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Abstra
tTaking up to fourth order dispersion e�e
ts into a

ount, we show that�ber resonators be
ome stable for large intensity regime. The range of pumpintensities leading to modulational instability be
omes �nite and 
ontrollable.Moreover, by 
omputing analyti
ally the thresholds and frequen
ies of theseinstabilities, we demonstrate the existen
e of a new unstable frequen
y at theprimary threshold. This frequen
y exists for arbitrary small but nonzero fourthorder dispersion 
oe�
ient. Numeri
al simulations for a low and �atteneddispersion photoni
 
rystal �ber resonator 
on�rm analyti
al predi
tions andopens the way to experimental implementation.Instabilities in non-equilibrium systems are drawing 
onsiderable attention bothfrom fundamental as well as from applied point of views [1, 2℄. One su
h instabilitygives rise to periodi
 self-modulations and is referred to as Modulational Instabil-ity (MI) in temporally dispersive media [3℄ and Turing instability [4℄ in spatiallyextended systems. In opti
al �bers, MI results from the interplay between 
hro-mati
 dispersion and the intensity-dependent refra
tive index. In the usual s
alarfree propagation, the phase mat
hing of the underlying four-wave mixing pro
essrequires anomalous dispersion [3℄. However, phase mat
hing 
an also be a
hieved innormal dispersion region by 
onsidering extra degrees of freedom su
h as polariza-tion in birefringent [5℄ and isotropi
 [6℄ �bers, bi-modal �bers [7℄, working aroundthe Zero Dispersion Wavelength (ZDW) [8, 9, 10℄ or inserting the �ber within a
avity [11℄. S
alar MI in free propagation through a single mode opti
al �ber isusually des
ribed by the Non Linear S
hrödinger Equation (NLSE) in whi
h thepropagation 
onstant is expanded in a Taylor series in the frequen
y domain. It hasbeen shown that only even order terms 
ontribute to the MI gain and that devel-opment up to the fourth order must be 
onsidered when the pump wavelength is
losed to the ZDW. In this 
ase, s
alar MI is possible in normal dispersion regionif the fourth order dispersion term is negative and a se
ond frequen
y of instability
an be generated if the fourth order dispersion term is positive [8, 9, 10℄. To ourknowledge, intra-
avity MI leading to a single frequen
y has only been studied inrelatively strong dispersion regions where models in
luding up to the se
ond orderdispersion term are relevant to des
ribe its dynami
s.In this letter, we show that it is ne
essary to take into a

ount up to the fourthorder dispersion term to 
apture the full MI dynami
s of a passive �ber resonator,espe
ially when pro
eeding 
lose to the ZDW. To this end, we extend the modeldeveloped by Lugiato-Lefever [12℄ (LL model) up to the fourth order dispersion term.We then demonstrate that, however small the fourth order dispersion 
oe�
ient1
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Figure 1: Experimental setup. BS : Beam Splitter.is, a se
ond frequen
y of instability 
an be observed at the primary threshold ofstationary state destabilization whi
h adds to the single one predi
ted and observedup to now [11℄. Moreover, we demonstrate that the MI pro
ess has a �nite domain ofexisten
e delimited by two pump power values, allowing for the stationary state torestabilize at large powers. We investigate the evolution of the MI frequen
ies withinthe existen
e domain from their rise up to their disappearan
e. Finally, in view ofan experimental implementation, we perform numeri
al simulations for a realisti
experimental 
on�guration with a �attened dispersion photoni
 
rystal �ber and�nd ex
ellent agreement with the analyti
al predi
tions.The �ber resonator is s
hemati
ally depi
ted in Fig. 1. A 
ontinuous wave of power
E2

i is laun
hed into the 
avity by means of a beam splitter, propagates inside the �berand experien
es dispersion and Kerr e�e
t. At ea
h round trip the light inside the�ber is 
oherently superimposed with the input beam. This 
an be des
ribed by thefollowing boundary 
onditions E(z = 0, τ+tR) = T×Ein(τ)+R×E(L, τ)exp(−iΦ0)and by the following extended NLSE ∂zE(z, τ) = (−iβ2

2
∂τ2 + β3

6
∂τ3 + iβ4

24
∂τ4 +

iγ|E|2)E, with tR the round-trip time, Φ0 the linear phase shift, T 2 (R2) the in-tensity mirror transmissivity (re�e
tivity) and L the 
avity length. The ele
tri
�eld inside the 
avity is denoted E. β2,3,4 are the se
ond, third and fourth orderdispersion terms respe
tively. γ is the nonlinear 
oe�
ient, z the longitudinal 
oor-dinate and τ the time in a referen
e frame moving at the group velo
ity of the light.This in�nite-dimensional map 
an be simpli�ed to the following single normalizedequation by applying the mean �eld approximation:
∂ψ

∂t′
= S − (1 + i∆)ψ + i |ψ|2 ψ − iβ2

∂2ψ

∂τ ′2

+B3

∂3ψ

∂τ ′3
+ iB4

∂4ψ

∂τ ′4
(1)where t′ = tT 2/2tR, τ ′ = τ (T 2/L)

1/2, ψ = E
√

2γL/T 2, S = 2/T (2γL/T 2)
1/2

Eithe normalized input �eld, B3 = β3T/
√

9L, B4 = β4T
2/12L, and ∆ = 2Φ0/T

2 isthe 
avity detuning. We 
arry out the analyti
al study in a low dispersive �ber2
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Figure 2: (a) Marginal stability 
urve for the steady state solution against MI.Bla
k 
urve for β4 6= 0 and grey one for β4 = 0.(b) Evolution of the 
avity intensitystationary state I = |ψS |2 versus the input intensity P = |S|2 (the dashed line
orresponds to the unstable 
ase). γ = 10W−1.km−1, Φ0 = 1.98π, T = 0.35, L =
10m, β2 = −3 × 10−28s2/m, β3 = 0 and β4 = 6.4 × 10−54s4/m.with a small dispersion slope. Thus, B3 
an be negle
ted. The steady state (SS)response ψS of Eq. (1) satis�es SS = [1 + i(∆− |ψS|2)]ψS. This solution is identi
alto the one of the LL model leading to a monostable (bistable) regime for ∆ <

√
3(> √

3). Its stability with respe
t to �nite frequen
y perturbations, i.e. of the form
exp(iΩτ ′+λt′) shows that the MI frequen
ies that 
an be destabilized at the primarythreshold I1m = |ψ1m|2 = 1 are

Ω2

L,U =
−β2 ±

√

β2
2 + 4(∆ − 2)B4

2B4

, (2)and it is immediate to see that two frequen
ies 
an be destabilized at the primarythreshold for suitable 
hoi
e of β2 and ∆. Thus, taking into a

ount β expansionup to the fourth order in Eq. (1) eviden
es the existen
e of a se
ond frequen
y ofinstability, whi
h had not yet been reported experimentally nor theoreti
ally whenworking in quite strong dispersion regions [11℄.This is illustrated by the 
losed marginal stability 
urve in Fig. 2(a), where twodestabilization frequen
ies (ΩL and ΩU ) exist at the primary threshold I1m in themonostable regime [Fig. 2(b)℄. The �nite extent of the MI domain is also eviden
edby the lower and upper values of 
avity power |ψ1m|2 = I1m = 1 and |ψ2m|2 = I2m =

(2∆eff +
√

∆2

eff − 3)/3. The lower value �xes the minimum input power requiredfor the MI pro
ess to o

ur, while the upper one 
an be tuned as a fun
tion of thephysi
al parameter ∆eff = β2

2
/(4B4)+∆. The 
riti
al value of the frequen
y at theupper bifur
ation point I2m is given by Ω2

c = −β2/2B4 and we note that it satis�esthe averaging relation Ω2

c = Ω2

L+ Ω2

U . This result strongly 
ontrasts with the usual
avity modulational instability where the instability domain is not bounded as shown3



on Fig. 2(a) by the gray lines. So the two main results of this stability analysis are(i) two instabilities at frequen
ies ΩU and ΩL o

ur simultaneously at the primarythreshold (I1m) and (ii) it is possible to restabilize or re
over the stationary stateby driving the system to the large intensity regime (I > I2m).
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Figure 3: Evolution of the maximum temporal gains (bla
k and grey 
ontinuouslines) versus (a) the frequen
y Ω and (b) the output intensity I.In view of the above analysis, an important question arises: how do the �rst twofrequen
ies ΩL and ΩU evolve and 
onne
t to Ωc upon in
reasing the input intensity
P = |S|2? The linear stability analysis 
an give us some insight on this pointthrough the evolution of the most unstable frequen
ies of the SS, as shown in Fig. 3.at I ≥ 1 the SS undergoes a bifur
ation leading to small-amplitude modulationsat frequen
ies ΩL and ΩU . The two 
orresponding bands of unstable frequen
ieswidens with growing I, until it rea
hes the value Ic1 at Ω = Ωc [Fig. 3(a)℄. Thissignals the merging of the two bands into a single, larger one. This new band ofunstable frequen
ies is now 
hara
terized by the existen
e of three frequen
ies withpositive gain, as 
an be seen from Fig. 4(b). When further in
reasing I, the twomost unstable lateral frequen
ies merge into the 
riti
al one Ωc at I = Ic2. Thispoint indi
ates an outstanding feature leading to an ex
hange of the maximum gainbetween ΩL (ΩU) and Ωc [Fig. 3(b)℄. Finally, one then 
an expe
t from Fig. 3 thatabove this power value (I > Ic2), the dynami
s is dominated by the frequen
y Ωcuntil the upper limit of the instability domain is rea
hed (I = I2m).These results should be experimentally observable using a �ber whose dispersion
urve is low and as �at as possible at the working wavelength (β3 ≈ 0). We nu-meri
ally 
he
ked our predi
tions by integrating the extended NLSE with bounded
onditions by using the split step Fourier method with an input 
ontinuous wave.We in
luded realisti
 third and fourth dispersion order term values in our simula-tions (see 
aption of Fig. 2). Indeed, we did not take exa
tly β3 = 0 but a verylow value (DS = 0.001 ps/nm2/km i.e., β3 = 2.10−42s3/m) [13℄ to mat
h with re-alisti
 
on�guration. We have 
he
ked in all our simulations that the �nal statewas rea
hed (≃∼400 round trips). We show on Fig. 4(a) that two frequen
ies (0.984



Figure 4: (a) Evolution of the frequen
y of instability versus the pump power withsame parameters listed in Fig. 2 ex
epted for β3 = 2×10−42s3/m. Cir
les numeri
alsimulations and full lines analyti
al results. (b), (
) and (d) power spe
tra for 30mW, 400 mW and 900 mW of pump power respe
tively.THz and 3.63 THz) are destabilized (
ir
les) just above the �rst pump threshold(20 mW) [Fig. 4(b)℄ in ex
ellent agreement with analyti
al results (1.1 THz and3.6 THz). By in
reasing the pump power they merge together leading to a singlefrequen
y of instability arround 300 mW [Fig. 4(
)℄. This unique frequen
y thendisappears just above the se
ond pump threshold 
orresponding to a re
overing ofthe stationary state of the 
avity. Thus, the two main predi
tions of our analyti
alstudy are numeri
ally veri�ed. This linear stability analysis provides an ex
ellentinsight of the frequen
y evolution s
enario within the instability domain ex
ept for
50 mW < I < 300 mW [Fig. 4(a)℄. In this last region only a nonlinear analysis asin [14, 15℄ will �gure out the dynami
al evolution of the system. This work is inprogress.To summarize, we presented an analyti
al and numeri
al study of a 
oherently drivenphotoni
 
rystal �ber resonator. We showed that it is ne
essary to take into a

ountdispersion up to the fourth order to 
apture the full temporal dynami
s of thesystem. Namely, there exist two frequen
ies at the primary MI threshold, and theirdomain of existen
e is �nite or bounded su
h that the stationary state is re
overedfor high enough intensity pumping. In addition, numeri
al simulations, 
arried outfor realisti
 experimental parameters, provide the evolution of these instabilities withthe input �eld. They 
on�rmed our analyti
al results and 
onstitute a step towardsa future experimental demonstration.M.T and G.K. re
eived support from the Fonds National de la Re
her
he S
ienti�que(Belgium). This work was also partially supported by the Interuniversity Attra
tionPole program of the Belgian government. The IRCICA and CERLA are supported5
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