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AbstratOne of the main problems in mathematial genetis is the inferene of evolutionary parameters ofa population (suh as the mutation rate) based on the observed geneti types in a �nite DNA sample.If the population model under onsideration is in the domain of attration of a lassial Fleming-Viotproess, then the standard means to desribe the orresponding genealogy is Kingman's oalesent.For this proess, powerful inferene methods are well-established. An important feature of thislass of models is, roughly speaking, that the number of o�spring of eah individual is small whenompared to the total population size.Reently, more general population models have been studied, in partiular in the domain of at-tration of so-alled generalised Lambda Fleming-Viot proesses, as well as their (dual) genealogies,given by the so-alled Lambda-oalesents. Moreover, Eldon & Wakeley (2006) have provided evi-dene that suh more general oalesents, whih allow multiple ollisions, might atually be moreadequate to desribe real populations with extreme reprodutive behaviour, in partiular manymarine speies.In this paper, we extend methods of Ethier & Gri�ths (1987) and Gri�ths & Tavaré (1994)to obtain a likelihood based inferene method for general Lambda-oalesents. In partiular, weobtain a method to ompute (approximate) likelihood surfaes for the observed type probabilities ofa given sample. We argue that within the (vast) family of Lambda-oalesents, the parametrisablesub-family of Beta(2−α, α)-oalesents, where α ∈ (1, 2], are of partiular biologial relevane. Weapply our method in this ase to simulated and real data (taken from Árnason (2004)).We onlude that for populations with extreme reprodutive behaviour, the Kingman-oalesentas standard model might have to be replaed by more general oalesents, in partiular by Beta(2−
α, α)-oalesents.1 Introdution1.1 Coalesent proessesFor neutral population models of �xed population size in the domain of attration of the lassialFleming-Viot proess, suh as the Wright Fisher model and the Moran model, the genealogy of a�nite sample an be desribed by the now lassial Kingman-oalesent, whih we introdue brie�y,followed by the more reently disovered and muh more general Lambda-oalesents. For bakgroundon Fleming-Viot proesses, see e.g. [EK86℄, [D93℄ and [DK99℄.Kingman's oalesent. Let Pn be the set of partitions of {1, . . . , n} and let P denote the setof partitions of N. For eah n ∈ N, Kingman [K82℄ introdued the so-alled n-oalesent, whihis a Pn-valued ontinuous time Markov proess {Πn(t), t ≥ 0}, suh that Πn(0) is the partition of

{1, . . . , n} into singleton blok, and then eah pair of bloks merges at rate one. Given there are bbloks at present, this means that the overall rate to see a merger between bloks is ( b
2 ). Note thatonly binary mergers are allowed. Kingman [K82℄ also showed that there exists a P-valued Markovproess {Π(t), t ≥ 0}, whih is now alled the (standard) Kingman-oalesent, and whose restrition,1



for eah n ∈ N, to the �rst n positive integers is the n-oalesent. To see this, note that the restritionof any n-oalesent to {1, . . . ,m}, where 1 ≤ m ≤ n, is an m-oalesent. Hene the proess an beonstruted by an appliation of the standard extension theorem.Lambda-oalesents. Pitman [P99℄ and Sagitov [S99℄ introdued and disussed oalesents whihallow multiple mergers, i.e. more than just two bloks may merge at a time. Again, a oalesentwith multiple mergers (whih will be later alled Lambda-oalesent) is a P-valued Markov-proess
{Π(t), t ≥ 0}, suh that for eah n, its restrition to the �rst n positive integers is a Pn-valued Markovproess (the �n-Lambda-oalesent�) with the following transition rates. Whenever there are b bloksin the partition at present, eah k-tuple of bloks (where 2 ≤ k ≤ b ≤ n) is merging to form a singleblok at rate λb,k, and no other transitions are possible. The rates λb,k do neither depend on n nor onthe struture of the bloks. Pitman showed that in order to be onsistent, whih means that for all
b, k ≥ 2, b ≥ k,

λb,k = λb+1,k + λb+1,k+1,suh transition rates must neessarily satisfy
λb,k =

∫ 1

0
xk(1 − x)b−k 1

x2
Λ(dx), (1)for some �nite measure Λ on the unit interval. Note that (1) sets up a one-to-one orrespondenebetween oalesents with multiple ollisions and �nite measures Λ. Indeed, it is easy to see that the

λb,k determine Λ sine they satisfy the onditions of Hausdor�'s moment problem, whih has a uniquesolution.Due to the restrition property, the Lambda-oalesent on P, with rates obtained from the measure Λas desribed above, an be onstruted from the orresponding n-Lambda-oalesents via extension.Sometimes, we use the shorthand notation Λ-oalesent.Note that the family of Lambda-oalesents is rather large, and in partiular annot be parametrised bya few real variables. Important examples inlude Λ = δ0 (Kingman's oalesent) and Λ = δ1 (leadingto star-shaped genealogies, i.e. one huge merger into one single blok). Later, we will be onernedwith two important parametri sublasses of Λ-oalesents, namely the so-alled Beta-oalesents,where Λ has a Beta(2 − α,α)-density for some α ∈ (1, 2], and simple linear ombinations of atomimeasures of the type Λ = c1δ0 + c2δy for some onstants c1, c2 > 0 and y ∈ (0, 1]. To avoid trivialities,we will heneforth assume that Λ 6= 0.Remark. An important di�erene between the lassial Kingman-oalesent and oalesents whihallow for multiple mergers should be pointed out here. Roughly speaking, a Kingman oalesent arisesas limiting genealogy from a so-alled Cannings population model ([C74℄, [C75℄), if the individualsprodue a number of o�spring that is negligible when ompared to the total population size (inpartiular, if the variane of the reprodution mehanism onverges to a �nite limit). More generaloalesents with multiple mergers arise, one the o�spring distribution is suh that a non-negligibleproportion, say x ∈ (0, 1], of the population alive in the next generation goes bak to a singlereprodution event from a single anestor. In this ase, x−2Λ(dx) an be interpreted as the intensityat whih we see suh proportions x. Preise onditions on the underlying Cannings-models and thelassi�ation of the orresponding limiting genealogies an be found in [MS01℄. 22



Remark. In [EW06℄, Eldon and Wakeley assume that there are extreme reprodutive events,whih aount for non-negligible proportions of the population in a single reprodution event,in the population dynamis of the Pai� Oyster. In fat, many marine speies seem to exhibitsuh behaviour (see also [A04℄ and [BBB94℄). This will be disussed in more detail in Subsetion 7.2. 2�Coming down from in�nity� . Not all Lambda-oalesents seem to be reasonable models forbiologial populations, sine some do not allow for a �nite �time to the most reent ommon anestor�(TMRCA). This is equivalent with �oming down from in�nity in �nite time�: it means that, given anyinitial partition in P, and for all ε > 0, the partition Π(ε) a.s. onsists of �nitely many bloks only.Shweinsberg [S03℄ proves that if either Λ has an atom at 0 or Λ has no atom at zero and
∞∑

b=2

[ b∑

k=2

(k − 1)

(
b

k

) ∫

[0,1]
xk−2(1 − x)b−kΛ(dx)

]−1

=: λ∗ <∞, (2)then the orresponding oalesent does ome down from in�nity (and if so, the time to ome down toonly one blok has �nite expetation).An important example for a oalesent, whih (only just) does not ome down from in�nity is theBolthausen-Sznitman oalesent, where Λ(dx) = dx on [0, 1].Remark. It should be observed that all n-Lambda-oalesents (for �nite n) do have an a.s. �nite
TMRCA. 2Examples for oalesents whih satisfy (2) are

Λ = c1δ0 + c2δy, c1, c2 ≥ 0, y ∈ (0, 1), c1 + c2 > 0, (3)(hene inluding Kingman's oalesent for c1 = 1, c2 = 0) and the so-alled Beta(2 − α,α)-oalesentswith α ∈ (1, 2], where
Λ(dx) =

Γ(2)

Γ(2 − α)Γ(α)
x1−α(1 − x)α−1 dx. (4)Note that the Bolthausen-Sznitman oalesent is the Beta-oalesent with α = 1.Remark. It is easy to interpret the behaviour of the population orresponding to the oalesentassoiated with (3). The �rst atom stands for a Kingman-omponent, i.e. essentially reprodutionwith �nite variane. The seond atom says that with rate c2, a single individual an produe 100×y%of the population urrently alive in a single reprodution event. 2Populations with extreme reprodutive behaviour. Reently, biologists studied the geneti vari-ation of ertain marine speies with rather extreme reprodutive behaviour, see, e.g. Arnason [A04℄(Atlanti Cod) and [BBB94℄ (Pai� Oyster). Eldon and Wakely ([EW06℄) investigated suh popula-tions and proposed more general oalesents than Kingman's oalesent as models for the genealogyof suh populations. However, their model remains rather limited (based on the oalesents desribedby (3)), and their inferene relies on summary statistis, in partiular segregating sites and singletonpolymorphisms. One ritique is that there is no reason why there should be preisely one atom tothe right of 0. Still, they onlude that there is evidene that more general oalesents need to beonsidered. They write: 3



�It may be that Kingman's oalesent applies only to a small fration of speies.�In this paper, we propose a new andidate as a null-model for the genealogy oft populations withextreme reprodutive behaviour and provide some statistial evidene obtained both from simulatedand real data, namely the Beta(2 − α,α)-oalesent for some α ∈ (1, 2], whih then needs to beestimated from the data. A large part of what follows will be onerned with the question of how toestimate suh an α.1.2 Samples under the ∞-many sites modelHere, we intend to give the reader a hint about what the �data� in our in�nitely-many-sites, orshorthand, in�nite-sites, model look like. We will present a rigorous probabilisti basis on how suhdata may arise in the subsequent Setion 2. Note that we will not work with original DNA sequenedata here (i.e. sequenes of the bases A, T, C, G), but with an extrat of them, whih ontains muhof the relevant information. The way of how to transform real sequene data under the in�nite-sitesmodel into data of the type presented below is, e.g., being disussed in [T01℄.Let n ∈ N be the size of the sample, i.e. the number of sequenes resp. alleles drawn from a largepopulation. Let i ∈ {1, . . . , n}. Following [EG87℄ (or the overview artile [T01℄), we onsider the i-thallele in an n-sample under the in�nitely-many-sites model as a �nite sequene of positive integers
xi = (xi0, xi1, . . . ), where eah xij ∈ N0. It is ommon to think of xi0, xi1, . . . as the most reentlymutated site, the seond most reently mutated site, et., although the omplete temporal order anin general not be reonstruted from the original sequene observations (however, this information willlater be fatored out by onsidering suitable equivalene lasses, see below). An n-sample thereforeonsists of the sequenes (x1,x2, . . . ,xn).We assume that the sequenes follow these rules:1) Coordinates within eah sequene are distint.2) If for some i, i′ ∈ {1, . . . , n} and j, j′ ∈ N0 we have xij = xi′j′ , then

xi,j+k = xi′,j′+k, k = 1, 2, . . .3) There is at least one oordinate ommon to all n sequenes.Note that 1) � 3) imply that the observed types form a rooted tree.Example: (taken from [T01℄) A dataset whih is onsistent with the above rules.allele 1 : (9,7,3,1,0)allele 2 : (3,1,0)allele 3 : (11,6,4,1,0)allele 4 : (8,6,4,1,0)allele 5 : (10,5,2,0) 4



allele 6 : (8,6,4,1,0)allele 7 : (8,6,4,1,0) 2Note that the alleli type (8, 6, 4, 1, 0) appears three times, i.e. has multipliity 3. For notationalonveniene, our sequenes all end in 0, this re�ets the existene of a ommon �root�. This is a littlemore information than originally ontained in the in�nite-sites data, in partiular we assume a �knownanestral type�. The labels of the mutations and the root are by no means required to be dereasing,this is just suitable onvention. We will de�ne an appropriate equivalene relation via bijetions on Nlater.Given a sample of size n, we will now write (t,n) for the set onsisting of the set of di�erent types
t = (x1, . . . , xd), d ≤ n, and the multipliity vetor n. In the above example, we have

(t,n) =
((

(9, 7, 3, 1, 0), (3, 1, 0), (11, 6, 4, 1, 0), (8, 6, 4, 1, 0), (10, 5, 2, 0)
)
, (1, 1, 1, 3, 1)

)

.If we take numbered samples into aount, i.e. if we let ai ⊂ {1, . . . , n}, i ∈ {1, . . . , d} denote the setof the numbers of the sequenes with type xi, then one an also onsider the set of types and orderedpartitions (t,a), where a = (a1, . . . ad), in the above example given by
(t,a) =

((
(9, 7, 3, 1, 0), (3, 1, 0), (11, 6, 4, 1, 0), (8, 6, 4, 1, 0), (10, 5, 2, 0)

)
,
(
{1}, {2}, {3}, {4, 6, 7}, {5}

))

.The probabilisti mehanism behind these data and the neessary equivalene relation will be disussedin detail in Setion 2.1.3 Reursion for the type probabilities under Kingman's oalesentIt is in priniple possible to ompute the exat probabilities of a given type on�guration (t,n) via areursive formula. The following reursion is due to Ethier and Gri�ths, see [EG87℄ and [G89℄. Let
p0(t,n) be the probability of the ordered types t with multipliities n. Then, using standard oalesentarguments, onsidering the last event in the oalesent history, it is easy to arrive at the reursion

p0(t,n) =
1

nr +
(
n
2

)

∑

k:nk≥2

(
n

2

)
nk − 1

n− 1
p0(t,n − ek)

+
r

nr +
(
n
2

)

∑

k:nk=1,xk0distint
s(xk) 6=xj∀j

p0(sk(t),n)

+
r

nr +
(
n
2

)

∑

k:nk=1,

xk0 distint ∑

j:s(xk)=xj

(nj + 1)p0(rk(t), rk(n + ej)), (5)where ej denotes the j-th unit vetor, sk(t) deletes �rst oordinate of the k-th sequene in t, s(xk)removes the �rst oordinate from the sequene xk, rk(t) removes k-th sequene from t, and xk0`distint' means that xk0 6= xij ,∀(x1, . . . ,xd) and (i, j) 6= (k, 0). We have the boundary ondition
p({(0)}, (1)) = 1 for the root.

5



1.4 Inferene for Kingman's oalesentE�ient likelihood-based inferene methods, some solving the above reursion (5) approximately viaMonte Carlo methods, others using MCMC and importane sampling, have been developed sine thebeginning of the 90ies, see [EG87℄, [GT94a℄, [GT94b℄, [GT94℄, [GT96b℄, [FKY99℄, [DIG04a℄, [SD00℄).In [SD00℄, Stephens and Donnelly provide proposal distributions for importane sampling, whih areoptimal in some sense, and ompare them to various other methods. Their importane sampling shemeseems, at present, to be the most e�ient tool for inferene for relatively large datasets.Leaving our rather narrow, in partiular neutral, non-spatial and onstant-population-size framework,we would like to mention that there are also Kingman-oalesent based inferene methods for modelswith non-onstant population size (see, e.g. [KYF95℄, [KYF98℄), spatial struture and migration(e.g. [DIG04b℄) or reombination (e.g. [GM96℄), whih lead to interesting questions, suh as how todistinguish between shallow genealogies, whih might be the result of a reent inrease in populationsize, or extreme o�spring distributions, whih then should be modelled using Lambda-oalesents.1.5 Outline of the paperIn Setion 2, we present in detail the probabilisti neutral oalesent model that gives rise to the dataas presented in Subsetion 1.2.Setion 3 ontains the reursions for the type probabilities assuming a given underlying Λ-oalesent-tree. Moreover, introduing the blok-ounting proess {Yt, t ≥ 0} assoiated with a Λ-oalesent, andits time-reversal {Ỹt, t ≥ 0}, we derive a reursion for the distribution of the site-frequeny spetrum.Note that our inferene methods will be foused on the in�nite-sites ase.In Setion 4, we use alternative approahes to derive reursions also in the �nite- and in�nite-allelesases. Indeed, we use Donnelly and Kurtz' [DK99℄ modi�ed lookdown onstrution, assuming a givenunderlying generalised Λ-Fleming-Viot proess, to obtain a reursion for the �nite-alleles model.Moreover, we show that alulations based on the generator of the population model as in [DIG04a℄also lead to these reursions in the �nite-alleles model. Finally, we reall the reursion obtained byMöhle in [M06b℄ for the multipliity vetor n in the in�nite-alleles model.In Setion 5, we derive proposal transitions for a Markov hain that we then use to obtain aMonte Carlo sheme for the type probabilities resp. likelihoods obtained in Setion 3 under theLambda-oalesent in the in�nite-sites model.In Setion 6, we present some likelihood-surfaes, obtained from our Monte Carlo method whenapplied to simulated and real data. We laim that there is evidene that populations with extremereprodutive behaviour ould be better modelled with Beta(2−α,α)-oalesents instead of Kingman'soalesent.Setion 7 ontains a disussion of the biologial and theoretial relevane of the Beta(2 − α,α)oalesent subfamily within the family of Λ-oalesents. We argue that they ould be used asnull-model in ertain situations. We also disuss alternative approahes to inferene questions as6



derived in [EW06℄ and [BBS06℄.Finally, in Setion 8 (the Appendix), we present two algorithms to obtain samples of �nite- and in�nitealleles and in�nite-sites data. Furthermore, we inlude all the original data, orresponding genetrees,likelihood-surfaes and standard deviations that lead to the statistial evidene in Setion 6.AknowledgementsWe wish to thank Bob Gri�ths for many helpful disussions, Alison Etheridge for providing a stimu-lating environment and Matthias Steinrüken for various ommments and help with the simulations.2 In�nite sites data and Λ-oalesent treesTo obtain an n-sample under the in�nite-sites model from a oalesent tree, we perform the followingprobabilisti experiment:(i) Run an n-Λ-oalesent. Obtain a rooted oalesent tree.(ii) On this rooted tree with n leaves (numbered from 1 to n), plae mutations along the branhes atrate r (note that this parameter is ustomarily alled θ/2).(iii) Label these mutations randomly: Given there are s mutations in total, attah randomly (i.e. a-ording to the uniform distribution) the labels from 1, . . . , s to these mutations.(iv) Turn this oalesent tree with labelled mutations and numbered leaves into a �genetree� by breakingedges at mutations, resulting in verties of degree 2, and then moving the branhing pointsinwards until they reah the nearest mutation. Ignore the lengths of the edges.(v) A type is the sequene of labels of mutations observed following the path bakwards from a leafto the root. Enumerate the di�erent types randomly to obtain a set of sequenes {x1, . . . ,xd},where d ≤ n is the number of di�erent types.(vi) De�ne an equivalene relation on the set of types by writing
(x1, . . . ,xd) ∼ (y1, . . . ,yd)if there is a bijetion ξ : N0 → N0 with yij = ξ(xij), i ∈ 1, . . . , d; j = 0, 1, . . . . Under �∼�, theonrete labels of mutations are irrelevant. Note that in what follows, we suppress the distintionbetween suh an equivalene lass, denoted by [t], and a representative, denoted by t.(vii) Let Ai ⊂ {1, . . . , n} be the random set of the numbers (being attahed to leaves in Step 2) whihhave type i ∈ {1, . . . , d}. We obtain a random pair (T,A), where A = (A1, . . . , Ad) is an orderedrandom partition.(viii) Finally, let

p(t,a) := Pr{(T,A) = (t,a)}.7



Note that, by the symmetry of the oalesent,
p
(
t, (a1, . . . , ad)

)
= p

(
t, (π(a1), . . . , π(ad))

)for any permutation π ∈ Sn.We all suh pairs (T,A) a numbered random sample on�guration with ordered types. Later, it will beuseful to onsider only the frequenies of the ordered types, i.e. de�ne a map
φ : (t,a) 7→ (t,n),where n = (n1, . . . , nd) := (#a1, . . . ,#ad), i.e. ∑d

i=1 ni = n. We denote its probability distribution by
p0

(
(t,n)

)
:= p

(
φ−1(t,n)

)

=
n!

n1! · · · nd!
p
(
(t,a)

) (6)for any (t,a) ∈ φ−1(t,n) by the observation in Step 8.For notational simpliity, we introdue the following slightly ambiguous operation. By a−ei, we meana partition obtained from a by removing one element from the set ai (with impliit adjustments sothat the result is a partition of {1, . . . , n−1}). Note that we will not be onerned with the fat whihelement we atually remove, sine, by Step (viii) in the above mehanism, the type probability p willnot depend on the atual hoie. Similarly, by a− (k− 1)ei we mean the partition obtained from a byremoving k elements from ai (ertainly, this only makes sense if #ai ≥ k). Finally, a + ei will be thepartition obtained from a by adding an arbitrary element of N to the set ai that is not yet ontainedin any other set al, l = 1 . . . d.3 Genealogial tree probabilities for Λ-oalesents in the in�nite-sitesmodelIn this setion, we obtain reursions for the probability of given type on�gurations of a sample basedon the probabilisti model disussed above. These reursions lead to a Monte-Carlo method to omputethe approximate likelihood of on�gurations.We will distinguish two ases. In the �rst ase, we will onsider ordered labelled samples of type (t,a),whih take the full information ontained in the partition a into aount. In the seond ase, we restritto numbered ordered on�gurations of the type (t,n), whih only ount the multipliities n.
8



3.1 Ordered labelled samplesLet us derive the analogue of (5) for Λ-oalesents, again with mutation rate along branhes beinggiven by r. With similar (abuse of) notation as above, we have, for given (t,a),
p(t,a) =

1

nr +
∑n

k=2

(
n
k

)
λn,k

∑

i: ni≥2

ni∑

k=2

(
ni

k

)

λn,k p(t,a − (k − 1)ei)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,xk0distint
s(xk) 6=xj∀j

p(sk(t),a)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,

xk0 distint ∑

j:s(xk)=xj

p(rk(t), rk(a + ej)), (7)and the boundary ondition for the root p({0}, (1)) = 1. Reursion (7) boils down to (5) in the asethat Λ = δ0.Proof. Similar to the Kingman-ase by onditioning on the last event in the oalesent history, takingmultiple mergers into aount. 23.2 Numbered ordered samplesReall from (6), that
p0(t,n) =

n!

n1! · · · nd!
p(t,a). (8)Thus, for the types and multipliities (t,n), we obtain

p0(t,n) =
1

nr +
∑n

k=2

(
n
k

)
λn,k

∑

i: ni≥2

ni∑

k=2

(
ni

k

)

λn,k
n!

n1! · · · nd!

n1! · · · (ni − k + 1)! · · · nd!

(n− k + 1)!
p0(t,n − (k − 1)ei)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,xk0distint
s(xk) 6=xj∀j

p0(sk(t),n)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,xk0distint ∑

j:s(xk)=xj

n!

n1! · · ·nd!

n1! · · · (nj + 1)! · · · nd!

n!
p0(rk(t), rk(n + ej)).Sine

(
ni

k

)
n!

n1! · · · nd!

n1! · · · (ni − k + 1)! · · · nd!

(n− k + 1)!
=

ni!

k!(ni − k)!

n!(ni − k + 1)!

ni!(n− k + 1)!
=

(
n

k

)
ni − k + 1

n− k + 1
,
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rearrangement leads to
p0(t,n) =

1

nr +
∑n

k=2

(
n
k

)
λn,k

∑

i: ni≥2

ni∑

k=2

(
n

k

)

λn,k
ni − k + 1

n− k + 1
p0(t,n − (k − 1)ei)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,xk0distint
s(xk) 6=xj∀j

p0(sk(t),n)

+
r

nr +
∑n

k=2

(
n
k

)
λn,k

∑

k:nk=1,xk0distint ∑

j:s(xk)=xj

(nj + 1)p0(rk(t), rk(n + ej)), (9)with the usual boundary ondition for the root, i.e. p0({0}, (1)) = 1.Remark (Unrooted trees). To arrive at probabilities in the ase of unrooted trees (orresponding tounknown anestral types), simply sum over all hoies of the root. 23.3 The blok-ounting proess and a reursion for the site frequeny spetrumIn this setion, we show how the so-alled blok ounting proess, whih keeps trak of the number ofbloks of a oalesent-proess, an be used to derive the site frequeny spetrum for an n-sample inthe in�nite-sites model. The time-reversal of this proess will later be useful in order to obtain urn-likealgorithms to produe samples under the �nite- and in�nite-alleles model.De�nition 3.1 (blok-ounting proess, skeleton hain). Let {Πt}t≥0 be a Λ-oalesent. We denoteby {Yt}t≥0 the orresponding blok ounting proess, i.e. Yt = # of bloks of Πt is a ontinuous-timeMarkov hain on N with jump rates
qij =

(
i

i− j + 1

)

λi,i−j+1, i > j ≥ 1.The total jump rate while in i is of ourse −qii =
∑i−1

j=1 qij. We write
pij :=

qij
−qii

(10)for the jump probabilities of the skeleton hain, noting that (pij) is a stohasti matrix.Note that in order to redue i lasses to j lasses, an i− j + 1-merger has to our.De�nition 3.2 (Green's funtion of Y ). Let
g(n,m) := En

[ ∫ ∞

0
1{Ys=m} ds

] for n ≥ m ≥ 2 (11)be the expeted amount of time that Y , starting from n, spends in m.
10



Deomposing aording to the �rst jump of Y , we �nd the following set of equations for g(n,m):
g(n,m) =

n−1∑

k=m

pnkg(k,m), n > m ≥ 2, (12)
g(m,m) =

1

−qmm
, m ≥ 2. (13)Let us write Y (n) for the proess starting from Y

(n)
0 = n. Let τ := inf{t : Y

(n)
t = 1} be the timerequired to ome down to only one lass, and let

Ỹ
(n)
t := Y

(n)
(τ−t)−, 0 ≤ t < τbe the time-reversed path, where we de�ne Ỹ (n)

t = ∂, some emetery state, when t ≥ τ .Proposition 3.3 (Time-reversal). With the above de�nitions, Ỹ (n) is a ontinuous-time Markov hainon {2, . . . , n} ∪ {∂} with jump rates
q̃
(n)
ji =

g(n, i)

g(n, j)
qij, j < i ≤ n,and q̃(n)

n∂ = −qnn, where g(n,m) is as in (11). The starting distribution of Ỹ (n) is given by
Pr{Ỹ

(n)
0 = k} = g(n, k)qk1,for eah k.Proof. The result follows from Nagasawa's Formula, see e.g. [RW87℄, and the observation

Pr{Ỹ
(n)
0 = k} = Pr

n

{
Ỹ (n) hits k, jumps to 1 from there}

= Pr
n

{
Ỹ (n) hits k} qk1

−qkk

= g(n, k)qk1.Note that unless Λ is onentrated on {0} (Kingman-ase), the dynamis of Ỹ (n) does depend on n. 2We now turn our attention to the �site frequeny spetrum�, in partiular under the Beta-oalesent.De�nition 3.4 (Site frequeny spetrum). Consider a sample of size n ∈ N obtained in the in�nite-sites model, assuming known anestral types. Let Mn(b), b ∈ {0, . . . , n} denote the number of mutationswhih a�et preisely b individuals out of the sample. The n-tuple
(Mn(1), . . . ,Mn(n)), Mn(b) ∈ {1, . . . , n}, b ∈ {1, . . . , n},is alled the (empirial) site frequeny spetrum of the sample. We denote by ϕn(b) the probability tosee a �typial mutation� b-times in a sample of size n.11



We now determine ϕn with the help of a reursion. Indeed, for n ≥ k > 1, let rnk(b) be the probabilitythat in an n − Λ-oalesent, onditioned that there are at some point in time exatly k branhes, agiven one of these k branhes (e.g. the �rst, if we think of some ordering) subtends exatly b leaves.Obviously rnn(b) = δ1b, and rnk(b) = 0 if b > n− (k − 1). Deomposing aording to the �rst jump of
Y , starting from n, yields the reursion

rnk(b) =

n−1∑

j=k

pnj
g(j, k)

g(n, k)

[

1b>n−j
b− (n− j)

j
rjk(b− (n− j)) + 1b<j

j − b

j
rjk(b)

]

. (14)The idea is the following: Assume that the blok ounting proess Y jumps from n down to j. Here,the fator g(j, k)/g(n, k) aounts for the onditioning on hitting k. Then, thinking `forwards in timefrom j lineages', either the (n− j+ 1)-split ourred to one of the then neessarily b− (n− j) lineagessubtended to the one we are interested in, or it ours to one of the j − b others. Note that whensolving (14) numerially, we an do this separately for eah k. Let
Tk :=

∫ ∞

0
1{Ys=m} dsbe the length of the time interval during whih there are k lineages (possibly 0), and

ψn(b) = expeted total length of all branhes with b subtended leaves (15)(in an n-Λ-oalesent). We arrive at the following result.Theorem 3.5 (Distribution of the site frequeny spetrum). Under the above assumptions, we have
ψn(b) =

n−b+1∑

k=2

rnk(b)kEn

[
Tk

]
=

n−b+1∑

k=2

rnk(b)kg(n, k), (16)and the (normalised) site frequeny spetrum distribution is given by the weights
ϕn(b) =

ψn(b)
∑n

ℓ=2 ℓEn

[
Tℓ

] =

∑n−b+1
k=2 rnk(b)kg(n, k)

∑n
ℓ=2 ℓg(n, ℓ)

. (17)Remark. The above is a natural extension of the arguments in [GT98℄ to the multiple merger ase.
2Example: The Beta-oalesent.In the ase when Λ has a Beta(a, b)-density for some a, b > 0, i.e.

Λ(dx) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1 − x)b−1

1(0,1)(x) dx, (18)the qij an be omputed a little more expliitly:
λn,k =

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0
xk+a−3(1 − x)n−k+b−1 dx

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(k + a− 2)Γ(n− k + b)

Γ(n− 2 + a+ b)

=
(a)k−2(b)n−k

(a+ b)n−2
,12



where (x)i = x(x+ 1) · · · (x+ i− 1), (x)0 = 1, and we used Γ(x+ 1) = xΓ(x). Thus
qij =

(
i

i− j + 1

)

λi,i−j+1 =
i!

(i− j + 1)!(j − 1)!

(a)i−j−1(b)j−1

(a+ b)i−2
.

2Note that asymptoti results for the site- (and also the allele-) frequeny spetrum have been foundby [BBS06℄, see Theorem 7.1.4 Finite- and in�nite alleles reursionsIn this setion, we brie�y disuss methods to obtain reursions in the above spirit for the �nite-and in�nite alleles models from mathematial genetis. We will make use of the modi�ed lookdownonstrution, a generator method, quote Möhle's reursion for the multipliities in the in�nite-allelesase and �nally present some algorithms to generate samples under the respetive models.4.1 Finite-alleles I : an approah using the �modi�ed lookdown onstrution�We illustrate this method in the ase of �nitely many types, whih we have not treated yet. We thinkof type hanges, or mutations, ourring at rate r, and P = (Pij) as the transition matrix on the �nitetype spae E, where silent mutations are allowed (i.e. Pjj ≥ 0). Here, we assume that the reader isfamiliar with the �modi�ed lookdown onstrution� (mld) of the generalised Λ-Fleming-Viot proess,see [DK99℄ for the general theory or [BBC05℄, Setion 2, for a shorter desription. This time, weinterpret
λn,k =

∫

[0,1]
xk(1 − x)n−k 1

x2
Λ(dx), n ≥ k ≥ 2 (19)as the rate with whih one observes a partiular resampling event involving exatly k among the �rst

n levels in the mld onstrution. Suppose the system is in equilibrium. Consider the �rst n levels attime 0 and let τ−1 be the last instant before 0 when at least one of the types at levels 1, . . . , n hanges.Then, −τ−1 is exponentially distributed with rate
rn = nr +

n∑

k=2

(
n

k

)

λn,k. (20)Denote by q the distribution of the types of the �rst n levels in equilibrium in the modi�ed look-down onstrution. Later, due to exhangeability, we will merely be interested in the type frequenyprobability p(n). Deomposing aording to whih event ourred at time τ−1, we obtain
q
(
(y1, . . . , yn)

)
=

r

rn

n∑

i=1

∑

z∈E

q
(
(y1, . . . , yi−1, z, yi+1, . . . , yn)

)
Pzyi

+
1

rn

∑

K⊂{1,...,n}
|K|≥2

λn,|K|1{all yj equal for j ∈ K}q
(
γK(y1, . . . , yn)

)
, (21)13



where γK(y1, . . . , yn) ∈ En−|K|+1 is that vetor of types of length n − |K| + 1 whih
(
ξ1(τ−1−), . . . , ξn−|K|+1(τ−1−)

) must be in order that a resampling event involving exatly the levelsin K among levels 1, . . . , n generates (
ξ1(τ−1), . . . , ξn(τ−1)

)
= (y1, . . . , yn). Formally,

γK(y1, . . . , yn)i = yi+#((K\{minK})∩{1,...,i}), 1 ≤ i ≤ n− |K| + 1.We have the boundary ondition q((y1)
)

= µ(y1), y1 ∈ E. Note that, by exhangeability,
q
(
(y1, . . . , yn)

)
= q

(
(yπ(1), . . . , yπ(n))

)for any permutation π of {1, . . . , n}. So, the only relevant information is (of ourse) how many sampleswere of whih type. For n = (n1, . . . , nd) ∈ Z
d
+ we write #n := n1 + · · · + nd for the `length', and

κ(n) =
(
1, 1, . . . , 1
︸ ︷︷ ︸

n1

, 2, . . . , 2
︸ ︷︷ ︸

n2

, . . . , d, . . . , d
︸ ︷︷ ︸

nd

)
∈ E#nfor a `anonial representative' of the (absolute) type frequeny vetor n. Put q̃(n) := q(κ(n)) and let

p(n) :=

(
#n

n1, n2, . . . , nd

)

q̃(n) (22)be the probability that in a sample of size #n, there are exatly nj of type j, j = 1, . . . , d. (21)translates into a reursion for p: (we abbreviate n := #n, and write ek for the k-th anonial unitvetor of Z
d)

p(n) =
r

rn

d∑

j=1

nj

d∑

i=1

Pij

(
#n

n1, n2, . . . , nd

)

q̃(n− ej + ei)

+
1

rn

d∑

j=1

nj∑

k=2

(
nj

k

)

λn,k

(
#n

n1, n2, . . . , nd

)

q̃(n− ej + ei).Note that
nj

(
#n

n1, n2, . . . , nd

)

q̃(n − ej + ei) =
(
ni + 1 − δij

)
(

#n

n1, . . . , ni + 1, . . . , nj − 1, . . . , nd

)

q̃(n − ej + ei)

=
(
ni + 1 − δij

)
p(n − ej + ei)and that (for nj ≥ k, otherwise the term is 0)

(
nj

k

)(
#n

n1, n2, . . . , nd

)

q̃(n − (k − 1)ej) =

(
n

k

)
nj − k + 1

n− k + 1

(
n− k + 1

n1, . . . , nj − k + 1, . . . , nd

)

q̃(n− (k − 1)ej)

=

(
n

k

)
nj − k + 1

n− k + 1
p(n− (k − 1)ej).Thus, the reursion for p is

p(n) =
r

rn

d∑

j=1

d∑

i=1

(ni + 1 − δij)Pijp(n − ej + ei) (23)
+

1

rn

d∑

j=1
nj≥2

nj∑

k=2

(
n

k

)

λn,k
nj − k + 1

n− k + 1
p(n− (k − 1)ej) (24)14



with boundary onditions p(ej) = µj.Remark. In the Kingman-ase, we have λn,k = 1(n ≥ 2 = k), rn = nθ/2+n(n−1)/2 = n(n−1+θ)/2(and we assume r = θ/2 as `usual'), hene (23) beomes
p(n) =

2

n(n− 1 + θ)

θ

2

d∑

j=

d∑

i=1

(ni + 1 − δij)Pijp(n− ej + ei)

+
2

n(n− 1 + θ)

d∑

j=1
nj≥2

(
n

2

)
nj − 1

n− 1
p(n − ej)

=
θ

n− 1 + θ

d∑

j=

d∑

i=1

ni + 1 − δij
n

Pijp(n− ej + ei)

+
n− 1

n− 1 + θ

d∑

j=1
nj≥2

nj − 1

n− 1
p(n− ej),whih agrees with (3) in [DIG04a℄.4.2 Finite-alleles II: the generator approahAn alternative method to obtain the reursion for the type probabilities in the �nite-sites ase is byusing a generator approah, see [DIG04a℄. Let f ∈ C2 and ∆d = {(x1, . . . , xd) : xi ≥ 0, x1+· · ·+xd = 1}and onsider the mutation operator

Bf(x1, . . . , xd) = r
d∑

i=1

( d∑

j=1

xjPji − xiPij

) ∂f

∂xi
(x1, . . . , xd)For the resampling operator, we distinguish the Kingman- and non-Kingman omponents. First,assume Λ(0) = 0 (non-Kingman). Consider

R1f(x1, . . . , xd) =

d∑

i=1

∫

xi

(

f
(
(1 − r)x1, . . . , (1 − r)xi−1, (1 − r)xi + r, (1 − r)xi+1, . . . , (1 − r)xd

)

− f(x1, . . . , xd)
)

r−2Λ(dr). (25)For the Kingman-part (Λ = δ0) of the resampling operator, we have
R2f(x1, . . . , xd) =

1

2

d∑

i,j=1

xi(δij − xj)
∂2f

∂xi∂xj
(x1, . . . , xd).Finally, for general Λ and a ≥ 0, write

R = R1 + aR2,where R1 uses Λ′, Λ′(·) := Λ(·∩ (0, 1]), a = Λ(0). Now, let X(t) = (X1(t), . . . ,Xd(t)) be the stationaryproess with generator L = B + R (see [BLG03℄). Write X = X(0). Let n = (n1, . . . , nd), n =15



n1 + · · · + nd. Then,
E

[ d∏

i=1

Xni

i

]is the probability of observing in a sample of size n from the equilibrium population type i preisely
ni times in a partiular order (e.g. �rst n1 samples of type 1, next n2 samples of type 2, et.). Put

fn(x) := xn :=

d∏

i=1

xni

i .Then,
g(n) :=

(
n

n1 . . . nd

)

E
[
fn(X)

]is the probability of observing type i exatly ni times, i = 1, . . . , d, without regard of the order. Inequilibrium, we have ELf(X) = 0. Note that
Bfn(x1, . . . , xd) = r

d∑

i=1

( d∑

j=1

xjPji − xiPij

)

nifn−ei
(x1, . . . , xd)

= r

d∑

i,j=1

niPjifn−ei+ej
(x) − rnfn(x)and

fn((1 − r)x + rei) = (1 − r)n−ni

d∏

j 6=i

x
nj

j ×
(
(1 − r)xi + r

)ni

= (1 − r)n−ni

d∏

j 6=i

x
nj

j ×
ni∑

k=0

(
ni

k

)

rk(1 − r)ni−kxni−k
i

=

ni∑

k=0

(
ni

k

)

rk(1 − r)n−k

(

xni−k
i

d∏

j 6=i

x
nj

j

)

,so the term inside the integral in the expression (25) for R1 an be written as
d∑

i=1

ni∑

k=0

(
ni

k

)

rk(1 − r)n−kxni−k+1
i

d∏

j 6=i

x
nj

j −
n∑

k=0

(
n

k

)

rk(1 − r)n−k
d∏

ℓ=1

xnℓ

ℓ

=

d∑

i:ni≥2

ni∑

k=2

(
ni

k

)

rk(1 − r)n−kxni−k+1
i

d∏

j 6=i

x
nj

j −
n∑

k=2

(
n

k

)

rk(1 − r)n−k
d∏

ℓ=1

xnℓ

ℓ(the terms with k = 0 and k = 1 anel sine x1 + · · · + xd = 1 and n1 + · · · + nd = n). Realling
λn,k =

∫
rk−2(1 − r)n−kΛ(dr) we obtain

R1fn(x) =
d∑

i:ni≥2

ni∑

k=2

(
ni

k

)

λn,kfn−(k−1)ei
(x) −

n∑

k=2

(
n

k

)

λn,kfn(x). (26)16



Furthermore
R2fn(x) =

1

2

d∑

i,j=1

xi(δij − xj)ni(nj − δij)fn−ei−ej
(x)

=

d∑

i=1

ni(ni − 1)

2
fn−ei

(x) −
d∑

i,j=1

ni(nj − δij)

2
fn(x)

=

d∑

i=1

ni(ni − 1)

2
fn−ei

(x) −
n(n− 1)

2
fn(x). (27)Combining the terms from R1 and R2 (using (26) and (27) above, and replaing Λ by Λ′ in (25)), wehave

Rfn(x) =

d∑

i:ni≥2

ni∑

k=2

(
ni

k

)

λn,kfn−(k−1)ei
(x) −

n∑

k=2

(
n

k

)

λn,kfn(x).Thus we obtain from ELfn(X) = 0:
znEfn(X) = r

d∑

i,j=1

niPjiEfn−ei+ej
(X) +

d∑

i:ni≥2

ni∑

k=2

(
ni

k

)

λn,kEfn−(k−1)ei
(X),where

zn = rn+

n∑

k=2

(
n

k

)

λn,k.Multiply with (
n

n1...nd

) to obtain
zng(n) = r

d∑

i,j=1

(nj + 1 − δij)Pjig(n − ei + ej)

+
d∑

i:ni≥2

ni∑

k=2

(
ni

k

)
n!

n1! . . . nd!

n1! . . . (ni − k + 1)! . . . nd!

(n − k + 1)!
︸ ︷︷ ︸

=
ni!

k!(ni−k)!
n!
ni!

(ni−k+1)!

(n−k+1)!
= n!

k!(n−k)!

ni−k+1

n−k+1

λn,k g(n − (k − 1)ei)

= r

d∑

i,j=1

(nj + 1)Pjig(n − ei + ej)

+

d∑

i:ni≥2

ni∑

k=2

(
n

k

)

λn,k
ni − k + 1

n− k + 1
g(n − (k − 1)ei)whih agrees with (23) after dividing by zn.4.3 In�nite-alleles: Möhle's reursionHere, one assumes that every mutation, whih ours along the oalesent tree with rate r > 0, leadsto an entirely new type, no other information is being retained. If we take a sample of n ∈ N genes,17



it is natural to ask for the probability p(n) to sample a spei�, non-ordered allele on�guration
n = (n1, . . . , nk), where k ≤ n is the number of di�erent types and ni, i ∈ {1, . . . , k} is the numberof times that type i is being observed. Using oalesent arguments, it is possible obtain the followingreursion, see [M06b℄, Theorem 3.1.Theorem 4.1 (Möhle (2006)). The probability of a non-ordered allele on�guration n = (n1, . . . , nk)satis�es the reursion given by p(1) = 1 and
p(n) =

nr
∑n

k=2

(
n
k

)
λn,k + nr

k∑

j=1
nj=1

1

k
p(ñj) +

1
∑n

k=2

(
n
k

)
λn,k + nr

n∑

i=2

k∑

j=1
nj≥i

λn,i
nj − i+ 1

n− i+ 1
p(n − (i− 1)ej),(28)with n =

∑

j nj ≥ 2, r = θ/2, and ñj = (n1, . . . , nj−1, nj+1, . . . , nk). As before, ej denotes the unitvetor in R
k.In the Kingman-ase, this reursion an be solved expliitly and leads to an alternative formulation ofthe famous Ewens sampling formula, see [E79℄. It seems that the only other ase in whih an expliitsolution is known is the ase Λ = δ1, in whih the genealogy is star-shaped.5 A Monte Carlo method for the omputation of the likelihoods inthe in�nite-sites modelWe �rst derive a simple Monte-Carlo approximation of the exat sampling probabilities in the in�nite-sites model by simulating a Markov hain bakwards along the sample paths of the oalesent (essen-tially based on [GT94b℄, see also [T01℄).5.1 An unbiased estimator for p0(t,n)First, we reall a suitable notion of tree omplexity.De�nition 5.1 (Tree omplexity). Given ordered types and frequenies (t,n), we de�ne the tree om-plexity of (t,n) as

c[(t,n)] =
d∑

i=1

ni +
d∑

i=1

#xi ∈ N,where, for 1 ≤ i ≤ d, #xi denotes the length of the sequene xi (exlusive of the root).Note that the tree omplexity is the sum of the sample size and the number of segregating sites. Thisde�nition transfers in the obvious way also to the pair of ordered types and partitions (t,a). It is learthat the tree omplexity is independent of the hoie of a representative t from the equivalene lass [t]and hene well-de�ned. If c[(t,n)] = 1, the minimum for a non-vanishing tree, then the tree onsistsonly of its root with multipliity one, i.e. (t,n) = ({0}, (1)) =: t0. We write
(t′,n′) ≺ (t,n)18



if (t′,n′) an be reahed from (t,n) by either removing one mutation or a oalesene event, see below.In this ase, c[(t′,n′)] < c[(t,n)]. Hene observe that the reursions (5) and (9) are proper reursionsin the sense that they stritly derease the tree omplexity in eah step.The following lemma is an appropriate version of the orresponding Lemma 6.1 in [T01℄.Lemma 5.2. Let {Xk, k ≥ 0} be a Markov hain on the spae of ordered types with orrespondingfrequenies, denoted by (T ,N ), and with transitions Q = (q(t,n),(t′,n′)) suh that the hitting time
τ = inf

{
k ≥ 0 : Xk = ({0}, (1))

}for any given initial state (t,n) in (T ,N ) is bounded by some onstant 0 ≤ K1(t,n) < ∞. Let
f : (T ,N ) → [0,∞) be a measurable funtion and de�ne

u(t,n)(f) = E(t,n)

τ∏

k=0

f(Xk) (29)for all X0 = (t,n) ∈ (T ,N ), so that
u({0},(1))(f) = f

(
{0}, (1)

)
.Then

u(t,n)(f) = f
(
(t,n)

) ∑

(t,n)∈(T ,N )

(t′,n′)≺(t,n)

q(t,n),(t′,n′)u(t′,n′)(f) (30)for all (t,n) ∈ (T ,N )\({0}, (1)). Conversely, the unique solution of (30) is given by (29).Remark. If the transitions Q = (q(t′,n′),(t,n)) are only positive if c[(t′,n′)] < c[(t,n)], then
τ = inf

{
k ≥ 0 : Xk = ({0}, (1))

}is always bounded from above by the tree omplexity of the initial state. 2Proof. Note that by the boundedness of τ , the expeted value remains �nite for eah initial ondition.Now, ompute
u(t,n)(f) = E(t,n)

τ∏

k=0

f(Xk)

= f(t,n) E(t,n)

τ∏

k=1

f(Xk)

= f(t,n) E(t,n)

[

E(t,n)

τ∏

k=1

f(Xk) | X1

]

= f(t,n) E(t,n)

[

EX1

τ∏

k=0

f(Xk)
]

= f(t,n) E(t,n)

[
uX1(f)

]

= f(t,n)
∑

(t′,n′)∈(T ,N )

(t′,n′)≺(t,n)

q(t,n),(t′,n′)u(t′,n′)(f),19



as required. 2The result provides a simulation method for solving reursions of type (30): simulate a trajetory of thehain X starting at (t,n) until it hits the root ({0}, (1)) at time τ , ompute the value of the produt
∏τ

k=0 f(Xk) and repeat this many times. Averaging these values provides an unbiased and onsistentestimate of u(t,n)(f) in terms of an approximation of the expeted value E(t,n)

∏τ
k=0 f(Xk) by thestrong law of large numbers. Lemma 5.2 states that this expetation is a solution to the reursion inquestion.Corollary 5.3. For ordered types and frequenies (t,n), de�ne

u(t,n)(f) = p0(t,n)and for c[(t,n)] > 1, put
f(t,n) =

1

rn







∑

k:nk=1,xk0 distint
sk(xk) 6=xj∀j

r +
∑

k:nk=1,

xk0 distint ∑

j:sk(xk)=xj

r(nj + 1) +
∑

i:ni≥2

ni∑

k=2

(
n

k

)

λn,k
ni − k + 1

n− k + 1







(31)where
rn (= rn(r,Λ)) = rn+

n∑

k=2

(
n

k

)

λn,k. (32)Furthermore, let
u({0},(1))(f) = f

(
{0}, (1)

)
= 1. (33)Consider a Markov-Chain {Xl = (t(l),n(l))} on (T ,N ) with transitions

(t,n) →







(sk(t),n) with probability r
rnf(t,n) if nk = 1, xk0 distint, s(xk) 6= xj ∀j,

(rk(t), rk(n + ej)) with probability r(nj+1)
rnf(t,n) if nk = 1, xk0 distint, s(xk) = xj ,

(t,n − (k − 1)ei) with probability 1
rnf(t,n)

(
n
k

)
λn,k

ni−k+1
n−k+1 if 2 ≤ k ≤ ni.Then,

p0(t,n) = E(t,n)

τ∏

l=0

f(t(l),n(l)).Proof. This is the immediate appliation of Lemma 5.2, noting that, as in last remark, starting from
(t,n), the stopping time τ is bounded by c[(t,n)] <∞. 2Simulating independent opies and taking the average now yields an unbiased estimator of p0(t,n).Note that a similar result holds for the reursion w.r.t. (t,a).5.2 Simulation of likelihood surfaes with pre-spei�ed driving values.It is atually possible to obtain simultaneous likelihoods for a variety of values for r,Λ, using a singlerealization of the Markov-hain X only. First, we need to extend Lemma 5.2 as in Subsetion 6.2 in[T01℄. 20



Lemma 5.4. Let {Xk, k ≥ 0} be a Markov hain with state spae (T ,N ) and with transitions Q =
(q(t,n),(t′,n′)) suh that the hitting time

τ = inf
{
k ≥ 0 : Xk = ({0}, (1))

}for any given initial state (t,n) in (T ,N ) is bounded by some onstant 0 ≤ K2(t,n) < ∞. Let
g : (T ,N ) × (T ,N ) → [0,∞) be a measurable funtion and de�ne

u(t,n)(g) = E(t,n)

τ−1∏

k=0

g(Xk,Xk+1) (34)for all X0 = (t,n) ∈ (T ,N )), with u({0},(1))(g) = 1. Then, for all (t,n) ∈ (T ,N )\({0}, (1)),
u(t,n)(g) =

∑

(t,n)∈(T ,N )

(t′,n′)≺(t,n)

g
(
(t,n

)
, (t′,n′))q

(
(t,n), (t′,n′)

)
u(t′,n′)(g) (35)and this set of equations has the unique solution (34).Proof. Similar to the proof of Lemma 5.2. 2We follow the spirit of Proposition 5.3 and rewrite (9) to be of the form (35). To this end, de�ne

p0
(r,Λ)(t,n) to be the probability of observing the unordered, labelled tree (t,n) if the underlyingmutation rate is r and the genealogy is governed by a Λ-oalesent.Corollary 5.5. Let (r,Λ) and (r∗,Λ∗) ∈ R+ ×M([0, 1]) be given. For ordered types and frequenies

(t,n), de�ne f(r,Λ)(t,n) through (31) � (33) and similarly f(r∗,Λ∗)(t,n). Consider a Markov-Chain
{Xl = (t(l),n(l))} on (T ,N ) with transitions q(r∗,Λ∗) given by
(t,n) →







(sk(t),n) with probability r∗

r∗nf(r∗,Λ∗)(t,n) if nk = 1, xk0 distint, s(xk) 6= xj ∀j,

(rk(t), rk(n + ej)) with probability r∗(nj+1)
r∗nf(r∗,Λ∗)(t,n) if nk = 1, xk0 distint, s(xk) = xj ,

(t,n − (k − 1)ei) with probability 1
r∗nf(r∗,Λ∗)(t,n)

(
n
k

)
λ∗n,k

ni−k+1
n−k+1 if 2 ≤ k ≤ ni.Then, de�ning

g(r,Λ),(r∗,Λ∗)((t,n), (t′,n′)) = f(r,Λ)(t,n)
q(r,Λ)

(

(t,n), (t′,n′)
)

q(r∗,Λ∗)

(

(t,n), (t′,n′)
) ,one has

p0
(r,Λ)(t,n) = E

(r∗,Λ∗)
(t,n)

τ−1∏

k=0

g(r,Λ),(r∗,Λ∗)(Xk,Xk+1), (36)provided that the parameters (r,Λ), (r∗,Λ∗) ful�l the ondition
f(r,Λ)(t,n)q(r,Λ)

(

(t,n), (t′,n′)
)

> 0 ⇒ q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

> 0. (37)21



Again, this gives rise to a simulation algorithm, this time based on (r∗,Λ∗) rather than the �target�
(r,Λ).Proof. We may rewrite (9) as

p0
(r,Λ)(t,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

f(r,Λ)(t,n)q(r,Λ)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′) (38)for the obvious hoie for q(r,Λ). Furthermore, using (37), (38) may be reast as
p0
(r,Λ)(t,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

f(r,Λ)(t,n)
q(r,Λ)

(

(t,n), (t′,n′)
)

q(r∗,Λ∗)

(

(t,n), (t′,n′)
)q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′), (39)hene
p0
(r,Λ)(T,n) =

∑

(t′,n′) :

(t′,n′)≺(t,n)

g(r,Λ),(r∗,Λ∗)((t,n), (t′,n′))q(r∗,Λ∗)

(

(t,n), (t′,n′)
)

p0
(r,Λ)(t

′,n′), (40)so that Lemma 5.4 may diretly be applied to equation (40) and the Markov hain Xl = (t(l),n(l))with driving values r∗ and (λ∗n,k)2≤k≤n (oming from Λ∗) and transitions as above. Thus we arrive atthe representation
p0
(r,Λ)(t,n) = E

(r∗,Λ∗)
(t,n)

τ−1∏

k=0

g(r,Λ),(r∗,Λ∗)(Xk,Xk+1),as required. 2With this result, many estimators for p0
(r,Λ)(t,n) for various values of (r,Λ), respeting the absoluteontinuity ondition (37), an be obtained by simulating just one realization of the Markov hain withdriving values (r∗,Λ∗). This seems omputationally muh more e�ient than using di�erent drivingvalues. However, one should be aware that one obtains orrelated estimates and that the variane ofthe estimator for p0

(r,Λ)(t,n) depends on (r∗,Λ∗).Remark. There are obvious improvements of this method. Combining likelihoods in approximatelyoptimal linear ombinations of the (ri,Λi) leads to a further redution in variane (see [T01℄ for details).More advaned tehniques suh as a sophistiated importane sampling in the spirit of [SD00℄ or bridgesampling are under investigation in an ongoing researh projet.6 Illustration using arti�ial and real dataIn this setion, we apply the simulation algorithm suggested by Corollaries 5.3 and 5.5 to two kindsof data, namely randomly generated type on�gurations, where the underlying genealogy has beenobtained from a Lambda-oalesent and the mehanism desribed in Setion 2 resp. the algorithmdesribed in Subsetion 8.3, and to real data, namely random sub-samples drawn from Arnason'sAtlanti Cod data [A04℄. The latter is neessary, sine our method, at present, an only deal reasonablywell with samples of size up to n = 100, whereas the size of Arnason's data is about n = 1000.22



To simulate a random sample, we used the R program simbeta.R. This produes data of the form asin Subsetion 1.2.Suh data an easily be visualised using the program treepi from Bob Gri�th's genetree softwaresuite.The program bgt0.3 is an implementation of the above Monte Carlo method and is, together with thetehnial report [B06℄ doumenting the program, available from Matthias Birkner.The resulting likelihood-surfaes an be seen below. Although our methods are not yet very sophis-tiated and we were subjet to limited omputing resoures, at a �rst glane it seems to be possibleto rejet the �Kingman line� α = 2 in Figure 6.1 for arti�ially generated data obtained from anunderlying Beta-oalesent with α = 1.5 and mutation rate 2.Moreover, the likelihood-surfae for Arnason's real data looks qualitatively di�erent from the oneassoiated with a Kingman-oalesent, in partiular has a maximum su�iently far away from the�Kingman line� α = 2, although this time the surfae is more �at than in the arti�ially generateddata with α < 2.6.1 Likelihood-surfaes for randomly generated dataWe onsider the log-likelihood surfaes for type on�guration under the Beta(2−α,α)-oalesent as afuntion of α ∈ (1, 2] and mutation rate θ ∈ (0, 5].Figure 6.1 shows the log-likelihood surfaes (atually on a 50 by 50 grid) for type-on�gurations drawnunder the in�nite-sites model, where the �rst sample (of size n = 50) has been obtained from aKingman-oalesent with mutation rate 2, and the seond sample has been obtained from a Beta-oalesent with α = 1.25 and mutation rate 2.6.2 Likelihood-surfaes of samples taken from for Arnason's dataAgain, we onsider the log-likelihood surfaes for a type on�guration under the Beta(2 − α,α)-oalesent as a funtion of α ∈ (1, 2] and mutation rate θ ∈ (0, 2].Figure 6.2 shows the two likelihood surfaes orresponding to two independent samples of 50 and117 sequenes drawn from a slightly modi�ed set of Arnasons's Atlanti Cod data [A04℄. It seemsreasonable to rejet the Kingman-hypothesis.7 Disussion7.1 Relation with existing models and asymptoti resultsThe results obtained in this paper should be ompared with results in the following two papers.Berestyki, Berestyki and Shweinsberg (2006). In [BBS06℄, Berestyki, Berestyki andShweinsberg obtain asymptoti results for the site frequeny spetrum in the in�nite-sites ase andthe allele frequeny spetrum in the in�nite alleles ase, if the underlying genealogy is assumed to bedriven by a Beta(2 − α,α)-oalesent, where α ∈ (1, 2].23



Figure 1: Likelihood-surfaes for α = 1.25, 1.5, 1.75 and 2 (Kingman ase).
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(d) 2More preisely, in the in�nite alleles model, they onsider an alleli partition, i.e. a division of thesample into groups of individuals having the same allele at the observed lous. For a sample of size
n, one is interested in the number of groups, denoted by N(n), as well as the sizes of the groups. Wedenote by Nk(n) the number of bloks in the alleli partition of size k. In the in�nite sites model,one onsiders the number M(n), the total number of mutations, and Mk(n), the number of mutationsa�eting preisely k individuals in the sample (assuming known anestral type). With this notation,
(N1(n), . . . ,Mn(n)) is alled the �allele frequeny spetrum� and (M1(n), . . . ,Mn(n)) is alled the �site24



Figure 2: Likelihood-surfaes obtained from Arnason's Atlanti od data
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frequeny spetrum�.If we assume that the data is being generated from a Λ-oalesent, and mutations are distributed alongthe branhes at rate θ aording to either the in�nite alleles or in�nite site model, one has the followingasymptoti result.Theorem 7.1 (BBS06). Assume that Λ has Beta(2 − α,α) distribution with α ∈ (1, 2). Let k ∈ N.Then,
Mk(n)

n2−α
→ α(α − 1)2θ

Γ(k + α− 2)

k!and
Nk(n)

n2−α
→ α(α− 1)2θ

Γ(k + α− 2)

k!in probability as n→ ∞.Hene, at least for large sample sizes, the empirial frequeny spetrum ould be used as a statistiin order validate or overturn the underlying model. However, sample sizes for real data are typiallyrather small.Note that in the Kingman ase, i.e. Λ = δ0, the famous Ewens sampling formula gives the exatdistribution of the allele frequeny spetrum, namely
P{N1(n) = a1, . . . , Nn(n) = an} = p(a1, . . . , an) =

n!

θ(n)

∏

i=1

θai

iaiai!
.However, the ase of the Λ-oalesent so far has proved to be inaessible to expliit solutionsup to very few speial ases, i.e. Λ = δ0 (Kingman) and Λ = δ1 (star-shaped), see [M06b℄ (and25



Subsetion 4.3) for more detail.Eldon and Wakely (2006). In [EW06℄, the authors disuss saling relations between mutation andreprodution in simple population models, where individuals an potentially have very many o�spring.The paper treats inferene questions based on the number of segregating sites and singletons (i.e. sum-mary statistis) under a rather restritive oalesent model. In partiular, they fous on the Lambda-oalesents presented in (3), where
Λ(dx) = c1δ0(dx) + c2δy(dx), c1, c2 ≥ 0, y ∈ (0, 1],i.e. a genealogy with a Kingman omponent (the atom in 0) and a reprodution mehanism, in whiha single partile an produe a fration of c2-many o�spring when ompared to the total populationsize. More preisely, they onsider a model with �xed population size N , whih is a generalisation of aMoran model with �xed inter-generation times in the following sense. At eah time step, exatly oneindividual reprodues (uniformly hosen among the living) and is the parent of U − 1 new individuals(U ∈ {1, . . . , N}). The parent persists, while the o�spring replae U − 1 individuals who die. Theother N − U individuals simply persist until the next time step when they might be hosen to die orreprodue.The o�spring mehanism (i.e. the distribution of U) is as follows. Fix γ ≥ 0 and ψ ∈ [0, 1]. Then,

P{U = 2} = 1 −N−γ ,and
P{U ≈ Nψ} = N−γ .Depending on the hoie of ψ, γ, this model leads to a Λ-oalesent with only two atoms, one in 0(leading to a Kingman-omponent) and one in y = ψ.Remark. A note on Type-III survivorship urves. A survivorship urve in population dynamis isa plot of the life expetany lx on a logarithmi sale against the age x. If the mortality does notdepend on the atual age, one expets a straight dereasing line. This is alled a �type-II-survivorshipurve�. If the mortality is onvex and dereasing, this orresponds to a high mortality early in lifeand is alled �type-III-survivorship urve� (�type-I� now being the obvious notion for the onavease). [EW06℄ mention �type-III� urves as a situation in whih Λ-oalesents might be useful from amodelling perspetive. However, we need an additional e�et, namely extremely high variation in thereprodution mehanism, whih is, stritly speaking, not part of the �type-III� behaviour, in order toarrive at genealogies with multiple ollisions. 27.2 Biologial relevane of Beta-oalesents?Evidene from the Pai� oyster data treated in [EW06℄ suggests that populations with rather extremereprodutive behaviour should be desribed by genealogies in whih multiple mergers are allowed.However, their proposed Lambda-oalesents seem to be too restritive. Why should a single individualprodue either 2 o�spring or exatly ψ∗100 % of the population alive in the next generation and nothingin between? Still, the authors obtain evidene that the simple Kingman ase might not be adequate.So an important question is: 26



What is the right (family of) distribution(s) on the o�spring proportions?To disuss this, it would be useful to �nd out whih reasonable/natural population models atuallyimply genealogies driven by ertain kinds of Λ-oalesents.A Cannings-model with extremely heavy tails. In [BBC05℄, it has been pointed out that theBeta(2 − α,α)-density arises naturally if the approximating models are self-similar ontinuous statebranhing proesses, time-hanged and renormalised to have mass one. It is possible to argue that thisrenormalising might be rather unnatural. However, there are also reasonable Cannings-models whihonverge into the Beta-Coalesent genealogy.Indeed, from the modelling perspetive, so-alled Cannings models are popular in mathematial pop-ulation genetis. A Cannings model is a population model with disrete non-overlapping generationsand a �xed �nite total population size N . At eah generation m, the distribution of the o�spring ofthe k-th partile is given by an exhangeable random vetor
(ν1, . . . , νN ), N ∈ N,independent of the generation number m and in between generations. In [S03℄, the following mehanismis being investigated. Consider a model in whih the number of o�spring for the individuals areindependent (hene no �xed population size), but in eah generation only N of the o�spring are hosenat random for survival. We assume further that if X is the number of o�spring of an individual, then
P{X ≥ k} ∼ Ckαfor some α > 0 and C > 0. Shweinsberg shows that, depending on the value of α, the limit maybe Kingman's oalesent, in whih ase eah pair of anestral lines merges at rate one, a oalesentwith multiple ollisions, or a oalesent with simultaneous multiple ollisions. We are most interestedin the ase that the limit is a oalesent with multiple ollisions. It turns out that if α ∈ (1, 2), thelimit is a Λ-oalesent wit Beta(2 − α,α)-density. Here, the Beta-oalesent appears naturally from aCannings-model, if we onsider the population to onsist of the N survivors for eah generation. Notethe �xed inter-generation times.Extremely heavy tails vs. Seletion?We have just seen that extremely heavy tails in the reprodution mehanism an aount for �shallow�genealogies. However, it is important to point out that also other driving fores in population genetisan aount for suh behaviour. So far, we have only disussed neutral population models, in whihthere are not bene�ial / deleterious mutations. Durrett and Shweinsberg show (see [DS05℄) thatgenealogies with so-alled seletive sweeps, i.e. bene�ial mutations, whih quikly perpetrate largeparts of a population on a di�erent time sale, an be modelled via Λ-oalesents. Our empiriallikelihood-surfaes are rather shallow. So how should one be able to hek whether a neutral modelis adequate, or whether other e�ets like seletion should be taken into aount, too? A very reentstudy on the HIV envelope gene, see [EHP06℄, for example, laim that the rapid turnover of genetidiversity in HIV-1 is due to strong purifying seletion.In order to judge whether e�ets due to seletion overlap or disguise the possibly heavy tails of thereprodution mehanism, it would be very useful to study multi-lous data. Unfortunately, suhdatasets seem to be hard to obtain � maybe someone should fund a study!27



7.3 OutlookAlthough the preliminary numerial results presented here seem to be promising, we annot yet treatlarge datasets. One line to attak this might be to try to extend Stephens and Donnelly's [SD00℄importane sampling tehniques or de Iorio and Gri�ths [DIG04a℄ Monte-Carlo tehniques to oursetting.There are other obvious extensions, suh as inorporating more general models with varying populationssize, distinguish between the e�ets of seletion and an extreme reprodutive mehanism et., whihwill also be part of the ongoing researh projet. In order to understand the e�ets of seletion, astudy inorporating multi-lous data would be very useful.8 Appendix8.1 Underlying datasets and genetreesThe Kingman-ase likelihood-surfae in Figure 2(d) has been omputed using the following data:(4, 3, 2, 0)(1, 0)(7, 5, 1, 0)(6, 4, 3, 2, 0)(8, 1, 0)(9, 7, 5, 1, 0)(10, 7, 5, 1, 0)(11, 7, 5, 1, 0)
12

3

4

5

6

7

8

9 10 11

7 15 185 2 1 1 1with multipliities n = (7, 15, 18, 5, 2, 1, 1, 1), n = 50.Data have been generated with simbeta, using the funtion sample.ims, where the underlying pa-rameters were α = 1.25, n = 50,m = 2, r = 107. The orresponding likelihood-surfae and standard-deviation are plotted below.The likelihood-surfae in Figure 2() has been omputed using the following data:
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Figure 3: Likelihood and standard deviation for the a2-m2-n50 tree with 107 runs
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(b) Deviation
(20, 19, 17, 15, 13, 8, 5, 4, 2, 0)(18, 16, 14, 12, 11, 10, 9, 7, 6, 3, 1, 0)(21, 20, 19, 17, 15, 13, 8, 5, 4, 2, 0)(22, 20, 19, 17, 15, 13, 8, 5, 4, 2, 0)(23, 20, 19, 17, 15, 13, 8, 5, 4, 2, 0)(24, 22, 20, 19, 17, 15, 13, 8, 5, 4, 2, 0)(25, 21, 20, 19, 17, 15, 13, 8, 5, 4, 2, 0)(26, 20, 19, 17, 15, 13, 8, 5, 4, 2, 0)(27, 18, 16, 14, 12, 11, 10, 9, 7, 6, 3, 1, 0)(28, 20, 19, 17, 15, 13, 8, 5, 4, 2, 0)
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Figure 4: Likelihood and standard deviation for the a1.75-m2-n50 tree with 107 runs
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ters were α = 1.5, n = 50,m = 2, r = 107. The orresponding likelihood-surfae and standard-deviationare plotted below.Figure 5: Likelihood and standard deviation for the a1.5-m2-n50
1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

alpha

m
ut

at
io

n

(a) Data 1.0 1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

alpha

m
ut

at
io

n
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Figure 6: Likelihood and standard deviation for the a1.25-m2-n50
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(b) Deviation8.2 Convergene of approximate likelihoodsFinally, an important question whih needs to be addressed is whether the 107 runs used in the Monte-Carlo approximation are su�ient to produe useful results. Compare the likelihood-surfaes obtainedafter 107 runs with the one obtained with 103 runs (using the same dataset).
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3The improvement is signi�ant. The likelihood-surfae looks nearly di�erentiable around the maximum,32



but still rough at the edges.8.3 Generating samples in the �nite and in�nite alleles aseLet E be a ountable (possibly �nite) `type spae', P = (Pxy) a(n irreduible) stohasti matrix on Ewith unique equilibrium µ, r ≥ 0. On eah lineage, mutations our at rate r, given a mutation takesplae, the urrent type is hanged aording to a P -step.Type distribution in n-sample arises as follows: genealogy is Λ-oalesent. Given genealogy, giveMRCA type aording to µ, then run tree-indexed ontinuous-time MC with generator r(P − I). Weuse the inherent symmetries and only reord n = (nx)x∈E ∈ Z
E
+ (with #n :=

∑

x∈E nx = n), i.e. thefrequenies of the types, but not the order of the sample. We write q̃(n)
k := −q̃

(n)
kk for the total jumprate of Ỹ (n) in state k. We assume n ≥ 3 and obtain the following algorithm.Algorithm 1.(i) Draw K aording to L(Ỹ

(n)
0 ), i.e. Pr(K = k) = g(n, k)qk1.Begin with η = KδX , where X ∼ µ.(ii) Draw U ∼ Unif([0, 1]).If U ≤ kr

kr+q̃
(n)
k

:Replae one of the present types by a P -step from it, i.e. replae
η := η − δx + δy with probability ηx

#η
Pxy (for x 6= y).If U > kr

kr+q̃
(n)
k

:If #η = n: Stop.Otherwise, pik J ∈ {k + 1, . . . , n} with Pr(J = j) = q̃
(n)
#η,j/q̃

(n)
#η .Choose one of the present types (aording to their present frequeny), and add

J − #η opies of this type, i.e. replae η := η + (J − #η)δx with probability ηx

#η
.Repeat.Note: Ordered sample an (in priniple) be obtained from a realization of η by random reordering(assuming E = {1, . . . , d}): pik uniformly one of the (

#η
η1...ηd

) possible reorderings.Remark (In�nitely many sites).Can be done analogously, one has to adapt the `mutation step' aordingly. See e.g. funtionsample.ims in �le simbeta0.1.R for an implementation in R. 233



In the ase of parent-independent mutation, i.e. Pij = Pj for all i, j, it is possible to simulate �bakwardsin time�. Indeed, in order to simulate a sample one follows lineages bakwards. �Ative� anestrallineages are lost either by (possibly multiple) oalesene or when hitting their `de�ning' mutation.Fix n, the required sample size. Along the way, we need ξ, a Z
E
+-valued variable (variable in the senseof omputer programming), and ζ, a variable with values in ∪n
j=1N

j .
|ζ| is the urrent number of `ative lineages', ζ(i) reords how many leaves are presently subtendedto i-th lineage (we think of an arbitrary ordering). ξ reords the types already `generated' by nowinative lineages.
ξ := 0, ζ := (1, 1, . . . , 1) ∈ N

n.Algorithm 2.While there are ℓ = |ζ| > 1 lineages: Draw Uif U ≤ ℓr
ℓr+qℓ

:Pik L ∼ Unif({1, . . . , ℓ}), inativate L-th lineage, i.e.
ξ := ξ + ζ(L)δX (X ∼ P·), ζ :=

(
ζ(1), . . . , ζ(L− 1), ζ(L+ 1), . . . , ζ(ℓ)

)else (i.e. when U > ℓr
ℓr+qℓ

):Pik J aording to Pr(J = j) =
qℓj

qℓ
.Merge ℓ− J + 1 randomly hosen lineages to one, i.e.draw S ⊂ {1, . . . , ℓ} with |S| = ℓ− J + 1, then pik L′ ∈ S uniformly.Put ζ(L′) :=

∑

i∈S ζ(i),then remove entries in S \ {L′} from ζ.Finally, when |ζ| = 1, put ξ := ξ + ζ(1)δX (X ∼ P·).Remark (In�nitely many alleles).The same algorithm an be used to generate a sample from the family size spetrum in the in�nitelymany alleles model. Instead of ξ, we use a variable ξ̄ with values in Z
n
+ (idea: �nally, ξ̄(k) =# fami-lies with k members. Just before removing lineage L in the algorithm above, inrease ξ̄(ζ(L)) by one. 2
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