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ELLIPTIC MODEL PROBLEMS

Abstract

We present model problems in three dimensions, where the opera-
tor —V - 1V maps the Sobolev space er’p(Q) isomorphically onto
W{l’p(Q) for a p > 3. The emphasis is here on the case where
different boundary conditions meet material heterogeneities.

Résumé

Cet article présente des situations modéles en trois dimensions, dans
lesquelles 'opérateur —V - 4V est un isomorphisme de Wé’p (Q) sur
W "P(Q) pour un p > 3. On s’intéresse notamment au cas ot des
conditions au bord mixtes Dirichlet/Neumann sont combinées avec
des sauts du coefficient p.
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2 R. HALLER-DINTELMANN, H.-CHR. KAISER, J. REHBERG

1 Introduction

Many elliptic problems originating from science, engineering, and technology exhibit
mixed boundary conditions and non-smooth material parameters, see [1] and the
references cited there. For instance, in the simulation of operation and fabrication
of semiconductor devices one is regularly confronted with heterogeneous materials in
the volume and on the boundary (contacts), see [43], while dealing with elliptic and
parabolic equations as mathematical models, see [16]. However, not much is known
concerning maximal regularity for elliptic operators which include mixed boundary
conditions. Moreover, most of this is restricted to Hilbert space scales, see e.g. [41],
[40], [24], [11], [7]. Unfortunately, the Hilbert space H>/? is a principle threshold
for mixed elliptic, second order problems at least in the case when the Dirichlet
and Neumann boundary part meet on smooth parts of the boundary, see [45], see
also [41]. Thus, within this scale one cannot expect (simultaneously) an embedding
of the domains of these operators in L> (or even in C*) in case of three or more
space dimensions. But exactly this is desirable in view of nonlinear, in particular
quasilinear problems, see [39], [25], [37].

Concerning optimal regularity in non-Hilbert spaces there are the results of [44],
[45] [5], [21], [10], [19], [20]; for the pure Dirichlet or pure Neumann case see [29]
and [52], respectively. Groger proved in [21]| that under only L* (and ellipticity)
assumptions on the coefficient function u, the Lipschitz property of the domain (2
and very weak assumptions on the Dirichlet boundary part 002 \ T the operator

—V - uV o WEP(Q) — W P () (1.1)
is a topological isomorphism for a certain p > 2 (W3 (Q) denoting the subspace of
W1P(Q) including a trace zero condition on the Dirichlet boundary part 9\ T', and
Wi P(Q) the dual of W* (€2)). This result has found numerous applications within
the treatment of applied problems. Nevertheless, it is well known that under these
general assumptions one can only expect that p exceeds 2 arbitrarily little. This
is the reason why the applications of [21] remained restricted to two dimensional
problems. Because the demand for three dimensional modelling and simulation
steadily increases, the question arises under which assumptions the isomorphism
property of (1.1) can be obtained for a p > 3 and, in particular, whether this is
true with mixed boundary conditions. Dauge proved in [10] that if the domain is a
convex polyhedron and the border between Dirichlet and Neumann boundary part
consists of (finitely many) line segments, then the Laplacian provides a topological
isomorphism between WI}’p and W L% for some p > 3. In this paper we generalise
this to prototypical situations where mixed boundary conditions and heterogeneous,
anisotropic coefficient functions occur simultaneously. Thus, this calculus allows for
jumps in the normal component of the gradient of solutions across internal interfaces.
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ELLIPTIC MODEL PROBLEMS 3

This means, e.g. in electrostatics, that the jump in the normal component of the
electric field vy - eV — v_ - eV across a prescribed interface equals the surface
charge density on the interface, and this surface charge density is represented by a
distribution on the underlying domain 2.

In view of an adequate localisation principle, see [21], the geometric constellations
we investigate may be viewed as local constituents of rather complex global settings.

Since the knowledge of the singularity of solutions is crucial for the efficiency of
numerical methods, there exist of course several numerical approaches to determine
singular exponents of concrete anisotropic problems, see [34], [9], [48] and the ref-
erences therein. For a more general numerical approach to heterogeneous elliptic
problems see for instance [2], [26], [8], [50] and the references cited there.

In detail, our results are as follows:

Theorem 1.1. Let A C R? be an (open) triangle, let further P be the center of one
of its sides and Y the (open) leg between P and one of its neighbouring vertices.
Define 11 = Ax] — 1,1[ and the boundary part ¥ as T x| — 1,1[. Suppose = to be a
plane within R® that intersects { P} x| — 1,1[ in exactly one point. Assume that the
elliptic coefficient function u takes its values in the set of real, symmetric, positive
definite 3 x 3 matrices and is constant on both components of Il \ Z. Then there is
a p > 3 such that

—V - uV : WAP(IT) — Wy MP(I0) (1.2)

s a topological isomorphism.

Theorem 1.2. Let A C R? be an (open) triangle, Y be one of its (open) sides or
OA\ Y one of its (closed) sides. Define II = Ax] — 1,1[ and the boundary part 3.
as Tx] —1,1[. Let further = be a plane the intersection of which with the boundary
of X consists of exactly two points. Assume that the elliptic coefficient function pu
takes its values in the set of real, symmetric, positive definite 3 x 3 matrices and is
constant on both components of I1 \ Z. Then there is a p > 3 such that (1.2) is a
topological isomorphism.

Corollary 1.3. Let A, T and 11 be as in Theorem 1.2. Let Y. be T x|—1, 1] combined
with the ground plate or/and the upper plate. Let further = be a plane as in Theorem
1.2 which does neither touch the upper/lower plate and let p be as in Theorem 1.2.
Then the conclusion of Theorem 1.2 also holds.

Remark 1.4. The supposition that the plane = has only a finite intersection with
edges where the Dirichlet boundary part meets with the complementing boundary
part is crucial, see Remark 8.5 below.

Remark 1.5. Let us further mention that II U X in Theorem 1.1 can be taken
as Groger’s third model set, see [21], and thus Theorem 1.1 can be viewed as a
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4 R. HALLER-DINTELMANN, H.-CHR. KAISER, J. REHBERG

regularity assertion for Groger’s third model constellation if the coefficient function
has a discontinuity along a plane.

Operators of type (1.1) — which may be seen as the principal part of the (Dirichlet)-
homogenization of an elliptic operator — are of fundamental significance in many
application areas. This is the case not only in mechanics (see [34, Ch. IV/V]), ther-
modynamics (see [47]), and electrodynamics (see [46]) of heterogeneous media, but
also in mining, multiphase flow, mathematical biology (see [15], [6]), and semicon-
ductor device simulation (see [43], [16], [18]), in particular quantum electronics (see
[51],[4], [32],[49], [50], [35])-

The nonhomogeneous coeflicient function p represents varying material properties
as the context requires. It may be thermal conductivity in a heat equation (see [47,
§21]), or dielectric permittivity in a Poisson equation, or diffusivity in a transport
equation (see for instance [43, §2.2| for carrier continuity equations), or effective
electron mass in a Schrédinger equation (see [32]).

Let us emphasise that the matrices which constitute the coefficient function p may
be not diagonal and, in particular, not multiples of the identity, see [1] and [34,
Ch. IV/V]. This is motivated by the applications, for instance in heat conduction,
see [47, §21.B|. On the other hand anisotropic coefficients are absolutely necessary
in view of (local) deformation and transformation of the domain in the localisation
procedure, see [21]. It should be noted that in case of an essentially anisotropic
coefficient matrix p the generic properties of the elliptic operator differ dramatically
from the case of a scalar coefficient, see [12, Remark 5.1], [13, §5], and [42, Ch. 5|.

The problems under consideration in Theorems 1.1 and 1.2 may be reduced via some
subtle transformation and reflection techniques to corresponding Dirichlet boundary
value problems, which were treated in [37]. The crucial point is that a deep idea of
Maz’ya [37] permits to restrict the investigation to the edge singularities as far as
is concerned the integrability of the gradient of the solution up to an index p > 3.
This heavily rests on the a priori known Hélder continuity of the solution, see [33,
Ch. II1.14]. It would be a hard graft to determine the singularities at the vertices,
when material heterogeneities and different boundary conditions meet, see [10]. But,
here fortunately, one can confine oneself to investigating the edge singularities.

2 Notations

Throughout this paper, Q C R? always denotes a bounded Lipschitz domain (see
[23] for definition) and T" C 9 is an open part of its boundary. W'?(2) denotes
the (complex) Sobolev space on €2 consisting of those LP(2) functions whose first
order distributional derivatives also belong to LP(€2) (see [23] or [36]). (Note that
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ELLIPTIC MODEL PROBLEMS 5

Q) enjoys the extension property for W1P(Q) in view of being a bounded Lipschitz
domain, see [17, Thm. 3.10] or [36, Ch. 1.1.16]. Thus, W'?(Q) is identical with

def

the completion of the set {v|q: v € C(R*)} with respect to the norm ||v|ly1., =
1/
(fQ(]Vv] + [v])* dx) p). We use the symbol W, (Q) for the closure of

{U|Q cv € C®(R?),supp v N (OQ\T) = @}

in W'(Q). If T = () we write as usual W,"(Q) instead of W@l’p(ﬂ). Wi (Q)
denotes the dual to W:P(Q) and W% (Q) denotes the dual to W,”(Q), when
%—l—}% = 1 holds. If Q is understood, then we sometimes abbreviate Wﬁl’p, Wol’p and
W12 respectively. (-,-)x always indicates the duality between a Banach space and
its dual; in case of X = C? we mostly write (-,-). If w is a Lebesgue measurable,
essentially bounded function on () taking its values in the set of real, symmetric
d x d matrices, then we define —V - wV : W*(Q) — W *(Q) by

(—V - wVo, w>W;1,2 = /(qu, Vw)ds; v,we Wr2Q). (2.1)
Q

The maximal restriction of —V - wV to any of the spaces W '7(Q) (p > 2) we will
denote by the same symbol. Finally, we define for any two complex numbers o, A

o* = exp(Alog |o| +iNargo), argo €] — 7,7 ; (2.2)
and for ¢, ¥ €] — 7, 7] with « < ¢ we define the sector

K’ = {(rcosf,rsing) :r > 0,60 €, d[}.

L

3 Preliminaries

In this section we first recall the optimal regularity result from [37] for heterogeneous
Dirichlet problems on polyhedral domains and explain how to identify the occurring
edge singularities.

Definition 3.1. Let numbers 6y < 6, < ... < 6, < 0y + 27 be given and,
additionally, real, positive definite 2 x 2-matrices p',...,p". We introduce on
100, 0.[\ {61, ..,0,_1} coefficient functions by, by, by the restrictions of which to the
interval |6;,0;,1] are given by

bo(9) = p), cos® O + 2pl, sin B cos 6 + pl, sin® 6,

bi(0) = (phy — p),) sin @ cos @ + pl,(cos® 6 — sin®6) , (3.1)
by(9) = p), sin? 6 — 2p), sin O cos O + pl, cos? 6.
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6 R. HALLER-DINTELMANN, H.-CHR. KAISER, J. REHBERG

If 6, # 6y + 27, then we define the space H as W, *|6y, 0,[, else as the periodic
Soblev space W12(]6y, 6,[) N {v : ¥(6y) = 1¥(6,)} (which clearly may be identified
with the Sobolev space W'?%(S!) on the unit circle S'). For every A € C we define
the quadratic form t, on H by

On

N / by ! T+ Aoyt T — Ayt T — N2bo df (3.2)

)

and A, as the operator which is induced by t, on L?]0y,0,|.

Remark 3.2. It is easy to check that b, > ’Wif(pi?y. From this it is straight-

P22
forward to see that each form t, is sectorial, what is also true for Ay, see [30],

Ch. VI

Definition 3.3. Let Q C R® be a polyhedron which, additionally, is a Lipschitz
domain and {2}, a (finite, disjoint) polyhedral partition of Q2. Let x be a matrix
function on €2 which is constant on each {2, and takes real, symmetric, positive
definite 3 x 3 matrices as values. Take any edge F of any of the (;’s and consider
an arbitrary inner point P of this edge. Choose a new orthogonal coordinate system
(x,y, z) with origin at the point P such that the direction of E coincides with the
z-axis. We denote by O the corresponding orthogonal transformation matrix and
by g p the piecewise constant matrix function which coincides in a neighbourhood

of P with Opu(Oz'(z + P))Oy" and which satisfies
:uE,P(t‘r7ty7 Z) = :uE,P(xu Y, 0)7 for all (l‘,y, Z) S R37 t>0. (33)
By ug(-,-) we denote the upper left 2 x 2 block of pg p(-,-,0).

Remark 3.4. There exist angles 6y < 6; < ... < 6, < 0y + 27, such that ug is
constant on each of the sectors ng“ and takes real, symmetric, positive definite
matrices as values. Note that 6, = 6y + 27 if ug corresponds to an interior edge
E, otherwise yp is given on an infinite sector Kgg which coincides near P with the
intersection of (the transformed) Q2 with the z-y-plane.

Definition 3.5. We call an edge E of (2 a geometric edge if £ C 0f) and all inner
points of £ belong to the closure of exactly one sub-polyhedron €. Further, we say
that F is a bimaterial outer edge if £ C 0f) and the function pup takes exactly two
different values.

We proceed by quoting the central linear regularity result [37, Thm. 2.3], by means
of which our regularity results will be deduced:
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Proposition 3.6. Let 2, {2}, and p as in Definition 3.3. For any edge E let jip
be the 2 x 2 matriz valued function on Kgg in the sense of Definition 3.3. If for
every edge E the thus induced operators Ay on L?|0y,0,[ have a trivial kernel for all
A with R €]0, 5 + €[ (e > 0 arbitrarily small), then there is a p > 3 such that

—V -5V WP(Q) — WhP(Q) (3.4)
s a topological isomorphism.

Remark 3.7. Unfortunately, there are some errors in the paper [37]. First, the
assertion of [37, Theorem 2.3] that the exponent p can be taken from the interval
[2,2/(1 — Ay)] is erroneous, since we have overlooked the assumptions of [37, The-
orem 2.4]. The correct formulation of the linear regularity result proved in [37] is
given in Proposition 3.6 above. We also found that the signs in formulas for the co-
efficients of certain generalized Sturm-Liouville equations are not correct, in detail:
in [37, p. 240] we have used the wrong sign in the formula for the Mellin transform
ro,u = —Au, which has to be replaced by 7"8 u = M. Therefore the formulas [37,
(3.33)] for the sesquilinear form a(u,v; \) and [37, (3.32)] for the corresponding dif-
ferential problem differ in sign from the correct formulas (3.2) and (3.5), (3.6). The
correctness of the other considerations given in [37] is not affected by this.

Thus, the question arises how to find the parameters A for which the operator A,
has only a trivial kernel. One proceeds as follows: standard arguments show that
any function u from the kernel of the operator A, obeys the differential equation

(bgul), + )\(blu)’ + )\blu' + A2bou =0 (35)

on each of the intervals |6;, 6;,1[ and, additionally, in every point 6§ € {6;,...,6,,_1}
the transmission conditions

[ulg =0, [bou' + Abjulg =0 (3.6)

have to be satisfied. (As usual, [w]y stands for limg\ g w(¥) — limy g w(¥)). In
order to find the critical parameters \, one employs the elementary solutions of the
differential equation (3.5) on each of the subintervals ]0;,6;.1]

0 — 670\9(&621’9 + 1))\’ 0 — ei)\G(O—éefQiG + 1))\

which were announced in the pioneering paper [9] (see also [37, Ch. 3.6] for further
details). The complex number o = «; is determined by the matrix

m— ( myp M2 ) def ( P11 P§2 )
M1z Mag Pla P2
o i(magg — D%zﬂ) — M2
i(mQQ + Drln/2) + mi9
where D,, denotes the determinant of the matrix m.

as

, (3.7)
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8 R. HALLER-DINTELMANN, H.-CHR. KAISER, J. REHBERG

Remark 3.8. Because may;, is positive, a necessarily satisfies 0 < || < 1. Moreover,

if
( mip 12 ) - ( mip —Mmyo )
~ ~ - )
mia Mag —Mi2 M2
then & = a.

Making on any interval |6;,60;.1[ an ansatz

ui(0) = cje”™(a;e® + 1) +¢j e (aje? 4 1), (3.8)
these functions automatically satisfy (3.5), while the boundary conditions together
with the transmission conditions (3.6) for # = 6; (j € {1,...,n}) lead to a 2n x 2n
homogeneous linear system for the coefficients c; ;, c; —. The usual criterion for the
(nontrivial) solvability of this system gives the characteristic equation of the problem
(3.5, 3.6) and allows (in principle) to determine the critical values A — or at least
to give estimates for the real part of them. In the next chapters we will do this for
all edges resulting from our problems.

4 Auxiliary Results

Lemma 4.1. In the terminology from above let A with R\ €]0,1[ be a number
such that there exists a (nontrivial) function vy € H from the kernel of A, see
Definition 3.1. Let wq3, weg and wss be real valued, bounded, measurable functions
on Kgg and define the coefficient function w on Ing = Kg(’; x R by

o ﬂ{l P{Q wi3(2, y) o
w(z,y,2) = P12 P walzy) |, i (zy) e Ko™ (4.1)
w13(33, y) Wa3 (95: ?J) w33(3:, y)

Then there is a compactly supported element f € W‘l’G(Ing) such that the — also
compactly supported — variational solution v € Wol’Q(ngg) of V.-wVuv = f on Ing

2
does not belong to Wol’l’m (K-
Proof. 1t is not hard to calculate that the function ¢, given by

bo(z,y) = (2% + y*)M vy (arg(z + iy)) (4.2)

belongs to I/Vhl)f(Kgg) if p € [2, =% [ but not to I/Vhl)cm(Kgg) (Recall that vy does

not vanish identically on |6y, 6,,[.) By construction of A, the function v satisfies

—V - pViy = 0. (4.3)
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def

in the distributional sense, see [37]. We define now the function ¢ by ¥ (x,y, z) =
Yo(z,y) and notice that 1 belongs to Wl’p(lCz;l) for p € [2,%[, but not to

loc

2
W T (Ing). Suppose ¢ = @1 ® @y with ¢, € Cg"(Kgg) and o € C§°(R), then

loc

[ @ve Ve dedydz = [ [ (9900, Vomdrdy ea(e) d:

icon R fon
)

The first addend vanishes by (4.3) and the second by ¢, € C§°(R). The set of ¢’s
with the above tensor product structure is total in C’g"(lng), therefore (4.4) is also
zero for any  from this latter space. Let n be a function from C§°(R?) which equals
1 in a neighbourhood of 0 € R? and which vanishes outside a ball B. Then one
calculates for any ¢ € CgO(Ing)

/(wV(W),V@ dx = — / ¢ (WV1, V) dx

On, On
IC90 ICGO

—|—/¢<an,ch) dx + /(wVQb,V(nap»dx. (4.5)

On, On
ICGO IC90

ficgn (wV1, V(ny)) dx vanishes because (4.4) always is zero if ¢ € CgO(Ing). On

the other hand, it is not hard to see that the other two addends on the right hand
side define — in their dependence on ¢ — continuous linear forms on W&’6/5(ICZ;‘),
namely: the property ¢ € W/hl)f(lCz;l) and the compact support property of n imply
(WY, Vi) € L*(Ky). One combines this with the embedding Wy %°(Kf) —
L2(ngg); thus it becomes clear for the first addend from the right hand side of (4.5).
Concerning the second addend, one easily estimates

’ / Y{(wVn, V) dx

On
IC"O

< 1wVl o ey 1 s i Il lpers eom

< HwVUHLoo(;ng)HwHWL?(BﬂIng)H(‘DHWé’ﬁ/5(}ng)'

Thus, setting v < mp, one obtains the assertion. O

Remark 4.2. If §, = §, + 27, then K" = R? Kj" = R® and, hence, Wy*(Kj) =
Whe(R3).

Proposition 4.3. Let Q C R? be a bounded Lipschitz domain and I' be an open
subset of its boundary. Assume that ¢ is a mapping from a neighbourhood of ) into
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10 R. HALLER-DINTELMANN, H.-CHR. KAISER, J. REHBERG

R? which is additionally bi-Lipschitz. Let us denote ¢(Q) = Q, and ¢(I') = T,.
Then
i) For any p €]1,00] ¢ induces a linear, topological isomorphism
U, WP (Qa) — Wp"(Q)
which is given by (Vpf)(x) = f(6(x)) = (f 0 ¢)(x).
i) W7, is a linear, topological isomorphism between WP (Q) and Wr_ol’p(Q.).

iii) If w is a bounded measurable function on €, taking its values in the set of
d X d— matrices, then
VoV-wVE, =V wV (4.6)
with

waly) = (D) (6 (y))w(671(¥) (Do) (67 !

y)) - (47
| det(Dg)(¢~y)|
D¢ denotes the Jacobian of ¢ and det(D¢) the corresponding determinant).

If, in particular, —V -wV : er’p(Q) — W{l’p(Q) is a topological isomorphism,
then —V - w,V : WEP(Q) — Wi "*(Q4) also is (and vice versa).

Proof. The proof of i) is contained in [22, Thm. 2.10)]. ii) follows from i) by duality.
We prove iii): For f € erip(Q.), g€ W;;p,(ﬂ.) we get by the change of variables
formula:

(- \I/;;,V ~wV(P,f), 9>W;.1!P(Q,) = (=V - wV(¥,[), \ij/g>W1:1’p(Q)
= <_v ' WV(f © ¢)7 go ¢>WF1»P/(Q)

(WE)V(f e d)(x), V(g o 9)(x)) dx

(wx) (Do) (x)(VF)(6(x)), (Do) (x)(Vg)((x))) dx

| det(D¢) (x|

[det(Do) ()] ™

(Do) (x)w(x)(Dd)" (x)(V)(6(x)), (Vg)(6(x)))
(Do) (¢~ (v))
| det(Do)(¢~y)
(v PN 210 i 0)

The essential point is that ¢ — as a Lipschitz continuous function — is differen-

tiable almost everywhere and its (weak) derivative is essentially bounded (see [14,
Ch. 4.2.3]). The last assertion follows from i), ii) and (4.6). O

(D) (¢~ (y))w(d™ () V1(y), Vy(y)) dy

Vf),g>

WP ()
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ELLIPTIC MODEL PROBLEMS 11

Proposition 4.4. Let ) C R? be a bounded, convez, polygonal domain and I' be an
open subset of O such that QN {(x,0,2) : x,2 € R} =T'. Let for any x = (z,vy, 2)
the symbol x_ denote the element (x,—y, z) and define ) as the interior of

QU{x:x_ € Q}UT.

If w is a bounded, measurable function on () taking its values in the set of real,
symmetric 3 X 3-matrices, then we define

w(x), if xeQ,
~ def wn(X—) —w12(x_) wlg(X—)
wx) = 4.8
&) —wia(x-)  wa(xo)  —was(xo) |, x- €0 .
wlg(X_) —u)Qg(X_) W33(X_)

i) If Y € WI}2(Q) safisﬁef the equat}'on -V WV}D =f e WF_M(Q), then the
equation —V - OV = f € WL2(Q) holds for 1) with

A _{¢@L ifx € Q,
P(x-), ifx. €

and | defined by (f, @)y 120 = 5(F. ¢l + ¢ ladwi2q) (For ¢ € Wyt(Q)
) = p(xo).)

the function ¢_ s defined by w_(x

ii) Moreover, if f € W P(Q), then f € W=#(Q); and if =V - OV : WiP(Q) —
W=12(Q) is a topological isomorphism, then —V - wV : WEP(Q) — W P(Q)
also 1s.

Proof. i) It is known that ¢ belongs to W (), see [17, Lemma 3.4]. Thus,
i) is obtained by the definitions of ¢, f, =V - wV, =V - ©V and straightforward
calculations, based on Proposition 4.3 when applied to the transformation x — x_.

ii) The operator f — f is the adjoint to ¢ — s(¢la + ¢-|a). The latter maps each
W,y P(Q) continuously into W2?(Q) for any p €]1,00[. The last statement is then
implied by the preceding ones and the definition of . O

Remark 4.5. The proposition is mutatis mutandis true for the reflection at other
planes.

In the sequel we will transform our model problems which include mixed boundary
conditions to the case of Dirichlet conditions — which are imposed in Proposition 3.6.
In essence, this happens via a linear transformation leading to a peculiar triangle, a
bi-Lipschitz transformation and a reflection argument. All of this is carried out in
the next chapter.
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12 R. HALLER-DINTELMANN, H.-CHR. KAISER, J. REHBERG

5 Proof of Theorem 1.1

5.1 Transformation of the problem

Proposition 4.3 allows us in a first step to reduce the case of an arbitrary triangle A
to that one where A is the triangle with the vertices (1, —1), (—=1,1), (1/2,1/2) and,
additionally, T is the line segment between (0, 0) and (1, —1). Namely, first one shifts
the triangle such that P becomes the origin. Let P; denote the vertex where (the
shifted) T ends and P, the vertex which does not touch —Y. We now transform R?
under the linear mapping which assigns P, to (1, —1) and P, to (1/2,1/2). Extending
this mapping to R?® by letting the z-component invariant, one obtains the special
geometric constellation stated above. Clearly, the transformed plane = maintains
the properties demanded in the suppositions of Theorem 1.1. In particular, we
denote the point, where the (transformed) plane intersects the z-axis, by P,. In a
natural sense we may speak of an upper half space G, and a lower half space G,
(each on one side of the intersecting plane =), where the coefficient function y takes

the values
ai; Qa2 a3 bi1 b1z b3
+ o -
M= Q12 Q22 Q23 on G,, no= bia Doy bos on G;.
a13 ag3 as3 biz bz bss

We transform the problem via the bi-Lipschitz transformation

(132 1/3v2 0
0 V2
0 0
V2 0
1/vV2 1/32
0 0

on {(z,y,2):y>x}

(5.1)

on {(z,y,2):y<uz}.

_ o O = O

\
(Please notice that the determinants of both matrices in (5.1) equal 1). ¢(A) is again
a triangle — denoted by A, — and has now the vertices (0,0), (0,v/2), (v/2,0), while
the new domain is I, = Agx] — 1,1[. T equals the subinterval ]0, v/2[ of the -
axis. The image Z4 of II N = consists of two triangles having one common edge
Ey C {(z,x,z) : x>0, z€ R}. (Of course, if = was orthogonal to the z-axis, then
both triangles are also orthogonal to the z-axis.) Clearly, the Neumann boundary
part is now the rectangle with the vertices (0,0, —1), (0,0, 1), (v/2,0, 1), (+/2,0,1).
The transformed matrix (see Proposition 4.3)

T
1/\/§ 1/\/§ 0 a1 G12 a13 1/\/i 1/\/5 0
0 \/5 0 19 A29 23 0 \/5 0 (52)
0 0 1 a13 (923 A33 0 0 1
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is calculated as

ai1+2ai2+az aiz+ao3
Q12 + Q22
2 V2
a1z + 2a92 V2as |, (5.3)

ai3+az3
72 V2093 ass

while the transformed matrix

V2 0 0 aiy Gz Q13 V2 0 0\
1/vV/2 1/3V/2 0 a1y Qe Go3 1/vV2 1/V/2 0 (5.4)
0 0 1 a13 923 A33 0 0 1

is calculated as
2a1; a1z +aq; \/§a13

2
a9 + aq; ail+ (1212+a22 a13\}r§123 (55)
aiztag3
V2a53 72 asz3

(and analogously for the matrix b). We reflect the problem at the z-z-plane in
the spirit of Proposition 4.4 and obtain a new triangle A with the vertices (0,v2),
(v/2,0), (0,—v/2), a new domain IT % Ax] —1,1[ and the coeficient function /i
on II is defined as in (4.8). Thus, we end up with a Dirichlet problem on II. By
Proposition 4.4 it suffices to show that

—V - 4V Wy P(IT) — WHP(ID)

is a topological isomorphism for a p > 3. For this, however, we may apply Propo-
sition 3.6: we are done if we are able to show that for all edges E the induced
operators A, have a trivial kernel for all A\ with R\ €]0,% + €[ (¢ > 0 arbitrarily
small). The occurring edges E are the following:

e geometric edges,

bimaterial outer edges,

the edges Ef and E. lying between P, and (0,0,1), or between P, and
(0,0, —1), respectively,

the edge E.., which is the intersection of the (transformed) = with the z-z-
plane,

E,; and the reflected Ej.

5.2 Reformulation of the transmission conditions

The aim of this subsection is to express the transmission conditions for the ansatz
functions in a condensed manner in terms of o, o411, 0;.
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14 R. HALLER-DINTELMANN, H.-CHR. KAISER, J. REHBERG

Lemma 5.1. Let o be defined by (3.7), and
m — ( miyp MMa2 ) def ( pn pjig ),
M2 Ma2 P12 P22
u(6) = c+€_i’\6(ae2i6 + 1)>‘ + c_ei’\e(o_ze_Qie + 1)>‘, (5.6)

where cy,c_ are arbitrary complex constants. Further, let by, by be defined as in

(3.1). Then
b (0)1 (8) 4+ Aby (0)u(h) = —iDY*Nepe ™™ (ae®® + 1) — c_e™(ae 20 + 1), (5.7)

where D,, again denotes the determinant of the matriz m.

Proof. First, one easily verifies

1 — a62 0 1 — aqe 2

/ o —iA0 219 z)\9 ~ _—2i0 s
Next we want to prove
1 — e )
_b2(9)lm + b1(€) = —ZD},/Q. (5.9)
For this we calculate ‘
]_—06629__6 219—0[
T aerit ~ lemun 1 g (5.10)

and abbreviate the denominator i(mags + Drln/2) + miz of @ by N,. One has
e — a = (e7*[i(maz + Dy/%) + maa] — i(maz — Dy/*) +maz) /Na
and
20 4 o — ( *Qie[z’(mﬂ + D}n/Q) + maa] + i(mag — Drln/Q) - m12>/Naa

what leads to

il — ae® _ im12(6_2i9 + 1) + maogi(e 29 — 1) + DY (e720 +1)
L+ ae?® (6720 — 1) + mggi(e=20 + 1) + Do/ %i(e=2i0 — 1)

(5.11)

We augment the last fraction by ,521?99 7; exploiting the equation

Tsm&z Y= = sinf = -
e~ —1 e~ (e — i) —1

=1cosb,
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the right hand side of (5.11) becomes

. ) ) 1/2 ) . 1/2
1M cOS B + imoo sin ) — Dm/ cos 6 —Myg COS O — Mg Sin O — sz/ cos 6
1 g
) 172 . . 172 .
Mg Sin @ — mey cos b + ZDW{ sin @ Mo Sin 0 — mogy cos 6 + ZDW{ sin 0

(—myg cosf — mop sinf — Z'D,%{2 cos 0)(mya sin @ — may cos 6 — Z'D,%{2 sin 6)

(Mg sin 6 — mayy cos 0)2 + D, sin? @

~ (may —mqp) cosBsinf + mia(cos® § — sin® 0) + iDM? ~ bi(0) + iDL/? (5.12)
B mqq sin? @ — 2mqs cos 0 sin 6 + mos cos? § B b2(0) ’ )
Thus, (5.9) holds true. By complex conjugation one obtains from (5.9)
(5.9) and (5.13) together with (5.8) give the assertion (5.7). O

Corollary 5.2. Let u be the function on [0y, 0,] which coincides on 10;,0;11] with
u; defined in (3.8).

i) Assume first j € {1,...,n—1} and let D; and D;, denote the determinants

of the matrices
. . PR
( P P ) and ( S )
Pl P 12 22
respectively. If we abbreviate o £ a; and 3 £ aji1, then the transmission
conditions in the point 0 = 0,
[u]g = [bgu/ + )\blu]g =0 (5.14)
erpress as
Cj7+6—i)\9(oé€2i0 + 1),\ + ij_ez‘xe(de—%e + 1),\
= cj+17+e_i’\9(662i6 + 1))‘ + cj+17_ei’\9(ﬁe_2i6 + 1))‘ (5.15)
and
D;/Q[Cj#efi)ﬁ(ode%@ + 1))\ _ Cj,iez’)\é(o—defmﬂ + 1))\]
1/2 —i i iN (B —2i
= D30 M (B + 1P = ¢y e¥(Ge 0 +1)Y), (5.16)

respectively. Thus, in case of D; = D;1 for (5.14) it is necessary and suffi-

cient that
¢jr(ae®® + 1N = ¢jur 1 (B + 1) (5.17)
and
¢ (@e™ 4 1) = ¢jy_(Be 20 + 1) (5.18)
hold.
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16 R. HALLER-DINTELMANN, H.-CHR. KAISER, J. REHBERG

ii) Assume now 0, = 0y+ 2mw. Then the corresponding transmission conditions in
0y express as the following two equations:

o +efi)\90(041€2’i90 + 1))\+Cl,761)\90(04 e —2i6p +1)

= cp e M (e 1 1) + ¢, e (@ueT 1) (5.19)

and

Di/2[01,+€_i’\6° (oqemo + 1),\ . Cl’_ez‘,\eo (@16—2ieo + 1),\]
= DY ?cp e (a,e®® 4 1) — ¢, _e (e +1)Y], (5.20)

respectively.

5.3 Discussion of the edge singularities

For geometric edges and bimaterial outer edges we show in the Appendix that the
operators Ay have a trivial kernel if A €]0,1/2].

Next we consider the edges F and E]: starting with E, one has to deal with the
coefficient matrices

A~ def

ai11+2a12+ag9
2
—Q12 — Q22 2a90

Tz a2 ) if0 €] — /2, - /4]

||m

2a11 —Q12 — 11 )

a11+2a12+az2

if0 el —n/4,0
—a12 — ai 5 ] /4,01

a11+2a12+age
ai2 + an 5

def

if 0 €jr/4,7/2].

al
(B e ) e
e

a11+2a12+a22 a19 + ago )

a12 + 22 2a92

Thus, one has to consider the ansatz functions (see Remark 3.8)

W= epem ™ (@ + 1N +e_e™(ae +1)) on | — /2, —m/4]
s ) O deem (B 4 1N+ d e (B + 1N on] = 7/4,0]

0= dpem™(Be? + DN+ d_e™ (e + 1) on]0,7/4]

W c+€7i)"(0662i' i 1))\ T e eih (@6—2z + 1)* on ]7r/4, 7T/2[,
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with « defined by (3.7) (and [ analogously from the entries of the matrix o.) Please
notice that the determinants of the matrices m, m, o, 0 all equal the determinant

( ai; aig )
)
a1z Qa2

the value of which we denote by D in this proof. Taking this into account, the

of the matrix

transmission conditions in §# = —7/4 read in view of (5.17)/(5.18)
ér(1—ia) =dy(1—iB) (5.21)
and A
e_(14ia)* = d_(1+iB)*. (5.22)
Analogously, the transmission conditions in 0 equivalently express as
dy(1+ ) = d (14 )" (5.23)
and
d_-(1+ 06> =d_(1+5) (5.24)
while those in 7/4 can be written as
de(1+if)* = c (1 +ia) (5.25)
and
d_(1—if)* = c_(1 —ia)™. (5.26)
The boundary condition u(7/2) = w(w/2) = 0 leads to
cre 21— o) c_eM2(1 —a) =0, (5.27)
or, in other words, R
[ —cei)‘”%, (5.28)

)
while the boundary condition u(—m/2) = w(—n/2) = 0 gives

é+ei>\7r/2(1 . C—())x +él —z>\7r/2(1 &)A _ O,
or, alternatively,

. 1—
é,z—@ﬁ“L———. (5.29)

(1—a)
Combining (5.28), (5.26), (5.24), (5.22), (5.29), (5.21), (5.23), (5.25), one ends up
with the characteristic equation for A:

sire (1 —a)* (1 —ip) (1+@)‘ (1+ia)* (1 —a)* (1 —iB)* (1 + B)* (1 + i)

=P (L=iaP (1+ AP (1 +BP (1= ) (1= i@} (L+ B (L+iB)
oA Hi)r (T—a)r N2 (14 6) ( (1—i3)*

— ¢ <(1—a)>‘ 1—m>‘)<1+zﬁ (1+ B)A )

e

= 1. (5.30)
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18 R. HALLER-DINTELMANN, H.-CHR. KAISER, J. REHBERG

(Let us remark that ¢ cannot vanish unless also the other coeflicients vanish.)
Moreover, we notice that all the terms 1+ia, 77—, 1 —a, ==, 143, ﬁ, 1—if, ﬁg
have positive real part because |a|, |3| < 1. Hence, we have

1+ ia)? 14 ia\A 1—a)? 1—a\?
(1—a) -« (1 —ia)? 1 —ia
as well as
1+ 5)* 1 A 1—iB)*  1—iB\>
(1+5) :( +ﬂ) and U= :( Z?) , (5.32)
(1+iB)* 1413 (1+p)* 1+ 4
if RA < 1. Further, observing the relations
1+ 1 113 1
— — and ( ) S 5.33
<1—a> i=a M \143) T B (5:33)
145
L4
and putting o = arg i and Kk = arg + ﬂ , this altogether enables us to rewrite
l—« 1443

(5.30) as
P2NTH2AH+R) _ | (5.34)

It is obvious that all A satisfying (5.34) must be real. Our claim is now: o+ x equals
/2 or —3mw/2. For this, we mention that, by definition, o,k €] — m, 7|; thus the
claim is true, if we can show

l+ia14+38 .
— = 1.
l—al+:i3

(5.35)

This we will do now: exploiting the definitions of «, 5 we get

1+ia 1D1/2+m12—m22+i(D1/2+m22—m12)

l—a 2 mig +iD1/?
1
= <D1/2 + my1 — myg + i(Dl/Q —mi + le))
2m11
1 a11 — 22 . Qg2 — (11
_ pt/2 . G~ Gz pl/2y G2 an )
2m11 < * 2 + Z( - 2 )

Analogously, we calculate:

1+8 2109
1 + Zﬁ - D1/2 + 012 — 092 + Z(D1/2 + 099 — 012)
2i022

- DY2 4 (111;(122 —|—Z(D1/2+ azzgau)‘

Taking into account 099 = myy, this gives (5.35). Hence, the transcendental equation
(5.34) for \ reads in any case as e*™ = 1. Trivially, the smallest positive A possible
is \g = 1/2. Thus, the edge £ meets the preconditions of Proposition 3.6. The
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considerations for the edge E are the same, word by word.
Next we consider the edge FE,., lying in the x-z-plane. The coefficient matrices
belonging to its neighbouring sectors are

Q1 G2 Q13 a11+2(1212+a2‘2 a1z + agp 434023
Q=1 g1 G2 ¢ = Q1o + Ao 2099 V2ass |, (5.36)
31 432 ¢33 W% \/§a23 a33
Tir Tz Ti13 7b“+2bgm+b22 big + byy stbes
R=| ry 719 7103 | = big + by 2byo V2bys |, (5.37)
31 T2 T33 % V/2by3 bss
if y > 0 and their reflected counterparts
. qun  —qi2 413 . i1 —Ti2 T3
Q= —q12  Qq22  —(23 and R = —Ti2 T2  —T23 )
q13  —¢23 Q33 g —T23 T33

if y < 0, (see (5.2), (5.4) and Proposition 4.4). According to Proposition 3.6 one
has to perform a rotation in the z-z-plane which moves the edge F,. to the z-axis.
This means, one has to consider the matrices

cos¢ 0 —sing cos¢ 0 sing
0 1 0 M 0 1 0 ,
sin¢ 0 cosg¢ —sing 0 cosg

M taken as @, R, Q, }A%, respectively and ¢ being the angle between the edge F,.
and the z-axis. A straightforward calculation shows that the resulting upper 2 x 2
blocks look alike

(o) weecen (5 ) ir-seo

—S12 S22 —t12  too

(t“ t”) it 0 €0, |, (8“ 512) it 0 €)c, 7.

t12 22 S12 S22

(5.38)

Hence (see Remark 3.8), the corresponding numbers «q, as, a3, a4 are related by
a1 = ay and ap = @3. In the sequel we employ the numbers « for a3 and (3 for ay.
In this notation we show:

Lemma 5.3. Assume the existence of complex numbers cy,c_,dy,d_, ¢, c_, cz+, d_
(at least one of them nonzero) such that

0= die™(Be® + DN +d_e™(Be ¥ + 1)) on] -7, —(]
o )0 E epe™ (@ + 1M+ e (ae ™ + 1) on]—(,0]
v w=E cpem™ (e + 1N+ c_e(@e + 1) on]0,(]
vE dpem (B + 1N+ d_e™(Be™ + 1) on]
>

0
¢, [
obeys the transmission conditions in —m, —(,0,(. Then R\ ¢]0, 5].

Preprint 1203, Weierstrass Institute for Applied Analysis and Stochastics, Berlin 2007



20 R. HALLER-DINTELMANN, H.-CHR. KAISER, J. REHBERG

Proof. The transmission condition [byu’ + Abjulo = 0 together with Corollary 5.2
(see in particular (5.16)) implies

@+ —e(a+D)=ci(a+ 1D —c_(a+ 1) (5.39)

On the other hand, the transmission condition for byu’ + Abju in —7 /7 (see (5.20))
gives

dee™B+1)—d_e B+ 1) =de (B + 1) —d_e?(B+1)>.  (5.40)
Let us first consider the case where
é+ =cC_, éf = C+, dA+ = d,, dAf = d+. (541)

Inserting these relations in (5.39) and (5.40) one obtains that both sides of (5.39)
and (5.40) in fact have to vanish. But this means in view of Lemma 5.1 nothing else
but

bo(0)u'(0) + Nby (Q)u(0) =0 for 6 =0,n.

Thus, the restriction of u to the interval |0, 7| leads to a bimaterial problem including
a Neumann condition on both interval ends. Then R\ ¢]0,1/2], see Theorem 8.2
below.

Assume now that (5.41) is not satisfied. Then we introduce the function

(5.42)

A

~M{@g@iW%%+W+awme%+W on 0, ¢
~ def
v=d

) (G 4 1+ dye (Fe ¥ + 1) on G, 7]

on [0, 7] and consider the function

def
Uy = Uljo,x) — U

(cy — e )e ™ (ae® + 1) + (c- — ¢ )e™(@e " + 1) on ]0,(]

(dy — d)em™ (B + 1+ (d_ — dy)e (B + 1) on |G,
It is straightforward to verify that the condition [u]p = 0 implies u,(0) = 0 and
the periodicity condition in —7 /7 yields u,(m) = 0. Next we intend to show the
transmission conditions [u,]¢ = [b2(0)u), + Ab1(0)u,)c = 0. Because we already
know by supposition [u]; = [b2(0)u + Ab1(0)u]; = 0 it remains to show [a], =
[b2(8)T + Ab1(0)u] = 0. One easily verifies [a]c = [u]_¢, and the latter is zero by
supposition. Finally, by Lemma 5.1 we have

Ba(6)i + Ny (6)ic = (b’ + Nbyi)l — (bai” + Aby3) .
= —iAD,(é_e ™ (ae® + 1) — ¢pe™(ae ™ + 1))
+iADg(d_e (B + 1) — d e (Be ¢ + 1)Y)
—(bgw + )\blw) |—¢ + (bgv + )\blv) |—¢
= [bot’ + Abyu]_¢
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But the right hand side of this equation is zero in view of the transmission condition
[bot” + Abyu|_¢ = 0. Thus, this second case leads to a bimaterial Dirichlet problem,
for which also Theorem 8.2 gives A ¢]0,1/2]. O

It remains to consider the edge E4 (and its reflected counterpart). Let first t € R
be a number such that (0,0,t) + E, has its endpoint in 0 € R? and O be a rotation
of the plane {(z,z,2):z,z € R} which transforms ((0,0,t) + E4) to the z-axis.
Suppose that for one A with *A €]0, 1/2] there is a (nontrivial) function v, from the
kernel of the resulting operator A,. If one takes the coefficient function defined in
(4.1) as
Pl Pla Pls
wiz,y. ) Z | ply Pl Pl it (2,y) € Ky, (5.43)
Pls Pas i3

then, by Lemma 4.1, there is a compactly supported element f € W~16(R3) such
that the — also compactly supported — variational solution v € WY2(IR3) of
—V -wVv = f does not belong to W14(R?). Because the support of v is compact,
it can then (the more) not belong to W!5(R?). Now we revoke the transformations
O, the shift (0,0,¢) and ¢. Applying Proposition 4.3, one obtains a f, € W~15(R3)
and a v, € WH(R3) \ WH(R?3) satisfying —V - w,Vv, = f,, or, equivalently,
—V - wWeVUe + Vg = fo + v, € WTL5(R?). 1t is not hard to see that the matrix
valued function w, takes above = the matrix u* (see pg. 9) as value and below
= the matrix p~, see Definition 3.3 and, in particular, (3.3). But a result of [13,
Thm. 3.11], see also [3, Ch. 4.5], says that

—V - wV+1: WH(R?) — W HP(R?)

is a topological isomorphism for any p €]1, c0[. This contradicts the above suppo-
sition. The proof for the reflected F, runs along the same lines; thus the proof of
Theorem 1.1 is complete.

6 Proof of Theorem 1.2 and of Corollary 1.3

First we consider the case where T is one side of the triangle A. Modulo an affine
transformation in R? we may focus on the case where T is identical with the interval
10, 1] on the z-axis, see Proposition 4.3. We reflect II symmetrically at the x-z-
plane and obtain a domain II and a reflected coefficient function fi. The resulting
boundary conditions are then homogeneous Dirichlet on all OIL. By Proposition 4.4
it is sufficient to show that

—V - AV - Wy P(IT) — W br(11)
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is a topological isomorphism for a p > 3. Of course, we will again apply Propo-
sition 3.6 and have, hence, to discuss the edge singularities. The occurring edges
are:

i) geometric edges,
ii) bimaterial outer edges,

iii) the intersection of the x-z-plane with =, in particular, the parts of the z-axis
below and above the intersection point with = is a bimaterial outer edge.

For all these edges we already know that the corresponding operators .4, have a
trivial kernel provided R\ €]0,1/2]; namely: the claim for geometric edges and bi-
material outer edges is shown in te next chapter (see Theorem 8.1 and Theorem 8.2)
while the situation of iii) is exactly the same as treated in Lemma 5.3.

Let us now regard the second case: modulo an affine transformation in R? we may
restrict ourself to the case where Y is the union of the interval |0, 1] on the z-axis
and the interval [0,1] on the y-axis. Again we reflect the problem at the z-z-
plane, but afterwards a second time at the y-z-plane. Thus, we end up with a
Dirichlet problem on IT £ V'x]—1,1[, where V C R? is the square with the vertices
(0,1),(1,0),(0,—1),(—1,0). Denoting the new coefficient function by i, it suffices

by Proposition 4.4 to show that
—V - iV WD) — Whe(I)

is a topological isomorphism for a p > 3. According to Proposition 3.6, it remains
to show that for every edge E the kernels of the corresponding operators A, are
trivial if RA €]0,1/3 + €[ (e arbirarily small). If (0,0,¢) is the intersection point of
= with the z-axis, then the occurring edges are:

i) geometric edges,

ii) bimaterial outer edges,

1)
iii) {(0,0,s):s¢€] —1,t[},
iv) {(0,0,s):s €]t 1[},
v) the intersection of the z-z-plane with =,
)
)
)

vi) the intersection of the x-z-plane with the reflected =,

vii) the intersection of the y-z-plane with =,

viii) the intersection of the y-z-plane with the reflected =.
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The geometric and bimaterial outer edges are treated in the Appendix. iii), iv), v),
vi) lead again to a constellation (5.38), which was treated in Lemma 5.3. This is
also true for vii) and viii), but requires here an additional moment’s thought: let us
denote the value of the coefficient function p above = by u™ and below Z by u™.
Concerning vii), the reflected matrices’ then equal

Mfl _MTQ _MIFS Hip —Hig —Hi3
_MT—Q M;—2 M;—:S and —Hig Moo a3
_Mf:a M5L3 M?:L3 —Hi3 Mg 33

We perform now a rotation within the z-y-plane which transforms the (positive)
y-axis into the (positive) z-axis and the (positive) z-axis into the negative y-axis;
clearly the transformed edge lies then in the 2-z-plane. One obtains the transformed
coefficient matrices

0 10 f e s 0 —10 fzp  —Hy  fio
-1.0 0 [y Moz Hay L0 0 )= —ph pf —uh
0 01 [l Koz Has 0 0 1 M3z —Hi3 M3
0 10 Hii Mg Hag 0 -1 0 Moo —Hip  Hag
-1 0 Hig  Hog  Hag L0 0 )= —p2 pu —Hi3
0 01 M1z Haz M3 0 0 1 Moz —Hiz M3z

while the reflected matrices transform as follows:

0 10 p =iy —ad 0 -1 0 f32 iy o3
~1.0 0 iy My Ha L0 0 )= po ah w
0 01 il Ma o M3 0 0 1 fs 3 Has
0 10 Hii —Hiz  —Hiz 0 -1 0 Hoo M1z Hog
-1 00 —Hi2 Moo Has I 0 0 = Hig M1 His
0 01 —Hiz Mo H33 0 0 1 Hog M1z Hsg

Thus, from this point on we are in the same situation as in the discussion for the edge
E.. (see pg. 15) and everything runs completely the same way. viii) is analogous to
vii).

We come to the proof of Corollary 1.3: because we demanded that the plane =
should not touch the upper plate nor the ground plate it is possible to divide the
problem by a suitable partition of unity into one which affects the upper (lower)
part and is separated from = and one which contains I = but has only a Dirichlet
condition on its upper (ground) plate. The latter is already treated in Theorem 1.2.
The first can be reflected at the upper (ground) plate and one ends up again with
the setting which is treated in Theorem 1.2.
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7 Concluding remarks

The results of this paper easily carry over to problems with Robin boundary con-
ditions. Indeed, one can prove that if w is the surface measure on 0f) and » €
L>(T, dw), then the linear map 7 : W (II) — W "P(II) given by

TPl = [ 20 e

T

(and representing the Robin boundary condition) is infinitesimally small with respect
to the operator V-uV. Thus, the domains of both operators are the same by classical
perturbation theory, see [30, Ch. IV.1].

The reader has possibly asked himself why the results are deduced from [37] and
why the concept of that paper does not work for boundary conditions which are not
Dirichlet. One problem consists in finding an adequate energy space in case of edges
on Neumann boundary parts which, additionally, has to be in correspondence with
the properties of the Mellin transform. Our attempts to find such an energy space
have failed up to now.

In principle it is possible to generalize our results to the case where not only one
plane intersects the domain, but severals do. In order to classify the singularities
stemming from the additional inner edges (where the planes meet) one can apply the
result [12, Thm. 2.5]. We have not carried out this here only for technical simplicity,
see also [31].

8 Appendix: The transcendental equation for geo-

metric edges and bimaterial outer edges

It is the aim of this chapter to discuss the edge singularities for geometric edges and
bimaterial outer edges; precisely, we intend to show the following two theorems:

Theorem 8.1. For any geometric edge E the kernels of the associated operators A
are trivial in each of the following two cases:

a) the opening angle 0 — 6y is not larger than m and R\ €0, 1]

b) 0, — by €], 2w[ and R\ €]0,1/2].

Theorem 8.2. Let Kg;, Kgf be two neighbouring sectors in R? with 0, — 0y, 05 —
0, < 7w and 0y — 0y < 2m. Let p', p* be two real, positive definite 2 x 2 matrices
corresponding to the sectors Kg;,Kgf. Let t, be the form defined in (3.2) either
on H}(0y,05) or on H(6y,0,). Then there is an € > 0 such that the kernel of the
corresponding operator A, (see Definition 3.1) is trivial if R\ €]0,1/2 + €.
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We will prove the theorems in several steps, starting with the following
Lemma 8.3. Let o € C with |a| < 1, and define for v €] — m, 7] the number

e 41

€l —m, 7.
P | —m, ]

def
o = arg
Then either v,y + o0 €] —m,0[ ory=0=0 orv,y+ 0 €0,7[, ory =7+ 0 = 7.
Proof. The cases v = 0 and v = 7 are straightforward. In the remaining cases one

has

e + 1 Ja+1|
a+1  Jae™?7 41|
(ae ™ +eM)(@+1)  |ofe ™ + e 4 2R(e™)

Gi+0) — i

- |+ 1)Jae27 + 1| la + 1]|ae=27 + 1]
Thus, the imaginary part of €0+ equals %, and its sign depends in an
obvious way only on ~y . O

It follows the proof of Theorem 8.1; without loss of generality we may assume 6, = 7.
Again exploiting the ansatz functions (3.8), the Dirichlet conditions in 6y, 0, €]—7, 7]
read

cre” 2 (ae®® + 1)) 4+ e (ae™ + 1) = 0 (8.1)

cre M (a+ 1)+ e (a+ 1) =0.

These equations are nontrivially solvable in ¢, c_ iff

_ =200 20N (ae™? +1)*  (a+1)

l=ce .
(@+1)»  (ae?fo 4 1)
. . e 200 1 1\ A 1 \A
o (LYY 0d] g 39
a+1 ae?ifo 41
compare the considerations in §5.3, in particular (5.31). Putting v < arg %ﬁ“,
we may write (8.3) as e?A(%+¥=7) — 1 Obviously, A must be real and |a| = |a| < 1.

Hence, in case a), where 6, € [0, 7[, we obtain 6y + v € [0, 7] by Lemma 8.3, which
excludes R\ €]0,1[. If 6y €] — 7, 0[, then, by Lemma 8.3, we have 6, + v €] — 7, 0],
which shows the assertion in case b).

Concerning Theorem 8.2, we may apply a rotation (corresponding to a shift in the
angle space) and thus reduce the general case to that one where 6y = —v, 6; = 0
and 0y = 0. Again using the ansatz functions (3.8) we are getting the following
equations expressing the transmission conditions in 0, see Corollary 5.2
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crla+1) +e(@a+1D)=d B+ +d_(B+ 1) (8.4)
and
DYles(a+ 17 — e (@+ 1) = DY?[ds(B+ 1) —d_(F+ 1. (85)
We define

st | —1 if Dirichlet in ~
€ = .

if Neumann in

and analogously for 0. In this convention, (see Lemma 5.1) the boundary condition
in —v yields
cre™(ae™ + 1) — e c e (@ + 1) =0

or, what is the same, '
2y (ae™7 + 1)

On the other hand, the corresponding boundary condition in ¢ implies
dJrefi)\é(Be%é + 1))\ . 65d,ei’\6(5672i5 + 1))\ -0
or, equivalently,
2,—2i8 A
; +1)
0, — egd 2P H LT 8.7
+ €sa-€ (562Z5 + ]_))\ ( )
We insert (8.6) and (8.7) in (8.4) and (8.5) and obtain
—2iy A 3,—2ib A
A sing (€T H )N sixs (B +11) AL (7L 1A
C[(C(+1) +€’Y€ Wm(&‘i—l) ]—d[‘fée m(ﬁ"‘l) "—(B‘i‘l) ]
=0 (8.8)

and

giny (€7 + 1)

1/2 A
D, clla+1)" —ee G I

(@+ 1Y
sixg (Be720 4 1)

+ Di/Qd[(B + 1))\ — &€ (Bed + 1)

(B+1=0 (89)

for c=c, and d =d_. (8.8), (8.9) are nontrivially solvable iff

(046721"7 + 1))‘ (O_z—f‘ 1))‘ ] |:1 . 62@')\6 (56:21'6 + 1))\ (ﬁ—f‘ 1))\ i|
(a+ 1% (ae +1)4 (B+1)> (B2 + 1))
(B +1)* (B+1)? s (@€ £ DA (@ + 1)
(B + 1) (Be2id + 1)>\} [1 — €4€ (1+a) (ae2r + 1)/\]
=0. (8.10)

Di/2 [1 + ewe%’\“Y

+D$ﬁ+qﬁm
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Putting . o
ae” 2 + 1 Be 2P +1
1 K=alg ——=—_—,
a+1 B+1
and arguing as in (5.31)—(5.33), this altogether enables us to rewrite (8.10) as

o = arg

Di/Q [1 n evemmw)} [1 _ €5€2i>\(6+n)i| n D%Q [1 n €6€2i>\(6+n)i| [1 _ 6762"\(“””)] _0,
or, what is the same,

D;/2 [e—z‘,\(wa) n e’yeik(’y—i—a)} |:€—i>\(5+f€) _ 65ei’\(5+“)] i

X D%Q [efi)\(éJrn) X eéeiA(éJm)} [efi)\('era) _ e’yei)\(’era)} —0. (8.11)

This means that in the pure Dirichlet case (with e, = €5 = —1) (8.10) can be written
equivalently as

DY2sin M(y + o) cos \(0 + k) + DY% cos A(y 4 &) sin A\(§ + &) = 0 (8.12)
and in the pure Neumann case (with e, = €5 = 1) as
D2 cos A(y + o) sin \(6 + &) + D2 sin A\(y + o) cos A(d + k) = 0. (8.13)

Because D,, and D, are arbitrary positive constants it suffices to focus the following
discussion on (8.12).

Lemma 8.4. If 7,6 < 7 with v+ § < 27, then any solution \ of (8.12) satisfies
R ¢]0,1/2 + €] for an € > 0.

Proof. Since, by Lemma 8.3, sin \(y 4+ ) # 0 and sin A(0 + k) # 0, if 0 < R < 1,
we can rewrite (8.12) as

D2 cot \(§ + k) + DY cot A(y +0) = 0. (8.14)
Note that
R cot(£ + in) (cosh? 5y — sinh? ) sin € cos & sin 2&
in) = =

(sin € coshn)? + (cosEsinh )2 2(sin® € + sinh? )’
hence, with A = 9 + iv, the real parts of (8.14) have the form

DY?sin20(6 + k) D)% sin 20(y + o)
sin? 9(§ + k) + sinh?v(§ + k) sin?I(y + o) + sinh* v(y + o)

=0. (8.15)

If 0 < ¥ < 1/2, then Lemma 8.3 shows that 0 < 29(6 + k),29(y + o) < 7, and
therefore both terms on the left hand side of (8.15) are non-negative. Due to y+§ <
2m, at most one of them may be zero. This proves the assertion. O

Preprint 1203, Weierstrass Institute for Applied Analysis and Stochastics, Berlin 2007



28 R. HALLER-DINTELMANN, H.-CHR. KAISER, J. REHBERG

Remark 8.5. If one has in —v a Dirichlet condition and in  a Neumann condition
(what means —e, = €5 = 1), then (8.11) reads as

—DY?sin(A(y + 7)) sin(M6 + &)) + DL*cos(A(y + 7)) cos(A(d + k)) = 0. (8.16)

If we again suppose 7, § €]0, 7[, then we may divide (8.16) by sin(A(y+0)) sin(A(6+
r)) (provided R\ €]0,1[) and obtain the equivalent condition

DL/2
D2

cot(A(y + 7)) cot (A0 + K)) = (8.17)
It is not hard to see that there are parameter configurations v, 9, «, 8, D,, D,, such
that (8.17) is fulfilled for A with arbitrarily small (positive) real part; see also [38],
where the case of scalar multiples of the Laplacian already was treated.

Remark 8.6. In fact, the results of Theorem 8.1 and Theorem 8.2 are already
proved in [12] (see Lemma 2.9 and Lemma 2.5) by completely different methods and
based on the results of II'yin [27], [28]. Our intention was here to give a proof which
is straight forward and self-contained.

Acknowledgement. Part of the ideas from the Appendix are due to our colleagues
J. Elschner and G. Schmidt. We are grateful for being given the possibility to publish
this here.
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