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Abstract
We consider branching random walks in d > 3 with a Lipschitz branching rate function and show that
the system, starting either in a Poisson field or in equilibrium, decorrelates over long time horizons, and
employ this to obtain an ergodic theorem. We use coupling and a stochastic representation of the Palm
distribution.

1 Introduction and result

We study critical branching random walks with state dependent branching rate. Informally, this is a system of
particles which perform independent random walks on Z¢ according to some random walk kernel a. Additionally,
while there are k particles at a given site, a branching event occurs at rate o(k), in such an event, one particle dies
and is replaced by a random number of offspring. ¢ : Z; — Ry is the branching rate function, o(k) = const. x k
corresponds to the classical case of independently branching random walks. See Chapter 2 of [1] for a formal
construction and background. Here, we focus on a particular subclass: Our standing assumptions are

a is shift-invariant and symmetric, a-random walk is transient, (1.1)
the branching law is critical binary, (1.2)
the branching rate function o is Lipschitz: |o(m) — o(n)| < Colm — n|. (1.3)
Note that (1.3) in particular implies that o grows at most linearly, o(k) < Cy,k for all k (as ¢(0) = 0 by

definition). Assuming finite second moments for the jumps of an a-random walk, (1.1) enforces d > 3.

We will write &, () for the number of particles at site x € Z? at time ¢ in the system of state dependent branching
random walks. Let Hy denote the Poisson field with constant intensity @ > 0 on Z¢, (St)t>0 the semigroup of
state dependent branching random walks on Z¢ as constructed in Section 2.2 of [1], Ay = lim; ... HyS; (limit
in the vague topology) is the equilibrium constructed in Proposition 3, Chapter 2 of [1]. For x € Z*, denote
by 67 the shift operator, i.e. for spatial configurations £ let (60%¢), = &,+5. We write a;(x,y) for the transition
probabilities of a-random walk.

The following ergodic theorem is the main result of this paper.
Theorem 1. Let f,g: N%d — R be local functions satisfying the following ‘linear’ growth condition:
3C,,Co > 0and A C 74, |A| < 0o such that f(n),g(n) depend only on (n:)zeca

Then we have for any ¥ > 0

Jim B, [F(€(s)g0°6(s+ )] = [ 7ano [ gany (1.5)
uniformly in z € Z%, in particular

lim Ex, [£(£(0))g(€(1))] = / JdAy / gdAs. (16)
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Hence, starting either from Hy or from Ay, we have

%/0 f(fs)dst:o/f(f)Ag(dﬁ) in Lo (and in Ly). (1.7)

Remark 1. In the situation of a linear test function f, under the weak additional assumption that (note that
(1.1) essentially enforces 6 > 1)

a(0,0) < C(LAt™?)  for some s > 1, C >0, (1.8)

(1.7) can easily be proved to hold a.s. as well, i.e. starting from £(£(0)) € {Hy, Ay} we then have for all x € 7%

1t
;/ &x(s)ds —~ ¥ almost surely. (1.9)
0 —0o0

Remark 2. (1.7) is well known in the classical case o(k) = const. x k corresponding to independently branching
random walks, (see e.g. [5], or the references in [2] after Prop. 2.3), but note that in our scenario, there is no
infinite divisibility, and no explicit calculations with Laplace transforms are feasible. Ergodic theorems are also
well known for many interacting particle systems where the number of possible states per site is finite, cf e.g.
[3]-

In [2], limit theorems for the fluctuations of the occupation time fot &o(s) ds around its mean are studied. For
this, Thm. 1 is required as a building block.

Assuming a;(0,0) ~ cst. x t79 (with § > 1 by (1.1)), we see from the proof of Remark 1 that in the case of
linear f (where an ‘almost explicit’ calculation is feasible) that the error in (1.5) is of the order ', Tt seems
natural to conjecture that this true for more general test functions as well. Presently, we are lacking explicit
bounds on the success probabilities of the couplings employed below in order to give a proof.

In Section 2, we recall some results on state dependent branching random walks, the proof of Thm. 1 is given

in Section 3.

2 Preliminaries

We recall some results from [1] that will be required in the following. A convenient state space for the process
(following Liggett & Spitzer, cf [4]) will be

_ AR —
x={pezi :luk =Y (@) < oo},

where v : Z? — R, is a weight function satisfying >y, a(z,y)vy < M, for some M.

Note that for given initial condition & € X, the process (£ ):>0 can be obtained as a strong solution to the
following system of Poisson-process driven stochastic integral equations:

6@ = o@+ X[ [ 1) 20N dsdn)



where N™Y, x # vy, are independent Poisson processes on [0,00) x N and N**, N*~ 2 € Z? are independent
Poisson processes on [0,00) x N x [0, 1], all independent of &. N®¥ has intensity measure a(z,y)dt ® df, N*+,
N*~ have intensity measure (C, /2)dt ® d{ ® du (dt, du refer to Lebesgue measure, £ is counting measure). See
[1], Section 2.2.

Furthermore, (2.1) can be used to obtain an explicit coupling of two versions &, §~ of the process with different
initial conditions, in which the two coordinates try to take as many steps in unison as possible. Let &g, {to € XxX,
and solve (2.1) for these two initial conditions with the same driving Poisson processes. The pair (&, & )>0 is
then a Markov process on X x X with generator given by (we write ay :=a V 0)

9O = Y alwy){e@ ni@)(FlE, ) - 1(6,)
+(&(x) — €@)) 4 (F(E™Y,€) — F(£,6))
+ (E() - €@+ (F& ) - 1(6.8) ) (22)

+5 3 {(o(e@) A a(€@)) (FEF,E70) + F€™,677) = 2/(6, )
L(FET O+ F(E57,8) = 2£(£,9))
£9)},

)+(f(€7§m7+)+f(£7§m7 _2f
for functions f which are Lipschitz with respect to the norm ||, 4 |€|.,, see [1], Prop. 2 (and note that because
of the linear growth of o guaranteed by (1.3), there is no need to restrict to square-summable configurations).
We write %1 for the configuration € with an additional particle at x, £%~ for the £ with one particle removed
from z, and £%¥ for the configuration in which a particle is moved from z to y. Applying 4 to the functions

fm(fag) =& —§1| we obtain
G 1,(6,€) <Z aly, z) (f,(€.€) — f2(€,6)),

and hence the coupled pair satisfies the estimate (see e.g. [3], Thm. 2.15)

E & (x) — &(@)] < Y af (2, 9)E|éo(2) — o(x)], (2.3)

where al (x,y) are the transition probabilities of a random walk with jump rate matrix a’, the transpose of a
(a” = a by our symmetry assumption).

Observe that strong solutions of (2.1) provide in fact a simultaneous coupling for arbitrarily many initial
conditions, with an analogous expression for the joint generator 4" of an n-tuple of solutions.

Denote the Palm distribution of HyS; with respect to 2 € Z? by ﬂff’t), ie.

[ e RGO = G, [e000(60). (24)

Let us recall the stochastic representation for the Palm distribution given in Section 2.5 of [1] for the case
considered here. Fix T > 0, z € Z%, let o = (at)o<t<r be a cadlag path in 7% with ar = z. One can
interpret the Palm distribution as the configuration seen around an individual ‘sampled randomly from the
current population’ (which is sometimes called ‘ego’, see e.g. [6]). With this in mind, we give a construction
of the ‘rest of the population’ (i.e. the so-called reduced Palm distribution), conditional on the space-time
ancestral line of ego, sampled at z at time 7', being «. In order to do this consider a particle system étT*“,

0 <t < T, starting from Z(EOTO‘) = Hy, which evolves as follows: Particles move independently according to



the kernel a, at time ¢, particles at 2 # a,_ branch critical binary at rate o (&% (z))/&-%(x) per particle as
usual, while at x = oy,

§2(w)
2060 (2) + 1)

1o
- ’ 2
one particle is born at rate 0(5?_’0‘ (z) + 1)%&
208" (x) +1)

one particle dies at rate a(gf_’o‘(x) +1)

More formally, (ftT’o‘)ogtST is an X-valued time inhomogeneous Markov process with generators given by

gl fm) = Y n@alay) (£ - f)

THQ— (25)

+o(n(au—) +1) ﬁj))ﬂ (f(n‘”*") - f(n))

77(0415—) +2 o,
m (f(77 +) - f(n))

(in the sense that
o~ ~ t ~
FE) = 1@ - [ i@y as
0

is a martingale for f Lipschitz). For an interpretation of the last two terms in (2.5) note that there are
gf_’a(at_) + 1 particles at site a;— immediately before a potential jump at time ¢, including the ancestor of

‘ego’. Given that a branching event occurs, it will involve this ancestor with probability 1/(£]"*(c;—) 4 1), and
in this case, it must necessarily be a birth.

One can construct §~T*°‘ using driving Poisson processes analogously to (2.1), we refrain from writing out the
details.

Let (Y;)o<t<7 be a random walk with jump rate matrix a’ (z,y) = a(y, z), starting from Yy = 2, denote the
distribution of the time-reversed path (Y(7_¢)—)o<t<r by m*. We obtain from Proposition 5 in [1] that

AGT) = / L(ED 1 6.) v (dov). (2.6)

In words, the space-time ancestral line of the sampled individual at z is an a”-random walk path, starting from

z backwards in time. Read forwards in time, it is the path « in the construction above.

3 Proofs

Proof of Remark 1. By shift-invariance, it suffices to consider x = 0. Let T; := fot &o(s)ds, and £(£(0)) €
{Hy,Ay}. By Lemma 4 from [1], we have ET; = J¢, and by Lemma 3.3 from [2], we find

Vary, Ty = 2 /0 ' du A " (Em [€0(u)éo(v)] —192)
2 /O du /u " { Iy u(0,0) + /O o arar (0,0)Eng, [o(60(u = 1))] dr}
o(t*?)

t3—6



by (1.8) and (1.3). Similarly, we find Vary, T; = O(t3~%). As § > 1 by assumption, we can proceed as on p. 399
of [5], imitating Etemadi’s proof of the strong law of large numbers, to obtain (1.9). O

Proof of Thm. 1. Let us first treat the case f, g bounded. Furthermore, by passing to f(n) := f(n) — f(0) if
necessary (where 0 denotes the empty configuration), we can assume that

M <Cy Y e (3.1)

T€A
Fix s > 0, 2,z € Z? for the moment. Consider the coupled pair (5(t),§(t))t20 with joint generator 4(?) given
by (2.2), starting from Z((g(O),f(O))) = 7:{1(91’8) ® Hy. Put
et = {77 eXx: ]P’(gu(t) =& (t)Vye A+ 2 | 5(0) = 17) >1-— e}. (3.2)

P refers to the joint probability space on which the coupling is defined and P(-|€(0) = 7) to a regular version
of the conditional distribution given 5(0) (recall that X? is Polish). Because the initial condition is a product
measure, we have Z(£(t)) = Z(£(t)[€(0) = 7) independent of 7. Note that the definition of <% ;. does not
depend on (z, s), and that n € @ ; implies

1S,9(6°n) — / gdhy|

< IStg(9Z77)—/Stg(t?Zn')Hﬁ(dn’)\ +|/Stg(77/)H19(d77/)_/gdA19‘
= [E[9(67E(1)) — 9(97€(1))|€(0) = n]| + }/Stg(n')Hﬂ(dn’) —/gdAﬂ}
< ellgllo+ | [ Sty Hotdn) ~ [ ganol < e(lgll +1) (33)
if ¢ is large enough (where we use [1], Prop. 3 in the last line). By Lemma 2 we have
Tim 3 By, 160 - 6,0 =0 (3.4

yEA+=2
uniformly in z, z, s (observe that a;(z,y) < a.(0,0) to obtain uniformity), hence in particular
Jim inf / P(€y(t) = & (1) Yy € A+ 2| £(0) = n) 7S (dn) = 1, (3.5)
o0 s>0 [y

uniformly in z, z, hence

sup sup?—lff’s) () <e (3.6)

x,2€Z9 520 N

whenever ¢t > to (= to(€)). (Let 0 < ¢ < 1, u a probability measure such that [odp > 1 — €, then 1 — ¢ <
1—e+eu({z:od(x) >1—¢}), hence u({z: ¢(x) > 1—€}) > 1 —¢.) Define

PR LC))
f(77) T ZIGA 771 .

By (3.1), this is a bounded local function (if } 4 7. =0, f(n) takes some arbitrary value). We have

(3.7)

Ere, [F(E())g(0°E(s + )] = En, [F(€()S9(0°6(5)] = 3 Ban, [€(5)F(6(5))Sug (07 (5))]
€A
= 9 F)Segm) HE D (dn) = [ gdhy x 0 F) HS) (dn) + R(s, 1)
;4/ 9(n n /g 9 X ;4/ (dn

/ gdMg x By, [£(E(5))] + R(s. 1),



where the remainder term satisfies
[R(s,1)] < 2¢ || flloo (Ilglloc + 1) for s >0, > to (3.8)

by (3.6). This together with the fact that Eq, [f(£(s))] — [ fdAy as s — oo proves (1.5) in the bounded case.

In the general case, we approximate f and g by

) == (f()) AM)V (=M), grm(n) = (9(n) AM)V (=M), M >0.

and control the error terms using Cauchy-Schwarz, using that sup, , Ey, [£;(t)?] < oo by [1], Lemma 5.

Here are some details: We know from the above that for any M
B, [P (ears(els+ )] = [ furdns [ grrdno| <5
whenever s,t > R (= R(6,M)). In order to control the error introduced by the cut-off we note that by (1.4)

[Ere, 121 (60921605 + 1) = F(EDg(E(s + )]
< En, [(Cl FC ) &(9)(Cr+Co ) (s +1)1(Ci+Co Y &uls) > M)]

zEA €A z€A
B, [(Cr 4+ Ca Y 6al®) (Cr 4+ Ca Y &als +0)1(Cr+Co Y Eals +1) > M)
€A TEA zeA
< (mu]@re e rayan>m])"
zEA €A
1/2
X (EHB [(Cl +Co Z Ea(s+ t))2]>
€A
+ <IE7—(19 [(01 + (s Z fw(s))2]> /
€A
X (E?-w [(Cl +Co Z Ex(s+ t))21(01 +C2 Z (s 1) > M)]>1/27
zEA €A

which converges to 0 as M — oo uniformly in s,¢ > 0 because the family {&, (t)2 cx ezt > 0} is uniformly integrable
under Hy. For this note e.g. that
sup Ex, [{x(t)?’] < oo. (3.9)
x,t

To obtain (3.9), one can either use the comparison result in Thm. 1 of [1] and compare £ with a classical system of
independent critically branching random walks with branching rate function Cs X k, for which global boundedness of all
moments is known, or carry through the program sketched in Remark 5 of [1].

This proves (1.5). (1.6) follows from this by taking s — oo first. Finally, (1.7) is straightforward from (1.5)
resp. (1.6). O

Lemma 1. Forz € Z%, Tt > 0 there is a coupling of 7:(1(91’T)St and HySti¢, i.e. an X2-valued random variable

(nM,n?)) such that £ (™M) = 7:{1(91’T)St, ZL(n?) =HySr4y and

C, [~
VyeZ?: E |77§1) _ 771(/2)| < ai(z,y) + 7/ ay(x,y) du. (3.10)
t

By the assumed transience of a-random walk, the right-hand side converges to 0 as t — oo.

Note that combined with Prop. 3 in [1] this implies in particular ﬂff’T)St = Ay as t — oo, and in fact that
this convergence is uniform in (z,T).



Proof. The idea behind the proof is as follows: between time 0 and time 7', we use the stochastic representation
of H@T) given by (2.6) and couple it with a second process that follows the ‘ordinary’ dynamics, both use the
same initial condition (with distribution Hy). Then we use the standard coupling described by 4(?) between
time T and time T + ¢.

For a given path o = (as)o<s<r with ar = x consider the family of generators ¥,
(Lipschitz) functions f on X2,

Toe(2) , (0 < s <T) acting on

GO d) = Y aley){e@) A @ (FEEY) - 1(68)
+ (€() — E@))+ (F(657,8) - 1(£,))
+ (€(x) = €@)+ (F(6:€Y) = f(€

CFEE (0(€(@) — 0(E(x)), (FE7T,€) + F(€77,8) — 2f(£.€))
+ (0E(@)) — oE(e)) , (F&E) + F(&.E7) ~2/(6.6) }
#fofetan +1) Sl 2 SO (e o) - 1ie.6)
(ol + 1) o2 TN (e g - pie.0)
# (T (et ) S0 2 (6.6 - rie.0)
+{otetan + 1) ool s 1 TEOD (e, 60) - 1ie.8)
+ (o(6as) + )%f(o‘;) ”(5(20‘5)))+(f<5f,s>—f<5,s>)

7(§(0)) £(as) - :
+ (T - olelan) + 1) g2 50 ) (F(6€77) - £(6.9).
(€l + g o), (P66 - £ie.d
One checks readily that on functions f depending only on the first coordinate, 7 @) aets like @I while
on functions depending only on the second coordinate, it acts like the generator ¢ of (S;). Furthermore, for

£2(€,€) 1= |& — &| we have
gg»a,(?)fz(§7g) S Za/(yuz) (fu(fag) - fz(§7g)) + Cal{as}(z)- (311)
Yy

In order to see this note that the ‘motion’ part of gST’O"@) acts like that of 92, and the part refering to
branching events away from «; vanishes. The part refering to branching events at site s obviously vanishes
when z # «, e.g. a straightforward case-by-case analysis (decomposing according to the sign of £, — g}) shows
that it is bounded by C,, the Lipschitz constant of o, when z = .

Now consider the process (fs,és)s«r starting from & = & with Z (&) = Hy, which evolves from time s = 0

T.a,(2)

to time s = T according to the time-inhomogeneous process described by the ¥, The function g(z,s) :=

E |¢4(2) — £4(2)| satisfies g(-,0) = 0 and

9(z8) =D aly.2)(9(y,8) = 9(2,9)) + Col{a,y(2)

Y

85

by (3.11), hence (cf e.g. [3], Thm. 2.15)

T
9(T) = C, / ol (2 a0) ds.
0



Now averaging o with respect to 7% (see the discussion above (2.6)) in this construction and recording the
configuration of the coupled pair at time T, we obtain an (X x X)-valued random variable (n,7) such that

L) =HS", L) = HySp, and

T T
Eln, — 7. <z + C'g// a%,s(z, ag)dsm(da) = 6, + C'g/ asyu(z, ) du (3.12)
0 0

Now plug the pair (n,7) into the coupling provided by ¢(® and let this run for a time interval of length ¢.
Combining (3.12) and (2.3) yields (3.10).

O
Lemma 2. For z € Z¢, T,t > 0 there is a coupling (nV,7®) of 7:(1(91’T)St and HySy such that
C, [
VyeZzd: E |77§1) _ 771(/2)| < ay(z,y) + 7/ ay(x,y) du + r(t), (3.13)
t

where 7(t) 1= sup,>q Ex,s5,0m, ’éo(t) —&(t)] — 0 as t — co. Note that this implies

lim E

; AT g, [|§~z(t) — &) =0 wuniformly in T >0 and z,z € Z°.
—00 9

Proof. This is in principle a variation on Lemma 7 from [1] with the little complication that ﬂff’T) is not
shift-invariant. Still, in view of Lemma 1, ﬂff’T)St is ‘almost’ shift invariant when ¢ is large.

First we check that ~
lim supEx,s,0H, [|§z(t) — §Z(t)|] =0. (3.14)

t—o0 w>0

If this were not the case, we could find €* > 0 and sequences (u,) C Ry, (¢,) C Ry such that ¢, — oo and
Erty 5., @1, |6 (tn) — & (tn)]] > € for all n.

We can find a subsequence (wy ) )r such that w, ) — @ € R, as k — oo. As the function

t = E[€(t) — &(1)]]

is non-increasing for any choice of initial conditions (see [1], p. 27), this implies

liminf By, on, [[€:(1) — &0 > ¢

for any t € R;. On the other hand we obtain from Lemma 3 that

Tim Bre,s, e, [1€:(6) = £(0)]) = Erys,0m, () — &0

(when @ = oo, “HySy” means Ay). Thus if (3.14) failed, we would have lim inf;_, o Ev, 5. 0H, [|§~z (t)—&@)|] >0
in contradiction to Lemma 7 from [1].

The idea of the proof is now to compare three versions of our process: The pair (5(1),5(2)) starts from the
coupling considered in Lemma 1 at time T, so in particular Z(£((0)) = ﬂff’T), ZL(€2(0)) = HyS. B

starts independently from (¢, ¢®) with Z(¢3)(0)) = Hy. The joint dynamics of (1) (2), €3 (¢),£® (1) 5 i
a ‘trivariate’ version of the ‘obvious’ coupling, e.g. realised by simultaneously solving (2.1) with these three initial



conditions. Note that each pair (€@ (t),£U)(t)),. (i # j) evolves according to the pair-coupling generator & ().

Thus we find

t>0

E[|€®(t) — €2 (1)]]
Er,s.0m, [|€:(1) — & (0)]]

C, [ ~
aie,2) + / (2,2 dv + 5up Bre .0, (1.0 ~ €0

IN

by (3.10). This concludes the proof in view of (3.14). O

The last lemma verifies a continuity property of the coupled process with respect to the initial conditions.

Lemma 3. Consider the coupled process (£(),£(t))>0 with generator 9. Let initial conditions [i,, u € X x X
be given and assume that

fn = p as n — oo, where X x X C N(Z%) x N(Z%) is equipped with the vague topology

and furthermore sup,, sup,cza [ |§~gc|2 + |22 dpy, < 00. Then we have for any z € Z4, t > 0
Ep, [|&0) - 0] = B [J&0) - €] asn— o,

Proof. For given finite A C_ Z% and ~5
large n a random element (£(0),£(0),&'(

f((g’(()),f’(())) = p and the event

> 0 we can use Skorohod coupling to find for each sufficiently
0),&'( ) with values in (NV(Z%))* such that £ ((£(0),£(0)) = pn,

= {£:(0) = £,(0),£,(0) = £,(0) Vz € A}

has P(£(A)) > 1 —e. Denote the simultaneous solution of (2.1) with these initial conditions by
(&), &(1), ’(t),{’(t))t>0. This allows to estimate (for n sufficiently large)

By [I6.0) - € 0l] ~B.[lE0 - €0
- [e[é0 - s0l - 180 - ol

< E[J&0 - 0]+ &0 -0
< Y d"EE[E0) — & 0)] + [¢(0) — & 0)]]
< MY Al (2y) + D af (2B [Lecar €, (0) - € (0) — &,(0)]]

yeAe yeEA

< 2Mp Y af(zy) +2vEM,?,
yEA®

where M) :=sup, ,, [ €12 + € pn (dE), Mo := sup, ,, | €12 4 |€]? 1 (d€) < 00, we used (2.3) in the fourth line,
and the Cauchy-Schwarz inequality in the last line. The last line can be made arbitrarily small by choosing A
large, € small. O
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