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ON MODERATE DEVIATIONS FOR MARTINGALES 

BY GRAMA LG. 
Institute of Ma thematics, Academy of Sciences 

Academiei str. 5, Kishinev 277028 Moldova 

ABSTRACT. Let xn = (Xf, :Ff )o<t<l be the square integrable martingales with 
the quadratic characteristics (Xn)~ ~ = 1, 2, .... We have proved that the large 
deviation relation P(Xf ~ r)/(1 - <I>(r))-+ 1 is valid with r growing to infinity at 
some rate depending on Ln - E~ j.6.xn12+28 and Nn - Ej(Xn)1 -111+8 

28 - L.JO<t<l t 28 - ' 
where 8 > 0 and L;8 -+ O, N-;8 -+ 0 as n-+ oo. The exact bound for the remainder 
is obtained too. 

1. Introduction 

Suppose we are given the triangular array of square integrable martingales 

n = 1, 2, .... 

Denote e'f: = X'f: - X'f:_1 and 

(Xn)k = L E((ef )2IFJ:.1), 
O<i:~k 

where k = 1, ... ,n and n = 1,2, .... 
The celebrated Central Limit Theorem (CLT) for martingales gives us con-

ditions for the weak convergence of the distributions P(X;: ~ x) to the stan-
dard normal distribution ti>( x) in terms of the asymptotic negligibility of r. v. ek' 
k = 1, ... , n and (Xn)n - 1. The exact bounds for the departure from normal-
ity of P(X;: ~ x) under such type of conditions were obtained by many au-
thors among them Brown and Heyde (1970), Liptser and Shiryaev (1982), (1989), 
Bolthausen (1982), Haeusler (1988), Haeusler and Joos (1988), Kubilius (1990), 
Grama (1988a), (1988b ), (1990), (1993). We particularly point out the results of 

Key words and phrases. Martingale, central limit theorem, rate of convergence, moderate 
deviation. 
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2 GRAMA LG. 

Haeusler (1988) and Haeusler and Joos (1988), where exact bounds of the rate of 
convergence are obtained under the assumption that for some 8 > 0 

(1.1) 

as n --+ oo, which clearly imply the conditions of the CLT for martingales. This 
yields that the relation 

(1.2) P(x: ~ r) = (1 - <P(r)){l + o(l)} 

holds true uniformly in r only in the range 0 ~ r ~ C, C being some constant 
not depending on n, although the stronger assumptions (1.1) allow us to obtain 
(1.2) in a growing range as n goes to oo i.e. to prove moderate deviation results 
for martingales. The case of sums of independent r.v. is studied in Rubin and 
Sethuraman (1965), Amosova (1972) (see also Petrov (1972) p. 309), but until 
recently, however, this problem for martingales has not been properly settled. It 
should be pointed out that some moderate deviation results for martingales were 
also obtained in Bose (1986a), (1986b ). These results are under rather stringent 
assumptions on the prelimiting martingales this making comparison with ours a 
difficult task. In any case they do not provide us with the optimal rate and do not 
allow us to manage the general case considered here. 

The aim of the paper is to prove a moderate deviation relation for martingales 
in the normal zone that is to prove the relation (1.2) uniformly on r in a possibly 
wider range the only assumptions on prelimiting martingales being (1.1). Exact 
bounds for the remainder will be given as well. 

Main results of the paper obtained in this direction are presented (for continuous 
time martingales) in the next section (see Theorems 2.1, 2.2, 2.3, 2.4). Let us write 
down some of these results in the discrete case under consideration. 

Assume that x is such that 1 ~ x ~ a(L~8 + N7j8)-1 , where a > 0. Then by 
virtue of Theorem 2.1 and Remark 2.1 we have uniformly on x 

where IBI ~ 1, C(a, 8) is a constant depending only on a and 8 and 

(1.4) r 2 = 2lnx - 812c(6)1n(l + v'2lnx) 

with 0 ~ 81 ~ 1, c( 6) = 3 + 68. 
The first term in the above expansion for r 2 is exact. Unfortunately the constant 

c(6) = 3 + 68 in (1.4) is not the best one. We conjecture that the best possible 
value for c( 6) is 3 + 26 but our method of the proof does not allow us to reach it. 
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The remainder in (1.3) is the best one since with x = 1 we get exactly the rate of 
convergence in the CLT for martingales (see Lemma 3.4 below). 

In particular the above relations imply that for any 0 < q < 1 and x subject to 
1 < x:::; a(L28 + N!j8 )-1 the following relation 

(1.5) 

holds, where IBI :::; 1, C( a, 8, q) is a constant depending only on a, 8 and q. For the 
case of independent r.v. (1.5) improve the result of Amosova (1972) from which 
the relation (1.5) turns out to be exact too. 

Relations (1.3), (1.5) allow us to derive limit theorems on moderate deviation 
for martingales. For instance it follows from (1.5) that if L28 + N!f6 < 1 then for 
any 0 < q < 1 uniformly in r subject to 0:::; r:::; y'2ql ln(L26 + N!j6 )1 we have 

as .n-+ oo. 

P(X;: 2:: r) -+ l 
(1-~(r)) 

Let us examine the case when e;: = Jn11k, k = 1, ... , n, where r.v. 771 , ..• , 1Jn 

form an i.i.d. sequence of r.v. with E771 = 0, E11i = 1 and m20 = El1111 2+26 < oo. 
In this case N!f6 = 0 and L26 = n-6m20• What we can get from (1.3) and (1.5) is 
the following results. Uniformly on x in the range 1:::; x:::; an6 we have 

P( Jn L 'f/i :'.:: r) = (1 - <I>( r )){1 +BC( a, .5, m 26 )x1f(a+26l( Jn )26f(a+26>}, 
O<i~n 

where r is defined by (1.4), and with 0 < q < 1 

1 1 1 
P( r,;: L 'f/i :'.:: y'2q.5 ln n ) = ../2i {1+ BC( .5, q, m26 )-1 -} , yn .< 27rnq0v'28lnn nn O<i_n 

C( a, 8, m 20 ), C( 8, q, m20 ) being constants depending on a, 8, q, m20 respectively. 
We are going to pay some attention to the methods of the proof and to the 

related works now. 
For the proofs we make use of the composition method which originally goes 

back to Bergstrom (1944). It was developed for the discrete time martingales by 
Bolthausen (1982) and Haeusler (1988) to get rates of convergence in the CLT. For 
the case of continuous time semimartingales the composition method was extended 
in Grama (1988a), (1988b ). This method turns out to be useful for obtaining large 
and moderate deviation results for martingales too. Roughly speaking the main · 
idea behind the technique we propose is as follows. Consider the two-dimensional 
semimartingale (Xi:, 1-Vt). Here yn is an increasing process on k, Von = 0, V,!1 = 
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1., We apply Ito's formula in order to give an expansion for <P(f, X'f:, 1 - Vt) -
<P(f, X[;, 1), where <P(f, x, y) = J~00 f(x + z\i'Y)<.p(z) dz with a smooth function f. 
This approach leads us to some Gronwall-Bellman type inequalities. We should 
also point out that the present proof employs stopping time technique rather than 
smoothing inequalities. The reason to proceed in such a way is that it gives us a 
better result for this method. 

A similar approach was used in Grama (1994) to get large deviation results with 
the bounds for the remainder. Closely related papers belong to Bentkus ( 1986), 
Bentkus and Rackauskas (1990) (both deal with Banach space valued independent 
r.v.) Rackauskas (1990) (for 1-dimensional martingales), where large deviation 
results were established in the discrete case. Under the general conditions the 
exponential type inequalities for large deviation probabilities for semimartingales 
were proved in the book of Liptser and Shiryaev (1989). For large deviation 
results for independent r. v. we refer the reader to the books of Ibragimov and 
Linnik (1965), Petrov (1972), Saulis and Statulevicius (1989). 

2. The results 

We begin this section by settling some notations which we make use all over 
the paper. Throughout the paper <P( x) denotes the distrl.bution function of the 
standard normal r.v. N. Let C, Ci, i = 1, 2, ... be the absolute constants 
and Ci( a, /3, ... ), i = 1, 2, ... be the constants depending only on the arguments 
a, /3, ... , whose values may differ from place to place. 

Suppose that on the probability space (n, :F, P) we are given the square inte-
grable martingale 

Xo = 0 a.s., 

under the usual conditions. Corresponding to the martingale X is the quadratic 
characteristic 

Let us introduce the following notations 

L2o = E L l~Xsl2+20, 
O<s9 

N2o = El(X)i - lli+o, 

where 8 > 0. Of course if we want to obtain non-trivial results we have to assume 
that both L20 and N 20 are finite for some 8 > 0. 

Our main result concerning the moderate deviation for martingales is formu-
lated as 
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Theorem 2.1. Assume that x, r are such that r ~ 0, x = (1 + ry<8)er2
/ 2 , 

x:::; a(L20 + N20 )-1 , where c(8) = 3 + 68, a> 0. Then the following moderate 
deviation relations 

(2.1) 
P(X1 ~ r) = (1- <I>(r)){l + BC(a,8)x1l< 3+26 )(L2o + N20)1 l<3+28)}, 

P(X1:::; -r) = <I>(-r){l +BC(a,8)x1/(3+2o)(L20 +N20)1/(3+2a)} 

hold, where I 8 I :::; 1. 

Remark 2.1. Let us observe that if r and x are such that r > 0 and x 
(1 + r )ec(o) er2 12 , then 

(2.2) r = J21nx - 812c(8)1n(l + V2lnx ), 

where 0:::; 81 :::; 1. With this relation we reformulate Theorem 2.1 in tbe following 
form. Relations (2.1) bold true for any x in tbe range 1 :::; x :::; a(Lu + N2a)-1, 
where r satisfies (2.2). 

We easily derive from Theorem 2.1 the following 

Theorem 2.2. Assume that xis such that 1 < x :::; a(L20 +N20)-1 , where a> 0. 
Then for any 0 < q < 1 tbe following moderate deviation relations 

1 1 
P(X1 ?'. y'2qlnx) = 0Ji ~{l+BC(a,6,q)-1 -}, 

271" xq 2 ln x n x 
1 1 

P(X1 :::;-J2qlnx) = 0Ji ~{l+BC(a,8,q)-1 -} 
271" xq 2 ln x n x 

hold, where IBI :::; 1. 

Remark 2.2. In particular if c = L20 + N 2a < 1 then for any 0 < q < 1 tbe 
following relations 

hold, where IBI :::; 1. 

The above statements allow us to formulate some new limit theorems on mod-
erate deviation for martingales. 
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Theorem 2.3. Let xn = (X;i, :Ff')o99 , X 0 = 0 a.s., be the square integrable 
martingales under the usual conditions with quadratic characteristics 
(Xn) = ( (Xn )t, :Ff' )o<t<l respectively. Denote 

L~o = E L lllx,:12+20, 
O<s9 

N!j0 = El(Xn)i -111+6 , 

where 8 > 0. Assume that x, r are such that r ~ 0, x = (1 + r)c(o)er
2 

/
2, with 

c(8) = 3 + 68. Then uniformly in r such that x = o((L~6 + N2n0)-1 ) the following 
moderate deviation relations 

hold as n -+ oo. 

P(Xi ~ r) l 
-+, 

(1-~(r)) 

P(Xf ::; -r) -+ l 
~(-r) 

Theorem 2.4. With the notations of Theorem 2.3 if L~6 + N!f6 < 1 for any 
0 < q < 1, then uniformly in r subject to 0 ::; r ::; J2qlln(L~6 + N!j6 )1 the 
following moderate deviation relations 

hold as n -+ oo. 

3. Preliminary statements 

P(Xi ~ r) 
(1 - ~(r)) -+ l, 

P(Xf::; -r) -+ 1 
~(-r) 

Before to proceed w~th the proofs let us state some background assertions to 
be used latter. 

The following lemma is almost obvious modification of the time change formula 
in Dellacherie (1972) and is related to Lemma 3.1 in Grama (1994). 

Lemma 3.1. Let A = (As)o<s<b Ao = 0, A1 = T be the right continuous 
increasing function, where T > -0.-For any s E (0, T] denote 

T 8 = inf { 0 ::; t ::; 1 : At > s}, where inf 0 = 1. 

Then for any 0 < t ::; T and any non-negative real measurable function f 
(f(u))o<u<l 
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Proof. It is obvious that 

for' f(s)dA, = [ l(s < Tt)f(s)dA, + f(r1)liAr,· 

By applying the change time formula· (see Dellacherie ( 1972)) 

r1 rA1 
lo 1( s < Tt)f( s) dAs = lo 1( Ts < Tt)f( Ts) ds 

(since Ts < Tt implies s < t) 

:=::; 1T l(s < t)f( r,) ds. 

This concludes the proof. 

The following two elementary formulas are well known. 

Lemma 3.2. For any r ~ 0 and e ~ 0 

(a) 

(b) 

V2{i e-r2/2 < P(INI > r) < ~ V2{i e-r2/2 
l+r - - -31+r ' 

P(r - e:::; INI:::; r + c:):::; Ce(l + r)(l - ~(r))eer. 

We shall need in what follows well-known Gronwall-Bellman inequality. 

7 

(3.1) 

Lemma 3.3. Assume that function g = (gt)o<t<T, T ~ 0 is bounded by a con-
stant not depending on t and satisfies for any t-E-(0, T] the inequality 

9t :=::; C1 1t g,a, ds + C2, 

where a= (at)o9~T is nonnegative integrable function. Then for any t E (0, T] 

9t :=::; C2 exp{ C1 1t a, ds }. 

We shall make use of the following exact estimate in CLT for continuous time 
martingales due to Haeusler (1988) (see also Haeusler and Joos (1988)). 

Lemma 3.4. Let X = (Xt,Ft)o<t<i, X 0 = 0 a.s. be the square integrable martin-
gale under the usual conditions with quadratic characteristic 
(X) = ((X)t,Ft)o~t9· Then for any 8 > 0 the bound holds 

1 
sup IP(X1 :::; x) - ~(x)I :::; C(8)(Lu; + N20 )a+20. 
xER1 



8 GRAMA l.G. 

Lemma 3.5. Let X, e be random variables and X be Q-measurable, where g ~ :F. 
Then for any c 2:: 0 

sup IP(X ~ x) - cl>(x)I ~ 2 sup IP(X + e ~ x) - cI>(x)I 
xER1 xER1 

+ ~c + 2P(E(e21Q) > c2
). 

y27r 

Proof. This assertion is a small improvement of Lemma 1 of Bolthausen (1982) 
or Lemma 2 of Haeusler and Joos ( 1988) and therefore the proof is left it to the 
reader. 

Throughout the rest of the paper we shall be using the notations that we proceed 
to introduce. Let c.p( x) be the standard normal density 

c.p(x) = _l_e-x2/2 . 
../2i 

Given any bounded function f : R 1 ~ R 1 denote 

if!(!, x, y) = l: f(x + z,jY)ip(z) dz. 

For any Borel set Gin R 1 put iP(G,x,y) = cI>(la,x,y), where la is the indicator 
of the set G. By straightforward calculations we state for any bounded function 
f, having four bounded derivatives, and for any x, y E R 1 , y 2:: 0 the equalities 

(3.1) ~ a . 100 
a 2 cl>(!, x, y) = 2-8 cl>(!, x, y) = f"(x + zy'Y)c.p dz, 

x y -oo 
(3.2) ! 3 if!(!, x, Y) = l: f"'(x + z,/Y)ip(z) dz, 

(3.3) a2 i loo a 2 iP(f,x,y) = 4 J""(x + zyly)c.p(z)dz 
y -oo 

and if y > 0 

(3.4) a2 i loo 
a 2 <P(f, x, y) = - f(x + zyly)c.p(z)(z2 -1) dz, 

x y -oo 
(3.5) 83 1100 

a 3 <P(f, x, y) = - J'(x + zy'Y)c.p(z)(z2 
- 1) dz, 

x y -oo 
(3.6) a2 2 joo 

8 2 <P(f, x, y) = - f"(x + zy'Y)c.p(z)(z2 - 1) dz. 
y y -oo 
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4. Auxiliary results 

In this section we shall prove a technical result formulated as Theorem 4.1 which 
play the key role in the proof of main result of the paper Theorem 2.1. Before 
stating this result it is the appropriate place to develop some more notations to 
be involved in the formulation of this result and in the proofs as well. 

Suppose we are given the square integrable martingale X = (Xt, Ft)o<t<i, 
Xo = 0 a.s. under the usual conditions. Let (X) = ( (X)t, Ft)o99 b; the 
quadratic characteristic of martingale X and let c = L28 +Nu, be finite for some 
8 > 0. Assume that r, x E R1 are such that 

(4.1) 

where c(8) = 3 + 68, a> 0. Denote for i = 1, 2 

91(r) = (1 + lrl)-6
, 92(r) = (1 + lrl)48

, 

€i =ci(r) = ~(a-1gi(r)er2/2c)1/(3+28). 
2 

Let T = 1 + ci (of course T is depending on r ). Introduce the process V 
(Vt, Ft)o99 as follows 

V = (X)l[o,r[ + Tl[r,q, 

where 
r =inf {O::; s ::; 1 : (X)s > T}, with inf 0 = 1. 

Define the random time changer= (rt, Ft)o~t~T as 

r 8 = inf { 0 ::; u ::; 1 : Vu > s}, with inf 0 = 1, 

and non-negative process .A= (.At, Ft)o~t9 as 

At= T- vt, 0 ::; t ::; 1. 

And finally let Bx(a) be the 1-dimensional ball of radius a with the center in x, 
i.e. Bx( a)_= [x - a, x +a]. 

Main result of this section is formulated below. 

Theorem 4.1. Assume that r, x E R 1 are such that condition ( 4.1) is satisfi.ed 
with some a> 0. Then for a fi.xed f3 2:: 1 and any 0 ::; t::; T 

where t* = t /\ 1. 

The following auxiliary assertion will be used in the proof of Theorem 4.1. 
Unfortunately we can't derive it directly from Lemma 3.4 so we have to give a 



10 GRAMA LG. 

proof involving Lemma 3.5 this, by the way, being the only reason to include it in 
the paper. If we would take T = 1 in the above definitions of V, r and rs, then 
the assertion of Lemma 4.1 (with cl/(3+2o) instead of c 2) would be an immediate 
consequence of Lemma 3.4 without making use of Lemma 3.5 at all. But in this 
case we are not able to give a simple estimate for the term 13 (see (4.15) below) 
thus making the proof of Theorem 4.1 much more complicated. 

Lemma 4.1. For any v 2 0 and 0 ::; t ::; T 

where t* = t /\ 1. 

v V c2 
sup P(Xrt E By(v))::; C(a, 8) . II* , 
yER1 yt* 

Proof. Since Tt• ::; Tt for t E [O, T], then by Lemma 3.5 

(4.2) sup IP(Xrt ::; Y) - <I>(y/Vf*)I 
yER1 

First we note that for any s E [O, 1] 

(4.3) ~Vs::; ~(X)s + l(X)i -Tll(s = 1) 

and 

( 4.4) l(X)i - Tl ::; ci + l(X)i - 11. 

Together with Vrt ::; ~ Vrt + t and Vrt 2 t which hold for any t E [O, T] these 
inequalities imply (note that c1 ::; c2) 

(X) Tt - (X) Tt• 

=( (X}rt - Vrt) + (Vrt• - (X}rt•) + (Vrt - VTt•) 
:s;4c~ + 3l(X}i -11 + ~(X}rt· 

It is not hard to see that 

(4.5) E L ~(X)!+o ::; L20 

O<s~:;I 

From the above inequalities it follows that the last probability in ( 4.2) do not 
exceed 
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On the other hand for any t E [O, T] we have 

I (X)rt• - t* I 
~l((X)i > t*)l(X)rt• - t*I 
+l((X)t ~ t*)l(X)rt• - t*I 

11 

(since Ts = inf{O ~ u ~ 1 : (X)u > s}, with inf 0 = 1 for s < T and Tt• = 1 
provided (X)i ~ t*)) 

and therefore 

~~(X)rt• + 1( (X)i ~ t*)(t* - (X)t) 
~~(X)rt• + l(X)i - 11, 

El(X)rt• - t*IH6 ~ 21+ 6(L26 +Nu). 
From this inequality by using the exact estimate of the rate of convergence in CLT 
for martingales (Lemma 3.4) it follows that 

( 
1 ) (2+26)/(3+26) 

(4.6) ::E, IP(Xr,• Sy) - <l>(y/Jt*)I S C(S) Vt* e1/(3+20. 

The requested asse.rtion of Lemma 4.1 can be obtained now from ( 4.2), ( 4.6) and 
v . v 

sup P(N E By( '"°)) ~ V'2/iF' 
yERl Vt* 27rt* 

which holds for any v 2:: 0. 

Proof of Theorem 4.1. 

We can assume that c = L 26 + N26 > 0 since otherwise the assertion of Theorem 
4.1 becomes trivial. For the proof we consider a fixed pair r, x E R such that 
condition ( 4.1) is satisfied with some fixed a > 0. Let C* > 1 be a constant which 
value will be determined latter and let h = C*c2 and hi = hi(f3) = ((3 + i)h, · i = 
0, 1, ... ,where (3 2:: 1. In the sequel we shall make use of the function f: R 1 -+ R 1 

defined as 
... y-r 

J(y) = J(-h-), y E R1, 

where J : R 1 -+ R 1 is a fixed function with four bounded derivatives and such 
that 0 ~ f(y) ~ 1 and f(y) = 0 if IYI 2:: (3+1, f(y) = 1 if !YI ~ (3. It is easy to see 
that function f satisfies for any y E R 1 and i = 1, ... , 4 the relations 

(4.7a) 
(4.7b) 

IJ<i)(y)I ~ ch-i1Br(h1)(y), J(y) ~ 1, 

lBr(ho)(Y) ~ J(y) ~ lBr(h1)(y). 
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First we note that because of the obvious inequality h = C*c,2 > c,2 (valid since 
c* > 1) we have that 

(4.8) 

All we want to do at this stage is to prove that the function g = (gt)o9~T defined 
as 

Eil!(Br(f3h ), Xrp Art) 
gt= sup , 

f3?.1 (3h exp(-r2 /2 + f3hlrl) 
t E [O, T]. 

satisfies for any t E [O, T] the inequality 

(4.9) 
1 

gt :::; C( a, 8) ri*' 
yt* 

where t* = t /\ 1. Having proved this and by taking into account the bounds (a) 
in Lemma 3.2 and the relation 

(4.10) 

one can easily derive the assertion of Theorem 4.1 from ( 4.8). Before to give a 
proof of ( 4.9) let us remark that function g is actually bounded above by a constant 
but which is depending on rand h. At this moment important for us is that this 
constant do not depend on t. 

We start our estimation of function g by replacing an appropriate smooth func-
tion instead of the indicator of the interval Br( h0 ) = [r-h0 , r+ho] in the right-hand 
side of ( 4.8). Following this line we take into consideration ( 4. 7b) to obtain 

(4.11) Eil!(Br( ho), Xrt, Art) 
:::=;jE{ il!(f, Xrn Art) - il!(f, Xo, Ao)} I 
+P( ~NE Br(h1)). 

The most consuming part of the proof will be to give an estimate for the first term 
of the in the right side of ( 4.11) the second one being easily handled by applying 
Lemma 3.2. In order to give such an estimate we apply Ito's formula (see Liptser 
and Shiryaev (1989)) to the two-dimensional semimartingale (Xrt, Art). According 
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to this we can derive that for any 0 ::; t ::; T 

Taking expectation and making use of (3.1) and of the obvious relation 

we get after some straightforward calculations that 

where 

a . - ax 'P(f, Xs_, As)b.Xs 
1 a2 

- 2 ax2 'P(f,Xs-, As)b.X;], 

(4.14) I2 = -E L ['P(f,Xs_, As-) - 'P(f,Xs_, As) 

Now we proceed to produce bounds for Ii, I 2 , I 3 • 
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Estimate 11 . By applying Taylor's formula we arrive to 

where 

a2 
J1 = E L sup I a 2 <P(f, Xs- + Bs~Xs, As)l~X;l(l~Xsl >es), 

O<s~rt 0~8~1 X 

1 83 

h =BE L I ax3 <P(f,Xs- + Bs~Xs, As)l l~Xsl 3 l(j~Xsl ~es), 
O<s~rt 

with 0 ~ lJ s ~ 1 and 

( )

1/fJ 

e, = e1 .JX: , 
Estimate J 1 . Relations (3.1), (3.4) and (4.7a) imply 

( 4.16) 1::2 <l>(f,x,y)I S C(y V d)-1
. 

Taking into account that 

( 4.17) 

one can easily obtain the following estimate 

J <CE '°"" (.X*)- 1 e-26 l~X 12+26 < Ce-26e-2e = C(a 8)e e-r2
/

2 
1_ L..J s s s - 1 2 ' 2 . 

O<s9 

Estimate h. It follows from (3.2), (3.5) and (4.7a) that 

~ 100 (4.18) I ax3 <P(f, x, y)I ~ ch-1(y v eD-1 
_

00 

l(lzv'Y + x - rl ~ h1)¢(z) dz, 

where ¢(z) = cp(z)(z2 + 1). Therefore implementing this estimate in J2 and using 
the inequality l~Xs I ~ e8 ~ e2 we obtain 
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Since for any bounded non-negative predictable process U = (Ut, Ft)o~t9 

[' U,d(X). ~ [' u.av. + l((X)i > T) [' U,d((X). - v.) 

we have 

where 

H2 = Cc22 E L ~ Vsl(~ Vs ~ 2ci), 
O<s~l 

H3 = Cc22El((X)i > T) [ d((X). - v.), 

Estimate H1. Let us introduce the following sets S1 = {z : lzl ~ 6lrl} and 
S2 = {z: lzl > 6lrl}. With these notations we have 

where for i = 1, 2 

Estimate L1 . Since 'lfa(z) ~ 6<p(z)(1 + r2 ) on the set S1 it is obvious that 

(apply random change time formula from Lemma 3.1 and use the inequality 
(1 + r 2 )h-1c1 ~ c;-1 ) 

~ cc;1c~16 E{[ if!(Br(h2), Xr,-.>•r, )(>.;.)-1
-

21
• l(t:. Vr, < 2cD ds 

+'1>(Br(h2), Xrt-, Art)(.-\;J-l- 216 1(~ Vrt < 2si)~ Vrt }. 

It is not hard to see that on the set { ~ Vr. < 2si} for any s E [O, T] 

(4.19) 
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where 
~s = -ei + 1 - s, 

On the other hand let us observe that 

( 4.20) 
E<P(Br(hk), Xrt-, Art) ~E<P(Br(hk+1), Xrt, Art)+ c;-2

-
26 L28, 

E<P( Br( hk ), Xrp Art) ~( k + 1)gthoe-r2 12+ho lrl+ke2 lrl. 

for k = 0, 1, ... , and 

( 4.21) e~l• 1T(~)-1 -i, ds ~ C(.5) = 28 + 3. 

Then from the bounds (4.19), (4.20), (4.21), (4.3), (4.4), (4.17), (4.10) it follows 
that 

Estimate L 2 • Applying the random change time formula (Lemma 3.1) we arrive 
to the inequality 

L2 ~ 

cc;1c~18 E{ t f l(lzA + Xr11- - rl ~ h2)1fa(z) dzl(~Vrll < 2ci)A~1 - 216 ds lo ls2 . 
+ { l(lzA +Xrt- - rl ~ h2)1fa(z)dzl(~Vrt < 2ci)A;:1-l6 ~VrJ· ls2 

Now we observe that on the set {~ Vr11 < 2ci} for any s E [O, T] 

which together with ( 4.19) yield 

Therefore by taking into consideration that from Lemma 4.1 we have 

wheres*= s /\ 1 and that for any x ER and v ~ 0 
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we can obtain 

L < cc-1 {h t \J!(r)c1/ 6(.\*)-1 - 2
1
6 ~ + .!!:!!._\J!(r) + c-2- 26c} 

2 _ * o Jo 2 :..:..s JS* Vt* 2 . , 

where 

Since 

( 4.22) f,1/6 iT ,\-1-216 ~ < C(8) = 48 + 2 + 3y'2 
2 _s .r:;- ' o vs· 

then using ( 4.17) we arrive to the following bound for L2 

-1 1 -r2 /2 L2 < C( a, 8)C* c;;hoe . - vt* 

Estimate H 2 • The estimate for H 2 easily follows from ( 4.3), ( 4.4), ( 4.5) and 
( 4.17) 

H2 ~Cc}26c22 E( I: ~(X)!+6 + l(X)i - 111+6 ) 

O<s9 
<Cc-26c-2c < C(a 8)c, e-r

2
/ 2 • - 1 2 - ' 2 

Estimate H 3 • Since V = (X) on [ 0, r[ and V =Ton [ r, 1] 

H3 ~ Cc22 E( (X)i - T)l( (X)i ~ T) 

~ Cc22 E( (X)i - 1 )1( (X)i - 1 ~ c~) 
< Cc,-2-26 c < C(a 8)c, e-r2 /2 
- 2 - ' 2 ' 

by using (4.17). Now we put together the bounds for J1, h, Hi, H2, H3, Li, L2 
to obtain 

Estimate 12. From (3.1), (3.3), (3.4), (3.6) and (4.7a) we have 

(4.23) 
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and 

( 4.24) 

Therefore applying Taylor's formula we get 

where 

In order to estimate K 1 we proceed exactly in the same way as for H 2 • 

. Estimate K 2 • Obviously 

where for i = 1, 2 

Since 14::1 ~ c2 if z E Si, then we can produce for Li the same bound as for Li. 
As to L~ it can be bounded in the manner similar to L2 too. Therefore for /3 the 
same bound as for 12 can be· established. 

Estimate 13 • It follows from ( 3.1) and ( 4. 7 a) that for any x E R, y > 0 

( 4.25) 

Then obviously 

where 

a2 I ax2 4>(!, x, y)I ~ ch-2 4>(Br(h1), x, y) 

G1 = ch-2 1((X}i 2:: T)E [ d((X). - v.), 
G2 = Ch-2 E4>(Br(h1),XTt-, ,\Tt)IVs - (X)sl· 

We have for G1 exactly the same estimate as for H3. 
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Estimate G2. It is clear that with ( 4.4) and e1 ::; e2 we have 

G2::; Ch-2 E<I>(Br(h1),Xrt-,Art){2e~ + l(X)i - lll(l(X)i -11 > e~)} 
(use (4.20)) 

< C{c-1 h e-r2 /2+holrl*e2lrl + e-2-26 e} - * 0 2 

(use (4.10), (4.17) and e2::; C;1 ho) 

::; C(a,8)C;1hoe-r2/2+holrl{gt + 1}. 

19 

Putting together these two bounds for G1 and G2 we obtain the following estimate 

IJ3I::; C(a,8)C;1 hoe-r2/2+holrl{gt + l}. 
Only that remains to estimate is the probability in the right-hand side of (4.11). 

By virtue of Lemma 3.2 and (4.10) we have 

(4.26) P( /):;NE Br(h1 ))::; Ch0e-r2/ 2+holrl. 

From this and from (4.11), (4.12) with the above bounds for Ii, i = 1, 2, 3 we 
derive 

E<I>( Br( ho), X rt, Art) 

::; C(a,8)C;1 h0 e-r2
f2eh0 lrl{[ g.e~/6(_~_;)-1--h ds + 9t + ~ + C.}. 

Dividing both sides by h0e-r2 / 2+holrl and taking sup on 8 2:'.: 1 and then choosing 
C* large enough (so that C;1C(a, 8)::; 1/2) it follows that for any t E (0, T] 

it 1 
gt:::; C(a,8){ g8 e;16

(.\;)-1
-2

1
6 ds + '"}. 

0 yt* 

Multiplying both sides by v'f* and denoting 
1 

9t =gt - Vi* 
we obtain using the obvious inequality t* ::; 1 that for every t E [O, T] 

9t::; C(a,8){ 9se~/6 (A:)-1 -216 ~ + l}. it . d 
o vs* 

Since 9t ::; gt and the function g is bounded by a constant not depending on t, 
then by virtue of Gronwall-Bellman inequality (Lemma 3.3) and of ( 4.22) 

?it ::; C1( a, 8) exp{ C2(a, 8) [ e~16 (,\:)-l-,', ~} ::; C3( a, 8), 

and finally 
1 

gt ::; v'f* C3 (a, 8), 

consequently the inequality (4.9) is proved and therefore we complete the proof of 
Theorem 4.1. 
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5. Proof of the main result 

We proceed to prove Theorem 2.1 now. We give a proof only for the first 
inequality in Theorem 2.1 the second being proved by the same w.ay. 

Assume that c > 0 since otherwise the assertion of Theorem 2.1 becomes trivial. 
Let x, r be such that conditions of Theorem 2.1 are satisfied. Introduce the 

functions Ji : R 1 ---+ R 1 , i = 1, 2 defined as 

.... y-r 
fi(y) = !(-), 

€2 
f2(y) = f(Y - r - c2 ), 

'€2 

where J : R 1 ---+ R1 is the function with four bounded derivatives and such that 
0 ~ f (y) ~ 1 and f (y) = 0 if y ~ 0, f (y) = 1 if y 2:: 1. The functions fi satisfy for 
any y E R1 and i = 1, .. .4 

(5.1) 
l!fi)(y)I ~ Cc2ilBr(2e2)(Y), 

l(r - c2 ~ y) ~ f(y) ~ l(r + c2 ~ y) ~ 1. 

These inequalities give rise 

(5.2) E'l>([r, oo ), Xi, A1 ) - E'l>([r, oo ), Xo, Ao) 
~~ax IE{ 'l>(fi, X1, Ai) - 'l>(fi, Xo, Ao)}I 

i=l,2 

+ P(IAN - rl ~ c2). 

Since TT= 1 a.s. then by Ito's formula we have for i = 1, 2 

(5.3) 

where the quantities Ii, I2 , I 3 are defined as in (4.15), (4.13), (4.14) with t = T 
and fi instead of f. Now we can estimate I1 , I2, I 3 in the same way as in Theorem 
4.1 using (5.1) instead of (4.7a) since inequalities (5.1) allows us to get exactly the 
same bounds for derivatives as in ( 4.16), ( 4.18), ( 4.23), ( 4.24), ( 4.25). Therefore 
we arrive to the following bounds 

(5.4) 
II;I :S C(a,6){1T p,c~16(~)-1 - 21• ds +PT+ c2 e-r

2
/

2 }, 

jl3 j ~ C(a, b'){pT + c2e-r
2
12}, 

where j = 1, 2 and 
Pt = E'l>(Br(3c2), Xrt, ArJ, 

fort E [O, T]. Since by Theorem 4.1 we have for any t E [O, T] 

Pt :S C(a,6) )F(xc)1f<a+26>(1- ~(lrl)). 
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then implementing this bound in (5.4) and taking into account ( 4.22) and inequal-
ity (a) in Lemma 3.2 we obtain for j = 1, 2, 3 

(5.5) 

As in ( 4.26) the probability in the right-hand side of (5.2) do not exceed 

Cc:2e-r2/2:::; C(a,8)(xc:)l/(3+26)(1- cI>(lrl)). 

Then the assertion of Theorem 2.1 follows from (5.2), (5.3), (5.5). Theorem 2.1 is 
proved. 
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