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Abstract

Taking up to fourth order dispersion effects into account, we show that
fiber resonators become stable for large intensity regime. The range of pump
intensities leading to modulational instability becomes finite and controllable.
Moreover, by computing analytically the thresholds and frequencies of these
instabilities, we demonstrate the existence of a new unstable frequency at the
primary threshold. This frequency exists for arbitrary small but nonzero fourth
order dispersion coefficient. Numerical simulations for a low and flattened
dispersion photonic crystal fiber resonator confirm analytical predictions and
opens the way to experimental implementation.

Instabilities in non-equilibrium systems are drawing considerable attention both
from fundamental as well as from applied point of views |1, 2|. One such instability
gives rise to periodic self-modulations and is referred to as Modulational Instabil-
ity (MI) in temporally dispersive media [3] and Turing instability [4] in spatially
extended systems. In optical fibers, MI results from the interplay between chro-
matic dispersion and the intensity-dependent refractive index. In the usual scalar
free propagation, the phase matching of the underlying four-wave mixing process
requires anomalous dispersion [3]. However, phase matching can also be achieved in
normal dispersion region by considering extra degrees of freedom such as polariza-
tion in birefringent [5] and isotropic [6] fibers, bi-modal fibers |7], working around
the Zero Dispersion Wavelength (ZDW) [8, 9, 10| or inserting the fiber within a
cavity [11|. Scalar MI in free propagation through a single mode optical fiber is
usually described by the Non Linear Schrodinger Equation (NLSE) in which the
propagation constant is expanded in a Taylor series in the frequency domain. It has
been shown that only even order terms contribute to the MI gain and that devel-
opment up to the fourth order must be considered when the pump wavelength is
closed to the ZDW. In this case, scalar MI is possible in normal dispersion region
if the fourth order dispersion term is negative and a second frequency of instability
can be generated if the fourth order dispersion term is positive [8, 9, 10]. To our
knowledge, intra-cavity MI leading to a single frequency has only been studied in
relatively strong dispersion regions where models including up to the second order
dispersion term are relevant to describe its dynamics.

In this letter, we show that it is necessary to take into account up to the fourth
order dispersion term to capture the full MI dynamics of a passive fiber resonator,
especially when proceeding close to the ZDW. To this end, we extend the model
developed by Lugiato-Lefever [12] (LL model) up to the fourth order dispersion term.
We then demonstrate that, however small the fourth order dispersion coefficient
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Figure 1: Experimental setup. BS : Beam Splitter.

is, a second frequency of instability can be observed at the primary threshold of
stationary state destabilization which adds to the single one predicted and observed
up to now [11]. Moreover, we demonstrate that the MI process has a finite domain of
existence delimited by two pump power values, allowing for the stationary state to
restabilize at large powers. We investigate the evolution of the MI frequencies within
the existence domain from their rise up to their disappearance. Finally, in view of
an experimental implementation, we perform numerical simulations for a realistic
experimental configuration with a flattened dispersion photonic crystal fiber and
find excellent agreement with the analytical predictions.

The fiber resonator is schematically depicted in Fig. 1. A continuous wave of power
E? is launched into the cavity by means of a beam splitter, propagates inside the fiber
and experiences dispersion and Kerr effect. At each round trip the light inside the
fiber is coherently superimposed with the input beam. This can be described by the
following boundary conditions E(z = 0, 7+tg) = T'X Eip(7)+ R X E(L, T)exp(—iPy)
and by the following extended NLSE 0,E(z,7) = (—i%20,2 + 20, + %04 +
iy|E|*)E, with tg the round-trip time, @, the linear phase shift, 72 (R?) the in-
tensity mirror transmissivity (reflectivity) and L the cavity length. The electric
field inside the cavity is denoted E. (3234 are the second, third and fourth order
dispersion terms respectively. 7 is the nonlinear coefficient, 2z the longitudinal coor-
dinate and 7 the time in a reference frame moving at the group velocity of the light.
This infinite-dimensional map can be simplified to the following single normalized
equation by applying the mean field approximation:

o _ At i — 50
= = S—(1+iA)p+il|| ¢ Z628712
Py O
+ B +iBig (1)

where t/ = tT2/2tp, 7 = 7(T2/L)"*, ¢ = E\/2yL/T?, S = 2/T (2yL/T*)"” E;
the normalized input field, By = 33T /V9L, By = 8,T%/12L, and A = 2, /T? is
the cavity detuning. We carry out the analytical study in a low dispersive fiber
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Figure 2: (a) Marginal stability curve for the steady state solution against MI.
Black curve for §; # 0 and grey one for 5, = 0.(b) Evolution of the cavity intensity
stationary state I = [¢g|° versus the input intensity P = [S|* (the dashed line
corresponds to the unstable case). v = 10WLkm™!, &y = 1.987, T = 0.35, L =
10m, By = —3 x 1072852 /m, B3 = 0 and B4 = 6.4 x 107°4s* /m,

with a small dispersion slope. Thus, B3 can be neglected. The steady state (SS)
response g of Eq. (1) satisfies Sg = [1 +4(A — |¢bs|*)]bs. This solution is identical
to the one of the LL model leading to a monostable (bistable) regime for A < /3
(> +/3). Its stability with respect to finite frequency perturbations, i.e. of the form
exp(1Q27'+ At") shows that the MI frequencies that can be destabilized at the primary
threshold I,, = |@Z)1m|2 =1 are

—fh £ \/33 +4(A - 2)B,
2B, ’

Q%,U = (2)
and it is immediate to see that two frequencies can be destabilized at the primary
threshold for suitable choice of B, and A. Thus, taking into account (§ expansion
up to the fourth order in Eq. (1) evidences the existence of a second frequency of
instability, which had not yet been reported experimentally nor theoretically when
working in quite strong dispersion regions [11].

This is illustrated by the closed marginal stability curve in Fig. 2(a), where two
destabilization frequencies (€27, and €y) exist at the primary threshold Iy, in the
monostable regime [Fig. 2(b)|. The finite extent of the MI domain is also evidenced
by the lower and upper values of cavity power |w1m|2 =1, = 1 and |w2m|2 = Iy, =

(2Ac5p 4 /AZ;; —3)/3. The lower value fixes the minimum input power required
for the MI process to occur, while the upper one can be tuned as a function of the
physical parameter A.;; = 33/(4B4) + A. The critical value of the frequency at the
upper bifurcation point Iy, is given by Q2 = —3,/2B, and we note that it satisfies
the averaging relation Q2 = Q3 + QF,. This result strongly contrasts with the usual
cavity modulational instability where the instability domain is not bounded as shown



on Fig. 2(a) by the gray lines. So the two main results of this stability analysis are
(i) two instabilities at frequencies Qp and €7 occur simultaneously at the primary
threshold (Iy,,) and (ii) it is possible to restabilize or recover the stationary state
by driving the system to the large intensity regime (I > Io,).
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Figure 3: Evolution of the maximum temporal gains (black and grey continuous
lines) versus (a) the frequency 2 and (b) the output intensity I.

In view of the above analysis, an important question arises: how do the first two
frequencies 2, and Qy evolve and connect to €2, upon increasing the input intensity
P = |S|2? The linear stability analysis can give us some insight on this point
through the evolution of the most unstable frequencies of the SS, as shown in Fig. 3.
at I > 1 the SS undergoes a bifurcation leading to small-amplitude modulations
at frequencies €1y and Q. The two corresponding bands of unstable frequencies
widens with growing I, until it reaches the value I, at Q = Q. |Fig. 3(a)|]. This
signals the merging of the two bands into a single, larger one. This new band of
unstable frequencies is now characterized by the existence of three frequencies with
positive gain, as can be seen from Fig. 4(b). When further increasing I, the two
most unstable lateral frequencies merge into the critical one . at [ = [I. This
point indicates an outstanding feature leading to an exchange of the maximum gain
between Qr (Qy) and Q. |Fig. 3(b)|. Finally, one then can expect from Fig. 3 that
above this power value (I > I.), the dynamics is dominated by the frequency €.
until the upper limit of the instability domain is reached (I = Is,,).

These results should be experimentally observable using a fiber whose dispersion
curve is low and as flat as possible at the working wavelength (33 ~ 0). We nu-
merically checked our predictions by integrating the extended NLSE with bounded
conditions by using the split step Fourier method with an input continuous wave.
We included realistic third and fourth dispersion order term values in our simula-
tions (see caption of Fig. 2). Indeed, we did not take exactly $3 = 0 but a very
low value (Dg = 0.001 ps/nm?/km i.e., B3 = 2.107*2s3/m) [13] to match with re-
alistic configuration. We have checked in all our simulations that the final state
was reached (~~400 round trips). We show on Fig. 4(a) that two frequencies (0.98
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Figure 4: (a) Evolution of the frequency of instability versus the pump power with
same parameters listed in Fig. 2 excepted for 83 = 2 x 107*2s% /m. Circles numerical
simulations and full lines analytical results. (b), (¢) and (d) power spectra for 30
mW, 400 mW and 900 mW of pump power respectively.

THz and 3.63 THz) are destabilized (circles) just above the first pump threshold
(20 mW) [Fig. 4(b)] in excellent agreement with analytical results (1.1 THz and
3.6 THz). By increasing the pump power they merge together leading to a single
frequency of instability arround 300 mW [Fig. 4(c¢)|. This unique frequency then
disappears just above the second pump threshold corresponding to a recovering of
the stationary state of the cavity. Thus, the two main predictions of our analytical
study are numerically verified. This linear stability analysis provides an excellent
insight of the frequency evolution scenario within the instability domain except for
50mW < I < 300mW [Fig. 4(a)]. In this last region only a nonlinear analysis as
in [14, 15| will figure out the dynamical evolution of the system. This work is in
progress.

To summarize, we presented an analytical and numerical study of a coherently driven
photonic crystal fiber resonator. We showed that it is necessary to take into account
dispersion up to the fourth order to capture the full temporal dynamics of the
system. Namely, there exist two frequencies at the primary MI threshold, and their
domain of existence is finite or bounded such that the stationary state is recovered
for high enough intensity pumping. In addition, numerical simulations, carried out
for realistic experimental parameters, provide the evolution of these instabilities with
the input field. They confirmed our analytical results and constitute a step towards
a future experimental demonstration.
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