τk−2T0)λ and g(λ, y) = e−τlye−T0λAi(y − λ + τ 2
l ).

We need some estimates now. Since τl + τk − 2T0 < 2τm − 2T0, we have

|f(λ)| ≤ e−µλ (B.13)

for µ = 2(T0 − τm) > 0. Moreover,

|g(λ, y)| = e−T0λe−τly|Ai(y + τ 2
l − λ)|. (B.14)

Setting z = y + τ 2
l and c1 = eτ3

l , we get

|g(λ, y)| ≤ c1e
−τlze−T0λ|Ai(z − λ)|. (B.15)
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The first case is z ≤ λ. There, |Ai(z − λ)| ≤ 1, thus

|g(λ, y)| ≤ c2. (B.16)

The second case is z ≥ λ (recall that λ ≥ 0). There

|g(λ, y)| ≤ c1e
T0(z−λ)Ai(z − λ) ≤ c3 (B.17)

because maxx≥0 eT0xAi(x) = c3 < ∞ due to the super-exponential decay of Ai(x)
for large x. Thus by (B.16) and (B.17) we conclude that, for all λ ≥ 0 and y ≥ s̃l,
there exists a constant c4 such that |g(λ, y)| ≤ c4.

The inequality ‖B1‖2 < ∞ is similar to the ‖A1‖2 case (use the decay of the Airy
function). To see that ‖B2‖2 < ∞, we use the bound (B.13) to control the behavior
in λ, |g| is just bounded by a constant and the decay in y is controlled by the
(1 + y2)−2l term.

In parts a), b) and c) we proved that all the kernel elements are trace-class on L2(R)
and this ends the proof of Proposition 9.
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