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Abstract

We analyze the stability and sensitivity of stochastic optimization problems with
stochastic dominance constraints of first order. We consider general perturbations
of the underlying probability measures in the space of regular measures equipped
with a suitable discrepancy distance. We show that the graph of the feasible set
mapping is closed under rather general assumptions. We obtain conditions for the
continuity of the optimal value and upper-semicontinuity of the optimal solutions, as
well as quantitative stability estimates of Lipschitz type. Furthermore, we analyze the
sensitivity of the optimal value and obtain upper and lower bounds for the directional
derivatives of the optimal value. The estimates are formulated in terms of the dual
utility functions associated with the dominance constraints.

1 Introduction

The notion of stochastic ordering (or stochastic dominance of first order) has been intro-
duced in statistics in [14, 13] and further applied and developed in economics [17, 7, 6].
It is defined as follows. For a random variable X we consider its distribution function,
F(X ; η) = P X ≤ η, η ∈ �. We say that a random variable X dominates in the first order
a random variable Y if

F(X ; η) ≤ F(Y ; η) for all η ∈ �. (1)

We denote this relation X �(1) Y . For a modern perspective on stochastic orders, see
[15, 25].

Let g �
n × �

s → � be continuous with respect to both arguments, and let V be an
s-dimensional random vector, defined on a certain probability space (Ω,F , P). For every
z ∈ �n

Xz(ω) = g(z, V (ω)), ω ∈ Ω

is a random variable. Given a benchmark random variable Y (defined on the same prob-
ability space), an optimization model with first order stochastic dominance constraint is
formulated as follows:

min f (z)

s.t. Xz �(1) Y,

z ∈ Z ,

(2)
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where f �
n → � and Z ⊂ �

n . Using definition (1), we can express the dominance
constraint as a continuum of probabilistic constraints:

P
[
g(z, V ) ≥ η

] ≥ P
[
Y ≥ η

]
, η ∈ �.

In [5] optimality conditions for a relaxation of problem (2) were investigated, in which the
dominance constraint was enforced on an interval a, b rather than on the entire real line:

min f (z)

s.t. P
[
g(z, V ) ≥ η

] ≥ P
[
Y ≥ η

]
, η ∈ a, b,

z ∈ Z .

(3)

The restriction of the range of η to a compact interval is motivated by the need to satisfy
a constraint qualification condition for the problem (see Definition 2.5). Both probability
functions in problem (3) converge to 0, when η → ∞, and to 1, when η → ∞, which
precludes Robinson’s type conditions on the whole real line.

From now on, we shall assume that f is continuous and Z is a nonempty closed convex
set. Our objective is to investigate the stability and sensitivity of the optimal value, the
feasible set and solution set, respectively, of problem (3), when the random variables V
and Y are subject to perturbations.

For the purpose of our analysis it is convenient to formulate the dominance constraint
with the use of ′ ≥′ inequalities, as in (3). When the distributions are continuous, this
formulation is equivalent to the formulation used in [5].

Problems with stochastic dominance constraints are new optimization models involving
risk aversion (see [3, 4, 5]). As problems with a continuum of constraints on probability,
they pose specific analytical and computational challenges. The probabilistic nature of
the problem prevents the direct application of the theory of semi-infinite optimization. On
the other hand, the specific structure of dominance constraints is significantly different
from the structure of finitely many probabilistic constraints. Our stability analysis follows
similar patterns as in [22], [23], [8], where the focus was on probabilistic constraints.
However, a straightforward application of those results (a recent overview of which can be
found in [21]) is not possible due to the specific structure of problem (3). First, in (3) we
deal with two separate probability terms due to the consideration of a benchmark variable.
Second, and more importantly, problem (3) has a continuum of constraints which requires
a more sophisticated analysis than the case of a finite family of constraints.

In section 2, we establish the closedness of the feasible set mapping, and we obtain stability
results for the optimal value, for the feasible set, and for the solution set. In section 3, we
analyze the sensitivity of the optimal value function and we obtain bounds for its directional
derivatives.

2 Stability

It is obvious from the formulation of the dominance constraint that only the distribution
laws of V and Y matter there. Therefore, we introduce the measures μ0 on �s and ν0 on
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� induced by V and Y . For all Borel sets A ⊂ �
s and B ⊂ �:

μ0(A) = PV ∈ A,

ν0(B) = PY ∈ B.

We denote the set of probability measures on �m by P(�m).

Furthermore, we introduce the multifunction H �
n ×� ⇒ �

s defined by

H(z, η) = {v ∈ �s g(z, v) ≥ η}.
We consider the following parametric optimization problem:

min f (z)

s.t. μ(H(z, η)) − ν(η, ∞)) ≥ 0 ∀η ∈ a, b,

z ∈ Z ,

(4)

with parameters μ ∈ P(�s) and ν ∈ P(�). The original problem (3) is obtained when
(μ, ν) = (μ0, ν0). Our aim is to study the stability of solutions and of the optimal value
to (4) under small perturbations of the underlying distributions μ0 and ν0.

For this purpose we equip the space P(�) with the Kolmogorov distance function:

α1(ν1, ν2) = sup
η∈�

|ν1(η, ∞)) − ν2(η, ∞))| .

To introduce a distance function on P(�s), which is appropriate for our problem, we
define the family of sets:

B = {H(z, η) z ∈ Z , η ∈ [a, b]} ∪ {v +�
s− v ∈ �s}.

The distance function on P(�s) is defined as the discrepancy

αB(μ1, μ2) = sup
B∈B

|μ1(B) − μ2(B)| .

On the product space P(�s) × P(�) we introduce the natural distance:

α((μ1, ν1), (μ2, ν2)) = max{αB(μ1, μ2), α1(ν1, ν2)}. (5)

Note that α is a metric, because the measures are compared, in particular, on all the cells
of form z +�

s− and (−∞, η), respectively.

We consider the constraint set mapping Φ P(�s)×P(�) ⇒ �
n , which assigns to every

parameter (μ, ν) the feasible set of problem (4), i.e.,

Φ(μ, ν) = {
z ∈ Z μ(H(z, η)) − ν(η, ∞)) ≥ 0 ∀η ∈ [a, b]

}
.

Given any open subset U ⊆ �
n , we define the U -localized optimal value function, ϕU

P(�s) × P(�) → �, of problem (4) as follows:

ϕU (μ, ν) = inf
{

f (z) z ∈ Φ(μ, ν) ∩ cl U
}
.
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The U -localized solution set mapping ΨU P(�s)×P(�) ⇒ �
n of problem (4) is defined

by

ΨU (μ, ν) = {
z ∈ Φ(μ, ν) ∩ cl U f (z) = ϕU (μ, ν)

}
.

When U = �
n we simply write ϕ(μ, ν) and Ψ (μ, ν).

The reason to consider localized mappings is that we allow general perturbations of the
probability distributions. Then, without additional compactness conditions, no reasonable
constraint qualification formulated at the solution points of the original problem (3) could
guarantee stability of the global solution set mapping Ψ = Ψ�n .

We recall a general stability result from [10] (Prop. 1 and Thm. 1) in a version adapted to
our setting. In the theorem below the symbol B(z, r) denotes the ball about z of radius r .

Theorem 2.1 Let the following assumptions be satisfied in (4):

1. The original solution set Ψ (μ0, ν0) is nonempty and bounded.

2. The graph of the constraint set mapping Φ is closed.

3. At every solution z0 ∈ Ψ (μ0, ν0) of the original problem, there exist ε > 0 and
L > 0 such that for all (μ, ν) ∈ B((μ0, ν0); ε) the constraint set mapping satisfies
the following two Lipschitz-like estimates:

d(z, Φ(μ0, ν0)) ≤ Lα((μ, ν), (μ0, ν0)), ∀z ∈ Φ(μ, ν) ∩ B(z0; ε), (6)

d(z, Φ(μ, ν)) ≤ Lα((μ, ν), (μ0, ν0)), ∀z ∈ Φ(μ0, ν0) ∩ B(z0; ε). (7)

4. f is locally Lipschitz.

Then, for any bounded and open set Q containing the original solution set, the following
stability properties hold true:

• ∃δ′ > 0 ΨQ(μ, ν) �= ∅ ∀(μ, ν) ∈ B((μ0, ν0); δ′).

• ΨQ is upper semicontinuous at (μ0, ν0) in the sense of Berge, i.e., for all open
V ⊇ Ψ (μ0, ν0) = ΨQ(μ0, ν0) there exists some δV > 0 such that

ΨQ(μ, ν) ⊆ V ∀(μ, ν) ∈ B((μ0, ν0); δV ).

• ϕQ is continuous at (μ0, ν0) and satisfies the following Lipschitz-like estimate for
some constants δ∗, L∗ > 0:∣∣ϕQ(μ, ν) − ϕQ(μ0, ν0)

∣∣ ≤ L∗α((μ, ν), (μ0, ν0)) ∀(μ, ν) ∈ B((μ0, ν0); δ∗).
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We note that the first two assertions of the Theorem already follow from [19] (Th. 4.3). In
the following we want to provide verifiable conditions for the assumptions of Theorem 2.1.
As far as assumption 1. is concerned, it is of purely technical nature and may be difficult
to verify in the general setting. If, however, the abstract part Z of the constraint set in
(4) happens to be compact as it is the case in many applied problems, then, of course, the
boundedness assumption 1. in Theorem 2.1 is trivially satisfied. In this situation, one can
even drop the localizations ϕQ and ΨQ in the statement of Theorem 2.1 and formulate the
corresponding conclusions for the global optimal value function ϕ and the global solution
set mapping Ψ . Indeed, as one may choose Q in Theorem 2.1 by compactness of Z such
that Q ⊇ Z ⊇ Ψ (μ0, ν0), it follows that

ΨQ(μ, ν) = Ψ (μ, ν) (⊂ Z ⊂ Q) and ϕQ(μ, ν) = ϕ(μ, ν) ∀(μ, ν).

Passing to assumption 2. in Theorem 2.1, this is generally satisfied under the data assump-
tions made for problem (3). To show this, we first adapt a result of [22].

Lemma 2.2 Assume that a multifunction S �
n ⇒ �

s has a closed graph. Let x̄ ∈ �n be
such that S(x̄) �= ∅. Then for every nonnegative regular measure μ on �s and for every
ε > 0 there exists δ > 0 such that

μ
(
S(x)

) ≤ μ
(
S(x̄)

) + ε, whenever ‖x − x̄‖ ≤ δ. (8)

Proof. By the closedness of the graph,

S(x̄) =
⋂
δ>0

cl
( ⋃

‖x−x̄‖≤δ

S(x)
)
.

Therefore, for every regular measure μ,

μ
(
S(x̄)

) = inf
δ>0

μ

(
cl

( ⋃
‖x−x̄‖≤δ

S(x)
))

.

Consequently, for every ε > 0 there exists δ > 0 such that

μ
(
S(x̄)

) + ε ≥ μ

(
cl

( ⋃
‖x−x̄‖≤δ

S(x)
))

.

This implies the result.

Theorem 2.3 The graph of the feasible set mapping Φ is closed.

Proof. Consider a sequence (μn, νn, zn) of the elements of the graph, which is convergent
to some (μ̄, ν̄, z̄) in the space P(�s) × P(�) ×�

n . Since zn ∈ Φ(μn, νn), then zn ∈ Z
and

μn(H(zn, η)) − νn(η, ∞)) ≥ 0 ∀η ∈ a, b. (9)
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As Z is closed, z̄ ∈ Z . By the definition of α1(·, ·), it follows that

νn(η, ∞)) → ν̄(η, ∞)) for all η ∈ a, b. (10)

Let us consider the first term in (9). For a fixed η ∈ a, b we have the inequality

μn(H(zn, η)) − μ̄(H(z̄, η))

= [
μn(H(zn, η)) − μ̄(H(zn, η))

] + [
μ̄(H(zn, η)) − μ̄(H(z̄, η))

]
≤ αB(μn, μ̄) + [

μ̄(H(zn, η)) − μ̄(H(z̄, η))
]
. (11)

By assumption, αB(μn, μ̄) → 0, and we can focus on the term in brackets. By the
continuity of g, the multifunction H(·, η) has a closed graph. We now apply Lemma 2.2
to conclude that for every ε > 0 there exists δ > 0 such that

μ̄
(
H(z, η)

) ≤ μ̄
(
H(z̄, η)

) + ε, whenever ‖z − z̄‖ ≤ δ.

For all sufficiently large n one has ‖zn − z̄‖ ≤ δ and therefore

μ̄
(
H(zn, η)

) ≤ μ̄
(
H(z̄, η)

) + ε.

Passing to the limit with n → ∞ and noting that ε > 0 was arbitrary, we obtain

lim sup
n→∞

μ̄
(
H(zn, η)

) ≤ μ̄
(
H(z̄, η)

)
. (12)

Combining relations (11) and (12) we conclude that

lim sup
n→∞

μn(H(zn, η)) ≤ μ̄(H(z̄, η)).

Using this in (9), with a view to (10), we obtain

μ̄(H(z̄, η)) − ν̄(η, ∞)) ≥ lim sup
n→∞

μn(H(zn, η)) − lim
n→∞ νn(η, ∞))

= lim sup
n→∞

[
μn(H(zn, η)) − νn(η, ∞))

] ≥ 0.

Since η was arbitrary, we obtain the relation

μ̄(H(z̄, η)) − ν̄(η, ∞)) ≥ 0 for all η ∈ a, b.

This amounts to z̄ ∈ Φ(μ̄, ν̄), as desired.

Remark 2.4 Let us observe that we did not use the compactness of the set a, b in the
proof, and therefore Theorem 2.3 holds true for the dominance relation enforced on the
whole real line.

The verification of assumption 3. in Theorem 2.1 is less direct and will be based on
an appropriate constraint qualification for problem (4) at the original parameter (μ0, ν0).
To formulate this constraint qualification, we assume the following differential uniform
dominance condition introduced in [5].
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Definition 2.5 Problem (4) for μ = μ0 and ν = ν0 satisfies the differential uniform
dominance condition at the point z0 ∈ Z if

(i) μ0(H(z, η)) is continuous with respect to η in a, b, differentiable with respect to z
in a neighborhood of z0, for all η ∈ a, b, and its derivative is jointly continuous with
respect to both arguments;

(ii) ν0(·, ∞)) is continuous;
(iii) there exists z1 ∈ Z such that

min
a≤η≤b

{
μ0

(
H(z0, η)

) + ∇zμ0
(
H(z0, η)

)
(z1 − z0) − ν0

(
η, ∞)

)}
> 0.

The differentiability assumptions on μ0(H(·, η)) can be guaranteed by assuming continu-
ous differentiability of the function g with respect to both arguments, the existence of the
probability density of the random vector V , and by mild regularity conditions (see [9]).
Then

∇zμ0
(
H(z, η)

) =
∫

∂ H(z,η)

ϕ(v)

‖∇vg(z, v)‖∇zg(z, v) λ(dv),

where ∂ H(z, η) is the surface of the set H(z, η) and λ is the surface Lebesgue measure.
The regularity conditions mentioned require that the gradient ∇v g(z, v) is nonzero and
that the integrand above is uniformly bounded (in a neighborhood of z) by an integrable
function.

For example, if g(z, V ) = 〈z, V 〉 and V has a nondegenerate multivariate normal distri-
bution N (v̄, Σ), then

μ0(H(z, η)) = 1 − �
(η − 〈z, v̄〉√〈z, Σz〉

)
,

where �(·) is the distribution function of the standard normal variable. In this case
condition (i) of Definition 2.5 is satisfied at every z �= 0.

The differential uniform dominance condition has substantial consequences. Let C be the
Banach space of continuous functions on a, b. Consider the mapping � �

n → C defined
as

�(z)(η) = μ0(H(z, η)) − ν0(η, ∞)), η ∈ a, b,

where ν0(·, ∞)) ∈ C. Denote by K the nonnegative cone in C.

Lemma 2.6 Assume that μ0(H(z, η)) is continuously differentiable with respect to z in a
neighborhood of z0 ∈ Z and for all η ∈ a, b, μ0(H(z, ·)) is continuous in a, b, and that
�(z0) ∈ K . The differential uniform dominance condition is satisfied at z0 if and only if
the multifunction

z �→
{

�(z) − K if z ∈ Z ,

∅ otherwise,
(13)

is metrically regular at (z0, 0).
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Proof. We observe that the differential uniform dominance condition is equivalent to
Robinson’s constraint qualification condition (see [18])

0 ∈ int
{
�(z0) + ∇z�(z0)(Z − z0) − K

}
. (14)

Indeed, it is easy to see that the uniform dominance condition implies Robinson’s condition.
On the other hand, if Robinson’s condition holds true, then there exists ε > 0 such that
the function identically equal to ε is an element of the set at the right hand side of (14).
Then we can find z1 such that

�(z0)(η) + [∇z�(z0)(η)
]
(z1 − z0) ≥ ε for all η ∈ a, b.

Consequently, the uniform dominance condition is satisfied. On the other hand Robinson’s
Constraint Qualification at z0 is equivalent to the metric regularity of (13) at (z0, 0) (see
[2]).

The next proposition shows that the verification of assumption 3. in Theorem 2.1 can be
reduced to the differential uniform dominance condition.

Proposition 2.7 Let the differential uniform dominance condition be satisfied at some
z0 ∈ Φ(μ0, ν0). Then, relations (6) and (7) of Theorem 2.1 hold true at z0.

Proof. We introduce the multifunction M C ⇒ �
n as the following parameter dependent

constraint set mapping:

M(w) = {
z ∈ Z μ0(H(z, η)) − w(η) ≥ 0 for all η ∈ a, b

}
.

(the relation between M and Φ is given by Φ(μ0, ν) = M
(
ν(·, ∞))

)
for all continuous

distributions ν ∈ P(�)). Define w0(·) = ν0(·, ∞)). By assumption, w0 ∈ C.

By Lemma 2.6, the differential uniform dominance condition is equivalent to metric reg-
ularity of (13) at (z0, 0), which, upon passing to the inverse multifunction, is equivalent
to the pseudo-Lipschitz property of M at (w0, z0) (see, e.g., [12, Lemma 1.12] and [20,
Thm. 9.43]). Accordingly, there exist ε̃ > 0 and L̃ > 0 such that

d(z, M(w2)) ≤ L̃d(w1, w2) ∀z ∈ M(w1) ∩ B(z0; ε̃) ∀w1, w2 ∈ B(w0; ε̃), (15)

where the last ball is taken in the metric of C. First, we verify the following chain of
inclusions for all (μ, ν) ∈ P(�s) × P(�):

M(w0 + 2α((μ, ν), (μ0, ν0)) · �) ⊆ Φ(μ, ν) ⊆ M(w0 − 2α((μ, ν), (μ0, ν0)) · �),
(16)

where � is the function on [a, b] taking the constant value 1. Note that M is applied to
continuous functions as required. Now, if

z ∈ M(w0 + 2αB((μ, ν), (μ0, ν0)) · �),
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then z ∈ Z and, by definition of α,

0 ≤ μ0(H(z, η)) − (w0(η) + 2α((μ, ν), (μ0, ν0)))

= μ0(H(z, η)) − ν0(η, ∞)) − 2α((μ, ν), (μ0, ν0)))

≤ μ(H(z, η)) − ν(η, ∞)) ∀η ∈ [a, b] .

This establishes the first inclusion of (16), and the second one is completely analogous.

In order to check (6), let (μ, ν) ∈ B((μ0, ν0); ε̃/2) and z ∈ Φ(μ, ν) ∩ B(z0; ε̃/2) be
arbitrary. Define w1 ∈ C by w1 = w0 − 2α((μ, ν), (μ0, ν0)) · �. Then, the second
inclusion of (16) entails that z ∈ M(w1). Furthermore,

d(w1, w0) = 2α((μ, ν), (μ0, ν0)) ≤ ε̃.

Consequently, we may apply (15) to w1 and to w2 = w0 ∈ C:

d(z, Φ(μ0, ν0)) = d(z, M(w0)) ≤ L̃d(w1, w0) = 2L̃α((μ, ν), (μ0, ν0)).

Therefore, (6) holds true with L = 2L̃ and ε = ε̃/2. As for (7), take arbitrary (μ, ν) ∈
B((μ0, ν0); ε̃/2) and z ∈ Φ(μ0, ν0) ∩ B(z0; ε̃/2). Define w2 ∈ C by w2 = w0 +
2α((μ, ν), (μ0, ν0)) · �. Then,

d(w2, w0) = 2α((μ, ν), (μ0, ν0)) ≤ ε̃,

and we may apply (15) to w1 = w0 and to w2. Taking further into account the first
inclusion of (16), one arrives at

d(z, Φ(μ, ν)) ≤ d(z, M(w2) ≤ L̃d(w0, w2) = 2L̃α((μ, ν), (μ0, ν0)),

which is (7) with the same values L = 2L̃ and ε = ε̃/2 as for (6).

3 Sensitivity of the Optimal Value

3.1 Optimality Conditions

In order to analyze the sensitivity of the optimal value function, we need to briefly recall
optimality conditions for problem (3). From now on we assume that f is continuously
differentiable.

We define the set U(a, b) of functions u(·) satisfying the following conditions:

u(·) is nondecreasing and right continuous;
u(t) = 0 for all t ≤ a;
u(t) = u(b), for all t ≥ b.

It is evident that U(a, b) is a convex cone. The slight difference from the definition of
the set U introduced in [5] is due to the fact that we formulate the stochastic dominance
constraint in (3) via the ≥ inequality.
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We introduce the functional L �
n × U(a, b) × P(�s) × P(�) → � associated with

problem (3):

L(z, u; μ, ν) = f (z) −
∫

u(g(z, v)) μ(dv) +
∫

u(y) ν(dy). (17)

As shown in [5], the functional L plays a similar role to that of a Lagrangian of the problem.

Theorem 3.1 Assume that the differential uniform dominance condition is satisfied at a
local minimum ẑ of problem (3). Then there exists a function û ∈ U(a, b) such that

−∇z L(ẑ, û; μ0, ν0) ∈ NZ (ẑ), (18)∫
û(g(ẑ, v)) μ0(dv) =

∫
û(y) ν0(dy). (19)

The proof follows the same line of argument as the proof in [5] and is omitted here. It uses
the correspondence between a nonnegative measure λ on a, b and a function u ∈ U(a, b):

u(η) = λ(a, η), η ∈ a, b. (20)

Remark 3.2 The set Û (ẑ) of functions in U(a, b) satisfying (18)–(19) for the local min-
imum ẑ is convex, bounded and weakly∗ closed in the following sense: if a sequence of
functions uk ∈ Û (ẑ) and u ∈ U(a, b) are such that

lim
k→∞

b∫
a

c(η) duk(η) =
b∫

a

c(η) du(η) for all c ∈ C,

then u ∈ Û (ẑ). This follows from [1, Thm. 3.6] and the application of (20).

If the function g(·, ·) is quasi-concave and μ has an r -concave probability density function,
with r ≥ −1/s, then the feasible set of problem (3) is convex (see [16]). Therefore we
can formulate the following sufficient conditions of optimality, as in [5].

Theorem 3.3 Assume that a point ẑ is feasible for problem (3). Suppose that there exists
a function û ∈ U(a, b) such that conditions (18)–(19) are satisfied. If the function f is
convex, the function g(·, ·) is quasi-concave and V has an r-concave probability density
function, with r ≥ −1/s, then ẑ is an optimal solution of problem (3).

Let us observe that under the assumptions of Theorem 3.3 the functional (17) is not a
quasi-convex function of z, in general.
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3.2 Upper Bound

Consider the measures

μt = μ0 + tγ,

νt = ν0 + tσ,

where γ and σ are regular signed measures on �s and �, respectively, and t > 0. We
shall bound the optimal value ϕ(μt , νt) of the perturbed problem

min f (z)

s.t. μt (H(z, η)) − νt (η, ∞)) ≥ 0 ∀η ∈ a, b,

z ∈ Z .

(21)

Our objective is to develop bounds for the limit of the quotients
[
ϕ(μt , νt)−ϕ(μ0, ν0)

]
/t ,

when t ↓ 0.

Theorem 3.4 Let Ẑ be the set of optimal solutions of problem (3). Assume that:

(i) The differential uniform dominance condition is satisfied at each point ẑ ∈ Ẑ ;
(ii) γ (H(z, η)) is continuous with respect to both arguments at (ẑ, η), for all η ∈ a, b, is

differentiable with respect to z in a neighborhood of each ẑ ∈ Ẑ , for every value of
η ∈ a, b, and its derivative is jointly continuous with respect to both arguments;

(iii) σ(η, ∞)) is a continuous function of η.

Then

lim sup
t↓0

1

t
ϕ(μt , νt) − ϕ(μ0, ν0)

≤ inf
ẑ∈Ẑ

sup
û∈Û(ẑ)

{ ∫
û(g(ẑ, v)) γ (dv) +

∫
û(y) σ (dy)

}
,

(22)

where Û (ẑ) is the set of functions in U(a, b) satisfying (18)–(19) at the minimum ẑ.

Proof. Our result is close in spirit to that of [1, Prop. 4.22], but we work with weaker
assumptions, by exploiting the structure of the problem.

Fix ẑ ∈ Ẑ . We shall construct feasible points of the perturbed problem of form

z̃t = ẑ + th + o(t). (23)

Define the set

A = {
η ∈ a, b μ0(H(ẑ, η)) = ν0(η, ∞))

}
,

and let TZ (ẑ) denote the tangent cone to Z at ẑ.
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We assume that the direction h in (23) is an element of the tangent cone TZ (ẑ) and satisfies
the infinite system of linear inequalities:

〈∇zμ0(H(ẑ, η)), h〉 + γ (H(ẑ, η)) − σ(η, ∞)) ≥ 0, for all η ∈ A. (24)

It follows from the uniform dominance condition that there exists ε > 0 such that

〈∇zμ0(H(ẑ, η)), z1 − ẑ〉 > ε

for all η ∈ A. Therefore inequalities (24) can be satisfied by choosing h = τ(z1 − ẑ) with
a sufficiently large τ .

Let zt = ẑ + th. The uniform dominance condition implies that

μt (H(zt , η)) = μ0(H(zt , η)) + tγ (H(zt , η))

= μ0(H(ẑ, η)) + t〈∇zμ0(H(ẑ, η)), h〉 + tγ (H(zt , η)) + o(t, η),
(25)

where o(t, η)/t → 0 as t → 0, uniformly over η ∈ a, b.

We shall estimate the term γ (H(zt , η)) from below. Choose any η̂ ∈ a, b. By the
continuity of γ (H(z, η)) around the point (ẑ, η̂), for every ε > 0 there exists δ(ε, η̂) > 0
such that

γ (H(z, η)) ≥ γ (H(ẑ, η̂)) − ε (26)

for all (z, η) such that ‖z − ẑ‖ ≤ δ(ε, η̂) and |η − η̂| ≤ δ(ε, η̂). For each ε the intervals
|η − η̂| ≤ δ(ε, η̂), where η̂ runs through a, b, cover a, b. Choosing a finite subcovering
we conclude that there exists δ(ε) > 0 such that (26) holds true for all z satisfying
‖z − ẑ‖ ≤ δ(ε) and for all η ∈ a, b.

Define r(t) = inf
{
ε > 0 δ(ε) ≥ t‖h‖}

. Observe that r(t) → 0 as t ↓ 0. It follows from
(26) that

γ (H(zt , η)) ≥ γ (H(ẑ, η)) − r(t).

Substituting this estimate into (25) we obtain

μt (H(zt , η)) ≥ μ0(H(ẑ, η)) + t〈∇zμ0(H(ẑ, η)), h〉 + tγ (H(ẑ, η)) + o(t, η) − tr(t).

Using condition (24) and the feasibility of ẑ we conclude that

μt (H(zt , η)) − νt(η, ∞)) = [
μ0(H(ẑ, η)) − ν0(η, ∞))

]
+ t

[〈∇zμ0(H(ẑ, η)), h〉 + γ (H(ẑ, η)) − σ(η, ∞))
]

+ o(t, η) − tr(t)

≥ o(t, η) − tr(t), for all η ∈ a, b.

(27)

Consequently, the point zt may violate the constraints of the perturbed problem only by
quantities which are infinitely smaller than t . Define the mapping � �

n × � → C as
follows:

�(z, t)(η) = μt (H(z, η)) − νt (η, ∞)), η ∈ a, b.

12



The system

�(z, t) ∈ K ,

z ∈ Z ,

is stable about (ẑ, 0) (see, e.g., [1, Thm. 2.87]). Therefore, for all sufficiently small t > 0,
we can slightly modify zt to get a point z̃t such that:

�(z̃t , t) ∈ K ,

z̃t ∈ Z ,

‖z̃t − zt‖ ≤ C
[
dist(�(zt , t), K ) + dist(zt , Z)

]
,

where C is some constant. Using (27) and the fact that h is tangent to Z , we obtain that

lim
t↓0

1

t

(
z̃t − ẑ

) = h.

As z̃t is feasible,

ϕ(μt , νt ) ≤ f (z̃t).

Subtracting ϕ(μ0, ν0), dividing by t and passing to the limit we obtain

lim sup
t↓0

1

t
ϕ(μt , νt) − ϕ(μ0, ν0) ≤ lim sup

t↓0

1

t
f (z̃t) − f (ẑ) = 〈∇ f (ẑ), h〉. (28)

It follows that the limit on the left hand side of (28) is bounded from above by the optimal
value of the problem

min 〈∇ f (ẑ), h〉
s.t. 〈∇zμ0(H(ẑ, η)), h〉 ≥ −γ (H(ẑ, η)) + σ(η, ∞)) for all η ∈ A,

h ∈ TZ (ẑ).

(29)

The optimal value of the linear-conic problem (29) is equal to optimal value of the following
dual problem (see, e.g., [1, Thm. 5.106]):

max
λ

b∫
a

[ − γ (H(ẑ, η)) + σ(η, ∞))
]
λ(dη)

s.t. − ∇ f (ẑ) −
b∫

a

∇zμ0(H(ẑ, η)) λ(dη) ∈ NZ (ẑ),

λ ≥ 0.

(30)

Here λ is a regular measure on A. Moreover, it is sufficient to consider atomic measures
λ with at most n + 1 atoms.
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Extending λ to a, b, associating with it a function u(·) = λ(a, ·) and changing the order
of integration, we obtain the identity

b∫
a

γ (H(ẑ, η)) λ(dη) =
b∫

a

∫
v∈H(ẑ,η)

γ (dv) λ(dη) =
b∫

a

∫
{vg(ẑ,v)≥η}

γ (dv) λ(dη)

=
∫ g(ẑ,v)∫

a

λ(dη) γ (dv) =
∫

u(g(ẑ, v)) γ (dv).

(31)

In a similar way we transform other integrals in (30) to obtain the following form of the
dual problem:

max
u(·) −

∫
u(g(ẑ, v)) γ (dv) +

∫
u(y) σ (dy)

s.t. − ∇ f (ẑ) − ∇z

∫
u(g(ẑ, v)) μ0(dv) ∈ NZ (ẑ),

u(·) ∈ U(a, b),

u(·) satisfies (19).

(32)

We observe that the feasible set of this problem is the set Û given by (18)–(19). Now we
continue the estimate (28) as follows:

lim sup
t↓0

1

t
ϕ(μt , νt ) − ϕ(μ0, ν0) ≤ sup

û∈Û(ẑ)

{
−

∫
û(g(ẑ, v)) γ (dv) +

∫
û(y) σ (dy)

}
.

As ẑ ∈ Ẑ was arbitrary we conclude that

lim sup
t↓0

1

t
ϕ(μt , νt ) − ϕ(μ0, ν0) ≤ inf

ẑ∈Ẑ
sup

û∈Û(ẑ)

{
−

∫
û(g(ẑ, v)) γ (dv) +

∫
û(y) σ (dy)

}
,

which was set out to prove.

As discussed in the proof, it is sufficient to consider the supremum over piecewise constant
functions û ∈ Û having at most n + 1 jumps.

Corollary 3.5 Suppose that μ1 = μ0 + γ is a nonnegative measure and let ν1 = ν0 + σ .
Then

lim sup
t↓0

1

t
ϕ(μt , νt) − ϕ(μ0, ν0) ≤ inf

ẑ∈Ẑ
sup

û∈Û (ẑ)

∫
û(y) ν1(dy).

Proof. We can rewrite the estimate (22) as follows

lim sup
t↓0

1

t
ϕ(μt , νt) − ϕ(μ0, ν0) ≤ inf

ẑ∈Ẑ
sup

û∈Û(ẑ)

{ ∫
û(g(ẑ, v)) μ0(dv)

−
∫

û(g(ẑ, v)) μ1(dv) +
∫

û(y) ν1(dy) −
∫

û(y) ν0(dy)
}
.

As the function û(·) is nonnegative, we can skip the second term on the right hand side.
Using the complementarity condition (19) we get the required inequality.
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3.3 Lower Bound

Let us start from the following observation.

Lemma 3.6 Consider any measures μ ∈ P(�s) and ν ∈ P(�) and a point z ∈ Z such
that

μ(H(z, η)) ≥ ν(η, ∞)), η ∈ a, b. (33)

Then for every u ∈ U(a, b) we have∫
u(g(z, v)) μ(dv) ≥

∫
u(y) ν(dy).

Proof. For a function u ∈ U(a, b) we define a nonnegative measure λ on a, b by the
relation u(·) = λ(a, ·). Integrating the inequalities (33), changing the order of integration
as in (31), we obtain the postulated inequality.

Suppose that u ∈ U(a, b). Employing Lemma 3.6 we obtain

ϕ(μ, ν) ≥ inf
z∈Z

{
f (z) −

∫
u(g(z, v)) μ(dv)

}
+

∫
u(y) ν(dy).

We get the general dual lower bound

ϕ(μ, ν) ≥ sup
u∈U(a,b)

inf
z∈Z

{
f (z) −

∫
u(g(z, v)) μ(dv) +

∫
u(y) ν(dy)

}
.

In order to obtain tighter bounds we consider the perturbations in directions

μt = μ0 + tγ,

νt = ν0 + tσ.

We shall develop lower bounds for the differential quotients
[
ϕ(μt , νt) − ϕ(μ0, ν0)

]
/t ,

when t ↓ 0. Our result is similar to the standard approach employed in [1, Thm. 4.24].
However, it is unrealistic to assume that the Lagrangian is convex (even under the assump-
tions of Theorem 3.3), and that is why we need Lipschitz stability of optimal solutions.

Theorem 3.7 Assume that ẑ is the unique optimal solution of problem (3) and that the
differential uniform dominance condition is satisfied at ẑ. Furthermore, assume that the
perturbed problems (21) have solutions zt such that ‖zt − ẑ‖ ≤ Lt with some constant L.
Let Û be the set of functions û(·) satisfying the optimality conditions (18)–(19). Then

lim inf
t→0

1

t

[
ϕ(μt , νt ) − ϕ(μ0, ν0)

]
≥ sup

û∈Û

{
−

∫
û
(
g(ẑ, v)

)
γ (dv) +

∫
û(y) σ (dy)

}
.

(34)
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Proof. Consider problem (4) and its Lagrangian

�(z, λ; μ, ν) = f (z) −
b∫

a

[
μ(H(z, η)) − ν(η, ∞))

]
λ(dη),

where λ is a nonnegative regular measure on a, b. Fix μ = μ0 and ν = ν0. As in [5],
owing to the differential uniform dominance condition at ẑ, there exists a measure λ̂ ≥ 0
such that

〈∇z�(ẑ, λ̂; μ0, ν0), z − ẑ〉 ≥ 0, for all z ∈ Z ,

and
b∫

a

[
μ0(H(ẑ, η)) − ν0(η, ∞))

]
λ̂(dη) = 0.

Using the nonnegativity of λ̂ and the complementarity condition we can write the chain of
inequalities

ϕ(μt , νt ) − ϕ(μ0, ν0) ≥ f (zt) −
b∫

a

[
μt (H(zt , η)) − νt (η, ∞))

]
λ̂(dη) − f (ẑ)

≥ f (zt ) −
b∫

a

[
μt (H(zt , η)) − νt (η, ∞))

]
λ̂(dη)

− f (ẑ) +
b∫

a

[
μ0(H(ẑ, η)) − ν0(η, ∞))

]
λ̂(dη)

= �(zt , λ̂; μ0, ν0) − �(ẑ, λ̂; μ0, ν0) − t

b∫
a

[
γ (H(zt , η)) − σ(η, ∞))

]
λ̂(dη)

= 〈∇z�(ẑ, λ̂; μ0, ν0), zt − ẑ〉 + o(zt , ẑ) − t

b∫
a

[
γ (H(zt , η)) − σ(η, ∞))

]
λ̂(dη),

where o(zt , ẑ)/‖zt − ẑ‖ → 0, as t → 0. By the optimality condition and by the assumption
that ‖zt − ẑ‖ ≤ Lt we conclude that

lim inf
t→0

1

t

[
ϕ(μt , νt) − ϕ(μ0, ν0)

] ≥ −
b∫

a

[
γ (H(ẑ, η)) − σ(η, ∞))

]
λ̂(dη). (35)

Now we use the correspondence between a nonnegative measure λ̂ on a, b and a function
û ∈ U(a, b) defined as follows:

û(η) = λ̂(a, η), η ∈ a, b.
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Changing the order of integration, as in (31), we obtain:

b∫
a

γ (H(ẑ, η)) λ̂(dη) =
∫

û(g(ẑ, v)) γ (dv),

b∫
a

σ(η, ∞)) λ̂(dη) =
∫

û(y)) σ (y).

Using the last two equations we can rewrite (35) as follows:

lim inf
t→0

1

t

[
ϕ(μt , νt) − ϕ(μ0, ν0)

] ≥ −
∫

û(g(ẑ, v)) γ (dv) +
∫

û(y)) σ (y)

As λ̂ was an arbitrary optimal multiplier, we can take the supremum of the right hand side
over û ∈ Û to obtain (34).

Finally, we obtain the directional differentiability result.

Corollary 3.8 Under the assumptions of Theorems 3.4 and 3.7 the optimal value function
is directionally differentiable in the direction (γ, σ ) with the derivative

ϕ′((μ0, ν0); (γ, σ )) = sup
û∈Û

{
−

∫
û
(
g(ẑ, v)

)
γ (dv) +

∫
û(y) σ (dy)

}
.

The assumptions simplify considerably, if we allow perturbations of the benchmark dis-
tribution only.
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