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1 INTRODUCTION 1

Abstract

Any acoustic plane wave incident to an elastic obstacle results in a scattered field with a cor-
responding far field pattern. Mathematically, the scattered field is the solution of a transmission
problem coupling the reduced elastodynamic equations over the domain occupied by the obstacle
with the Helmholtz equation in the exterior. The far field pattern is obtained applying an integral
operator to the scattered field function restricted to a simple smooth surface surrounding the obstacle.
The subject of our paper is the inverse problem, where the shape of the elastic body represented by
a parametrization of its boundary is to be reconstructed from a finite number of measured far field
patterns.

We define a family of objective functionals depending on a non-negative regularization parameter
such that, for regularization parameter zero, the shape of the sought elastic obstacle is a minimizer
of the functional. For any positive regularization parameter, there exists a regularized solution min-
imizing the functional. Moreover, for the regularization parameter tending to zero, these regularized
solutions converge to the solution of the inverse problem provided the latter is uniquely determined
by the given far field patterns. The whole approach is based on the variational form of the partial
differential operators involved. Hence, numerical approximations can be found applying finite ele-
ment discretization. Note that, though the transmission problem in its weak formulation may have
non-unique solutions for domains with so-called Jones frequencies, the scattered field and its far field
pattern is unique and depend continuously on the shape of the obstacle.

1 Introduction

If an elastic body is surrounded by a fluid and if an acoustic plane wave is incident, then an elastic wave
is incited inside of the body, and the acoustic wave in the fluid is scattered. This phenomenon is modelled
by a transmission problem for the displacement amplitude and the acoustic pressure. The displacement
amplitude satisfies the reduced elastodynamic equations inside the body, and the acoustic pressure is
a solution of the Helmholtz equation in the domain exterior to it. On the boundary of the body the
traction of the displacement amplitude points into the normal direction and is equal to the acoustic
pressure from the outside. Moreover, the normal component of the displacement is proportional to the
normal derivative of the pressure over the boundary of the body. Finally, the scattered field satisfies the
Sommerfeld radiation condition at infinity.

The Fredholm theory for the variational equations corresponding to such a fluid-solid interaction is
well established and several variants of finite element and boundary element methods have been proposed
for the numerical solution (cf. e.g. [14, 6, 15, 10]). Note that the homogeneous transmission problem may
have eigensolutions for special shapes of the elastic obstacle and for special values of the frequency
(cf. e.g. [6, 17]). As usual, the scattered acoustic field has the typical behaviour of outgoing Helmholtz
solutions characterized by the so-called far field pattern. This pattern can be expressed by an integral
operator applied to the scattered field (cf. e.g. [3]). Measuring the acoustic field at points of large distance
to the elastic body, the far field pattern can be detected.

Similarly to inverse problems for the scattering of acoustic waves by sound hard and soft obstacles,
inverse problems for the fluid-solid interaction can be formulated. For instance, suppose the shape of an
elastic obstacle is unknown, but the far field patterns of scattered waves, resulting from certain incident
plane waves, are known. The inverse problem is to recover the shape of the elastic scatterer from the
measured far field patterns. To our knowledge, uniqueness of solutions for the inverse problem with a
finite number of given far field patterns have not been investigated yet. For the uniqueness in the case of
known far fields for all incident directions we refer to [16]. Treating the numerical solution, the number



of given far field patterns is finite, and all the methods developed for the reconstruction in the case of
sound hard and soft obstacles (cf. e.g. [3]) should have counterparts for the case of elastic scatterers.

In the present paper, we formulate the mathematical model of the solid-fluid interaction in Section 2.
We introduce the variational formulations of the transmission problem for the reduced elastodynamic and
the Helmholtz equations. The unbounded exterior domain is truncated by a boundary integral equation
method. Following [10], we prove that the sesqui-linear variational form satisfies a Garding’s inequality.
If a technical condition for the boundary integral operator is satisfied, then the variational equation has
a unique acoustic field solution. This is true even in the exceptional case where the elastic wave is not
unique. In this case, the variational equation cannot be solved directly. Instead, the variational equation
should be solved for a slightly modified frequency. We prove that this commonly known approximation
is correct, i.e., that the acoustic field solutions for the modified frequencies converge to the true solution
if the perturbed frequencies tend to the correct value.

In Section 3 we introduce the inverse problem. We restrict the class of obstacles to starlike domains
with boundary parametrizations from a Sobolev space. Our inverse problem is ill-posed, and its solution
requires a regularization. Including such a regularization, we propose three different reformulations of the
inverse problem in form of optimization problems. These reformulations differ essentially in the number
of unknown optimization parameters after discretization. We analyze the reformulation with the smallest
number of optimization parameters. For this, the objective functional is the least squares deviation of
the measured far field patterns from those corresponding to the obstacle which is to be optimized. Of
course, we add the scaled square norm of the boundary parametrizations for regularization. On the other
hand, we prove that the scattered acoustic field depends continuously on the shape of the obstacles even if
the incited elastic wave is not unique. Consequently, the objective functional of the reformulated inverse
problem is continuous, and, for any regularization parameter, there exists a regularized solution, i.e. a
minimizer of the regularized objective functional. In case the involved far field patterns determine the
obstacle uniquely, the regularized solutions converge to this unique obstacle whenever the regularization
parameter tends to zero. For this convergence, we can even admit measurement errors in the size of the
regularization parameter.

We conclude the paper with some details for the numerical solution. In Section 4 we derive a formula
for the directional derivative of the scattered acoustic field with respect to the parametrization of the
obstacle boundary. The gradient computation is based on the solution of the variational equation of
the transmission problem with modified right-hand sides. Thus this gradient formula is efficient if the
discretized variational equation, i.e. the finite element system, is solved by a direct solver which may
be adapted to systems with sparse coeflicient matrices (cf. [20]). In Section 5 we discuss the numerical
solution of the optimization problems. The parametrizations of the obstacle boundaries are reduced to
finite series of trigonometric functions resp. spherical harmonics. Having formulas for the gradients at our
disposal, we suggest the Gauk-Newton method (cf. [18]) for the numerical computation of the minimizers.
The computations for a simple two-dimensional scatterer presented in Section 7 confirm the theoretical
results of the paper.

2 Direct Problem

The direct problem is the following. Suppose a bounded elastic body is given occupying the bounded
domain € in the two- or three-dimensional space R? (d=2 or d=3). This body is surrounded by a
homogenous compressible inviscid fluid filling the complementary space R? \ Q. If an acoustic time-
harmonic wave with the scalar pressure field p""¢(x)el“? is incident on the elastic obstacle in €2, then
this wave is scattered, i.e. the amplitude p of the total pressure p(z)? is the sum of the incoming p"*¢
and the scattered wave amplitude p°. The interaction with the elastic body is controlled by the incited
elastic wave described by the three-dimensional displacement amplitude u. Clearly, u satisfies the reduced
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Figure 1: Domains.

elastodynamic equations

Ku(z) + ow’u(xr) = 0, z€Q, (2.1)
Nu(@) = phu()+ O+ p) VIV @),

with the density g of the elastic body and with the Lamé constants A and p such that A + % @ > 0 and
u > 0. The pressures p, p* and p™¢ are solutions of the Helmholtz equation in R\ cl(§2). However, for
the numerical treatment, we truncate R%\ cl(€2). We suppose the origin is in 2 and, for a large R greater
than the radius of Q, we introduce the annular domain Qg := {z € R\ cl(Q) : |z| < R} (cf. Figure 1).
The Helmholtz equation for p®, e.g., takes the form

Ap*(x) + k2pi(x) = 0, z€Qp (2.2)

with k,? = w?/c? and ¢ the speed of sound in the fluid. The equations (2.1) and (2.2) are coupled
by transmission conditions on the boundary values of u and p on the boundary T' = 9Q of €, and
the truncation of R? \ cl(Q2) to Qp is to be modelled by a non-local boundary condition on the outer
boundary T'g := 0Qr \ T of Qg (cf. (2.3)). To define the non-local boundary condition, we denote the
exterior normals at the curves/surfaces I' and I'g by n (cf. Figure 1) and we introduce the boundary
traces

u” =ulr, pti=p°lr, P =",

apt s ._9Op~ ._ s
L =n-[Vpilr, o:=% =n-[Vpr,,
tm =t (u):= ZMg—mF + )\[V . ’LL] n|F +u (nl(azzul — Oz, u2)
n x [V x u]|

n2(0ay 2 8““1)) ‘ if d =2

r ifd=3



Using boundary integral operators to describe the Dirichlet-to-Neumann mapping for the continuations
to infinity, the truncation condition on I'g takes the form (cf. e.g. [12])

Vr,o + (%I — Kpo) p- = 0, only, (2.3)
_ OFE(x,y) _
Krop~(z) = %p (y)droy,
Veyo(e) = /Exy y)dr, .

S (kyle —yl) ifd=2
E((E,y) = Ekw (x,y) = 1 eikw‘w_y‘

i ifd=3
dr |z -y '

with Hél) the Hankel function of the first kind and of order 0. If o stands for the fluid density, then the
boundary conditions on the boundary I" can be described as

C@) = @ @) ), eer, 2.4
u (z)-n(x) = Qf1w2 {aparg ?) + apan(x) } , xel. (2.5)

Altogether, the incited displacement u and the scattered scalar pressure field p* are the solutions of the el-
liptic partial differential equations (2.1) and (2.2) with the boundary condition (2.3) and the transmission
conditions (2.5) and (2.4).

Of course, the scattered field p* extends to the exterior domain Q. := R?\ cl(Q2UQg) as the solution
of the exterior boundary value problem including the Sommerfeld radiation condition (note that o and
p~ are interrelated by (2.3))

Ap®(z) + kw2p5(x) = 0, z€Qe,
p’(x) = p (z), z€To,
op*(w
p&‘r(L ) = o(z), ze€Ty,
x ] s d—
H'Vp%x) —ikwp(z) = o(ja|" V), fz| — oo

It is well known that this exterior solution has a so-called far field pattern p>°, i.e. asymptotically the
relation

1k |z 1
eiﬂ'/4 B ) A o .
N {p (y)[lkw$~n(y)]+a(y)}e kubUd g i d = 2
s 1 ) (2.7)
To

eSSt i={zecR?: |z|=1}

holds (cf. e.g. [3]). We shortly write p>° = H(p~,0) for the representation of the far field pattern in
formula (2.7).

The transmission and boundary value problem (2.1)-(2.5) can be reformulated in a weak form. This
standard variational equation for the unknown solution vector (u,p,o) with v € [H*(Q)]¢, p € H (QRr),
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and o € H~/2(T) takes the form
_ fF pincn .0
8pinc _
—/; =1 (2.8)

0

B((u,p,U)T,(U7q7X)T> = R(pmc’(v’q’X)T>.

valid for any v € [HY(Q)]¢, ¢ € H'(Qr), and x € H‘l/Q(FO). The sesqui-linear form B is given by

a((u,p,0)", (v,g,x)7)
B((u,n o))", (v,q,x)T) = | b((w,p,0)",(v,0,0)7) |,
¢((u,p, o), (v,0,%)7)
d
a((u,p,0)’,(v,g,x)") = /{AV uV - v—f—g Z [0iu;0;v; + O;u;0;v; | —goﬁu.ﬁ}
Q 6J=1

_|_

/p+n'5a

r

(Vo Vi- k) + ot [0 na- [ o,
r

[ (s (1) )

o

b ((u,p, U)T7 (v, g, X)T)

i
P

c ((u,p, U)T7 (v, g, X)T)

Following [10], the basic results for the direct problems can be summarized as follows.

Theorem 2.1. The sesqui-linear form B((u,p,0)", (v,q,x)") defined in (2.8) satisfies a Garding’s in-
equality in the form

Re B(v,q,x:v,4,x) = a{||v||[2H1(Q)]d+||q||iI(QR)+||X||i]*1/2(r‘o)}
—co{ I01Brs-c e + el + X112 0y}

for all (v,q,x) € [HY(Q)]? x H'(Qr) x HY/2(Ty), where ¢ > 0 is a small number, o > 0 and cy =
co(e) > 0 are constants, and

B(v,¢, x;v,¢:X) == a((v,,x) " (v, %)) + 0 (0,07, (0,0.%) ") +2 ¢ ((v,0. )", (v,0.) ") -

Theorem 2.1 implies that the Fredholm alternative is applicable to (2.8). In order to ensure the
existence of the solution, we need the

Theorem 2.2. If (a) the boundary T' and the material constants (u,\,p) are such that there are no
nontrivial solutions of

Kug(x) + pwug(z) =0, x € Q, t"(uo)(z) =0, x €T, uy () -n=0, zeTl, (2.9)

and (b) —ky? is not an eigenvalue of the interior Dirichlet problem for the Helmholtz equation inside T'g,
then the corresponding homogeneous problem of (2.8) has only the trivial solution (u,p,x) = (0,0,0) €
[HY(Q)]4 x H'(Qr) x H-Y2(Ty) and (2.8) is uniquely solvable. If condition (b) holds but the solution
of the homogeneous equation (2.9) is not unique, then the special form of the right-hand side in (2.8)
guarantees the existence of a solution (u,p,x). In this case, the components p and x are unique.

Theorem 2.3. Suppose w = wy is a frequency such that the homogeneous problem (2.9) has a nontrivial
solution. Then there is a small € > 0 such that (2.8) has a unique solution for any frequency w # wo with
|w —wo| < e. If condition (b) holds for all frequencies w with |w — wo| < € and if the solution of (2.8) is
denoted by (u”,p*,c%), then the unique solution components p* and o* depend continuously on w for w
satisfying |w — wo| < . In particular, im,,_,,, p* = p*° and limy,_.,, 0% = o“°



Nontrivial solutions of (2.9) are often referred to as Jones modes, and the associated frequencies are
called Jones frequencies (cf. [15, 11, 6] resp. [17] for divergence free Jones modes and formulas for spherical
modes). It is known that Jones frequencies exist for spheres and other axisymmetric bodies (cf. [15, 11]
and the references therein), whereas Jones modes are not supported by “almost every” elastic body of
“arbitrary” shape (cf. [8]). If w = wp is a Jones frequency, then the solutions p and ¢ can be approximated
by a regularization scheme based on Theorem 2.3. Solving (2.8) for a slightly perturbed frequency w’,
provides us with an approximate solution (p, o) close to the solution of (2.8) for the exact frequency w.

The simple-layer operator Vr, defines an isomorphism
Vi, s HY2(Tg) — HY2(Ty),

if —k,,” is not an eigenvalue (cf. e.g. [13] and [9] for explicit formulas of the eigenvalues of Vi, ). If condition
(a) holds but (b) is violated, then (2.8) with vanishing right-hand side has a non-trivial solution. In this
case the sesqui-linear form B should be modified by replacing the integral equation (2.3) with an indirect
approach based on the linear combination of simple- and double-layer potential (cf. e.g. [1]) or with an
equation including the Dirichlet-to-Neumann mapping, which can easily be evaluated using the series
expansions into spherical harmonics. For ease of reading, the proofs of the Theorems 2.1, 2.2 and 2.3 will
be presented in the Appendix. The proofs of the Theorems 2.1 and 2.2 are essentially contained in [10].

We denote the solution operator corresponding to the equation with sesqui-linear form (2.8) by

Sr: HL (RI\ Q) 3 p™ s (u,p,0) " € [HY(Q)]? x H'(Qg) x H™1/2(Ty),
4 St(p™°) u
Se(p™e) = | Se(™) | =1 »
Sp(p™) o

Using this, we introduce the restricted solution operators A% : H} (R?\ Q) — H~Y/%(I'y) and A% :

loc
Hlloc(Rd \ Q) — H'/? (T'o) by setting

AR(P™C) = SEP™),  ARG™C) = SR, (2.10)

3 Inverse Problem

The inverse problem is the following. Given a finite number of incident fields pi"¢, k = 1,2, ..., K and
the corresponding far field patterns pp° (cf. (2.6)) measured for the scattered fields incited by the incident
acoustic waves, we seek the unknown curve/surface I' located in the interior of T'g such that the pp°
coincide with the far field patterns corresponding to the fields scattered by the elastic body bounded by
T'. In other words we seek I' such that

i = R AFE), k=1 K (3.1)

The inverse problem can be reformulated in various ways as an optimization problem. We shall introduce
three different objective functionals, the optimizations of which provide us with approximate solutions of
the inverse problem.

Firstly, we fix the class of curves/surfaces I in which the solution is sought. We suppose that T is
starlike, i.e. I’ can be represented as I' = {r(#)# : # € S¥~!} with a continuously differentiable function
r: St — R. For a curve/surface inside of I'g, we have to require 0 < r(2) < R for all # € S¥~1. To get
rid of these constraints, we change the representation to

I = I = {rp(@)i: 28"}, rp(@) = g—i—gamtan(r(ﬁ)) (3.2)

with an arbitrary continuously differentiable function r. In the subsequent numerical schemes we shall
look for an approximation of r as a truncated series expansion into spherical harmonics. Therefore, we
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restrict the class of functions to the Sobolev space H°(S?!), the norm of which can be easily expressed
in terms of the coefficients of the spherical harmonics. Moreover, to avoid slow approximation of corners,
vertices, and edges, we suppose r € H%(S?!) with a fixed § > (d + 1)/2. The embedding of H®(S%1)
in C*(S?~1) will later be crucial in the proof of a continuous dependence of the objective functional with
respect to the curve/surface (cf. Lemma 3.1).

Next, we fix a constant a > 0 and a small regularization parameter v > 0. Depending on « and -,
the first objective functional is defined by

K
2
jl(rvplaPQa -3 PK,01,02, -+ ,OK;Y Z { ||H pk,Uk sz”L?(Sd*l) +a ||pk A?r ’an ||H1/2(1"0)
k=1
+06H0'k - Fr pznc HH 1/2(g) +7||pk||H1/2(FO)
2
oz b+ 7 IElGs oy (3.3)

with r € H%(S* 1) and with p, € H'Y?(I'g) resp. o, € H-Y/?(T) for k = 1, ... K. Since the number
« is fixed in the subsequent considerations the dependence on « is suppressed in the argument list of
the functional. For the objective functional in (3.3), we consider the optimization problem of finding a

solution (r?,p],p3, ... ,p),07,09, ... ,04) such that
jl(r77p¥’p;7 7pA]/(70-’1Y70-’2Y7 70}/{;’7) =
inf jl(rap17p27 -+« PK,01,02, ... 70'K;7)' (34)
reH’(s*71)

pr€HY* (Do) k=1, ... K
oR€HY2(Tg) k=1,... K

Obviously, the inverse problem (3.1) has a solution T' generated by a H°(S?!) function through (3.2) if
and only if the optimization problem (3.4) with v = 0 has a solution and the minimal value of the objective
functional Ji(...;0) is zero. Indeed, the solution of the inverse problem is I' = I'™" and the functions
py and oY are the traces on Iy of the scattered pressure and its normal derivative, respectively, incited
by the incoming wave p”w For the numerical solution of the optimization problem (3.4) with v =0, we
have to take into account that the mapping defined by the right-hand side of (3.1) is severely ill-posed
(cf. the representation of H in (2.7) as an integral operator with smooth kernel function). Therefore, we
have introduced the regularization terms with coefficient ~ in (3.3). Choosing a suitably small v > 0, the
numerical solution of (3.4) yields a regularized approximation which is much closer to the exact solution
of (3.4) with v = 0 than the direct numerical solution of (3.4) with v = 0.

Unfortunately, the optimization problem (3.4) has a large number of unknowns to be optimized.
Indeed, for each measured far field pattern p;°, there appear two extra unknowns py and oy. In order to
reduce this to only one extra unknown, we represent the pressure p in the domain €2, exterior to I'g by a
simple-layer potential with a density ¢ and get (cf. [12, 3])

i) = [E@yaoiny, oe.,
pk(x) = VFOQJOk(x)a {EEF(),
p(®) = Her(®) = H(0,—gp)(d), €S,

Using this notation, the second objective functional can be defined as

K
2
jQ(r7¢1a5027 750K,7) = E { |H90k P ||L2 Sd—1) +aHApr an) VFOSDI“HLZ(FO)
k=1

2 2
7 ekl aqrg) } + 703 oy (3.5)



and the corresponding optimization problem is to find a solution vector (r?,¢],¢7, ..., ¢).) such that
Ja(r7, 01,03, - PksY) = inf Ja(r, 01,02, -+ 0K Y)- (3.6)
reH (8771

or€HY2(To),k=1,... ,.K

Similarly to the first optimization problem (3.4), the inverse problem (3.1) has a solution I' generated
by a H°(S%!) function through (3.2) if and only if the optimization problem (3.6) with v = 0 has a
solution and if the minimal value of the objective functional J»( ... ;0) is zero. Again, for the numerical
solution of the optimization problem (3.4) with v = 0, we have introduced the regularization terms with
coefficient v in (3.5).

A drastic reduction in the number of unknown functions for the optimization can be reached, if we
eliminate the boundary traces completely. This leads us to the third objective functional

K
j(r;'y) = jg(r;'y) = Z HH(A?F (p};”c), %r (pznc)) _szHi2(Sd,—l) + 0 ”r”iﬁ(Sd*l) ’ (37)
k=1

and the corresponding optimization problem is to find a solution r” such that

J(x757) = inf  J(r;7). (3.8)

reH’(s%71)

The equivalence of (3.8) with v = 0 and the inverse problem (3.1) is obvious. Again, the parameter
~ is introduced to regularize the numerical solution of (3.8) with v = 0. In the following, we restrict
our considerations to the optimization of this third objective functional. Note, however, that the first
two functionals are based on a splitting of the operator into a linear ill-posed far field operator and an
almost well-posed non-linear operator, which can be a starting point to design and analyse fast numerical
two-step algorithms (cf. e.g. [7, 2, 3]).

For an analysis of the optimization problem (3.8) with v > 0 and of its relation to (3.8) with v = 0,

the essential point is the continuity of the objective functional in (3.7). We get

Lemma 3.1. Suppose condition (b) of Theorem 2.2 is satisfied for fized w. In accordance with Theorem
2.2, there is a unique solution of the weak transmission-boundary value problem (2.8) for any curve/surface
I with v € H(S?'). Then, for any fized right-hand side function p'™¢ € H} (R?\ {0}), the following
mappings are continuous:

Hé(Sdfl) S5 — Azlir(pinc) c H1/2(F0)
HY (ST Y or — AL (p'™) e H Y*(Iy)

Consequently, the mapping H?(S*!) > r — J(r,v) € L%(S?) is continuous for all ¥ > 0, too. The
assumption with condition (b) of Theorem 2.2 is only technical and can be circumvented as mentioned
after Theorem 2.2. For ease of reading, the proof of the lemma will be presented in the Appendix.

Corollary 3.2. Suppose condition (b) of Theorem 2.2 is satisfied for fized w. Then, for any fized v > 0,
there exists a minimizer vV for the optimization problem (3.8).

Proof. We conclude that ||r| > {7(0,)/v}"/? implies J (r,v) > 7|r||? > J(0,7) > inf, J(r,7). Conse-
quently, we get

inf J(r,y) = inf T (r,7).
reHo (8771 reH? (8771):
el <{T(0,7) /7 }/2

However, the set of all r € H?(SY1) with |r||gsge-1) < {J(0,7)/v}'/? is compact with respect to
the weak topology. From any sequence r,,, n = 1,2, ... with |r,|| < {J(0,7)/7}"/? and J(rn;7) <
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inf.c s J(r;7) 4+ 1/n, we can choose a weakly convergent subsequence. For ¢ > 0 with 6 —¢ > (d+1)/2,
the last subsequence has a subsequence r/, converging in the space H°(S?~1). Indeed, H?(S%1) is
compactly embedded in H°~¢(S"1). By Lemma 3.1 the mapping J(r;~) is continuous with respect to
r € H°=¢(S%"1). In other words, the limit r’ of the subsequence in r/, € H%~¢(S%!) satisfies J(r’;7) <
inf,c s J(r;7). On the other hand, r' coincides with the weak limit which proves r’ € H%(S?1). O

Now the question arises whether the minimizers r” converge to a minimizer of the optimization
problem (3.8) for v = 0, i.e., to a solution of the inverse problem (3.1). However, before we formulate
the corresponding theorem, we modify the optimization problem slightly. Suppose we do not have the
exact far field patterns pp°. Instead, we have noisy measurement data p, """’ for the optimization with
regularization parameter . For the asymptotic analysis, we suppose that the noisy data converges to
zero for « tending to zero. More precisely, we suppose there is a constant ¢ > 0 with

K

2
SR = ey < € (3.9)
k=1

If we replace the exact data by the measurement data in the objective functional (3.7), we arrive at the
following functional and the corresponding modified optimization problem.

K
inc o inc Y 2
Tno(r57) = ZHH(A{;(pk ), A= (P ))—PEOWOHL?(sd—l)+7||r||12r15(sd—1)’ (3.10)
k=1
Tno(x7"%7) = inf  Jno(r57). (3.11)
rEH‘S(Sd’l)

Clearly, problem (3.8) is a special case of (3.11). The existence of minimizers r?" for (3.11) is guaranteed
by Corollary 3.2.

Theorem 3.3. Suppose condition (b) of Theorem 2.2 is satisfied for fived w. Then we have:

i) Suppose ¥V is a set of minimizers for (3.11). Then the minimal functional values Jp,(rV"™°;~)
tend to infycpsga-—1y T (r;0) fory — 0.

i) Suppose the far field patterns py° are the exact patterns for a fized solution r* of the inverse problem
(3.1), i.e., J(r*,0) =0. Then, for 6 > 5 —ec > (d+1)/2 and for any set of minimizers r7V""°, there
exists a subsequence vV converging weakly in H°(S?') and strongly in H°=¢(S?~1) to a solution
r** of (3.8) with v = 0 and, therewith, to a solution of the inverse problem (3.1).

iii) If, additionally to the assumptions of i), the solution v* of the inverse problem (3.1) is unique, then
we even get that vV tends to v* weakly in H°(S%™') and strongly in H°~¢(S771).

Remark 3.4. To our knowledge, there are no uniqueness results available for measurements correspond-
ing to a finite set of incident directions. However, uniqueness is proved if the far fields coincide for all
incident directions (cf. [16]).

Proof. Take an arbitrary r. From the definition of the functionals and the minimizers as well as from
(3.9), we conclude that Jn,(r"";7y) < Tno(r;y) < J(r;0) + ¢ - v + 7[/r[|2. This implies the relation
limsup., g Jno(r?";y) < J(r;0). In other words, limsup., 5 Jno(r?";7) < infy J(r;0). On the other
hand, Jpo(r?™°;v) > J(r7"°;0) —c-v > inf, J(r;0) — c- v implies lim inf ¢ Jpo(r?";y) > inf, J(r; 0)
and assertion i) follows.

If J(r*;0) = 0, then the minimizer r”'™ of the optimization problem in (3.11) satisfies the estimate
TP < Tno(x7757) < Tno(r*579) < T(x%50) + llr*[|* + ¢ -7 = v[[r*||* + ¢ - 7. Hence, there is a
constant ¢g such that [[r7"°| < ¢p. Similarly to the proof of Corollary 3.2, there exists a subsequence
r7%" which converges weakly in H°(S%~1) and strongly in H°~¢(S?"1) to a limit r** € H?(S?!). From
the lower bound § —¢ > (d+1)/2 and from Lemma 3.1 applied to the H°~¢(S?~!) convergent subsequence,
we get J(r**;0) < lim J(r"";0) < limsup Jpno(r"";~,). Together with assertion i) we obtain ii).
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Finally, if the optimal solution is unique, then all the limits r** from assertion ii) coincide with r*.
However, any sequence such that each subsequence contains a subsequence convergent to the same limit
is convergent. This implies iii). O

4 Gradient Computation

In this section we derive formulas for the gradients of the solution operator St with respect to I' in order
to enable the application of gradient based optimization methods for (3.8). More precisely, we suppose the
curve/surface I' = "0 roq € H®(S?1) is fixed such that the frequency w is not a Jones mode for Qroo.
We denote the corresponding solutions of (2.8) by ug, po, and o¢. If a second function rp € H?(S¥1) is
fixed, then we define rj, := rgp + hrp and denote the corresponding solutions of (2.8) by up, pn, and oy,.
The derivatives of ug, po, and og with respect to I'"° in the direction of rp are the limits

up — U

Ph — Po Oh — 00

Uder = }ILnn (4.1)

—0

Dder = lim
d N
’ ¢ h

—0

y &der = lim
h

—0

If the space of all r is restricted to the span of a finite number of basis functions including rp, then
the derivatives (4.1) are just the components of the gradient of the solution operator Sp computed at
I' = T'roo,

In view of the definition of the radial function rr by formula (3.2), we get

rp.r(Z) = g + g arctan (roo(2) + hrp(2))
R R . R 1 " 2
= §+;arctan (roo(l‘))—f—;m hI‘D(l‘)—f—O(h )
= 19(2) + hre(2) + O (K?), ro(2) == g + garctan (roo(2)),
T) = B 1 rp(Z
) e @

Consequently, the derivative of ug, pg, and ¢ with respect to r taken at r = ryg in the direction of rp is
equal to the derivative of ug, pg, and oy with respect to rg taken at rg = rg in the direction of ry. We
only have to compute the last. To simplify the notation in the forthcoming formulas, we write I'*# for
I'" and Q% for QF . Fortunately, the objective functional (3.7) contains only the traces on I'g. Thus we
only have to compute the restricted derivatives pger|r, and Gger. This enables us to employ the material
derivative which allows us to work on the fixed domains 2 and 2z defined with I' = I'*. We shall show
that the derivatives are the solutions of the variational equation (2.8) with a new right-hand side.

To define the material derivatives, we choose a Lipschitz continuous function ¢ defined on the closure
of QU Qpr. This ¢ is to vanish over the outer boundary T'y of Q. More precisely, setting & := x/|z| we
choose

r) = |:c|3(R—|a:|) rq(z)z
YT @R n@) )

Now, for any small h > 0, define the automorphism ®;, of the closure of QU Qg by ®p(x) := x + hi)(x).
Of course, the transformed boundary I'y, := ®(I") is nothing else than I'™» and tends to I" for h — 0.
Suppose 2y, is the interior of 'y, and Qg is the domain enclosed by I'y, and I'y. We denote by By, apn,
bp, and ¢, the sesqui-linear forms of (2.8) with I replaced by 'y, Q by Q4, and Qg by Qgp, respectively.
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Suppose (up, pn, on) is the solution for I'y, i.e. of
_ fF, incn i
BT, 0007) = R0 (000)7) = | fr, B (4.3)
0

¥(v,q,x) € [H' ()] x H' (Qrn) x H™/*(Ty).

With these functions (up, pn, op) we look for the derivatives (4.1). However, on the boundary I'y we have
®,(z) = x. Hence, if we look for the derivative pge, close to I'g and for G4e, on I'g, it is enough to look
for the limits

Up © Pp — Ug © Pg Ph © On — Po © Po

e = i , e = i , 4.4

e =T, pier =T -

G = lim IhOOn 00000 _ o (4.5)
h—0 h

Note that up o ¢y, lives on Q and pj, o ¢, on Qg, which makes the computation easier.

To get a series expansion of pj, o qSh into powers of h, we first have to find the corresponding expansions
of the sesqui-linear form Bh((uo qSh ,po qSh , ah o d)h )T, (vo d)gl, qo qbgl, Xo qﬁgl)T) and of the right-hand
side Ry (p™"c o d)h ,(vo d)h ,qo d)h ,X O ¢ 1)T). This is based on the substitution y = ®,(z) and the
following formulas. For dimension d = 3 we get

( L+howi(z)  howhi(z)  hosii(a) )

D) ( ) = halwg(ﬁf) 1+ hagil)g(x) h 0319 ((E)
h01¢3(x) hOxp3(x) 1+ hOstps(x)

J(z) = det(®},(z)) = 1+ hJi(z)+ h*Ja(z) + O(h?) (4.7)

Ji(x) = Opi(x) + Oatha(x) + O31P3(w)

Jo(x) = Ovap1(x)02tpa () — O1iha(x)dotpy () + 0191 (2)D3¢3(x) — O1¢3(x) D3¢ ()
+021p2(7) 0393 (x) — O293(2)032 ()
0 14 h[0¢a(x) + Os¢s(x)] + h2[021p2 () O31p3 () — Datps (x)Dziha ()] 0 (4.8)
oy J(z) 0x1 )
_ hOwa(x) + W [014)a()stps () — Dstpa(a)Ortps(x)] &
J(z) O
~hois(x) — h2[01v2(2)Da1bs () — Or1bs (@) Datha ()] 0
J(x) Oz3
0 houn(x) + hP[0201(2) 0593 (x) — Dsha(2)Oatps(x)] O
oy J(x) 01
1+ h[01¢1(x) + Bsp3(@)] + h2[0191 () D393 () — Dreps () Dsehr ()] O
J(z) 0xo (4.9)
~ hOys(x) — h2[02v1 (2)O11b3(x) — Oaths ()01 91 ()] 0
J(x) Oz3
9 hogh(x) - h2[03v2(2)D21p1 () — O31p1 (@) Datha ()] 0
o - r i (4.10)
_ h 9y (x) = B2 [0z1be(2) 01901 () — Driba(2)Bsthr (2)] O
J(z) O

1+ h[O2tha(z) + 01901 (z)] + h2[Da)e ()01 4b1 (x) — Oathy (2)D192(z)] 0
J(x) Oz3
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Using (4.7), we write (4.8)-(4.10) in the form

0 0 d 0
E i 2 =1.....d. 4.11
" = i—i—hj 1c,7j j—i—O(h), 1 , R ( )

Similarly, for dimension d = 2, we have

/ _ L+howpi(z)  hoothi(x)
(@) = ( h Oy a(a) 1+hazw2(x)> (412

J(x) = det(®)(x)) = 14+ hJi(z) + h*Js(x) (4.13)
Ji(x) = Ohi(z) 4+ Oatha(x)

Jo(x) = O1p1(x)02tpa(x) — O1h2(x) 0201 ()
0 . 1+ hag’l/)g(l‘) i _ halwg(.ﬁ) i
o T@)  om  J(z) Om (414)
dya J(x)  Oxy J () O '

Again, using (4.13), we write (4.14)-(4.15) in the form (4.11). For the integrals over the domains, we have

[ Fes = [ e, [Fe = [ Fesea. (4.16)
Q

Rh Qr Qp,

Ifd=3andif v: D — T is a parametrization of the two-dimensional boundary surface I', then

[ 227 o2, )@, W)de,y
IV
8, 800(1)) x D (1(1)

8t1 @y, (’Y(t)) X 8152 (bh(')/(t))

= /[%(v(t))@m(t) x B, (V(£) D,y (1] - [[@5,(v(1) '] VF(v(1)] G((t))dt

’ (1931 (@R (v()) VE(y(#))] G(v(£)) |06, Pr (v (1)) x ey P (y(t))|dt

[ (v ()01, (8) X D y()] - VE((2)) G(y(1))dt

D
[ Bur(@) x ' 6)00]- TFH0) Go)dr
D
/ 01 (1) X D (1)) - [0 (4(6) TVE((1)] Gr(B)dt + O(h?)
D

_ /81;(120) Clo)dre + b /w’(v(t))é‘tl'y(t) X 07 (H) + 07 (8) X (V)0 YD) | o) Ga)dra

& |8t1')/(t) X 8t27(t)|

r
—h /n [¢/(2)TVF(z)] G(z)drz + O(h?).
r

Here the matrix ¢'(z) is the Jacobian matrix (00, (x)/02y)%, ;- Obviously, the value of the numerator
V' (7(£)) 0, v (£) X By (t) + O,y (E) X ' ((t))Or,(t) remains unchanged if d;,~(¢) is replaced by the vector
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Op, Y (1) + A0, v(t). Hence, without loss of generality we may assume that 0g,v(¢) and 0y, (t) are orthogonal
in the second integral of the last right-hand side. Similarly, a scaling of 0y, v(t) and d¢,v(t) does not change
the value of 4" ((t)) 01, 7(t) x 04, 7(t) + 01, ¥ (t) X ' (7(£))Or,(t) divided by |9, ¥(t) X 8, 7(t)]- So we may
suppose that d,v(¢) is a tangential vector 7 of unit length and 9;,7(t) = n x 7 with the normal vector
n. We get that o' (v(2))0, (1) x Op, () 4+ 0, v(t) X ¢ (7(1))0r,¥(t) divided by |9, y(¢) x Or,v(1)] is equal
to ¥ (y(t)T X [n x 7] + 7 X ¥/ (y(¢))[n x 7], which is equal

WO x x4 x @ () x ] = @ GO)r T+ 0 G@O)r 0} x x4+ 7 x
{In 71 (V(E)ln x 7] [ x 7]+ (1B x 7] m}
= {7 OO+ x 7 v GO)n x 7]
—m ' () 'n T —[nx 7] ((t) "1 [0 x 7]
(

= {trace(z//(’y t))—n- 1/)1(’)’@))”}”
—{z/;’('y(t))Tn —n-'(y(t) 'n n}
= trace(y) (y(t)))n — ' (y(t)) "' n

In other words,

[ seFoaiwo@ iy = [ ZE @ + b [ et o) 25
Ty r r

on

G(z)drx

b [ o {[@7 + @] VF@) Ga)der + 002,
r
Similarly, we obtain

/n cwo @y Hy)dr,y = /n ~w(z)drz + h / [trace(y (z))n — ¢ (z) 'n] - w(z)dra .
r

Ty r

Ifd=2and if v: D — T is a parametrization of the one-dimensional boundary curve I'; then we

introduce the rotation matrix
R — 0 1
T -1 0
and conclude

[ 3olF o )G (@, (0)dr,
Tn

= [ RIOOINY Tig0)T (@, (v(0)) VEG(1)] Ga(0)
1 |enamono)

(R, (4(£)0(1)] - [ [@1,(1(6)) 7]

@}, (v() 0y ()| dt

TVR()] G

+h /[Rw’(v(t))aw(t)] (VE( ()] GOy(t)dt +O(h?)

D
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= /8g($)G(x)de —h /n [wl(m)TVF(x)} Gz)dra
r T

+h / [Ry/(z)R "n] - VF(2) G(z)dra +O(h?).
r
z)

OF (z)
on

- /8}(;7(1 G(z)drz + h /trace(w’(x)) G(z)drz
r T

_h /n AW (@) +¢'(@)] VF@)) Gla)dre + O2).
T
Similarly, we obtain

/n cwo®, N(y)dr,y = /n ~w(z)drz + h / [trace(y(z))n — ¢/ () "n] - w(z)draz .
T

Th T

To get the series expansions of By ((uo d)gl,po d),:l, oo gf),:l)T, (vo d)#, qo d),:l, X o© d)gl)T) into powers
of h, we substitute the variable of integration y = ®;,(z) and apply the previous formulas.

uod);l 1)0(;5;1 -
ah(( pody ),( qo ¢, )) _/{)\Vy'[UO%I]Vy'[Uo%l]
UO¢;:1 XO¢;:1 Qn

d - -
Z[ w5 0 65,110, [ 0 03] + Oy, © 07,110y, [v; 0 67,1

MI‘:

= / {)\Vx RTAVARNTINEDY /% Fl VAN uW—l—h/\{{ zd: cmaxjui}W—i—Vx u[ Zd: cm@xjvq;}}
Q

ij=1 ij=1

d d
+E D [0 i + 050,05 4 EhA Y 00,1 00;0i + 0a,u00,05)

1,7=1 1,7=1

d
,uh - -
7 Z cmﬁxkujaxjvi + 02,1 €10z, Vi + CitOz) 102, V5 + O, UjCi kO, V5]

i,7,k=1

o |

—ow?u T — hJyow’u -0+ O (h?) } + / {pn -T + hp [trace(y)n — [w']Tn] U+ o(h)}7
r
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uo ¢y’ vog,! I I
bn (( pody’ )( qo¢,’ )) = / {Vy[po¢;1]~ Vy[qoqs;l]—kw2[po¢;1][qo¢gl]}
god,’ xo¢,! D

+gfw2/[uo¢,:11~n[qo¢,:1]—/aa

Ty To

=/{vxp-m+wlvxp-m+
Qr

WY 00,0 Ci 0,0 + €ij0u,p 02,0 | — ko’ pT — hJ1kwp7 + O (h?) }
,J
+osw? / {u g+ h[trace(y’)n — [w']—rn} UG+ o(h)} - /Uﬁ.

T 1)

In other words, we conclude
U o d);i v o (j)gi U v U v
By, pog, || ao¢, = B p || ¢ + hB || a
gog,’ xo o, o X o X

where we have set

U v ay ((u,p)—r, (v,q)T)
B (( ; ) | ( . )) = | W@ @) | (4.18)
g X 0
d —
ax ((u,p)‘ﬁ (1)7(])"—) = /{JMVx N TAVANFTE /\{[ Z C¢7j8xjui}% v+ Y, u[ Z Ci,ja;cjvi}}
Q i,j=1 Pyl
A
+% Z [aziujamjvi +5‘m1u]8xlvj]
i,j=1
I a _ _ -
+3 Z [Cikazkujamjvi + O U Ci 1Oy Vg + Cit Oy 1 O, 05 (4.19)

,5,k=1

+8xiujcj7k8xkvi} — Jiow?u - E}

+ / {p [trace(w)n [ "n] -7}

r
bi ((w,p) " (0,9)7) o= / {lexp-m+2[ax,.,pci,jaqu+ci,jax_7p$q] — kﬁp@}
Qr 0]

+wa2/{[trace(w')n — [w']Tn] ~u§} ,

T
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with the remainder sesqui-linear forms B; and B% such that the estimates
B ((0.2.0) . 00T < 0l TulBognanye + 10rm T By + [alre e (420
[B1 ((w,p,0) 7, (0,00 )| < ey/lluls iy + 110 1003 g + Nl (420)

hold for a positive constant ¢ independent of h and for any u,v € [H'(2)]¢ and p,q € H*(QR).

IA

IA

To get the series expansions of Ry, (pmcoqi)gl , (voqbgl, qo d)gl, quﬁgl)T) into powers of h, we substitute
the variable of integration y = ®,(z) and obtain

_/[pinco(ﬁgl] n-voqégl

Ty

o inc o -1 . A
_ / w qo QSgl _ / { agn q -+ h[trace(d;’)n _ ¢'n . W)/]Tn] . szncq+ O(h)} .
T

- / {p™ 70 + hp™[trace(y)n — [¢'] 'n] - D+ o(h)},

'y
In other words, we conclude
Ru (P ogy " (vogy a0y xog,)T) = R (0™, (v,¢.0) ") +hR1 (07 (v,0,X) ")
+Ry (0, (1,0, ") 4
— Jpp"[trace(y')n — ('] Tn] -
Ri (07 (v,q,) ") = | = Jr [trace(@)n —¢'n =[] Tn] - Vp"eq |, (4.22)
0

where the remainder form R satisfies the estimate

RE (7, 0.0,0 7)< o) 157l o 0B g + 11y (4.23)

Now we are ready to derive the formulas for the derivatives. To simplify the notation, we write
wo := (ug, po, 0o) for the solution of (2.8), wy, := (un, pn, on) for the solution of (4.3), t := (v, q, x) for the
vector of test functions, and wger 1= (Uder, Pders Tder) for the derivatives of (4.4) and (4.5). From (4.3),
i.e., from

Bh([wh o®plo @}71, [to®plo @;1) = Rh([pmc o®y) o fb;l, [to®p]o fI);l)
and from (4.17), and (4.22), we conclude that, for any ¢,

B([wn © @], [t o @n]) + h By([wn 0 @p), [t o @p]) + Bi ([wn © ), [t o a])
= R([p™ o ®p)], [t o 4)) + h R ([p™ 0 By, [t 0 Bp]) + RE ([p™ 0 ], [t 0 Bp)).
On the other hand, if p™* is a locally smooth function, then ®;(x) = x + h1)(z) implies the asymptotic
expansion [p"¢ o @] = p'"¢ + hap - Vpi"¢ + O(h?). Substituting this and using (2.8) with u = ug, p = po,
and x = xo, we continue
B([wn o ®4], [t o ®p)) + h By ([ws o ®p], [t o Prl) + o(h)
=R(p", [to®y]) + hR(Y - VP, [to ®p]) + ARy ([p™ 0 @], [t 0 4]) + o(h)
= B(wo, [t o ®4]) + h R(¢ - VP, [t 0 @p]) + R Ry ([p™ 0 @], [t 0 ®1]) + o(h).
From the proof of Lemma 3.1, we know that wj, is continuous and bounded with respect to h. Comparing

the left-hand and the right-hand side in the last chain of equalities, we obtain [wy, o @] — wq for h — 0.
Substituting the test function ¢ o &}, by ¢, the last equation yields

B(W,t) = R($-Vp"t) + Ri([p™ 0 i), t) = Bu([wn o Bal,t) + o(1).
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Passing to the limit for h — 0, we get
B(wder, t) = R(z/; - Vpine, t) + R (pmc, t) - B (wo, t) (4.24)
for any test function vector t = (v, q, x). In other words, the derivatives wae, := (Uder, Pder, Oder) are the

solution functions of a system with the same sesqui-linear form B as in the direct problem but with a
different right-hand side defined by (4.18) and (4.22).

5 Numerical Solution of the Inverse Problem

For a numerical computation, the infinite dimensional space H°(S?!) must be replaced by a finite di-
mensional subspace. We use the orthonormal set of trigonometric resp. spherical harmonic basis functions

wn, n=1, ..., N spanning this subspace. If d =2, then NV should be an odd number and
( ith) (1+ k%) ~%/2 cos (27Tkt) if k= ‘n — %‘ andn=1, ... ,TH,
wn (€
! (1+k2)79/% sin (2rkt) ifk=n—-H andn=1+5H . N

If d = 3, then N should be of the form N = J(J+42)+1. For any n with (j—1)(j+1)+1 <n < j(j+2)+1,
we choose m =n — j(j +1) — 1 and set

2410 = m)!

sin (mp ifm >0
n (cos psin 0, sin g sin 6, cos 0) = <1+|j|2>‘”2\/ I G (@9 { o

cos (|mlep) else,

2 P (1)

P () = (12 I

Pj(cosf) := sin (0).
We introduce the finite vector s = (s,,))_; of unknown coefficients and represent the unknown function
r as the linear combination

N
r = r(s) = angan. (5.1)

The solution r” of (3.8) is sought in the form (5.1) and the optimization (3.8) reduces to the problem of
finding s7 € RY such that (cf. (3.7))

J(x(s7);v) = inf  J(r(s);7)- (5.2)

seRN

The right choice of the regularization parameter v is a difficult problem. An accurate determination
of the degree of ill-posedness seems to be impossible. However, a general method like the L-curve method
could be applied (cf. e.g. [5]). On the other hand, if an obstacle of a certain class is to be determined, then
a typical example of this class can be chosen, and the corresponding far field pattern can be simulated
with a very accurate computation by the finite-element method for the direct problem. Using these data,
the regularization parameter can be fitted to guarantee the best reconstruction of the typical example.
Heuristically, this regularization parameter should be a good choice for the class of obstacles.

If ~ is fixed, then (5.2) is a finite dimensional non-linear optimization problem for a differentiable
objective function and without constraints. Methods like the conjugate gradient algorithm (cf. e.g. [18])
can be employed. However, the function evaluation is time consuming, and in each iteration step a line
search is to be performed with several function evaluations. Moreover, the gradient based optimization
schemes are local in nature, i.e., the limits of these iterative procedures may be local minima instead of
the global minimum. Restarts from different initial solutions or a good initial guess obtained by stochastic
optimization algorithms may improve the reliability of the outcome.
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To avoid the expensive line search in the gradient based methods, we recommend to apply the Gauf-
Newton method or the Levenberg-Marquardt scheme without line search (cf. e.g. [18]). Indeed, the least
squares form of the objective functional suggests the application of the Gaul-Newton method. More
precisely, if we introduce the vector G™** := (p3°, p3°, ... ,p%,0) and the operator mapping

H(Ai:"(s) (p’inc)’ A%"(s) (pinc))
H (Azr)r(s) (P2"); Afe (o) (p5"))
G: RN — [L2(STH)E x HO(STY), G(s) := ,
H(Aler(s) (PK°), A%r(s) (Wé”))
V()

then the functional 7 (r(s),v) is equal to ||G(s) — G"¢**||? where

K
103203 R e = | S a2 gy -
k=1

The optimization according to (5.2) amounts in solving the operator equation G(s) = G"™**5. The Gauf-
Newton iteration starts with an initial vector s°, and, for each s/, the next iterate s?*' is obtained
by
G(s'T)y =g(s) + [s71! = 7)) G(s7) + VG(s7)[s7H! — s7] = gmeas,
VG(s7)[s"F — o] gmeas —G(s?),
ST = 4 [VO(s)VG(s)] T VG(s)T [ — G(s7).

2

Roughly speaking (cf. [18]), this method converges quadratically if G(s) = G™°** has a solution. It
converges at least linearly if the minimal value [|G(s) — G™¢*®|| is not too large. Unfortunately, due to
the regularization and discretization, G(s) = G"°** may have no solution.

Finally, we present a formula for the Jacobian VG(s) which is needed for the Gauf-Newton method
or for other gradient based optimization routines. We get

N

VG(s) = (95,6(5)),_,:

H(Da [ ) (017, B, [ATe . (917)])

H(Da [ A ) (057, B, [ATe ) (957)])

95,9(s) = .

H(0s, [A;{')‘r(s) (PE)), Os, [Aizr(s) (P%)])
VYPn (s)

The derivatives 0, [Af. (py)] and 95, [AZ. ) (p}°)] are nothing else than the derivatives pger|r and
Oder (cf. (4.1), (4.4), and (4.5)) with ro = r(s) and rgy = ¢,. These derivatives can be computed from
the variational equation (4.24).

6 Appendix

6.1 Proof of Theorem 2.1
By the definition of B in (2.8), we have

B(v,¢,x;v,q,x) = a((v,e,x)", (v.a.x)") +b((w,q,%) ", (v.,0)") +2¢((v,q,x) ", (v,4,x) ")
= Iog+I1lg, +1IIr, + Rr + Rr,,
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where

d
fa = [{I70F 5 32 [l 0] = il

Q
fo, = [{196P - ko fa.
Qr
Irly, = 2/(Vpox)>2ds,
To
_ Ny 20— o \oF
Ry = /{q n-v- 4+ prw (v - n)g }ds,
r
Rr, = /(q*X—xq_*)ds—2/Kroq*>‘<dS~
Ty To

By using Korn’s inequality (cf. e.g. [4]), we obtain
Re Iq > aQ||U||[2H1(Q)]d - CQ||U||[2H0(Q)]2-

Similarly, we have
Re I, > aoullalli i, = conlldlfoqn)-

As is well-known, the simple-layer boundary integral operator Vi, is continuous from H~'/?(Ty) into
H'Y?(Tg) (cf. e.g. [13]), and Vr, is (H~Y/2(Ty), H/?(T))-coercive, i.e.,

Re (Ve X, X)ro = ool IX|I-1/2(ng) — ol IXIEr-1(r)-

The double-layer boundary integral operator K, is continuous from H'/?(T) into H3/?(Ty), and hence
is compact on H'/?(I'y). This implies that

|<KF0q77X>F0| < ||KF0q7||H3/2_51 (FO)||X||H_3/2+51 (To)

for g € H'(Qp) and xy € H-'/?(T'g) and for 0 < &; < 1. Consequently,

/KFoq_ 5( ds
To

IN

ar, [1gl| gre—ei (o)l X 17220 (1)

cr
S {lallEn—<ony + X120y}

IN

with &€ = min{ey,1 — ;}. Thus,

Re Rry 2 —eng{ gl + X -1e ) }-

since the first term in Rr, has real part zero.

In the same manner, one can show that Ry defines a compact term. More precisely, we see that, for
1/2—¢>0,

/q+n ~v—ds

T

a,n-o)r] < llallaomllollpmoaye < erllallaz-«myllullfy e« rya

IN

crllall -« ) + llllfer—c rye-

Collecting all these terms yields the desired estimates. This completes the proof of Theorem 2.1.
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We remark that from the estimates, we may conclude that there exists a compact sesqui-linear form
C(-,-) such that

Re {B(v,4,x:,¢.0) + C0.0.0 ) = a{ [0l oyga + 0l ey + X2y }

for all (v,q,x)" € [H'(Q)]¢ x H'(Qr) x H-Y/?(Ty).

6.2 Proof of Theorem 2.2

Let (uo,po,00)" € [H'(Q)]? x H'(Qr) x H~/2(Ty) be a solution of the corresponding homogeneous
equation of (2.8), i.e

B((uo,po,ao)—r, (v,q,x)—r) =(0,0,0)"

holds for any (v,q,x)" € [H'(Q)]¢ x H (Qr) x H~'/2(I'y). We extend the solution py to the exterior
domain 2. and consider the exterior Dirichlet problem defined by

Api(z) + ku’pi(z) =0, 2€ Qe pilr, = py € HY*(Ty)

together with the radiation condition for p; at infinity. This exterior Dirichlet problem has a unique
solution, which admits the representation

pi(z) = / {ainyEkw (z,9)pT (y) — Ek,, (x,y)a%ypf(y)}dsy

To

Here pl and - pl are the Cauchy data of p; on I’y satisfying the boundary integral equation

o () (L1 o 0

on I'g, where we have substituted pf by p, on I'y. Now, the weak formulation of the boundary integral

equation reads
0 1
Vi =—p7, (—I—K )7, =0
< Foanpl X>F0+< 5 I'o )Po s X .

for all x € H=1/2(I'y). A comparison with the equation ¢((uo,po,o0) ", (v,q,x)") = 0 gives

)
<VF0 (%p-li_ - UO)7X>F =0
0
for all x € H~1/*(T). Hence if Vi, is invertible, this implies that Zpf = oo in H~Y/?(T). Thus,
(ug,p) € [H'(Q)]? x HL (R?\ cl(Q)) with
[ po(z) fxzeQrUTy
ple) = { pi(z) ifz e,

will be a solution of the homogeneous transmission problem for the Lamé equations in €2, the Helmholtz
equation in R?\ Q, and the transmission conditions ¢~ (ug) = —nd,p and n - ug = p/(ojw?) on T'. The
latter has only the trivial solution (0,0), provided w is not a Jones frequency (cf. [15, 10, 14, 6]).

If w is a Jones frequency, then the solution is just p = 0 and u is equal to a Jones mode, i.e., ug is a
solution of the Lamé equations on 2 with both, the traction ¢~ (ug) and the normal component n - ug of
the displacement, vanishing on I'. Consequently, the solution component pg is zero, and the solution of
the sesqui-linear system (2.8) is unique if it exits. So it remains to prove that a solution exists. However,
due to Theorem 2.1, the Fredholm alternative holds for (2.8), and the existence of a solution follows, if
we can prove that the right-hand side of (2.8) vanishes for all solutions (v,q,x)" = (vo,qo, x0)" of the
homogeneous adjoint equation.
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Suppose (vo,qo, x0)' € [H'(Q)]¢ x H (Qr) x H~'/2(I'y) solves the homogeneous adjoint equation,
ie.,

B(u)p7U;UanO7XO) = 0. (61)

holds for any (u,p, o) € [H'(Q)]¢ x H*(Qr) x H=Y/?(Ty). Then (6.1) for all (u,p,o)" = (u,0,0)" with
u vanishing in a neighbourhood of T'; yields

Kuvo(z) + ow?vp(z) = 0, x€. (6.2)
Similarly, (6.1) for all (u,p,o)" = (0,p,0)" with p vanishing in a neighbourhood of I and 'y implies
Aqo(x) + kw’qo(z) = 0, x€Qg. (6.3)

The formula Vi = V_g, r,, including V_g,, r, the single layer operator Vr, with k,, replaced by —ky,
and choosing (u,p,o)" = (0,0,0)" in (6.1) provides us with

qwlre = 2V_k, ToXo- (6.4)

Choosing (u,p,a)" = (0,p,0)" in (6.1) with p vanishing close to I' and applying Green’s formula for the
integrals over 2, we arrive at

8an|FO = (—I -+ 2KFO) Xo = (—I -+ 2K/7kw,Fo) X0, (65)

where K" k., I, 18 the transposed double layer operator on I'y corresponding to the wave number —k,.
Choosing (u,p,o)" = (0,p,0)" in (6.1) with p vanishing close to 'y and using Green’s formula, we obtain

n-volr = Onqo|r. (6.6)

Finally, choosing (u,p,o)" = (0,p,0)" in (6.1) with p vanishing close to I'g and using Green’s formula
for the integrals over €0, we obtain

tlvo)lr = —orwqon|r. (6.7)
Now we define @ := vy and set
_ 5 qo(x) ifzeQprUT,
plr) = prw”- . 6.8
(=) d { Jro Bk (@, y)x0(y)dy  if 2 € Q. (6.8)

Note that p is a continuous extension of gg as a solution of the exterior Helmholtz equation with radiation
condition since the boundary data of ¢y and fFo E_y, (z,9)xo0(y)dy coincide on Iy by (6.4) and (6.5).
From (6.2), (6.3), (6.6), and (6.7), we observe that the function pair (@, p) is a solution of the homogeneous
transmission problem

Kiu(z) + ow*u(z) = 0, z€Q,
Ap(x) + (=kw)?p(z) = 0, zeRI\Q,
t(a(z)) = -np(z), z€T,
n-a(z) = in)z onp(z), z€T,

and the corresponding Sommerfeld radiation condition. As mentioned above, this problem has a non-
trivial solution only if w is a Jones frequency. In this case, the solution satisfies p = 0, and u is equal to
a solution of the Lamé equations on 2 with both, the traction ¢~ (@) and the normal component n - @ of
the displacement, vanishing on I'. In other words, we conclude n - vg|r = 0, go = 0 and Vr,x0 = 0, i.e.,
Xo = 0. Obviously, the right-hand side of (2.8) vanishes for (v,¢,x)" = (vo,q0,x0) ' - This completes the

proof.
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6.3 Proof of Theorem 2.3

Suppose M C R is the open set of all frequencies w such that condition (b) of Theorem 2.2 is satisfied.
Then the solution of (2.8) depending on the frequency parameter w € M is the solution of an equation
with an operator function depending on w. All the operators are Fredholm with index zero due to
Theorem 2.1. The set of parameters w such that the operator is not invertible is either discrete (i.e.,
countable with no finite accumulation point) or the whole set M. Due to the proof of Theorem 2.2, each
nontrivial solution of the homogeneous equation corresponds to a nontrivial solution of (2.9). According
to [14], there exists only a discrete set of frequencies with nontrivial traction free solutions of the Lamé
equations. In other words, the set of parameters w such that the operator is not invertible is discrete,
and, for any wy, there is a small neighbourhood N; := {w: |w—wp| < e} € M such that the operator is
invertible for w € N, \ {wo}. In particular, the solution is unique for w € N; \ {wo}.

We continue the proof with an invariance relation for the Lamé-Helmholtz operator. The solution will
be found in this invariant subspace. More precisely, by C,, and C we denote the operators corresponding
to the sesqui-linear form B, i.e.

Co, C* o [HY () x HY(Qgr) x H-Y?(Ty) — [H-Y(Q)]4 x HY(Qgr) x H'2(Ty),
B((wp,0) 7, (0,007) = (Colwp,) T (0,007 ) = {(0,0.0)T,Co0,0,)7 ).
Using the connection between differential operator and sesqui-linear form, we get

Nu+t(u)dr + ow? u + pndr
2
Co(u,p,o)’ = Ap — 9np bt + Onp O, + % p + 0jw?u - nép — odp,
Viyo + (31— K, )p

= Culu,p, O')T + Eup.w(u, p, 0)—r + [w2 — wg] D (u,p, O')T, (6.9)
ou
D(u,p,0)" = &p+ofu-ndr |, (6.10)
0
0
Eupw(u,p,0)" = 0 : (6.11)

Vigo + (31— K¢, )p - Vo — (31— Ki2)p

Here the generalized functions Xu + t(u)ér € [H~1(Q)]? and Ap — 8,pdr + Onpdr, € H 1 (QR) are
defined by the corresponding bilinear forms, i.e. by the formulas

d
Nu+t(u)dp,v) = AV - uV o+ B dyu; O;v; + Oyu; Opv; | ¢+, Yo € [HY(Q)]4,
2 J ] J J
& ij=1
(8p— 0upbc + Oupdrga) = [ VpVa, Vo H'(@n)
Qr

We consider the subspaces [H!(Q)]? x H'(Qr) x H~'/?(Ty) and [H~1(Q)]? x H-(Qg) x HY/?(T'y) with
[HE(Q)]¢ defined as the set of all u € [H*'(€2)]¢ which are L? orthogonal to the solutions u” of (2.9) for
w = wp. Moreover, we introduce the bounded L? projections P* of [H*'(Q)]? x H*'(QR) x HTY/2(Ty)
onto [HE1(Q)]? x H¥(QR) x HF/2(Ty) by

, T
J s
PEu,p,o) = [u-— Z <u, u}’>L2(Q) uj ,p,o | (6.12)
j=1
where u) € [H'(Q)]%, j = 1,2, ... ,j. is an L? orthonormal basis in the space of homogeneous solutions

for (2.9). From the proof of Theorem 2.2 we know that the kernel functions of Cy, and C}  are of the
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form (u;,0,0) Wlth ug a solution of (2.9). Consequently, C.,, maps [H'(Q)]¢ x H'(Qgr) x H~'/2(Ty)
onto [H~1(Q)]4 x H-1(Qr) x HY/2(I'y) and is invertible. In other words P~ Cwo lim p+ is invertible. Due
o0 (6.9), even C’w maps [H'(Q)]4 x H'(Qgr) x H=1/2(Ty) into [H~1(Q)]¢ x H-'(Qr) x H/?(Ty), i.e. we
get the invariance formula (I — P~)C,P™ = 0. On the other hand, any function from im (I — PT) is of
the form (u”,0,0)" with u” a solution of (2.9), and C,,,(u”,0,0)" = (0,0,0)". From (6.9), we even get
Co(u”?,0,0)" = (p[w? — wd]u’,0,0)T. Consequently, the second invariance relation P~C,(I — P*) =0
holds.

As mentioned in the proof of Theorem 2.2, the right-hand side of (2.8) is orthogonal to the kernel
of the adjoint operator CJ , i.e. the right-hand side (u',p',0')"T of the equivalent operator equation
Co(u?,p?, o) = (u/,p',0’)7 is in the space im P~ = [H~1(Q)]? x H'(Qg) x H'/?(I'y). In other
words, the solution of

P_Cw|imP+ (uvawvo_w)T = P_(ulaplaUI)T (613)

in the space im P7 is a solution of C,,(u¥,p*,0*)" = (v/,p’,0’)" due to (I — P7)C, Pt = 0. However,
the operator P~C, iy, p+ 1S continuous with respect to w and invertible for w = wy. By a Neumann
series argument, P~C, |, p+ is invertible and [P~C, |, p+] 1 is continuous in a small neighbourhood
{w: |w—wo| < e}. Finally, the solution (u*,p”,0*)T of (6.13) and, equivalently of (2.8), is continuous
with respect to w, too.

6.4 Proof of Lemma 3.1

We fix the frequency w = wyg, choose a parametrization r = rg, and prove the continuity with respect to r
at ro. If wp is not a Jones frequency of the domain O, then the inverse operators C;! are continuous in
r near ry (cf. the following transformation technique) and the result follows easily. Thus we may suppose
that wq is a Jones frequency. For this case, the idea is to adapt the arguments in the proof of Theorem
2.3 to show that, for any fixed r, there is an analytic family of solutions to a modified boundary value
problem depending on the frequency w. Representing the solution at w = wy by a Cauchy integral over
this family, we obtain the lemma in the case of a Jones frequency.

Since the domains €2 and Qg in Section 2 depend on I' = I'", we write Q = QF and Qr = Q%. We define
Q ={z e R?: [z] < R/2} and Qg := {x € R : R/2 < |z| < R} and introduce the transformation
T el(QUQR) — cl(F UQY) and its inverse [T*]~! by

or(2)|z]

v if0 <]z <2 .z
Y : r(@) + 2ZBZT@N = R/2) o m oy <p T el
R|y| 1 r
R 2r1@) A f0< |yl <r(@) GV
Rﬁ(RE'_y%)r(y) if r(y) < ly| < R, Y

Clearly, these transformations are continuously differentiable on the open sets Q¥ U QF and Qu (NZR,
respectively. They are only Lipschitz continuous on cl(Q" U Q%) and cl(2 U Qg), respectively. The pull
back F(z) = f(T™(x)) of a function f differentiable on Q" U QY is differentiable on Q@ U Qg and satisfies

d .
[0y, F1(T" (x Z 8—@())8”F(x), i=1,...,d (6.14)
=1

Hence, substituting y = T"(x) into the sesqui-linear form B of (2.8) over Q" U QY,, we arrive at a sesqui-
linear form B* defined on [H'(Q)]4 x H'(Qr) x H~/?(Ty). The coefficient functions for the functions u,
v, p, q, 0, and x and their partial derivatives in the domain and curve/surface integrals of B* stem from
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(6.14) and the Jacobians of the integral transformations. In other words, all these are simple expressions
of the transformation functions of T and of their first order derivatives. Consequently, the sesqui-linear
form B* depends continuously on r € H%(S?') ¢ C*(S?~!), and so do the operators C%,, [C%]*, and D*.
In the following, whenever we speak about convergence for r — r( of entities defined over ¥, QF,, and I'"
to those defined over O™, 79, and I'™, we have in mind the convergence of the corresponding entities

defined over the standard domains §~2, ?2}?, and the boundary curve of Q.

Now suppose the curve ry is fixed such that the considered frequency wq is a Jones frequency for Qr°.
To analyze the operator Cf, , we modify the operator Cj, by fixing the frequency in some places. We

define the new operator C%, : [H(Q")]% x H'(%) x H-Y/2(y) — [H~1(Q")]% x H~1(Q%,) x HY2(T)
by

KXu+ t(u) dpr —|— ow 2u + pndrr
Cr(u,p,0)’ = Ap — 0npbrr + Onpor, + 24p + opwiu - n.dpe — 0dr,
o (41 K Y

Clearly, C%, = C?, . We can eliminate the unknowns p and o introducing the operator G%, : [H* ()]
(1) by

Gru = Nu+t(u)dr+ow?u+ ofwy NtD“’O/C(u'n)n} orr

2
N, D*°/¢(g) := p|r-, Ap(x) + w—gp(w) =0, zeR\cl(Q),

(@) = g(@), wel™,
i Vp(@) —i=2p(a) = o(la|“V72), o] — oc,

If pF,. depending on the right-hand side function p™¢ is the solution of the exterior problem for the
Helmholtz equation

oy wd
Apine(x) + Spmc(w) = 0, zeR\c(Q),
anpinc(x) = npmc( )a rel”,
xz - W0 —(d—
m : vpznc(x) - l?pznc(x) = 0 (|£L’| (d 1)/2)a |(E| — 00,
then the equation
GZ;U = p;hs’ p:’hs = [ e +pznc]nérr (615)
is equivalent to
N u _pincAn Spr
Ch| p = —0Opp"Copr | . (6.16)
o 0

Note that p¥, . is orthogonal to the Jones modes corresponding to Q* and wg (if there exist any). In
particular, (u,p,o) " solves (6.16) if and only if (u,p — p%,.,0 — OnPL..Ir,) " solves

~ U; pf“hs
CI; b= pil:nc = 0
0 — 8npil"nchﬂo 0
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or equivalently if u solves (6.15) and p and o are defined as

2

Ap(x)—l—%p(x) = 0, xzeR\c(Q),
Onp(@) = Onble(r) + opwiul@) -n(x), z el
V) =) = o (el TR, el — o, (6.17)
o = Ouplr,-

If u is given and p and o are defined by the above equations, then we write pl, := p and o}, := 0.

Clearly, G is a compact perturbation of the Lamé wave operator (GX? with wo = 0). Hence it is Fred-
holm with index zero. Using the last equivalence, we conclude that GZ°u = 0 implies 5;0 (u,pro, oro) T = 0.
For real w, the proof of Theorem 2.2 implies pi® = 0, o}° = 0, and that v is either zero or a Jones mode.
On the other hand, the set of Jones frequencies for a fixed domain is countable. Consequently, there is an
w, such that G7? is invertible, too. For r close to ro, G? is invertible, too. In other words, the equation

GLu = py,,, is equivalent to
[GL, + ol =Wl JJu = Pl (6.18)
[)\I - [GLJAJ} u = )\[GLJﬂp:hS, A= Aw) = —p Hw? — Wi (6.19)

where J stands for the embedding of [H!(Q)]? into [H~1(QF)]¢. If a nonzero solution u exists for the
homogeneous equation (6.18), then this is an eigenfunction of the compact operator [G%, ]~*.J. We choose
a simple closed curve © C C around Ao := A(wp) such that the only eigenvalue of [GX°]~!J inside and
on © is Ao and that no eigenvalues of [G%, |~'J are located on © for r close to ro. From the proof of
Theorem 2.3 applied to the operators Gf,, we conclude the existence of a possibly nonunique solution

_ _ -1 _
W = (6] e = (M= [en] T LG ] e

with A = A(w) or equivalently w? := w(\)? := —p~!A7! +w?. Note that p~, is orthogonal to the Jones
modes corresponding to QF and wy (if there exist any). This solution u} exists for any A close to A\g and

depends analytically on A (cf. end of proof of Theorem 2.3). Hence,

r 1 1 . 1,
o = i / (A= Xo) [Gw(A)} Drns do A
(C]

Obviously, the function under the integral is continuous with respect to A over ©, uniformly bounded
with respect to r, and converges pointwise on O for r — rg, i.e. by our convention,

“G&A)rlpihs} oT" — [[GZ‘}Aﬂ*lpf«%s} oT™.

In other words, the mapping r — u}  is [H']¢ continuous at ro. Finally, the functions AL, (pi¢) = ng
0

and A% (p"*¢) = o} depend continuously on r, too.
0

7 Numerical Tests

7.1 An Example for the Direct Problem

The first step of the solution for the inverse problem is to implement a solver for the direct problem. For
example, we have chosen the constants for the transmission and boundary value problem (2.1)-(2.5) such
that k, = ow? = pfw? = X =1 and u = 0.5. We have implemented a piecewise linear finite element
method (FEM) coupled with boundary elements based on the variational equation (2.8). The FEM
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Figure 2: Boundary curve I' of solid included in circle I'y.

grid is generated by Netgen (cf. [19]). The integrals of the boundary integral operators are discretized by
Simpson’s rule. In particular, the weakly singular integrals are computed over finer quadrature partitions.
Assuming that the restriction of the FEM grid to the circle T’y is uniform, the discretization of the
boundary integral operator leads to circulant matrices such that non-optimal quadratures do not affect
the overall computation time. Finally, the linear system of the FEM is solved by the direct solver Pardiso
which is adapted to sparse matrices (cf. [20]).

In our test example, the radius R of T'g is set to 6 and the boundary curve I" of the solid is defined by
(3.2) and (cf. (5.1) and set § = 2)

{2 sin(27t) cos(4mt) sin(6mt) cos(8t) sin(8t)
= - 2 . . .1
r () A+ Paye T ure T e PP are (7.1)
Real part of pressure Imag.part of pressure

6 . . — . . 6 . . — 1
| 0.5

F 10
-0.5

| -1

—X— —X—

Figure 3: Scattered pressure field p® over annular domain Qp.
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Real part of x—coord.displacement Imag.part of x—coord.displacement
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Figure 4: x;-component of displacement field u over domain €.
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Figure 5: x9-component of displacement field u over domain €.
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far field pattern
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— - Imag.Part
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Figure 6: Far field pattern p* of scattered field p.
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Figure 7: Objective functional J depending on the two parameters s3 and sg. The other parameters s,,
are fixed to the values of the exact solution.
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Figure 8: Objective functional 7 depending on the two parameters s5 and s7. The other parameters s,
are fixed to the values of the exact solution.

The corresponding curves I and I'y are shown in Figure 2. Figures 3 to 5 exhibit the scattered pressure
ﬁeld p® over Qr and the components of the displacement field u over €2 resulting from the incident field
p"°(x) := €. Finally, the far field pattern p> of p (cf. (2.6)) is shown in Figure 6.

7.2 A Test for the Inverse Problem

In order to check the algorithm for the inverse problem of Section 3, we try to reconstruct the shape
of Q used in the last subsection (cf. formula (7.1) and Figure 2). More precisely, we take the far field
data (cf. Figure 6) at the eighty directions e27#/80 k = 0,1, ...,79, measured for the incident wave
p™"¢(z) = €?™1. Minimizing the functional J (cf. (3.7)) with the L? norm replaced by a quadrature
approximation over the eighty points, we try to find the geometry determined by the radial function
r = r**?  Note that the far field values are generated by FEM on a discretization level (mesh size
h = 0.03125) higher than the FEM level used for the inverse algorithm.

In accordance with Section 5, we determine N = 11 Fourier coefficients s, of the radial function
(cf. (5.1)). For our first tests, we set the regularization parameter v to zero. Clearly, the operators Af.
and Af. in (3.7) are approximated by the FEM (mesh size h = 0.5, 0.25, 0.125, 0.0625). Two-dimensional
sections of the graphs of the objective functional are shown in Figures 7 - 9. Beside the isolines marking
the values of the objective functional, the arrows indicate the numerical gradients which are determined
by the method described in Section 4. Figure 9 suggests that the far field pattern is extremely sensitive to
s¢, the coefficient of the constant term in the Fourier series expansion (cf. (5.1)). To avoid troubles with
algorithms for optimization problems with badly scaled parameters, we have replaced the parameter sg
by the internal parameter sgz = 5s¢. Indeed, without this scaling the Gauk-Newton algorithm (over FEM
level h = 0.0625) does not converge properly. For the scaled version, however, the algorithm converges.

Now the geometry is reconstructed by the Gauf-Newton scheme of Section 5. The initial solution is
the circle of radius 3, i.e. all the Fourier coefficients s? vanish. To evaluate the reconstruction quality
of our algorithm, we introduce the maximum error of the radial function r, := R/2 + R/m arctan(r?)
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Figure 9: Objective functional 7 depending on the two parameters sg and sg. The other parameters s,,
are fixed to the values of the exact solution.

corresponding to the jth iterate s? (cf. Section 5) by

me = sup
0<t<2mw

rh (ef2mt) — pozact (eiQﬂ't)‘ . rewect(p) =

The values of me and some of the reconstructed Fourier coefficients s, are presented in Table 1. If the
mesh size h of the FEM grid tends to zero, then the reconstructed radial functions tend to the exact
solution. The index j = jin in Table 1 is the index of the iteration step corresponding to the minimal
value of the objective function. Note that the objective functional decreases during the Gaufs-Newton
iteration until it reaches a level where it oscillates slightly around an almost minimal value. Figures
10 and 11 exhibit the reconstructed geometry for the levels A = 0.5 and A = 0.25. For smaller h, the
difference to the reconstructed geometry in Figure 2 is not visible anymore. The evolution of the geometry
for the iteration on level h = 0.125 is shown in Figure 12.

h | j=jmin | 5 s sh_ [ J00) [ me
0.5 12 -0.85149 | -0.15550 | -0.31742 | 0.017704 | 0.6004
0.25 16 -0.99807 | 0.08073 | 0.31065 | 0.007246 | 0.2112
0.125 15 -0.96986 | 0.01926 | 0.17444 | 0.000457 | 0.0519
0.0625 22 -0.99213 | 0.00434 | 0.19237 | 0.000018 | 0.0129
exact -1. 0. 0.2

Table 1: Convergence of the reconstruction for mesh size i of the FEM grid
tending to zero.
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Figure 10: Reconstructed geometry for level h = 0.5 .

Figure 11: Reconstructed geometry for level h = 0.25.
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So far we have assumed exact measurement data, and the regularization parameter v has been set to
zero. Next, for the discretization level h = 0.125, we have added a stochastic error to each of the eighty
measured far field values. These errors have been determined as the product of an error level ¢ times a
random number between minus one and plus one generated by the c-code function drand48. Surprisingly,
we have observed good reconstruction results even with regularization parameter v = 0. For ¢ = 0.16,
we still have an error me of 0.05. Even for e = 0.49, the error me is 0.07. Probably, because of the huge
number of measured far field data, regularization is needed only for degrees of freedom N much larger
than eleven.
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