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Abstra
tOne of the main problems in mathemati
al geneti
s is the inferen
e of evolutionary parameters ofa population (su
h as the mutation rate) based on the observed geneti
 types in a �nite DNA sample.If the population model under 
onsideration is in the domain of attra
tion of a 
lassi
al Fleming-Viotpro
ess, then the standard means to des
ribe the 
orresponding genealogy is Kingman's 
oales
ent.For this pro
ess, powerful inferen
e methods are well-established. An important feature of this
lass of models is, roughly speaking, that the number of o�spring of ea
h individual is small when
ompared to the total population size.Re
ently, more general population models have been studied, in parti
ular in the domain of at-tra
tion of so-
alled generalised Lambda Fleming-Viot pro
esses, as well as their (dual) genealogies,given by the so-
alled Lambda-
oales
ents. Moreover, Eldon & Wakeley (2006) have provided evi-den
e that su
h more general 
oales
ents, whi
h allow multiple 
ollisions, might a
tually be moreadequate to des
ribe real populations with extreme reprodu
tive behaviour, in parti
ular manymarine spe
ies.In this paper, we extend methods of Ethier & Gri�ths (1987) and Gri�ths & Tavaré (1994)to obtain a likelihood based inferen
e method for general Lambda-
oales
ents. In parti
ular, weobtain a method to 
ompute (approximate) likelihood surfa
es for the observed type probabilities ofa given sample. We argue that within the (vast) family of Lambda-
oales
ents, the parametrisablesub-family of Beta(2−α, α)-
oales
ents, where α ∈ (1, 2], are of parti
ular biologi
al relevan
e. Weapply our method in this 
ase to simulated and real data (taken from Árnason (2004)).We 
on
lude that for populations with extreme reprodu
tive behaviour, the Kingman-
oales
entas standard model might have to be repla
ed by more general 
oales
ents, in parti
ular by Beta(2−
α, α)-
oales
ents.1 Introdu
tion1.1 Coales
ent pro
essesFor neutral population models of �xed population size in the domain of attra
tion of the 
lassi
alFleming-Viot pro
ess, su
h as the Wright Fisher model and the Moran model, the genealogy of a�nite sample 
an be des
ribed by the now 
lassi
al Kingman-
oales
ent, whi
h we introdu
e brie�y,followed by the more re
ently dis
overed and mu
h more general Lambda-
oales
ents. For ba
kgroundon Fleming-Viot pro
esses, see e.g. [EK86℄, [D93℄ and [DK99℄.Kingman's 
oales
ent. Let Pn be the set of partitions of {1, . . . , n} and let P denote the setof partitions of N. For ea
h n ∈ N, Kingman [K82℄ introdu
ed the so-
alled n-
oales
ent, whi
his a Pn-valued 
ontinuous time Markov pro
ess {Πn(t), t ≥ 0}, su
h that Πn(0) is the partition of

{1, . . . , n} into singleton blo
k, and then ea
h pair of blo
ks merges at rate one. Given there are bblo
ks at present, this means that the overall rate to see a merger between blo
ks is ( b
2 ). Note thatonly binary mergers are allowed. Kingman [K82℄ also showed that there exists a P-valued Markovpro
ess {Π(t), t ≥ 0}, whi
h is now 
alled the (standard) Kingman-
oales
ent, and whose restri
tion,1



for ea
h n ∈ N, to the �rst n positive integers is the n-
oales
ent. To see this, note that the restri
tionof any n-
oales
ent to {1, . . . ,m}, where 1 ≤ m ≤ n, is an m-
oales
ent. Hen
e the pro
ess 
an be
onstru
ted by an appli
ation of the standard extension theorem.Lambda-
oales
ents. Pitman [P99℄ and Sagitov [S99℄ introdu
ed and dis
ussed 
oales
ents whi
hallow multiple mergers, i.e. more than just two blo
ks may merge at a time. Again, a 
oales
entwith multiple mergers (whi
h will be later 
alled Lambda-
oales
ent) is a P-valued Markov-pro
ess
{Π(t), t ≥ 0}, su
h that for ea
h n, its restri
tion to the �rst n positive integers is a Pn-valued Markovpro
ess (the �n-Lambda-
oales
ent�) with the following transition rates. Whenever there are b blo
ksin the partition at present, ea
h k-tuple of blo
ks (where 2 ≤ k ≤ b ≤ n) is merging to form a singleblo
k at rate λb,k, and no other transitions are possible. The rates λb,k do neither depend on n nor onthe stru
ture of the blo
ks. Pitman showed that in order to be 
onsistent, whi
h means that for all
b, k ≥ 2, b ≥ k,

λb,k = λb+1,k + λb+1,k+1,su
h transition rates must ne
essarily satisfy
λb,k =

∫ 1

0
xk(1 − x)b−k 1

x2
Λ(dx), (1)for some �nite measure Λ on the unit interval. Note that (1) sets up a one-to-one 
orresponden
ebetween 
oales
ents with multiple 
ollisions and �nite measures Λ. Indeed, it is easy to see that the

λb,k determine Λ sin
e they satisfy the 
onditions of Hausdor�'s moment problem, whi
h has a uniquesolution.Due to the restri
tion property, the Lambda-
oales
ent on P, with rates obtained from the measure Λas des
ribed above, 
an be 
onstru
ted from the 
orresponding n-Lambda-
oales
ents via extension.Sometimes, we use the shorthand notation Λ-
oales
ent.Note that the family of Lambda-
oales
ents is rather large, and in parti
ular 
annot be parametrised bya few real variables. Important examples in
lude Λ = δ0 (Kingman's 
oales
ent) and Λ = δ1 (leadingto star-shaped genealogies, i.e. one huge merger into one single blo
k). Later, we will be 
on
ernedwith two important parametri
 sub
lasses of Λ-
oales
ents, namely the so-
alled Beta-
oales
ents,where Λ has a Beta(2 − α,α)-density for some α ∈ (1, 2], and simple linear 
ombinations of atomi
measures of the type Λ = c1δ0 + c2δy for some 
onstants c1, c2 > 0 and y ∈ (0, 1]. To avoid trivialities,we will hen
eforth assume that Λ 6= 0.Remark. An important di�eren
e between the 
lassi
al Kingman-
oales
ent and 
oales
ents whi
hallow for multiple mergers should be pointed out here. Roughly speaking, a Kingman 
oales
ent arisesas limiting genealogy from a so-
alled Cannings population model ([C74℄, [C75℄), if the individualsprodu
e a number of o�spring that is negligible when 
ompared to the total population size (inparti
ular, if the varian
e of the reprodu
tion me
hanism 
onverges to a �nite limit). More general
oales
ents with multiple mergers arise, on
e the o�spring distribution is su
h that a non-negligibleproportion, say x ∈ (0, 1], of the population alive in the next generation goes ba
k to a singlereprodu
tion event from a single an
estor. In this 
ase, x−2Λ(dx) 
an be interpreted as the intensityat whi
h we see su
h proportions x. Pre
ise 
onditions on the underlying Cannings-models and the
lassi�
ation of the 
orresponding limiting genealogies 
an be found in [MS01℄. 22



Remark. In [EW06℄, Eldon and Wakeley assume that there are extreme reprodu
tive events,whi
h a

ount for non-negligible proportions of the population in a single reprodu
tion event,in the population dynami
s of the Pa
i�
 Oyster. In fa
t, many marine spe
ies seem to exhibitsu
h behaviour (see also [A04℄ and [BBB94℄). This will be dis
ussed in more detail in Subse
tion 7.2. 2�Coming down from in�nity� . Not all Lambda-
oales
ents seem to be reasonable models forbiologi
al populations, sin
e some do not allow for a �nite �time to the most re
ent 
ommon an
estor�(TMRCA). This is equivalent with �
oming down from in�nity in �nite time�: it means that, given anyinitial partition in P, and for all ε > 0, the partition Π(ε) a.s. 
onsists of �nitely many blo
ks only.S
hweinsberg [S03℄ proves that if either Λ has an atom at 0 or Λ has no atom at zero and
∞∑

b=2

[ b∑

k=2

(k − 1)

(
b

k

) ∫

[0,1]
xk−2(1 − x)b−kΛ(dx)

]−1

=: λ∗ <∞, (2)then the 
orresponding 
oales
ent does 
ome down from in�nity (and if so, the time to 
ome down toonly one blo
k has �nite expe
tation).An important example for a 
oales
ent, whi
h (only just) does not 
ome down from in�nity is theBolthausen-Sznitman 
oales
ent, where Λ(dx) = dx on [0, 1].Remark. It should be observed that all n-Lambda-
oales
ents (for �nite n) do have an a.s. �nite
TMRCA. 2Examples for 
oales
ents whi
h satisfy (2) are

Λ = c1δ0 + c2δy, c1, c2 ≥ 0, y ∈ (0, 1), c1 + c2 > 0, (3)(hen
e in
luding Kingman's 
oales
ent for c1 = 1, c2 = 0) and the so-
alled Beta(2 − α,α)-
oales
entswith α ∈ (1, 2], where
Λ(dx) =

Γ(2)

Γ(2 − α)Γ(α)
x1−α(1 − x)α−1 dx. (4)Note that the Bolthausen-Sznitman 
oales
ent is the Beta-
oales
ent with α = 1.Remark. It is easy to interpret the behaviour of the population 
orresponding to the 
oales
entasso
iated with (3). The �rst atom stands for a Kingman-
omponent, i.e. essentially reprodu
tionwith �nite varian
e. The se
ond atom says that with rate c2, a single individual 
an produ
e 100×y%of the population 
urrently alive in a single reprodu
tion event. 2Populations with extreme reprodu
tive behaviour. Re
ently, biologists studied the geneti
 vari-ation of 
ertain marine spe
ies with rather extreme reprodu
tive behaviour, see, e.g. Arnason [A04℄(Atlanti
 Cod) and [BBB94℄ (Pa
i�
 Oyster). Eldon and Wakely ([EW06℄) investigated su
h popula-tions and proposed more general 
oales
ents than Kingman's 
oales
ent as models for the genealogyof su
h populations. However, their model remains rather limited (based on the 
oales
ents des
ribedby (3)), and their inferen
e relies on summary statisti
s, in parti
ular segregating sites and singletonpolymorphisms. One 
ritique is that there is no reason why there should be pre
isely one atom tothe right of 0. Still, they 
on
lude that there is eviden
e that more general 
oales
ents need to be
onsidered. They write: 3



�It may be that Kingman's 
oales
ent applies only to a small fra
tion of spe
ies.�In this paper, we propose a new 
andidate as a null-model for the genealogy oft populations withextreme reprodu
tive behaviour and provide some statisti
al eviden
e obtained both from simulatedand real data, namely the Beta(2 − α,α)-
oales
ent for some α ∈ (1, 2], whi
h then needs to beestimated from the data. A large part of what follows will be 
on
erned with the question of how toestimate su
h an α.1.2 Samples under the ∞-many sites modelHere, we intend to give the reader a hint about what the �data� in our in�nitely-many-sites, orshorthand, in�nite-sites, model look like. We will present a rigorous probabilisti
 basis on how su
hdata may arise in the subsequent Se
tion 2. Note that we will not work with original DNA sequen
edata here (i.e. sequen
es of the bases A, T, C, G), but with an extra
t of them, whi
h 
ontains mu
hof the relevant information. The way of how to transform real sequen
e data under the in�nite-sitesmodel into data of the type presented below is, e.g., being dis
ussed in [T01℄.Let n ∈ N be the size of the sample, i.e. the number of sequen
es resp. alleles drawn from a largepopulation. Let i ∈ {1, . . . , n}. Following [EG87℄ (or the overview arti
le [T01℄), we 
onsider the i-thallele in an n-sample under the in�nitely-many-sites model as a �nite sequen
e of positive integers
xi = (xi0, xi1, . . . ), where ea
h xij ∈ N0. It is 
ommon to think of xi0, xi1, . . . as the most re
entlymutated site, the se
ond most re
ently mutated site, et
., although the 
omplete temporal order 
anin general not be re
onstru
ted from the original sequen
e observations (however, this information willlater be fa
tored out by 
onsidering suitable equivalen
e 
lasses, see below). An n-sample therefore
onsists of the sequen
es (x1,x2, . . . ,xn).We assume that the sequen
es follow these rules:1) Coordinates within ea
h sequen
e are distin
t.2) If for some i, i′ ∈ {1, . . . , n} and j, j′ ∈ N0 we have xij = xi′j′ , then

xi,j+k = xi′,j′+k, k = 1, 2, . . .3) There is at least one 
oordinate 
ommon to all n sequen
es.Note that 1) � 3) imply that the observed types form a rooted tree.Example: (taken from [T01℄) A dataset whi
h is 
onsistent with the above rules.allele 1 : (9,7,3,1,0)allele 2 : (3,1,0)allele 3 : (11,6,4,1,0)allele 4 : (8,6,4,1,0)allele 5 : (10,5,2,0) 4



allele 6 : (8,6,4,1,0)allele 7 : (8,6,4,1,0) 2Note that the alleli
 type (8, 6, 4, 1, 0) appears three times, i.e. has multipli
ity 3. For notational
onvenien
e, our sequen
es all end in 0, this re�e
ts the existen
e of a 
ommon �root�. This is a littlemore information than originally 
ontained in the in�nite-sites data, in parti
ular we assume a �knownan
estral type�. The labels of the mutations and the root are by no means required to be de
reasing,this is just suitable 
onvention. We will de�ne an appropriate equivalen
e relation via bije
tions on Nlater.Given a sample of size n, we will now write (t,n) for the set 
onsisting of the set of di�erent types
t = (x1, . . . , xd), d ≤ n, and the multipli
ity ve
tor n. In the above example, we have

(t,n) =
((

(9, 7, 3, 1, 0), (3, 1, 0), (11, 6, 4, 1, 0), (8, 6, 4, 1, 0), (10, 5, 2, 0)
)
, (1, 1, 1, 3, 1)

)

.If we take numbered samples into a

ount, i.e. if we let ai ⊂ {1, . . . , n}, i ∈ {1, . . . , d} denote the setof the numbers of the sequen
es with type xi, then one 
an also 
onsider the set of types and orderedpartitions (t,a), where a = (a1, . . . ad), in the above example given by
(t,a) =

((
(9, 7, 3, 1, 0), (3, 1, 0), (11, 6, 4, 1, 0), (8, 6, 4, 1, 0), (10, 5, 2, 0)

)
,
(
{1}, {2}, {3}, {4, 6, 7}, {5}

))

.The probabilisti
 me
hanism behind these data and the ne
essary equivalen
e relation will be dis
ussedin detail in Se
tion 2.1.3 Re
ursion for the type probabilities under Kingman's 
oales
entIt is in prin
iple possible to 
ompute the exa
t probabilities of a given type 
on�guration (t,n) via are
ursive formula. The following re
ursion is due to Ethier and Gri�ths, see [EG87℄ and [G89℄. Let
p0(t,n) be the probability of the ordered types t with multipli
ities n. Then, using standard 
oales
entarguments, 
onsidering the last event in the 
oales
ent history, it is easy to arrive at the re
ursion

p0(t,n) =
1

nr +
(
n
2

)

∑

k:nk≥2

(
n

2

)
nk − 1

n− 1
p0(t,n − ek)

+
r

nr +
(
n
2

)

∑

k:nk=1,xk0distin
t
s(xk) 6=xj∀j

p0(sk(t),n)

+
r

nr +
(
n
2

)

∑

k:nk=1,

xk0 distin
t ∑

j:s(xk)=xj

(nj + 1)p0(rk(t), rk(n + ej)), (5)where ej denotes the j-th unit ve
tor, sk(t) deletes �rst 
oordinate of the k-th sequen
e in t, s(xk)removes the �rst 
oordinate from the sequen
e xk, rk(t) removes k-th sequen
e from t, and xk0`distin
t' means that xk0 6= xij ,∀(x1, . . . ,xd) and (i, j) 6= (k, 0). We have the boundary 
ondition
p({(0)}, (1)) = 1 for the root.

5



1.4 Inferen
e for Kingman's 
oales
entE�
ient likelihood-based inferen
e methods, some solving the above re
ursion (5) approximately viaMonte Carlo methods, others using MCMC and importan
e sampling, have been developed sin
e thebeginning of the 90ies, see [EG87℄, [GT94a℄, [GT94b℄, [GT94
℄, [GT96b℄, [FKY99℄, [DIG04a℄, [SD00℄).In [SD00℄, Stephens and Donnelly provide proposal distributions for importan
e sampling, whi
h areoptimal in some sense, and 
ompare them to various other methods. Their importan
e sampling s
hemeseems, at present, to be the most e�
ient tool for inferen
e for relatively large datasets.Leaving our rather narrow, in parti
ular neutral, non-spatial and 
onstant-population-size framework,we would like to mention that there are also Kingman-
oales
ent based inferen
e methods for modelswith non-
onstant population size (see, e.g. [KYF95℄, [KYF98℄), spatial stru
ture and migration(e.g. [DIG04b℄) or re
ombination (e.g. [GM96℄), whi
h lead to interesting questions, su
h as how todistinguish between shallow genealogies, whi
h might be the result of a re
ent in
rease in populationsize, or extreme o�spring distributions, whi
h then should be modelled using Lambda-
oales
ents.1.5 Outline of the paperIn Se
tion 2, we present in detail the probabilisti
 neutral 
oales
ent model that gives rise to the dataas presented in Subse
tion 1.2.Se
tion 3 
ontains the re
ursions for the type probabilities assuming a given underlying Λ-
oales
ent-tree. Moreover, introdu
ing the blo
k-
ounting pro
ess {Yt, t ≥ 0} asso
iated with a Λ-
oales
ent, andits time-reversal {Ỹt, t ≥ 0}, we derive a re
ursion for the distribution of the site-frequen
y spe
trum.Note that our inferen
e methods will be fo
used on the in�nite-sites 
ase.In Se
tion 4, we use alternative approa
hes to derive re
ursions also in the �nite- and in�nite-alleles
ases. Indeed, we use Donnelly and Kurtz' [DK99℄ modi�ed lookdown 
onstru
tion, assuming a givenunderlying generalised Λ-Fleming-Viot pro
ess, to obtain a re
ursion for the �nite-alleles model.Moreover, we show that 
al
ulations based on the generator of the population model as in [DIG04a℄also lead to these re
ursions in the �nite-alleles model. Finally, we re
all the re
ursion obtained byMöhle in [M06b℄ for the multipli
ity ve
tor n in the in�nite-alleles model.In Se
tion 5, we derive proposal transitions for a Markov 
hain that we then use to obtain aMonte Carlo s
heme for the type probabilities resp. likelihoods obtained in Se
tion 3 under theLambda-
oales
ent in the in�nite-sites model.In Se
tion 6, we present some likelihood-surfa
es, obtained from our Monte Carlo method whenapplied to simulated and real data. We 
laim that there is eviden
e that populations with extremereprodu
tive behaviour 
ould be better modelled with Beta(2−α,α)-
oales
ents instead of Kingman's
oales
ent.Se
tion 7 
ontains a dis
ussion of the biologi
al and theoreti
al relevan
e of the Beta(2 − α,α)
oales
ent subfamily within the family of Λ-
oales
ents. We argue that they 
ould be used asnull-model in 
ertain situations. We also dis
uss alternative approa
hes to inferen
e questions as6



derived in [EW06℄ and [BBS06℄.Finally, in Se
tion 8 (the Appendix), we present two algorithms to obtain samples of �nite- and in�nitealleles and in�nite-sites data. Furthermore, we in
lude all the original data, 
orresponding genetrees,likelihood-surfa
es and standard deviations that lead to the statisti
al eviden
e in Se
tion 6.A
knowledgementsWe wish to thank Bob Gri�ths for many helpful dis
ussions, Alison Etheridge for providing a stimu-lating environment and Matthias Steinrü
ken for various 
ommments and help with the simulations.2 In�nite sites data and Λ-
oales
ent treesTo obtain an n-sample under the in�nite-sites model from a 
oales
ent tree, we perform the followingprobabilisti
 experiment:(i) Run an n-Λ-
oales
ent. Obtain a rooted 
oales
ent tree.(ii) On this rooted tree with n leaves (numbered from 1 to n), pla
e mutations along the bran
hes atrate r (note that this parameter is 
ustomarily 
alled θ/2).(iii) Label these mutations randomly: Given there are s mutations in total, atta
h randomly (i.e. a
-
ording to the uniform distribution) the labels from 1, . . . , s to these mutations.(iv) Turn this 
oales
ent tree with labelled mutations and numbered leaves into a �genetree� by breakingedges at mutations, resulting in verti
es of degree 2, and then moving the bran
hing pointsinwards until they rea
h the nearest mutation. Ignore the lengths of the edges.(v) A type is the sequen
e of labels of mutations observed following the path ba
kwards from a leafto the root. Enumerate the di�erent types randomly to obtain a set of sequen
es {x1, . . . ,xd},where d ≤ n is the number of di�erent types.(vi) De�ne an equivalen
e relation on the set of types by writing
(x1, . . . ,xd) ∼ (y1, . . . ,yd)if there is a bije
tion ξ : N0 → N0 with yij = ξ(xij), i ∈ 1, . . . , d; j = 0, 1, . . . . Under �∼�, the
on
rete labels of mutations are irrelevant. Note that in what follows, we suppress the distin
tionbetween su
h an equivalen
e 
lass, denoted by [t], and a representative, denoted by t.(vii) Let Ai ⊂ {1, . . . , n} be the random set of the numbers (being atta
hed to leaves in Step 2) whi
hhave type i ∈ {1, . . . , d}. We obtain a random pair (T,A), where A = (A1, . . . , Ad) is an orderedrandom partition.(viii) Finally, let

p(t,a) := Pr{(T,A) = (t,a)}.7



Note that, by the symmetry of the 
oales
ent,
p
(
t, (a1, . . . , ad)

)
= p

(
t, (π(a1), . . . , π(ad))

)for any permutation π ∈ Sn.We 
all su
h pairs (T,A) a numbered random sample 
on�guration with ordered types. Later, it will beuseful to 
onsider only the frequen
ies of the ordered types, i.e. de�ne a map
φ : (t,a) 7→ (t,n),where n = (n1, . . . , nd) := (#a1, . . . ,#ad), i.e. ∑d

i=1 ni = n. We denote its probability distribution by
p0

(
(t,n)

)
:= p

(
φ−1(t,n)

)

=
n!

n1! · · · nd!
p
(
(t,a)

) (6)for any (t,a) ∈ φ−1(t,n) by the observation in Step 8.For notational simpli
ity, we introdu
e the following slightly ambiguous operation. By a−ei, we meana partition obtained from a by removing one element from the set ai (with impli
it adjustments sothat the result is a partition of {1, . . . , n−1}). Note that we will not be 
on
erned with the fa
t whi
helement we a
tually remove, sin
e, by Step (viii) in the above me
hanism, the type probability p willnot depend on the a
tual 
hoi
e. Similarly, by a− (k− 1)ei we mean the partition obtained from a byremoving k elements from ai (
ertainly, this only makes sense if #ai ≥ k). Finally, a + ei will be thepartition obtained from a by adding an arbitrary element of N to the set ai that is not yet 
ontainedin any other set al, l = 1 . . . d.3 Genealogi
al tree probabilities for Λ-
oales
ents in the in�nite-sitesmodelIn this se
tion, we obtain re
ursions for the probability of given type 
on�gurations of a sample basedon the probabilisti
 model dis
ussed above. These re
ursions lead to a Monte-Carlo method to 
omputethe approximate likelihood of 
on�gurations.We will distinguish two 
ases. In the �rst 
ase, we will 
onsider ordered labelled samples of type (t,a),whi
h take the full information 
ontained in the partition a into a

ount. In the se
ond 
ase, we restri
tto numbered ordered 
on�gurations of the type (t,n), whi
h only 
ount the multipli
ities n.
8



3.1 Ordered labelled samplesLet us derive the analogue of (5) for Λ-
oales
ents, again with mutation rate along bran
hes beinggiven by r. With similar (abuse of) notation as above, we have, for given (t,a),
p(t,a) =

1

nr +
∑n

k=2

(
n
k

)
λn,k

∑

i: ni≥2

ni∑

k=2

(
ni

k

)

λn,k p(t,a − (k − 1)ei)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,xk0distin
t
s(xk) 6=xj∀j

p(sk(t),a)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,

xk0 distin
t ∑

j:s(xk)=xj

p(rk(t), rk(a + ej)), (7)and the boundary 
ondition for the root p({0}, (1)) = 1. Re
ursion (7) boils down to (5) in the 
asethat Λ = δ0.Proof. Similar to the Kingman-
ase by 
onditioning on the last event in the 
oales
ent history, takingmultiple mergers into a

ount. 23.2 Numbered ordered samplesRe
all from (6), that
p0(t,n) =

n!

n1! · · · nd!
p(t,a). (8)Thus, for the types and multipli
ities (t,n), we obtain

p0(t,n) =
1

nr +
∑n

k=2

(
n
k

)
λn,k

∑

i: ni≥2

ni∑

k=2

(
ni

k

)

λn,k
n!

n1! · · · nd!

n1! · · · (ni − k + 1)! · · · nd!

(n− k + 1)!
p0(t,n − (k − 1)ei)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,xk0distin
t
s(xk) 6=xj∀j

p0(sk(t),n)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,xk0distin
t ∑

j:s(xk)=xj

n!

n1! · · ·nd!

n1! · · · (nj + 1)! · · · nd!

n!
p0(rk(t), rk(n + ej)).Sin
e

(
ni

k

)
n!

n1! · · · nd!

n1! · · · (ni − k + 1)! · · · nd!

(n− k + 1)!
=

ni!

k!(ni − k)!

n!(ni − k + 1)!

ni!(n− k + 1)!
=

(
n

k

)
ni − k + 1

n− k + 1
,

9



rearrangement leads to
p0(t,n) =

1

nr +
∑n

k=2

(
n
k

)
λn,k

∑

i: ni≥2

ni∑

k=2

(
n

k

)

λn,k
ni − k + 1

n− k + 1
p0(t,n − (k − 1)ei)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,xk0distin
t
s(xk) 6=xj∀j

p0(sk(t),n)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,xk0distin
t ∑

j:s(xk)=xj

(nj + 1)p0(rk(t), rk(n + ej)), (9)with the usual boundary 
ondition for the root, i.e. p0({0}, (1)) = 1.Remark (Unrooted trees). To arrive at probabilities in the 
ase of unrooted trees (
orresponding tounknown an
estral types), simply sum over all 
hoi
es of the root. 23.3 The blo
k-
ounting pro
ess and a re
ursion for the site frequen
y spe
trumIn this se
tion, we show how the so-
alled blo
k 
ounting pro
ess, whi
h keeps tra
k of the number ofblo
ks of a 
oales
ent-pro
ess, 
an be used to derive the site frequen
y spe
trum for an n-sample inthe in�nite-sites model. The time-reversal of this pro
ess will later be useful in order to obtain urn-likealgorithms to produ
e samples under the �nite- and in�nite-alleles model.De�nition 3.1 (blo
k-
ounting pro
ess, skeleton 
hain). Let {Πt}t≥0 be a Λ-
oales
ent. We denoteby {Yt}t≥0 the 
orresponding blo
k 
ounting pro
ess, i.e. Yt = # of blo
ks of Πt is a 
ontinuous-timeMarkov 
hain on N with jump rates
qij =

(
i

i− j + 1

)

λi,i−j+1, i > j ≥ 1.The total jump rate while in i is of 
ourse −qii =
∑i−1

j=1 qij. We write
pij :=

qij
−qii

(10)for the jump probabilities of the skeleton 
hain, noting that (pij) is a sto
hasti
 matrix.Note that in order to redu
e i 
lasses to j 
lasses, an i− j + 1-merger has to o

ur.De�nition 3.2 (Green's fun
tion of Y ). Let
g(n,m) := En

[ ∫ ∞

0
1{Ys=m} ds

] for n ≥ m ≥ 2 (11)be the expe
ted amount of time that Y , starting from n, spends in m.
10



De
omposing a

ording to the �rst jump of Y , we �nd the following set of equations for g(n,m):
g(n,m) =

n−1∑

k=m

pnkg(k,m), n > m ≥ 2, (12)
g(m,m) =

1

−qmm
, m ≥ 2. (13)Let us write Y (n) for the pro
ess starting from Y

(n)
0 = n. Let τ := inf{t : Y

(n)
t = 1} be the timerequired to 
ome down to only one 
lass, and let

Ỹ
(n)
t := Y

(n)
(τ−t)−, 0 ≤ t < τbe the time-reversed path, where we de�ne Ỹ (n)

t = ∂, some 
emetery state, when t ≥ τ .Proposition 3.3 (Time-reversal). With the above de�nitions, Ỹ (n) is a 
ontinuous-time Markov 
hainon {2, . . . , n} ∪ {∂} with jump rates
q̃
(n)
ji =

g(n, i)

g(n, j)
qij, j < i ≤ n,and q̃(n)

n∂ = −qnn, where g(n,m) is as in (11). The starting distribution of Ỹ (n) is given by
Pr{Ỹ

(n)
0 = k} = g(n, k)qk1,for ea
h k.Proof. The result follows from Nagasawa's Formula, see e.g. [RW87℄, and the observation

Pr{Ỹ
(n)
0 = k} = Pr

n

{
Ỹ (n) hits k, jumps to 1 from there}

= Pr
n

{
Ỹ (n) hits k} qk1

−qkk

= g(n, k)qk1.Note that unless Λ is 
on
entrated on {0} (Kingman-
ase), the dynami
s of Ỹ (n) does depend on n. 2We now turn our attention to the �site frequen
y spe
trum�, in parti
ular under the Beta-
oales
ent.De�nition 3.4 (Site frequen
y spe
trum). Consider a sample of size n ∈ N obtained in the in�nite-sites model, assuming known an
estral types. Let Mn(b), b ∈ {0, . . . , n} denote the number of mutationswhi
h a�e
t pre
isely b individuals out of the sample. The n-tuple
(Mn(1), . . . ,Mn(n)), Mn(b) ∈ {1, . . . , n}, b ∈ {1, . . . , n},is 
alled the (empiri
al) site frequen
y spe
trum of the sample. We denote by ϕn(b) the probability tosee a �typi
al mutation� b-times in a sample of size n.11



We now determine ϕn with the help of a re
ursion. Indeed, for n ≥ k > 1, let rnk(b) be the probabilitythat in an n − Λ-
oales
ent, 
onditioned that there are at some point in time exa
tly k bran
hes, agiven one of these k bran
hes (e.g. the �rst, if we think of some ordering) subtends exa
tly b leaves.Obviously rnn(b) = δ1b, and rnk(b) = 0 if b > n− (k − 1). De
omposing a

ording to the �rst jump of
Y , starting from n, yields the re
ursion

rnk(b) =

n−1∑

j=k

pnj
g(j, k)

g(n, k)

[

1b>n−j
b− (n− j)

j
rjk(b− (n− j)) + 1b<j

j − b

j
rjk(b)

]

. (14)The idea is the following: Assume that the blo
k 
ounting pro
ess Y jumps from n down to j. Here,the fa
tor g(j, k)/g(n, k) a

ounts for the 
onditioning on hitting k. Then, thinking `forwards in timefrom j lineages', either the (n− j+ 1)-split o

urred to one of the then ne
essarily b− (n− j) lineagessubtended to the one we are interested in, or it o

urs to one of the j − b others. Note that whensolving (14) numeri
ally, we 
an do this separately for ea
h k. Let
Tk :=

∫ ∞

0
1{Ys=m} dsbe the length of the time interval during whi
h there are k lineages (possibly 0), and

ψn(b) = expe
ted total length of all bran
hes with b subtended leaves (15)(in an n-Λ-
oales
ent). We arrive at the following result.Theorem 3.5 (Distribution of the site frequen
y spe
trum). Under the above assumptions, we have
ψn(b) =

n−b+1∑

k=2

rnk(b)kEn

[
Tk

]
=

n−b+1∑

k=2

rnk(b)kg(n, k), (16)and the (normalised) site frequen
y spe
trum distribution is given by the weights
ϕn(b) =

ψn(b)
∑n

ℓ=2 ℓEn

[
Tℓ

] =

∑n−b+1
k=2 rnk(b)kg(n, k)

∑n
ℓ=2 ℓg(n, ℓ)

. (17)Remark. The above is a natural extension of the arguments in [GT98℄ to the multiple merger 
ase.
2Example: The Beta-
oales
ent.In the 
ase when Λ has a Beta(a, b)-density for some a, b > 0, i.e.

Λ(dx) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1 − x)b−1

1(0,1)(x) dx, (18)the qij 
an be 
omputed a little more expli
itly:
λn,k =

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0
xk+a−3(1 − x)n−k+b−1 dx

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(k + a− 2)Γ(n− k + b)

Γ(n− 2 + a+ b)

=
(a)k−2(b)n−k

(a+ b)n−2
,12



where (x)i = x(x+ 1) · · · (x+ i− 1), (x)0 = 1, and we used Γ(x+ 1) = xΓ(x). Thus
qij =

(
i

i− j + 1

)

λi,i−j+1 =
i!

(i− j + 1)!(j − 1)!

(a)i−j−1(b)j−1

(a+ b)i−2
.

2Note that asymptoti
 results for the site- (and also the allele-) frequen
y spe
trum have been foundby [BBS06℄, see Theorem 7.1.4 Finite- and in�nite alleles re
ursionsIn this se
tion, we brie�y dis
uss methods to obtain re
ursions in the above spirit for the �nite-and in�nite alleles models from mathemati
al geneti
s. We will make use of the modi�ed lookdown
onstru
tion, a generator method, quote Möhle's re
ursion for the multipli
ities in the in�nite-alleles
ase and �nally present some algorithms to generate samples under the respe
tive models.4.1 Finite-alleles I : an approa
h using the �modi�ed lookdown 
onstru
tion�We illustrate this method in the 
ase of �nitely many types, whi
h we have not treated yet. We thinkof type 
hanges, or mutations, o

urring at rate r, and P = (Pij) as the transition matrix on the �nitetype spa
e E, where silent mutations are allowed (i.e. Pjj ≥ 0). Here, we assume that the reader isfamiliar with the �modi�ed lookdown 
onstru
tion� (mld) of the generalised Λ-Fleming-Viot pro
ess,see [DK99℄ for the general theory or [BBC05℄, Se
tion 2, for a shorter des
ription. This time, weinterpret
λn,k =

∫

[0,1]
xk(1 − x)n−k 1

x2
Λ(dx), n ≥ k ≥ 2 (19)as the rate with whi
h one observes a parti
ular resampling event involving exa
tly k among the �rst

n levels in the mld 
onstru
tion. Suppose the system is in equilibrium. Consider the �rst n levels attime 0 and let τ−1 be the last instant before 0 when at least one of the types at levels 1, . . . , n 
hanges.Then, −τ−1 is exponentially distributed with rate
rn = nr +

n∑

k=2

(
n

k

)

λn,k. (20)Denote by q the distribution of the types of the �rst n levels in equilibrium in the modi�ed look-down 
onstru
tion. Later, due to ex
hangeability, we will merely be interested in the type frequen
yprobability p(n). De
omposing a

ording to whi
h event o

urred at time τ−1, we obtain
q
(
(y1, . . . , yn)

)
=

r

rn

n∑

i=1

∑

z∈E

q
(
(y1, . . . , yi−1, z, yi+1, . . . , yn)

)
Pzyi

+
1

rn

∑

K⊂{1,...,n}
|K|≥2

λn,|K|1{all yj equal for j ∈ K}q
(
γK(y1, . . . , yn)

)
, (21)13



where γK(y1, . . . , yn) ∈ En−|K|+1 is that ve
tor of types of length n − |K| + 1 whi
h
(
ξ1(τ−1−), . . . , ξn−|K|+1(τ−1−)

) must be in order that a resampling event involving exa
tly the levelsin K among levels 1, . . . , n generates (
ξ1(τ−1), . . . , ξn(τ−1)

)
= (y1, . . . , yn). Formally,

γK(y1, . . . , yn)i = yi+#((K\{minK})∩{1,...,i}), 1 ≤ i ≤ n− |K| + 1.We have the boundary 
ondition q((y1)
)

= µ(y1), y1 ∈ E. Note that, by ex
hangeability,
q
(
(y1, . . . , yn)

)
= q

(
(yπ(1), . . . , yπ(n))

)for any permutation π of {1, . . . , n}. So, the only relevant information is (of 
ourse) how many sampleswere of whi
h type. For n = (n1, . . . , nd) ∈ Z
d
+ we write #n := n1 + · · · + nd for the `length', and

κ(n) =
(
1, 1, . . . , 1
︸ ︷︷ ︸

n1

, 2, . . . , 2
︸ ︷︷ ︸

n2

, . . . , d, . . . , d
︸ ︷︷ ︸

nd

)
∈ E#nfor a `
anoni
al representative' of the (absolute) type frequen
y ve
tor n. Put q̃(n) := q(κ(n)) and let

p(n) :=

(
#n

n1, n2, . . . , nd

)

q̃(n) (22)be the probability that in a sample of size #n, there are exa
tly nj of type j, j = 1, . . . , d. (21)translates into a re
ursion for p: (we abbreviate n := #n, and write ek for the k-th 
anoni
al unitve
tor of Z
d)

p(n) =
r

rn

d∑

j=1

nj

d∑

i=1

Pij

(
#n

n1, n2, . . . , nd

)

q̃(n− ej + ei)

+
1

rn

d∑

j=1

nj∑

k=2

(
nj

k

)

λn,k

(
#n

n1, n2, . . . , nd

)

q̃(n− ej + ei).Note that
nj

(
#n

n1, n2, . . . , nd

)

q̃(n − ej + ei) =
(
ni + 1 − δij

)
(

#n

n1, . . . , ni + 1, . . . , nj − 1, . . . , nd

)

q̃(n − ej + ei)

=
(
ni + 1 − δij

)
p(n − ej + ei)and that (for nj ≥ k, otherwise the term is 0)

(
nj

k

)(
#n

n1, n2, . . . , nd

)

q̃(n − (k − 1)ej) =

(
n

k

)
nj − k + 1

n− k + 1

(
n− k + 1

n1, . . . , nj − k + 1, . . . , nd

)

q̃(n− (k − 1)ej)

=

(
n

k

)
nj − k + 1

n− k + 1
p(n− (k − 1)ej).Thus, the re
ursion for p is

p(n) =
r

rn

d∑

j=1

d∑

i=1

(ni + 1 − δij)Pijp(n − ej + ei) (23)
+

1

rn

d∑

j=1
nj≥2

nj∑

k=2

(
n

k

)

λn,k
nj − k + 1

n− k + 1
p(n− (k − 1)ej) (24)14



with boundary 
onditions p(ej) = µj.Remark. In the Kingman-
ase, we have λn,k = 1(n ≥ 2 = k), rn = nθ/2+n(n−1)/2 = n(n−1+θ)/2(and we assume r = θ/2 as `usual'), hen
e (23) be
omes
p(n) =

2

n(n− 1 + θ)

θ

2

d∑

j=

d∑

i=1

(ni + 1 − δij)Pijp(n− ej + ei)

+
2

n(n− 1 + θ)

d∑

j=1
nj≥2

(
n

2

)
nj − 1

n− 1
p(n − ej)

=
θ

n− 1 + θ

d∑

j=

d∑

i=1

ni + 1 − δij
n

Pijp(n− ej + ei)

+
n− 1

n− 1 + θ

d∑

j=1
nj≥2

nj − 1

n− 1
p(n− ej),whi
h agrees with (3) in [DIG04a℄.4.2 Finite-alleles II: the generator approa
hAn alternative method to obtain the re
ursion for the type probabilities in the �nite-sites 
ase is byusing a generator approa
h, see [DIG04a℄. Let f ∈ C2 and ∆d = {(x1, . . . , xd) : xi ≥ 0, x1+· · ·+xd = 1}and 
onsider the mutation operator

Bf(x1, . . . , xd) = r
d∑

i=1

( d∑

j=1

xjPji − xiPij

) ∂f

∂xi
(x1, . . . , xd)For the resampling operator, we distinguish the Kingman- and non-Kingman 
omponents. First,assume Λ(0) = 0 (non-Kingman). Consider

R1f(x1, . . . , xd) =

d∑

i=1

∫

xi

(

f
(
(1 − r)x1, . . . , (1 − r)xi−1, (1 − r)xi + r, (1 − r)xi+1, . . . , (1 − r)xd

)

− f(x1, . . . , xd)
)

r−2Λ(dr). (25)For the Kingman-part (Λ = δ0) of the resampling operator, we have
R2f(x1, . . . , xd) =

1

2

d∑

i,j=1

xi(δij − xj)
∂2f

∂xi∂xj
(x1, . . . , xd).Finally, for general Λ and a ≥ 0, write

R = R1 + aR2,where R1 uses Λ′, Λ′(·) := Λ(·∩ (0, 1]), a = Λ(0). Now, let X(t) = (X1(t), . . . ,Xd(t)) be the stationarypro
ess with generator L = B + R (see [BLG03℄). Write X = X(0). Let n = (n1, . . . , nd), n =15



n1 + · · · + nd. Then,
E

[ d∏

i=1

Xni

i

]is the probability of observing in a sample of size n from the equilibrium population type i pre
isely
ni times in a parti
ular order (e.g. �rst n1 samples of type 1, next n2 samples of type 2, et
.). Put

fn(x) := xn :=

d∏

i=1

xni

i .Then,
g(n) :=

(
n

n1 . . . nd

)

E
[
fn(X)

]is the probability of observing type i exa
tly ni times, i = 1, . . . , d, without regard of the order. Inequilibrium, we have ELf(X) = 0. Note that
Bfn(x1, . . . , xd) = r

d∑

i=1

( d∑

j=1

xjPji − xiPij

)

nifn−ei
(x1, . . . , xd)

= r

d∑

i,j=1

niPjifn−ei+ej
(x) − rnfn(x)and

fn((1 − r)x + rei) = (1 − r)n−ni

d∏

j 6=i

x
nj

j ×
(
(1 − r)xi + r

)ni

= (1 − r)n−ni

d∏

j 6=i

x
nj

j ×
ni∑

k=0

(
ni

k

)

rk(1 − r)ni−kxni−k
i

=

ni∑

k=0

(
ni

k

)

rk(1 − r)n−k

(

xni−k
i

d∏

j 6=i

x
nj

j

)

,so the term inside the integral in the expression (25) for R1 
an be written as
d∑

i=1

ni∑

k=0

(
ni

k

)

rk(1 − r)n−kxni−k+1
i

d∏

j 6=i

x
nj

j −
n∑

k=0

(
n

k

)

rk(1 − r)n−k
d∏

ℓ=1

xnℓ

ℓ

=

d∑

i:ni≥2

ni∑

k=2

(
ni

k

)

rk(1 − r)n−kxni−k+1
i

d∏

j 6=i

x
nj

j −
n∑

k=2

(
n

k

)

rk(1 − r)n−k
d∏

ℓ=1

xnℓ

ℓ(the terms with k = 0 and k = 1 
an
el sin
e x1 + · · · + xd = 1 and n1 + · · · + nd = n). Re
alling
λn,k =

∫
rk−2(1 − r)n−kΛ(dr) we obtain

R1fn(x) =
d∑

i:ni≥2

ni∑

k=2

(
ni

k

)

λn,kfn−(k−1)ei
(x) −

n∑

k=2

(
n

k

)

λn,kfn(x). (26)16



Furthermore
R2fn(x) =

1

2

d∑

i,j=1

xi(δij − xj)ni(nj − δij)fn−ei−ej
(x)

=

d∑

i=1

ni(ni − 1)

2
fn−ei

(x) −
d∑

i,j=1

ni(nj − δij)

2
fn(x)

=

d∑

i=1

ni(ni − 1)

2
fn−ei

(x) −
n(n− 1)

2
fn(x). (27)Combining the terms from R1 and R2 (using (26) and (27) above, and repla
ing Λ by Λ′ in (25)), wehave

Rfn(x) =

d∑

i:ni≥2

ni∑

k=2

(
ni

k

)

λn,kfn−(k−1)ei
(x) −

n∑

k=2

(
n

k

)

λn,kfn(x).Thus we obtain from ELfn(X) = 0:
znEfn(X) = r

d∑

i,j=1

niPjiEfn−ei+ej
(X) +

d∑

i:ni≥2

ni∑

k=2

(
ni

k

)

λn,kEfn−(k−1)ei
(X),where

zn = rn+

n∑

k=2

(
n

k

)

λn,k.Multiply with (
n

n1...nd

) to obtain
zng(n) = r

d∑

i,j=1

(nj + 1 − δij)Pjig(n − ei + ej)

+
d∑

i:ni≥2

ni∑

k=2

(
ni

k

)
n!

n1! . . . nd!

n1! . . . (ni − k + 1)! . . . nd!

(n − k + 1)!
︸ ︷︷ ︸

=
ni!

k!(ni−k)!
n!
ni!

(ni−k+1)!

(n−k+1)!
= n!

k!(n−k)!

ni−k+1

n−k+1

λn,k g(n − (k − 1)ei)

= r

d∑

i,j=1

(nj + 1)Pjig(n − ei + ej)

+

d∑

i:ni≥2

ni∑

k=2

(
n

k

)

λn,k
ni − k + 1

n− k + 1
g(n − (k − 1)ei)whi
h agrees with (23) after dividing by zn.4.3 In�nite-alleles: Möhle's re
ursionHere, one assumes that every mutation, whi
h o

urs along the 
oales
ent tree with rate r > 0, leadsto an entirely new type, no other information is being retained. If we take a sample of n ∈ N genes,17



it is natural to ask for the probability p(n) to sample a spe
i�
, non-ordered allele 
on�guration
n = (n1, . . . , nk), where k ≤ n is the number of di�erent types and ni, i ∈ {1, . . . , k} is the numberof times that type i is being observed. Using 
oales
ent arguments, it is possible obtain the followingre
ursion, see [M06b℄, Theorem 3.1.Theorem 4.1 (Möhle (2006)). The probability of a non-ordered allele 
on�guration n = (n1, . . . , nk)satis�es the re
ursion given by p(1) = 1 and
p(n) =

nr
∑n

k=2

(
n
k

)
λn,k + nr

k∑

j=1
nj=1

1

k
p(ñj) +

1
∑n

k=2

(
n
k

)
λn,k + nr

n∑

i=2

k∑

j=1
nj≥i

λn,i
nj − i+ 1

n− i+ 1
p(n − (i− 1)ej),(28)with n =

∑

j nj ≥ 2, r = θ/2, and ñj = (n1, . . . , nj−1, nj+1, . . . , nk). As before, ej denotes the unitve
tor in R
k.In the Kingman-
ase, this re
ursion 
an be solved expli
itly and leads to an alternative formulation ofthe famous Ewens sampling formula, see [E79℄. It seems that the only other 
ase in whi
h an expli
itsolution is known is the 
ase Λ = δ1, in whi
h the genealogy is star-shaped.5 A Monte Carlo method for the 
omputation of the likelihoods inthe in�nite-sites modelWe �rst derive a simple Monte-Carlo approximation of the exa
t sampling probabilities in the in�nite-sites model by simulating a Markov 
hain ba
kwards along the sample paths of the 
oales
ent (essen-tially based on [GT94b℄, see also [T01℄).5.1 An unbiased estimator for p0(t,n)First, we re
all a suitable notion of tree 
omplexity.De�nition 5.1 (Tree 
omplexity). Given ordered types and frequen
ies (t,n), we de�ne the tree 
om-plexity of (t,n) as

c[(t,n)] =
d∑

i=1

ni +
d∑

i=1

#xi ∈ N,where, for 1 ≤ i ≤ d, #xi denotes the length of the sequen
e xi (ex
lusive of the root).Note that the tree 
omplexity is the sum of the sample size and the number of segregating sites. Thisde�nition transfers in the obvious way also to the pair of ordered types and partitions (t,a). It is 
learthat the tree 
omplexity is independent of the 
hoi
e of a representative t from the equivalen
e 
lass [t]and hen
e well-de�ned. If c[(t,n)] = 1, the minimum for a non-vanishing tree, then the tree 
onsistsonly of its root with multipli
ity one, i.e. (t,n) = ({0}, (1)) =: t0. We write
(t′,n′) ≺ (t,n)18



if (t′,n′) 
an be rea
hed from (t,n) by either removing one mutation or a 
oales
en
e event, see below.In this 
ase, c[(t′,n′)] < c[(t,n)]. Hen
e observe that the re
ursions (5) and (9) are proper re
ursionsin the sense that they stri
tly de
rease the tree 
omplexity in ea
h step.The following lemma is an appropriate version of the 
orresponding Lemma 6.1 in [T01℄.Lemma 5.2. Let {Xk, k ≥ 0} be a Markov 
hain on the spa
e of ordered types with 
orrespondingfrequen
ies, denoted by (T ,N ), and with transitions Q = (q(t,n),(t′,n′)) su
h that the hitting time
τ = inf

{
k ≥ 0 : Xk = ({0}, (1))

}for any given initial state (t,n) in (T ,N ) is bounded by some 
onstant 0 ≤ K1(t,n) < ∞. Let
f : (T ,N ) → [0,∞) be a measurable fun
tion and de�ne

u(t,n)(f) = E(t,n)

τ∏

k=0

f(Xk) (29)for all X0 = (t,n) ∈ (T ,N ), so that
u({0},(1))(f) = f

(
{0}, (1)

)
.Then

u(t,n)(f) = f
(
(t,n)

) ∑

(t,n)∈(T ,N )

(t′,n′)≺(t,n)

q(t,n),(t′,n′)u(t′,n′)(f) (30)for all (t,n) ∈ (T ,N )\({0}, (1)). Conversely, the unique solution of (30) is given by (29).Remark. If the transitions Q = (q(t′,n′),(t,n)) are only positive if c[(t′,n′)] < c[(t,n)], then
τ = inf

{
k ≥ 0 : Xk = ({0}, (1))

}is always bounded from above by the tree 
omplexity of the initial state. 2Proof. Note that by the boundedness of τ , the expe
ted value remains �nite for ea
h initial 
ondition.Now, 
ompute
u(t,n)(f) = E(t,n)

τ∏

k=0

f(Xk)

= f(t,n) E(t,n)

τ∏

k=1

f(Xk)

= f(t,n) E(t,n)

[

E(t,n)

τ∏

k=1

f(Xk) | X1

]

= f(t,n) E(t,n)

[

EX1

τ∏

k=0

f(Xk)
]

= f(t,n) E(t,n)

[
uX1(f)

]

= f(t,n)
∑

(t′,n′)∈(T ,N )

(t′,n′)≺(t,n)

q(t,n),(t′,n′)u(t′,n′)(f),19



as required. 2The result provides a simulation method for solving re
ursions of type (30): simulate a traje
tory of the
hain X starting at (t,n) until it hits the root ({0}, (1)) at time τ , 
ompute the value of the produ
t
∏τ

k=0 f(Xk) and repeat this many times. Averaging these values provides an unbiased and 
onsistentestimate of u(t,n)(f) in terms of an approximation of the expe
ted value E(t,n)

∏τ
k=0 f(Xk) by thestrong law of large numbers. Lemma 5.2 states that this expe
tation is a solution to the re
ursion inquestion.Corollary 5.3. For ordered types and frequen
ies (t,n), de�ne

u(t,n)(f) = p0(t,n)and for c[(t,n)] > 1, put
f(t,n) =

1

rn







∑

k:nk=1,xk0 distin
t
sk(xk) 6=xj∀j

r +
∑

k:nk=1,

xk0 distin
t ∑

j:sk(xk)=xj

r(nj + 1) +
∑

i:ni≥2

ni∑

k=2

(
n

k

)

λn,k
ni − k + 1

n− k + 1







(31)where
rn (= rn(r,Λ)) = rn+

n∑

k=2

(
n

k

)

λn,k. (32)Furthermore, let
u({0},(1))(f) = f

(
{0}, (1)

)
= 1. (33)Consider a Markov-Chain {Xl = (t(l),n(l))} on (T ,N ) with transitions

(t,n) →







(sk(t),n) with probability r
rnf(t,n) if nk = 1, xk0 distin
t, s(xk) 6= xj ∀j,

(rk(t), rk(n + ej)) with probability r(nj+1)
rnf(t,n) if nk = 1, xk0 distin
t, s(xk) = xj ,

(t,n − (k − 1)ei) with probability 1
rnf(t,n)

(
n
k

)
λn,k

ni−k+1
n−k+1 if 2 ≤ k ≤ ni.Then,

p0(t,n) = E(t,n)

τ∏

l=0

f(t(l),n(l)).Proof. This is the immediate appli
ation of Lemma 5.2, noting that, as in last remark, starting from
(t,n), the stopping time τ is bounded by c[(t,n)] <∞. 2Simulating independent 
opies and taking the average now yields an unbiased estimator of p0(t,n).Note that a similar result holds for the re
ursion w.r.t. (t,a).5.2 Simulation of likelihood surfa
es with pre-spe
i�ed driving values.It is a
tually possible to obtain simultaneous likelihoods for a variety of values for r,Λ, using a singlerealization of the Markov-
hain X only. First, we need to extend Lemma 5.2 as in Subse
tion 6.2 in[T01℄. 20



Lemma 5.4. Let {Xk, k ≥ 0} be a Markov 
hain with state spa
e (T ,N ) and with transitions Q =
(q(t,n),(t′,n′)) su
h that the hitting time

τ = inf
{
k ≥ 0 : Xk = ({0}, (1))

}for any given initial state (t,n) in (T ,N ) is bounded by some 
onstant 0 ≤ K2(t,n) < ∞. Let
g : (T ,N ) × (T ,N ) → [0,∞) be a measurable fun
tion and de�ne

u(t,n)(g) = E(t,n)

τ−1∏

k=0

g(Xk,Xk+1) (34)for all X0 = (t,n) ∈ (T ,N )), with u({0},(1))(g) = 1. Then, for all (t,n) ∈ (T ,N )\({0}, (1)),
u(t,n)(g) =

∑

(t,n)∈(T ,N )

(t′,n′)≺(t,n)

g
(
(t,n

)
, (t′,n′))q

(
(t,n), (t′,n′)

)
u(t′,n′)(g) (35)and this set of equations has the unique solution (34).Proof. Similar to the proof of Lemma 5.2. 2We follow the spirit of Proposition 5.3 and rewrite (9) to be of the form (35). To this end, de�ne

p0
(r,Λ)(t,n) to be the probability of observing the unordered, labelled tree (t,n) if the underlyingmutation rate is r and the genealogy is governed by a Λ-
oales
ent.Corollary 5.5. Let (r,Λ) and (r∗,Λ∗) ∈ R+ ×M([0, 1]) be given. For ordered types and frequen
ies

(t,n), de�ne f(r,Λ)(t,n) through (31) � (33) and similarly f(r∗,Λ∗)(t,n). Consider a Markov-Chain
{Xl = (t(l),n(l))} on (T ,N ) with transitions q(r∗,Λ∗) given by
(t,n) →







(sk(t),n) with probability r∗

r∗nf(r∗,Λ∗)(t,n) if nk = 1, xk0 distin
t, s(xk) 6= xj ∀j,

(rk(t), rk(n + ej)) with probability r∗(nj+1)
r∗nf(r∗,Λ∗)(t,n) if nk = 1, xk0 distin
t, s(xk) = xj ,

(t,n − (k − 1)ei) with probability 1
r∗nf(r∗,Λ∗)(t,n)

(
n
k

)
λ∗n,k

ni−k+1
n−k+1 if 2 ≤ k ≤ ni.Then, de�ning

g(r,Λ),(r∗,Λ∗)((t,n), (t′,n′)) = f(r,Λ)(t,n)
q(r,Λ)

(

(t,n), (t′,n′)
)

q(r∗,Λ∗)

(

(t,n), (t′,n′)
) ,one has

p0
(r,Λ)(t,n) = E

(r∗,Λ∗)
(t,n)

τ−1∏

k=0

g(r,Λ),(r∗,Λ∗)(Xk,Xk+1), (36)provided that the parameters (r,Λ), (r∗,Λ∗) ful�l the 
ondition
f(r,Λ)(t,n)q(r,Λ)

(

(t,n), (t′,n′)
)

> 0 ⇒ q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

> 0. (37)21



Again, this gives rise to a simulation algorithm, this time based on (r∗,Λ∗) rather than the �target�
(r,Λ).Proof. We may rewrite (9) as

p0
(r,Λ)(t,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

f(r,Λ)(t,n)q(r,Λ)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′) (38)for the obvious 
hoi
e for q(r,Λ). Furthermore, using (37), (38) may be re
ast as
p0
(r,Λ)(t,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

f(r,Λ)(t,n)
q(r,Λ)

(

(t,n), (t′,n′)
)

q(r∗,Λ∗)

(

(t,n), (t′,n′)
)q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′), (39)hen
e
p0
(r,Λ)(T,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

g(r,Λ),(r∗,Λ∗)((t,n), (t′,n′))q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′), (40)so that Lemma 5.4 may dire
tly be applied to equation (40) and the Markov 
hain Xl = (t(l),n(l))with driving values r∗ and (λ∗n,k)2≤k≤n (
oming from Λ∗) and transitions as above. Thus we arrive atthe representation
p0
(r,Λ)(t,n) = E

(r∗,Λ∗)
(t,n)

τ−1∏

k=0

g(r,Λ),(r∗,Λ∗)(Xk,Xk+1),as required. 2With this result, many estimators for p0
(r,Λ)(t,n) for various values of (r,Λ), respe
ting the absolute
ontinuity 
ondition (37), 
an be obtained by simulating just one realization of the Markov 
hain withdriving values (r∗,Λ∗). This seems 
omputationally mu
h more e�
ient than using di�erent drivingvalues. However, one should be aware that one obtains 
orrelated estimates and that the varian
e ofthe estimator for p0

(r,Λ)(t,n) depends on (r∗,Λ∗).Remark. There are obvious improvements of this method. Combining likelihoods in approximatelyoptimal linear 
ombinations of the (ri,Λi) leads to a further redu
tion in varian
e (see [T01℄ for details).More advan
ed te
hniques su
h as a sophisti
ated importan
e sampling in the spirit of [SD00℄ or bridgesampling are under investigation in an ongoing resear
h proje
t.6 Illustration using arti�
ial and real dataIn this se
tion, we apply the simulation algorithm suggested by Corollaries 5.3 and 5.5 to two kindsof data, namely randomly generated type 
on�gurations, where the underlying genealogy has beenobtained from a Lambda-
oales
ent and the me
hanism des
ribed in Se
tion 2 resp. the algorithmdes
ribed in Subse
tion 8.3, and to real data, namely random sub-samples drawn from Arnason'sAtlanti
 Cod data [A04℄. The latter is ne
essary, sin
e our method, at present, 
an only deal reasonablywell with samples of size up to n = 100, whereas the size of Arnason's data is about n = 1000.22



To simulate a random sample, we used the R program simbeta.R. This produ
es data of the form asin Subse
tion 1.2.Su
h data 
an easily be visualised using the program treepi
 from Bob Gri�th's genetree softwaresuite.The program bgt0.3 is an implementation of the above Monte Carlo method and is, together with thete
hni
al report [B06℄ do
umenting the program, available from Matthias Birkner.The resulting likelihood-surfa
es 
an be seen below. Although our methods are not yet very sophis-ti
ated and we were subje
t to limited 
omputing resour
es, at a �rst glan
e it seems to be possibleto reje
t the �Kingman line� α = 2 in Figure 6.1 for arti�
ially generated data obtained from anunderlying Beta-
oales
ent with α = 1.5 and mutation rate 2.Moreover, the likelihood-surfa
e for Arnason's real data looks qualitatively di�erent from the oneasso
iated with a Kingman-
oales
ent, in parti
ular has a maximum su�
iently far away from the�Kingman line� α = 2, although this time the surfa
e is more �at than in the arti�
ially generateddata with α < 2.6.1 Likelihood-surfa
es for randomly generated dataWe 
onsider the log-likelihood surfa
es for type 
on�guration under the Beta(2−α,α)-
oales
ent as afun
tion of α ∈ (1, 2] and mutation rate θ ∈ (0, 5].Figure 6.1 shows the log-likelihood surfa
es (a
tually on a 50 by 50 grid) for type-
on�gurations drawnunder the in�nite-sites model, where the �rst sample (of size n = 50) has been obtained from aKingman-
oales
ent with mutation rate 2, and the se
ond sample has been obtained from a Beta-
oales
ent with α = 1.25 and mutation rate 2.6.2 Likelihood-surfa
es of samples taken from for Arnason's dataAgain, we 
onsider the log-likelihood surfa
es for a type 
on�guration under the Beta(2 − α,α)-
oales
ent as a fun
tion of α ∈ (1, 2] and mutation rate θ ∈ (0, 2].Figure 6.2 shows the two likelihood surfa
es 
orresponding to two independent samples of 50 and117 sequen
es drawn from a slightly modi�ed set of Arnasons's Atlanti
 Cod data [A04℄. It seemsreasonable to reje
t the Kingman-hypothesis.7 Dis
ussion7.1 Relation with existing models and asymptoti
 resultsThe results obtained in this paper should be 
ompared with results in the following two papers.Beresty
ki, Beresty
ki and S
hweinsberg (2006). In [BBS06℄, Beresty
ki, Beresty
ki andS
hweinsberg obtain asymptoti
 results for the site frequen
y spe
trum in the in�nite-sites 
ase andthe allele frequen
y spe
trum in the in�nite alleles 
ase, if the underlying genealogy is assumed to bedriven by a Beta(2 − α,α)-
oales
ent, where α ∈ (1, 2].23



Figure 1: Likelihood-surfa
es for α = 1.25, 1.5, 1.75 and 2 (Kingman 
ase).
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(d) 2More pre
isely, in the in�nite alleles model, they 
onsider an alleli
 partition, i.e. a division of thesample into groups of individuals having the same allele at the observed lo
us. For a sample of size
n, one is interested in the number of groups, denoted by N(n), as well as the sizes of the groups. Wedenote by Nk(n) the number of blo
ks in the alleli
 partition of size k. In the in�nite sites model,one 
onsiders the number M(n), the total number of mutations, and Mk(n), the number of mutationsa�e
ting pre
isely k individuals in the sample (assuming known an
estral type). With this notation,
(N1(n), . . . ,Mn(n)) is 
alled the �allele frequen
y spe
trum� and (M1(n), . . . ,Mn(n)) is 
alled the �site24



Figure 2: Likelihood-surfa
es obtained from Arnason's Atlanti
 
od data
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frequen
y spe
trum�.If we assume that the data is being generated from a Λ-
oales
ent, and mutations are distributed alongthe bran
hes at rate θ a

ording to either the in�nite alleles or in�nite site model, one has the followingasymptoti
 result.Theorem 7.1 (BBS06). Assume that Λ has Beta(2 − α,α) distribution with α ∈ (1, 2). Let k ∈ N.Then,
Mk(n)

n2−α
→ α(α − 1)2θ

Γ(k + α− 2)

k!and
Nk(n)

n2−α
→ α(α− 1)2θ

Γ(k + α− 2)

k!in probability as n→ ∞.Hen
e, at least for large sample sizes, the empiri
al frequen
y spe
trum 
ould be used as a statisti
in order validate or overturn the underlying model. However, sample sizes for real data are typi
allyrather small.Note that in the Kingman 
ase, i.e. Λ = δ0, the famous Ewens sampling formula gives the exa
tdistribution of the allele frequen
y spe
trum, namely
P{N1(n) = a1, . . . , Nn(n) = an} = p(a1, . . . , an) =

n!

θ(n)

∏

i=1

θai

iaiai!
.However, the 
ase of the Λ-
oales
ent so far has proved to be ina

essible to expli
it solutionsup to very few spe
ial 
ases, i.e. Λ = δ0 (Kingman) and Λ = δ1 (star-shaped), see [M06b℄ (and25



Subse
tion 4.3) for more detail.Eldon and Wakely (2006). In [EW06℄, the authors dis
uss s
aling relations between mutation andreprodu
tion in simple population models, where individuals 
an potentially have very many o�spring.The paper treats inferen
e questions based on the number of segregating sites and singletons (i.e. sum-mary statisti
s) under a rather restri
tive 
oales
ent model. In parti
ular, they fo
us on the Lambda-
oales
ents presented in (3), where
Λ(dx) = c1δ0(dx) + c2δy(dx), c1, c2 ≥ 0, y ∈ (0, 1],i.e. a genealogy with a Kingman 
omponent (the atom in 0) and a reprodu
tion me
hanism, in whi
ha single parti
le 
an produ
e a fra
tion of c2-many o�spring when 
ompared to the total populationsize. More pre
isely, they 
onsider a model with �xed population size N , whi
h is a generalisation of aMoran model with �xed inter-generation times in the following sense. At ea
h time step, exa
tly oneindividual reprodu
es (uniformly 
hosen among the living) and is the parent of U − 1 new individuals(U ∈ {1, . . . , N}). The parent persists, while the o�spring repla
e U − 1 individuals who die. Theother N − U individuals simply persist until the next time step when they might be 
hosen to die orreprodu
e.The o�spring me
hanism (i.e. the distribution of U) is as follows. Fix γ ≥ 0 and ψ ∈ [0, 1]. Then,

P{U = 2} = 1 −N−γ ,and
P{U ≈ Nψ} = N−γ .Depending on the 
hoi
e of ψ, γ, this model leads to a Λ-
oales
ent with only two atoms, one in 0(leading to a Kingman-
omponent) and one in y = ψ.Remark. A note on Type-III survivorship 
urves. A survivorship 
urve in population dynami
s isa plot of the life expe
tan
y lx on a logarithmi
 s
ale against the age x. If the mortality does notdepend on the a
tual age, one expe
ts a straight de
reasing line. This is 
alled a �type-II-survivorship
urve�. If the mortality is 
onvex and de
reasing, this 
orresponds to a high mortality early in lifeand is 
alled �type-III-survivorship 
urve� (�type-I� now being the obvious notion for the 
on
ave
ase). [EW06℄ mention �type-III� 
urves as a situation in whi
h Λ-
oales
ents might be useful from amodelling perspe
tive. However, we need an additional e�e
t, namely extremely high variation in thereprodu
tion me
hanism, whi
h is, stri
tly speaking, not part of the �type-III� behaviour, in order toarrive at genealogies with multiple 
ollisions. 27.2 Biologi
al relevan
e of Beta-
oales
ents?Eviden
e from the Pa
i�
 oyster data treated in [EW06℄ suggests that populations with rather extremereprodu
tive behaviour should be des
ribed by genealogies in whi
h multiple mergers are allowed.However, their proposed Lambda-
oales
ents seem to be too restri
tive. Why should a single individualprodu
e either 2 o�spring or exa
tly ψ∗100 % of the population alive in the next generation and nothingin between? Still, the authors obtain eviden
e that the simple Kingman 
ase might not be adequate.So an important question is: 26



What is the right (family of) distribution(s) on the o�spring proportions?To dis
uss this, it would be useful to �nd out whi
h reasonable/natural population models a
tuallyimply genealogies driven by 
ertain kinds of Λ-
oales
ents.A Cannings-model with extremely heavy tails. In [BBC05℄, it has been pointed out that theBeta(2 − α,α)-density arises naturally if the approximating models are self-similar 
ontinuous statebran
hing pro
esses, time-
hanged and renormalised to have mass one. It is possible to argue that thisrenormalising might be rather unnatural. However, there are also reasonable Cannings-models whi
h
onverge into the Beta-Coales
ent genealogy.Indeed, from the modelling perspe
tive, so-
alled Cannings models are popular in mathemati
al pop-ulation geneti
s. A Cannings model is a population model with dis
rete non-overlapping generationsand a �xed �nite total population size N . At ea
h generation m, the distribution of the o�spring ofthe k-th parti
le is given by an ex
hangeable random ve
tor
(ν1, . . . , νN ), N ∈ N,independent of the generation number m and in between generations. In [S03℄, the following me
hanismis being investigated. Consider a model in whi
h the number of o�spring for the individuals areindependent (hen
e no �xed population size), but in ea
h generation only N of the o�spring are 
hosenat random for survival. We assume further that if X is the number of o�spring of an individual, then
P{X ≥ k} ∼ Ckαfor some α > 0 and C > 0. S
hweinsberg shows that, depending on the value of α, the limit maybe Kingman's 
oales
ent, in whi
h 
ase ea
h pair of an
estral lines merges at rate one, a 
oales
entwith multiple 
ollisions, or a 
oales
ent with simultaneous multiple 
ollisions. We are most interestedin the 
ase that the limit is a 
oales
ent with multiple 
ollisions. It turns out that if α ∈ (1, 2), thelimit is a Λ-
oales
ent wit Beta(2 − α,α)-density. Here, the Beta-
oales
ent appears naturally from aCannings-model, if we 
onsider the population to 
onsist of the N survivors for ea
h generation. Notethe �xed inter-generation times.Extremely heavy tails vs. Sele
tion?We have just seen that extremely heavy tails in the reprodu
tion me
hanism 
an a

ount for �shallow�genealogies. However, it is important to point out that also other driving for
es in population geneti
s
an a

ount for su
h behaviour. So far, we have only dis
ussed neutral population models, in whi
hthere are not bene�
ial / deleterious mutations. Durrett and S
hweinsberg show (see [DS05℄) thatgenealogies with so-
alled sele
tive sweeps, i.e. bene�
ial mutations, whi
h qui
kly perpetrate largeparts of a population on a di�erent time s
ale, 
an be modelled via Λ-
oales
ents. Our empiri
allikelihood-surfa
es are rather shallow. So how should one be able to 
he
k whether a neutral modelis adequate, or whether other e�e
ts like sele
tion should be taken into a

ount, too? A very re
entstudy on the HIV envelope gene, see [EHP06℄, for example, 
laim that the rapid turnover of geneti
diversity in HIV-1 is due to strong purifying sele
tion.In order to judge whether e�e
ts due to sele
tion overlap or disguise the possibly heavy tails of thereprodu
tion me
hanism, it would be very useful to study multi-lo
us data. Unfortunately, su
hdatasets seem to be hard to obtain � maybe someone should fund a study!27



7.3 OutlookAlthough the preliminary numeri
al results presented here seem to be promising, we 
annot yet treatlarge datasets. One line to atta
k this might be to try to extend Stephens and Donnelly's [SD00℄importan
e sampling te
hniques or de Iorio and Gri�ths [DIG04a℄ Monte-Carlo te
hniques to oursetting.There are other obvious extensions, su
h as in
orporating more general models with varying populationssize, distinguish between the e�e
ts of sele
tion and an extreme reprodu
tive me
hanism et
., whi
hwill also be part of the ongoing resear
h proje
t. In order to understand the e�e
ts of sele
tion, astudy in
orporating multi-lo
us data would be very useful.8 Appendix8.1 Underlying datasets and genetreesThe Kingman-
ase likelihood-surfa
e in Figure 2(d) has been 
omputed using the following data:(4, 3, 2, 0)(1, 0)(7, 5, 1, 0)(6, 4, 3, 2, 0)(8, 1, 0)(9, 7, 5, 1, 0)(10, 7, 5, 1, 0)(11, 7, 5, 1, 0)
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7 15 185 2 1 1 1with multipli
ities n = (7, 15, 18, 5, 2, 1, 1, 1), n = 50.Data have been generated with simbeta, using the fun
tion sample.ims, where the underlying pa-rameters were α = 1.25, n = 50,m = 2, r = 107. The 
orresponding likelihood-surfa
e and standard-deviation are plotted below.The likelihood-surfa
e in Figure 2(
) has been 
omputed using the following data:
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Figure 3: Likelihood and standard deviation for the a2-m2-n50 tree with 107 runs
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ities n = (15, 6, 9, 13, 1, 1, 1, 1, 1, 2), n = 50.Data have been generated with simbeta, using the fun
tion sample.ims, where the underlying pa-rameters were α = 1.75, n = 50,m = 2, r = 107. The 
orresponding likelihood-surfa
e and standard-deviation are plotted below.The likelihood-surfa
e in Figure 2(b) has been 
omputed using the following data:
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Figure 4: Likelihood and standard deviation for the a1.75-m2-n50 tree with 107 runs
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ities n = (25, 3, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1), n = 50.Data have been generated with simbeta, using the fun
tion sample.ims, where the underlying parame-30



ters were α = 1.5, n = 50,m = 2, r = 107. The 
orresponding likelihood-surfa
e and standard-deviationare plotted below.Figure 5: Likelihood and standard deviation for the a1.5-m2-n50
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(b) DeviationThe likelihood-surfa
e in Figure 2(a) has been 
omputed using the following data:(0)(7, 3, 2, 1, 0)(13, 10, 9, 4, 0)(6, 5, 0)(8, 0)(11, 8, 0)(12, 0)(14, 0)(15, 8, 0)(16, 8, 0)(17, 8, 0)(18, 8, 0)(19, 12, 0)(20, 12, 0)
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ities n = (7, 1, 1, 5, 23, 2, 3, 2, 1, 1, 1, 1, 1, 1), n = 50.Data have been generated with simbeta, using the fun
tion sample.ims, where the underlying pa-rameters were α = 1.25, n = 50,m = 2, r = 107. The 
orresponding likelihood-surfa
e and standard-deviation are plotted below.
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Figure 6: Likelihood and standard deviation for the a1.25-m2-n50
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(b) Deviation8.2 Convergen
e of approximate likelihoodsFinally, an important question whi
h needs to be addressed is whether the 107 runs used in the Monte-Carlo approximation are su�
ient to produ
e useful results. Compare the likelihood-surfa
es obtainedafter 107 runs with the one obtained with 103 runs (using the same dataset).
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3The improvement is signi�
ant. The likelihood-surfa
e looks nearly di�erentiable around the maximum,32



but still rough at the edges.8.3 Generating samples in the �nite and in�nite alleles 
aseLet E be a 
ountable (possibly �nite) `type spa
e', P = (Pxy) a(n irredu
ible) sto
hasti
 matrix on Ewith unique equilibrium µ, r ≥ 0. On ea
h lineage, mutations o

ur at rate r, given a mutation takespla
e, the 
urrent type is 
hanged a

ording to a P -step.Type distribution in n-sample arises as follows: genealogy is Λ-
oales
ent. Given genealogy, giveMRCA type a

ording to µ, then run tree-indexed 
ontinuous-time MC with generator r(P − I). Weuse the inherent symmetries and only re
ord n = (nx)x∈E ∈ Z
E
+ (with #n :=

∑

x∈E nx = n), i.e. thefrequen
ies of the types, but not the order of the sample. We write q̃(n)
k := −q̃

(n)
kk for the total jumprate of Ỹ (n) in state k. We assume n ≥ 3 and obtain the following algorithm.Algorithm 1.(i) Draw K a

ording to L(Ỹ

(n)
0 ), i.e. Pr(K = k) = g(n, k)qk1.Begin with η = KδX , where X ∼ µ.(ii) Draw U ∼ Unif([0, 1]).If U ≤ kr

kr+q̃
(n)
k

:Repla
e one of the present types by a P -step from it, i.e. repla
e
η := η − δx + δy with probability ηx

#η
Pxy (for x 6= y).If U > kr

kr+q̃
(n)
k

:If #η = n: Stop.Otherwise, pi
k J ∈ {k + 1, . . . , n} with Pr(J = j) = q̃
(n)
#η,j/q̃

(n)
#η .Choose one of the present types (a

ording to their present frequen
y), and add

J − #η 
opies of this type, i.e. repla
e η := η + (J − #η)δx with probability ηx

#η
.Repeat.Note: Ordered sample 
an (in prin
iple) be obtained from a realization of η by random reordering(assuming E = {1, . . . , d}): pi
k uniformly one of the (

#η
η1...ηd

) possible reorderings.Remark (In�nitely many sites).Can be done analogously, one has to adapt the `mutation step' a

ordingly. See e.g. fun
tionsample.ims in �le simbeta0.1.R for an implementation in R. 233



In the 
ase of parent-independent mutation, i.e. Pij = Pj for all i, j, it is possible to simulate �ba
kwardsin time�. Indeed, in order to simulate a sample one follows lineages ba
kwards. �A
tive� an
estrallineages are lost either by (possibly multiple) 
oales
en
e or when hitting their `de�ning' mutation.Fix n, the required sample size. Along the way, we need ξ, a Z
E
+-valued variable (variable in the senseof 
omputer programming), and ζ, a variable with values in ∪n
j=1N

j .
|ζ| is the 
urrent number of `a
tive lineages', ζ(i) re
ords how many leaves are presently subtendedto i-th lineage (we think of an arbitrary ordering). ξ re
ords the types already `generated' by nowina
tive lineages.
ξ := 0, ζ := (1, 1, . . . , 1) ∈ N

n.Algorithm 2.While there are ℓ = |ζ| > 1 lineages: Draw Uif U ≤ ℓr
ℓr+qℓ

:Pi
k L ∼ Unif({1, . . . , ℓ}), ina
tivate L-th lineage, i.e.
ξ := ξ + ζ(L)δX (X ∼ P·), ζ :=

(
ζ(1), . . . , ζ(L− 1), ζ(L+ 1), . . . , ζ(ℓ)

)else (i.e. when U > ℓr
ℓr+qℓ

):Pi
k J a

ording to Pr(J = j) =
qℓj

qℓ
.Merge ℓ− J + 1 randomly 
hosen lineages to one, i.e.draw S ⊂ {1, . . . , ℓ} with |S| = ℓ− J + 1, then pi
k L′ ∈ S uniformly.Put ζ(L′) :=

∑

i∈S ζ(i),then remove entries in S \ {L′} from ζ.Finally, when |ζ| = 1, put ξ := ξ + ζ(1)δX (X ∼ P·).Remark (In�nitely many alleles).The same algorithm 
an be used to generate a sample from the family size spe
trum in the in�nitelymany alleles model. Instead of ξ, we use a variable ξ̄ with values in Z
n
+ (idea: �nally, ξ̄(k) =# fami-lies with k members. Just before removing lineage L in the algorithm above, in
rease ξ̄(ζ(L)) by one. 2
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