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FLOW AND REACTIVE TRANSPORT IN POROUS MEDIA 
INDUCED BY WELL INJECTION: SIMILARITY SOLUTION 

C.J. VAN DUIJN* AND PETER KNABNER** 

1. Introduction. 
Many situations arise in which hazardous chemicals, introduced into the subsur-

face, affect the quality of our drinking water supplies. Therefore it is of import-
ance to understand and estimate .the movement of such chemicals dissolved in the 
groundwater. 

In this paper we consider the problem where chemicals are being injected into the 
soil by localized sources. Such a source can be a long, thin pipe buried into the soil, 
leading for homogeneous soils to a description in terms of two space dimensions, 
or some small localized source in the three dimensional space. By considering the 
appropriate half-space problem, also situations describing localized surface injection 
can be considered, see Figure 1. However by reflecting, we shall always select the 
domain 

(1.1) Oe := {x E lRN: lxl > c}, 

for N = 2 and N = 3 to model the porous medium, e.g. the soil or aquifer. Here 
x[m] is a point in space and 80e = {x E IR.N_: lxl = c} models the surface of the 
well, i.e. the source with radius c > 0. 

I 

"'""'~""'' » 

Interior injection Surface injection 

FIGURE 1. INJECTION OF CONTAMINANT INTO THE SOIL (N = 2). 

*Delft University of Technology, Department of Mathematics, P.O. Box 5031, NL 2600 GA Delft, 
NETHERLANDS. 
**Institute for Applied Analysis and Stochastics, Hausvogteiplatz 5-7, D-0-1086 Berlin, 
GERMANY. 

1 



The water flow regime is characterized by the water flux vector q[ m / s] and the 
water content E>[m3 /m3 ] satisfying the conservation equation . 

(1.2) 

where t[s] denotes time. 
The chemicals under discussion, such as organic herbicides or heavy metals, 

undergo various reactions. Adsorption to the solid soil particles as a retention/ 
release reaction often is the most important factor with respect to the mobility of 
the chemical. Taking adsorption into account, the mass balance equation reads 

(1.3) 8t(8C + pS) + \J · (Cq - 8D\JC) = 0 for x E Oe, t > 0. 

Here C[mol /m3 ] denotes the concentration of dissolved chemical (per unit volume 
of fluid), S[mol /kg] the concentration of adsorbed chemical (per unit mass of porous 
skeleton), p[kg/m3] is the bulk density of the soil and D[m2 /s] a matrix, the sum 
of the molecular diffusion and mechanical dispersion (see e.g. Bear [B]). 

Often the adsorption reaction is fast compared to the water flow, such that a 
quasi- stationary approach is feasible, describing the reaction to be in equilibrium, 
i.e. 

(1.4) 

where 1/;, called the adsorption isotherm, can be derived from laboratory batch 
experiments. Typical examples of isotherms are (see e.g. Freeze and Cherry [FC]): 

1/;(C) = k1CP,k1 >0,0<p<1 (Freundlich), 
(1.5) k2C . 

1/;(C) = k C'k2,ka > 0 (Langmmr). 
1 + 3 

The example of the Freundlich isotherm shows that (1.3) is not only a nonlinear 
diffusion-convection equation in general, but may even be degenerate, since 'lj; need 
not be differentiable at C = 0. We will include these cases in our subsequent 
analysis. 

Due to the injection of water at 80e the normal mass flux is given as a convective 
flux with the concentration Ce of the chemical dissolved in the injected water, i.e. 

(1.6) (Cq- E>D\Jc) ·V = Ceq ·V for x E ane, t > 0, 

where vis the unit outward normal of Oe. Here v = -ex, with ex := x/lxl being 
the unit vector in radial direction. 

Equations (1.3), (1.4), (1.6) have to supplemented with an initial condition 

(1. 7) C(·, 0) =Co in Oe 

Throughout this paper we shall consider Ce and Co to be constant. The description 
of a contamination event leads to the property 

(1.8) 
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One could also think of the reverse case 

(1.9) 

corresponding e.g. to a remediation event by flushing with clean water. As the 
analysis of both cases is substantially different, we will restrict here to (1.8) and 
postpone the investigation of (1.9). 

Our concern is a detailed analysis of the concentration profiles in the vicinity 
of the well. To this end we assume some further simplifications. We consider 
the porous medium as homogeneous and either saturated or the water flow to be 
stationary. This leads to 

(1.10) p > 0, e > 0 are constants ' 

and thus from (1.2) 

(1.11) V · q = 0 for x E Oe, t > 0. 

If we assume the normal water flux at the well surface ant: to be uniform with a 
prescribed total rate Q[mN /s], possibly depending on time, then 

(1.12) Q(t) 
q(x, t) = N 1 ex, 

WNr -

where r = lxl is the radial coordinate and WN the surface area of the unit ball in 
RN, i.e. WN = 2(N - l)7r. 

We are in particular interested in the dynamics near the well for small well radius 
E:. The conventional dispersion theories, relating D to q, would lead to unbounded 
dispersion coefficients for E: -t 0 (cf. Bear [BJ). On the other hand we consider a 
homogeneous medium and thus expect that the dispersion and molecular diffusion 
coefficients are of the same order of magnitude. We describe this situation by 
assummg 

(1.13) D > 0 is scalar and constant . 

We non-dimensionalize the dependent variables in the following way: Set 

(1.14) 
C-Co 

u: = oC oC := Ce - Co, 
p 

/3(u): = u + 880 (1/J(oCu +Co) - 'ljJ(Co)). 

Then u = u( x, t) satisfies 

(1.15) I 8tf3(u) + V · (u 1 :z:~1t2 1 ex -D\Ju) = 0 for x E O.e,t > 0, 

-D\Ju · v = JtC~)1 (u -1) for x E 80e, t > 0, 
u(x, 0) = 0 for x E nE. 
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Here 

(1.16) 

Due to the radial symmetric flow field and the boundary conditions, we expect u 
also to be radial symmetric and to satisfy 

{ 
8tf3(u) + ri_1 Br(A(t)u - DrN-lBru) = 0 for r > e, t > 0, 

(FE) D8ru(e, t) = E1,(~)1 (u(e, t) - 1) fort> 0, 
u(r,O) = 0 for r > e. 

(1.17) 

To emphasize the role of e we denote its solutions by uE = uE(r, t). With respect 
to /3 we assume 

H13 l : /3 E C00 (0, oo) n C([O, oo )); 
H112: /3(0) = 0,/31(u) > 0 and /3 11 (u):::; 0 for u > 0. 

These properties are in particular implied when using examples (1.5) for 'if;. 
To study Problem (FE) for small well radius e, it is reasonable to consider the 

limit e --+ 0. We conjecture the convergence, in a sense to be specified, of the 
solutions uE to the solution u = u( r, t) of 

(1.18) 
_ { 8t/3(u) + ri-1 Br(A(t)u - DrN- 1 8ru) = 0 

(Po) u(O, t) = 1 for t > 0, 
u(r,O) = 0 for r > 0. 

for r > 0, t > 0, 

This will be made rigorous, including rates of convergence, in a subsequent paper 
for two special cases of injection rates Q(t), namely those for which the solution of 
(Fo) exists in the form of a self-similar solution, i.e. only depending on the variable 
17 := rta with 

(1.19) u(r, t) = f(17). 

Inserting f into the differential equation and comparing terms, we see that for a 
the only possible choice is a = -1 /2 and for the injection rate 

(1.20) 

for some Qi > 0. 
The function f = f( 17 ), 17 = r /t 112 then satisfies the boundary value problem 

(1.21) { ±_'T/N {/3(!)} 1 + (D17N-l r - af)i = 0 
(SD) 2 

f(O) = 1 and f(oo) = 0, 

where / = 811 and 

(1.22) 
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To study the existence of solutions of (SD) and their properties is the purpose 
of this paper. In particular to investigate the limiting behaviour of the solution 
profiles for D ---t 0 we use the form (SD) and also for the outline of a numerical 
algorithm for the approximation of f. In those cases, where we consider a fixed 
dispersion coefficient D, we prefer a fully non-dimensional form for the boundary 
value problem. We use tD[m2 ] instead oft. Then in (1.15), D is substituted by 1 
and A(t) by >.tN/2 - 1 , where>. is a non-dimensional parameter given by 

(1.23) 

Problems (Pe) and (Po) and then substituted by 

{ 
8tf3(ue) + riw 1 Or(>.tCN/2 )-lUe - TN-lOrue) = 0 for T > c, t > 0, 

(1.24) (Pe) OrUe(E, t) = ei'w 1 tCN/2)-l(ue(c, t) - 1) fort> 0, 
ue(r.,O) = 0 for r > 0 . 

and by (P0 ), consisting of the first and third equation and the boundary condition 
u(O, t) = 1 for t > 0. Analogously the equation for the self-similar solution now 
reads 

(1.25) 
(S){ ~17N{f3(f)}' + (17N-lj1 - >.J)' = 0 

f(O) = 1 and J(oo) = 0. 
for 0 < 77 < oo, 

The outline of the sections is as follows: In Section 2 the unique existence of a 
solution of Problem (S) and characteristic properties are investigated for N = 2. 
The existence proof uses a shooting argument (for a transformed equation), which is 
also the basis of the numerical algorithm described in Section 5. For the behaviour 
near 77 = 0 the value of the parameter >. turns out to be crucial. The behaviour 
near 77 = oo is determined by the singular character of the reaction, leading to 
sharp fonts exactly in the case 1//3 E L 1 (0, 8) for some 8 > 0. Analogous results are 
sketched in Section 4 for N = 3. Section 3 investigates the hyperbolic limit D ---t 0 
for the formulation of Problem (SD). Finally Section 5 deals with an numerical 
algorithm for (SD) and some examples. 
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2. The self-similar solution. 
In this section we study the existence, uniqueness and qualitative properties 

of solutions of the boundary value problem (S). Except for some introductory 
observations, the cases N = 2 and N = 3 are treated separately. However only for 
N = 2 the details of the proofs are given. The results for N = 3 are summarized 
in Section 4. 

We start with the definition of a solution. For this we introduce the negative 
flux function 

(2.1) 

Definition 2.1. A function f: [O, oo)---* [O, 1] is called a solution of Problem (S) 
if 

(i) F, j3(f) are absolutely continuous on [O, oo ); 
(ii) 

(2.2) F' + ~77N {/3(!)} 1 = 0 a.e. on (0, oo) 

(iii) 

(2.3) f(O) = 1 and f(oo) = 0. 

From this definition we deduce 

Proposition 2.2. Let f be a solution of Problem (S) and let P = {17 > 0: f(77) > 
O}. Then 

(i) f E C=(P); 
(ii) f' < 0 on P; 

(iii) F ( 77) ---* 0 as 77 ---* oo. 

Proof. (i) The continuity of F and f imply f E C1 ((0, oo )) and P open. Further, 
the boundary condition f(O) = 1 gives that P is non-empty. Thus each point 
770 E P has a neighborhood N C P such that f is strictly positive on N. This 
implies j3(f) E C1(N) and, from equation (2.2), also F E C1(N). Using this in 
(2.1) results in f E C 2 (N). Continuing this process leads to the desired result. 
(ii) This follows from a local uniqueness argument as in Atkinson & Peletier [APl, 
AP2]. 
(iii) Let f(77) > 0 for all 77 > 0. Then the monotonicity off, together with (2.1) 
and (2.2), yields 

F(77) < 0 and F 1(77) > 0 for all 77 > 0. 

Hence 

(2.4) lim F(77) = F= ~ 0 (exists) . 
11-+= 
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We show that F 00 < 0 leads to a contradiction. Expression (2.1) gives 

(2.5) 

For N = 2, this contradicts directly the boundary condition f( 1XJ) = 0. For N = 3 
we use (2.5) in equation (2.2) to find 

Now F00 < 0 contradicts the asymptotic behaviour (2.4). D 

The monotonicity of f means that P consists of a single interval of the form 

P = (0, L) with L:::; IX). 

When L = IXJ, we are dealing with a solution satisfying 

f(71) > 0 and J'(71) < 0 for all T/ > 0, 

and when L < 1XJ (possibly), we have a solution of the form 

!(11) > 0 and J'(77) < 0 for 0 < T/ < L, 
f(L) = f'(L) = 0, 
f(71)=0 for 71>L. 

Whether L < oo or L = oo occurs, depends on the properties of the nonlinear term 
fl(!) near f = 0. We will investigate thi~ in the next section. Another point that 
requires attention concerns the behaviour of the solution near the origin, because . 
there the equation has a singularity. We consider in detail the case N = 2. 
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2.1 Structure of solution. 
Throughout this section we suppose that f is a solution of Problem ( S) for 

N = 2. With respect to the behaviour near 1J = 0 we have 

Proposition 2.3. lim7J1->.f'(TJ) =-A (exists with 0 <A< oo). 
11lO 

Proof. On the interval (0, L) we may write the differential equation as 

f 11 A - 1 1 I - = - - -TJf3 (f(TJ)). 
f' 1J 2 

Integrating this expression gives 

'12 
-~ J s{3 1(f(s))ds 

TJi->.J'(TJ2) = TJi->.J'(TJ1)e .,, 1 for 0<1}1<1}2 < L, 

which implies the existence of the limit (fix 172 > 0 and let 1}1 l 0). D 

Before we consider· the behaviour of the solution near 17 = L, we first give the. 
necessary and sufficient condition for which L is finite; see also van Duijn & Knabner 
[vDKl, vDK2] where similar questions for travelling waves were considered. 

Proposition 2.4. L < oo {:} 1/ (3 E L1 (0, 8) for some 8 > 0. 

Proof. Suppose 1/ (3 E L1 (0, 8) and L = oo. Integrating equation (2.2) from 17 > 0 
to oo gives 

<X> 

11!1(17)- >.f(17) = ~ j s2 {,B(f(s))}'ds. 
11 

Using the monotonicity of (3(!(·)) we estimate 

or 

(2.6) !'(11) 1 !(11) 1 
- (3(!(17)) > 217 - (3(!(11)) ~ 

for every 17 > 0. Now fix T/o > 0. Integrating (2.6) from T/o to 1J > T/o yields 

!(110) 11 J 1 1 2 2 J f(s) 
,B(s) ds > 4(11 -110) - s,B(f(s)) ds. 

!(11) 110 

Since (3 is concave we have 

!(110) J 1 1( 2 2) !(110) ( I ) ,B(s) ds > 4 1J -170 - ,B(f(1Jo)) ln 1J 1}o . 
!( 11) 
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Letting 17 --t oo, contradicts the integrability of 1 //3. Next suppose L < oo and 
1//3 ~ L1 (0, 8). Now we integrate equation (2.2) from some 0 < 1J < L to L and 
obtain 

L 

(2.7) T/!1(11) - >..f(17) = ~ j s 2 {/3(f(s))} 1 ds. 
11 

In this expression we estimate for every 0 < 17 < L 

or 

(2.8) f'(T!) 1 L 2 f(1J) 
f3(!(1J)) < 2-;;J - ).. f3(!(1J)). 

Now fix 0 < T/o < L. Integrating (2.8) from T/o to T/o < T/ < L yields 

!(110) . J 1 1 2 
/3(s) ds < 2L ln(1J/T/o). 

!(11) 

Letting 17 / L in this expression, contradicts the non-integrability of 1//3. D 

To describe the behaviour of f ( 17) near 17 = L < oo we introduce the function 

f 

it>(!) = j /3~s) ds. 
0 

Then we have 

Proposition 2.5. lim{if>(f(1J))}' = -L/2. 
11iL 

Proof. From (2. 7) we obtain for every 0 < 17 < L 

L 

1Jf'(17) - >..f(1J) = -~T/2/3(/(1J)) - j sf3(f(s))ds, 
11 

or 
L 

t 1 /( T/) 1 J {if>(!( 1J))} + 2T/ = ).. 1Jf3(!( 11 )) - 11/3(!( T/)) s/3(!( s) )ds. 
11 

This equality implies 

lim {if>(f( ))}' - -~ ).. 
11iL T/ - 2L + L/3'(0+)" 
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The concavity of (3 gives (3 1(0+) ::; oo. But (3'(0+) < oo implies 1//3 ¢:_ L1 (0, 5). 
Hence (3 1(0+) = oo, which yields the result. D 

Example 2. 6. When considering a Freundlich isotherm we have, see also (1.5), 

,B(f) = f + K JP with K > 0 and 0 < p < 1. 

Clearly 1/ (3 E L 1 (0, 5). For the behaviour of the solution near L we find from 

that 

1 u1-p)'(ry) 
1 - p 11-P(ry) + K 

lim(f1-P)'(ry) = -~(1 - p)KL. 
11iL 2 

In case of a Langmuir isotherm we have 

Hence ,B'(o+) < oo and consequently L = oo. D 

2.2 Existence, uniqueness and monotonicity. 

for 0 < T/ < L 

In view of the behaviour of the solution near T/ = 0 we introduce here the 
transformation 

1 
s = -ry>- and g(s) = f(ry). 

,\ 

Then by Proposition 2.3, g is differentiable up to s = 0. Using this we study for g 
the initial value problem 

(2.9) (IV P){ g" + C(-\)st__: 1{(3(g)}' = 0 s > 0, 
g(O) = l,g'(O) =-A, 

where C ( ,\) = ~ ,\ f-I. For a given A > 0, we denote the solution by g( s; A). The 
object here is to show that there exists a unique A* > 0 such that either g( A*; s) > 0 
for alls;:::: 0 with g(A*;oo) = 0 (if L = oo), or g(A*;s) > 0 for 0::; s < L* with 
g(A*;L*) = g'(A*,L*) = 0 (if L < oo). Here L* = -!:L>-. Extending g by zero in 
the latter case, it is then easily verified that the function 

defines a solut~on in the sense of Definition 2.1. 
To prove local existence for Problem (IV P) we first integrate (2.9) to obtain the 

integral representation 

(2.10) g(s) =I -Ai exp {-C(A) l tf-1 f3'(g(t))dt} dz=: Tg(s). 

10 



Then for 8 > 0, sufficiently small (depending on A), the operator T maps the set 
X = {u E C([O, 8]) : ~ :::; u:::; 1} into itself and is a contraction. Consequently for 
any A > 0, equation (2.10) has a unique solution 9(A; ·) EX. Then one shows that 
in fact 9(A; ·) E 0 1 ([0, 8]) n c=((o, 8)) and that on (0, 8), 9 satisfies equation (2.9) 
with 9 1 (A; ·) < 0 and 9 11 (A; ·) > 0. We can continue this solution for larger values 
of s as long as 9 remains positive. If the solution can be continued for all s > 0, 
then the monotonicity implies the existence of 

. (2.11) lim 9(A; s) =: 9(A; oo) E (0, 1) . 
S-+(X) 

On the other hand, for A large, the solution may exist only on a finite interval 
(0, LA) where 

(2.12) 9(A; LA) = 0 and g'(A; LA)< 0. 

Let 
s+ ={A> 0: (2.11) holds } 

and 
s-:- ={A> 0 : (2.12) holds }. 

Then 

Lemma 2.7. The sets s+ ands- are non-empty, open and connected such that 
inf s+ = 0 and sups- = 00. 

Proof. We first show that solutions 9(A; ·) of Problem (IV P) vary monotonically 
with the shooting parameter A. Let 0 < Ai < A 2 < oo and let 9i = 9( Ai; ·) for 
i = 1, 2. Clearly 91 > 92 in a right neighborhood of s = 0. Now suppose there 
exists 8 > 0 such that 91 > 92 on (0, 8) and 91(8) = 92(8). To reach a contradiction, 
we subtract the equations for 91 and 92 , multiply the result by s and integrate form 
s = 0 to s = 8. Then 

s 
8(91 - 92)'(8) - ~C(,\) j st-1{,8(91 ) - ,8(92)}ds. 

0 

This is not possible because both terms have opposite sign. Hence if A* E s+, 
then any A < A* belongs to s+ and clearly inf s+ = 0. We construct a strictly 
positive lower bound on [O, oo) to show that s+ is non-empty. This bound follows 
from (2.10) in which we use the observation that ,81(9(t)) > ,B'(l) fort> 0. Then 

s 

9(s) > 1 - A j exp {-~C(.\),B 1 (l)zt} dz, 
0 

from which we deduce that 
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where r denotes the gamma function. 
Next let A* Es-. Because solutions do not intersect, we have for any A> A* 

that the corresponding solution becomes zero at s =LA <LA·. If 

(2.13) g'(A; LA) < 0, 

then also A E s-. Now if g'(A; LA) = 0, then extending g by zero would lead 
to a solution in the sense of Definition 2.1. Then we can apply the monotonicity 
argument from above to obtain a contradiction. Thus for A > A*, (2.13) is the 
only possibility. 

To show that s- is non-empty we construct on upper bound which intersects 
the s-axis for A sufficiently large. We obtain this bound by introducing the scaling 

t = As and h( A; t) = g( A; s) 

and by considering for h the resulting problem 

(2.14) { h" + C(>.)A-fd-1 {.B(h)}' = O 
h(O) = 1, h'(O) = -1. 

t > 0, 

Clearly h' < 0 and h" > 0 on the interval of existence and 

(2.15) h(A; t) 2: max{(l - t), O} 

for all t 2: 0 and for all A > 0. Integrating (2.14) twice gives 

t 

h(t) = 1- t - C(>.)A-f j(t -z)zt-1{,B(h(z))}'dz. 
0 

Fort 2: ~ we estimate the integrand in this expression with (2.15) to obtain 

-(t - z)zf- 1 ,B'(~) for 0 < z ::; ~ 

(t - z)zf- 1 {,B(h(z))}' 2: tf {,B(h(z))}' (>. ::; 2) } 

t ( ~ ) f - l {,B ( h( Z))} I ( ,\ > 2) 
for ~ ::; z ::; t 

This leads to 

(2.16) 

where 

d>.·t - - ) { d- 1 (>. < 2) 
. ( ')- (~)f-l (>.>2). 

The right-hand side in (2.16) becomes negative for the appropriate choice of A 
(large) and t > 1. Hence for all sufficiently large A, the solutions g( A; s) vanish 
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at s = LA where g'(A; LA) :S 0. Using again the monotonicity argument one finds 
that there cannot exist two of such solutions which both have a zero derivative 
when they vanish. This proves that s- is nonempty. The upperbound (2.10) also 
implies that sups- = o6. 

Finally, the continuous dependence for Problem (IV P) gives that both s+ and 
s- are open. D 

The properties of the sets s+ and s- imply that there exists A* E (0, oo) such 
that 

sups+ :SA* :S inf s-. 
Considering the solution g( A*; s) we have either 

(I) . ' ' ' , { g(A*· ·) > 0 g'(A*· ·) < 0 

g"(A*;·) > 0 on (O,oo), 

or there exists L * > 0 such that 

(II){ g(A*; ·) > 0 on (O,L*), 
g(A*;L*) =g'(A*,L*) = 0. 

Applying once more the monotonicity argument, it follows that the value of A* 
is uniquely determined. Extending g by zero in case (II) we obtain 

Theorem 2.8. Problem (S) has a unique solution f, given by f(17) = g(A*; i17>.) 
for 17 ~ 0. 

Problem (S) can be solved explicitly when >. = 2. We work out the details in 
the next example. 

Example 2.9. Taking >. = 2, reduces equation (2.9) to 

g11 + ~{,B(g )}' = 0 for s > 0. 

Integration gives 
/ 1 ( ) 1 g + 2,8 g =-'-A+ 2,8(1). 

Choosing A = !,B(l) and using ,B(O) = 0, implies that g1 vanishes whenever g 
vanishes. Hence we find the expressions 

1 J 1 1 
,B(t) dt = 28 

g(s) 

and 
1 J 1 1 2 

,B(t) dt = 41'/ . D 
J( Tf) 

When the function ,Bis differentiable upto s = 0, i.e. ,B'(O+) < oo, we have precise 
information about the asymptotic behaviour of f(17) as 17 ~ oo. 
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Theorem 2.10. Let (3 satisfy H13i- 2 such that (3 1 E ca([O, 1]), with a E (0, 1). 
Then given any T/O > 0, there exists constants Ki, K2 such that 

K, '.O f(ry)/ (l e-~C(>)µ'(o)tf dt) '.O K2 

for aJ1 TJ ~ T/O . 
Proof. We construct the· estimates for the transformed function g. Equation (2.9) 
implies . 

(2.17) 

Integrating given for s ~ s0 > 0 

-~C(>.)(3'(0)(st - s/) ~ ln ( g'((s))) ~ -~C(>.)f3'(1)(st - s/), 
2 g1 So 2 

and once more 
= = 

(2.18) Ki j e-iC(>.)f3'(o)tt dt ~ g(s) ~ K; j e-iC(>.)f3'(i)tf dt. 
s s 

Next we improve the upperbound by writing 
II 

(2.19) !!__ = -C(>.)f3'(0)sf-i + C(>.)sf-i{f3'(0) - (3 1(g)}. 
g' 

Using the upperbound from (2.18) and the Holder continuity of the derivative (3 1 , it 
follows that the second term on the right in (2.19) is integrable on [so, oo ). Hence 

II 

~ < -C(>.)(3'(0)sf-i + C*, s ~ s0 , g . 
for some C* > 0. Integrating this expression twice gives the improved upperbound 

= 
g(s) ~ K2 J e-iC(>.),B'(o)tf dt 

s 

for some K 2 > 0. Returning to the variable T/ proves the result. D 

For later purpose, in particular when studying the convergence of solutions of 
the time dependent problem in case of singular reactions, we regularize the function 
(3. We put 

(2.20) 

Then f3n satisfies again H131 , 2 and in addition f3n E c=([o, oo) ). It leads to the 
regularized problems 

(Sn){ J" + 1;>. J' + TJ{f3n(f)}I = 0 T/ > 0, 
f(O) = 1, f(oo) = 0 

By Theorem (2.8) Problem (Sn) has a unique solution f n, which is positive, smooth 
and strictly decreasing on (0, oo ). Furthermore, each fn satisfies the asymptotic 
behaviour from Theorem (2.10) with {3 1(0) replaced by (3~(0) = (3 1 (~). We have 
further 
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Theorem 2.11. Considering the approximations (2.20), we have fn(TJ)--+ f(TJ) as 
n --+ oo, uniformly in 'T/ ;::=: 0. 
Proof. 

(2.21) 

For each n E N, the transformed functions 9n satisfy 

{ g 11 + C(.\)sf-1{,Bn(g)}' = 0 s > 0, 
g(O) = 1, g(oo) = 0. 

Setting Zn = 9n + ~ and using (2.20) we find that each Zn is a solution of 

{ z" + C(.\)sf-1{,B(z)}' = 0 s > 0, 
z(0)=-1+~, z(oo)=~. 

Applying again the monotonicity argument we find 
Zn 2: Zn+l 2: g on [O,oo), for all n EN 

Hence 
lim Zn "'-.,, ~ ;::=: g pointwise on (0, oo) 

n-+oo 

and thus 
(2.22) · lim 9n --+ ~ 2: g pointwise on (0, oo ). 

n-+oo 

Next multiply equation (2.21) by s and integrate the result. For any s > 0 and 
n E N there results 

s 

(2.23) I 2 2 121 () sgn(s) = 9n(s) -1- C(.\)s>:,Bn(9n(s)) + )."C(,\) F- ,Bn(9n t) dt. 
0 

Thus for any given K E (0, oo ), there exists M > 0 such that 
-M ~ g~ < 0 on K, for all n EN. 

By equicontinuity, 
9n--+ ~in C(K), 

along some subsequence n /' oo. In fact, since g ~ ~ ~ 1 on [O, oo ), we obtain 
~ E C([O, oo)) and ~(O) = 1. The monotonicity of the sequence { zn} gives~( oo) = 0 
and 

9n --+~in C([O, 00 )), 

for the entire sequence n /' oo (apply Dini's Theorem to {Zn} and use the asymp-
totic behaviour (upperbound in (2.18)). Passing to the limit in expressing (2.23) 
gives~ E 0 1 ((0,oo)) and for alls> 0 

s 

(2.24) si(s) = ~(s) -1- C(>.)sf ,B(~(s)) + ~C(,\) J tf- 1 ,B(~(t))dt. 
0 

Since~ decays exponentially fast at infinity, we obtain from (2.24) that lim s~1 ( s) = 
s-+oo 

l (exists). Clearly l = 0 since~( oo) = 0. Therefore 
= 

2 J 2 )."C(-\) p:- 1 ,B(~(t))dt = 1. 
0 

The same identity holds for g. Then we conclude from ~ ;::=: g, that in fact ~ = g on 
[O, oo ). This completes the proof of the theorem. D 
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3. The hyperbolic limit. 
To study the limit D \. 0, we cannot use the scaling of the variables as was done 

to obtain Problem (S). Instead we return to the non-dimensionless formulation 
leading to Problem (SD), which we give here for N = 2: 

(3.1) { {D17f' - af}' + 1 11 2 {,B(!)}' = 0 
(SD) 2 

f(O)=l, f(oo)=O. 

From the theory developed in Section 2 we conclude that for each D > 0, this 
problem has a unique solution fv which satisfies 

(i) O:Sfv:Sl on[O,oo); 
(3.2) (ii) ll!bllucco,=)) = 1 (by the monotonicity of fv); 

= 
(3.3) (iii) J 17,B(fv(17))d17 =a (mass-conservation). 

0 

We use W 1 i 1(K) <E LP(K) for 1 :Sp< 00 and for K <E (0, oo), to obtain that for a 
sequence D \. 0 there exists a function j E L=((o, oo )) such that 

0 :S j :S 1 a.e. on [O, oo), 

and a subsequence, denoted again by D \. 0, along which 

fv-+ Jin LP(K) and fv -+ J a.e. on (0, oo ). 

The monotonicity of the functions in the approximating sequence implies that J, 
possibly redefined on a set of measure zero, is monotone on (0, oo ). Further it 
follows from (3.3) and J 2: 0 that 

= 
(3.4) J 17,8(}(17))d17 =a. 

0 

Hence }( oo) = 0. To obtain an equation for the limit J, we introduce the weak 
form of (3.1), i.e. 

= j { (D11fb - afv)cp' + ,B(fv) ( 77cp + ~172 cp')} .d17 = 0 
0 

with cp E 0 0 ((0, oo )). Passing to the limit in this expression gives 

= J { 17,B(})cp + ( ~7/ 2 ,B(j) - af) cp'} d17 = 0 
0 
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for all r.p E 0 0 ((0, oo)). Hence 

and 

1 A A -r? (3(!) - af is absolutely continuous on (0, oo) 
2 

1/2 

(3.5) t17~(3(}(772)) - af(772) - t77if3(}(771)) + af(771) = j 77(3(}(77))d77 
1/1 

for any 0 < 771 < 772 < oo. Letting 772 -t oo in this expression shows that 

lim 77 2(3(}(77)) = £ E IR (exists) . 
71-+oo 

Now suppose£=/=- 0. Then 

77(3(}(ry))-:::::, £/ry as 77 -too, 

contradicting the mass conservation equation (3.4). Hence l = 0 and (3.5) gives, 
with 772 -t oo, 

00 

(3.6) -t772(3(}(77)) + a}(77) = j s(3(}(s))ds. 
1/ 

This shows that 

(3.7) lim J ( 77) = 1. 
11LO . 

Now suppose j has a jump discontinuity for some 17s > 0, with 

j+(-) = lim }(77). 
11i(L)11, · 

Then the continuity of the right-hand side in (3.6) gives the relation 

(3.8) 
2 j+ -J-

17s = 2a (3(}+) _ (3(}-), 

which is the well-known Rankine-Hugoniot shock condition, e.g. see Whitham [W]. 
The concavity of (3, applied to condition (3.8), yields that there exists at most one 
value of 77 where a discontinuity or shock can occur. By the monotonicity of j and 
(3.7) there are two possibilities. Either J E C([O,oo)) or there exists 77s > 0 such 
that J E C([0,778 ) U (77 81 00)) with j+ > J- at 77s· Now suppose that for some 
interval IE (0, oo) we have 

j > 0 and strictly decreasing on I, j E C ( J). 
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Then from (3.6) 

and 
1 2 A A A { }

I 

-277 /3(!) + af = -17/3(!) on I. 

Using once more the continuity of J, we obtain for each 17 E I 

(3.9) 

The term between brackets converges, for .6. -t 0, to 

1 2 I A 

a - 277 /3 (!(17)). 

Note that this is a strictly decreasing function of 17 (since /3 11 ~ 0), taking on the 
value a at 17 = 0 and converging to -oo for 17 -too. Hence there is a unique ij > 0 
such that a - ~ij 2 /3'(f(ij)) = 0. Using this observation in (3.9) gives 

J differentiable with f' = 0 on I\ { ij} 

and, since j E C(I), 
f = constant on I, 

contradicting the strict monotonicity of j on I. It leaves for j as only possibility 

(3.10) A { 1 0 ~ 11 < 17s !(11) = 
0 'T]s < 11 < 00 

{ 2 }1/2 
with 11s = /3(~) 

By the uniqueness of the limit function, the solutions f D corresponding to the entire 
sequence D \. 0 converge to j. Hence we have shown 

Theorem 3.1. Let Jn be the solution of Problem (SD) for D > 0. Then along 
anJ sequence D \. 0, 

fD -t J a.e. on (0, oo ), 

with j given by (3.10). 

Remark 3.2. In case of a singular reaction, leading to fv(11) > 0 for 0 ~ 17 < Lv 
and fv(17) = 0 for 17 2:'. Lv, it follows from the mass- conservation equation (3.3) 
that Lv > 11s for every D > 0. 
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4. Results for N = 3. 
We recall Problem (S) for N = 3 

( 4.1) (S){ (772 J1 - >-.j)1 + ~77 3 {,B(f)}' = 0, 
f(O) = 1, f(oo) = 0. 

Multiplying equation (4.1) by exp(>-./77) yields. 

( 4.2) {772e% f'}' + ~773e~ {,8(!(77))}' ._:___ 0, 

from which we deduce for the behaviour near 77 = 0 

lim772 e~ f (77) =-A( exists with 0 <A< oo). 
7J!O 

Consequently 

(4.3) lim f' ( 77) = 0 for all ).. > 0 
7J!O 

As in the two dimensional setting we have here 

J'(77) < 0 whenever f(77) > 0, 

which implies again that the set 

P = {77 > 0: f(77) > 0} 

is of the form 
P = (O,L) with L :S oo. 

The characterization for finite L is as in Proposition 2.4, i.e. 

L < oo {::} 1/,8 E L1(0,8) for some 8 > 0. 

When L < oo, the behaviour of f( 77) for 77 near L is given by Proposition 2.5. 
To prove the existence result we introduce the transformation 

). 

s = e-Ti and g(s) = f(77) 

and study the initial value problem 

(IV P){ g" + ~)..2 (i~~)3 ~{,B(g)}' = 0 
g(O) = 1,g'(O) =-A. 

0 < s < 1, 

Again we look for decreasing and concave solutions of this problem. By the method 
of Section 2.2 we find that there exists a unique A* > 0 and a unique solution 
g(A*; s) such that either 

{ g(A*; ·) > 0 on (0, 1), 
I g(A*; 1) = g'(A*; 1) = 0, 
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or there exists L * E ( 0, 1) such that 
II{ g(A*; ·) > 0 on (O,L*), 

g(A*; L*) = g1(A*; L*) = 0. 
In the latter case we extend the solution by zero on (0, 1). As a result we find that 

). 

f(77):=g(A*;e-'1) 17~0, 

is the unique solution of Problem (S). 
Example 4.1. Let the adsorption isotherm ,P be linear. Then 

/3(!) = f + Kf with K > 0, 
and for Problem (IV P) results 

{ g" + !,\2(1 + K) (1~~)3 ~g' = 0 
g(O) = 1, g'(O) =-A. 

0 < s < 1, 

Integrating the equation twice yields 
s 

g(s) = 1-A J e-t>-2(HK){rh} 2 dt. 

0 

Taking 
1 

A* = 1/ j e-t>-2 (HK){ rh } 2 dt, 

0 

gives a positive, decreasing and concave solution on (0, 1) which satisfies 
g(A*; 1) = g'(A*; 1) = 0. 

In terms of the original similarity variable the solution reads 
e-:>./., 

/(77) = 1 - A* j e-i>- 2 (HK){i~t }2 dt. 

0 

To study the hyperbolic limit D \, 0, we return to Problem (SD) for N = 3: 

(SD){ (D772 f' - af)' + ~773{/3(!)}' = 0 77 > 0, 
f(l)=l, f(oo)=O. 

Note that the dependent variable 71 in Problems (SD) and (S) is different: 71 = r/Vt 
[m/s] in Problem (SD), whereas T/ = r/../I5i [-]in Problem (S). 

Any solution f D of Problem (SD) satisfies the mass- conservation identity 
CX) 

( 4.4) j 71 2/3(fn(77))d77 =~a. 
0 

Going through the procedure of Section 3, we obtain that for any sequence D \, 0 

where 

(4.5) ~ { 1 /(77)= 0 

fn--+ J a.e. on (O,oo) 

0 ~ T/ < T/s 

T/s < T/ < 00 
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5. Numerical Approximation. 
In this section we describe an algorithm to approximate the solutions of Problem 

(SD) and indicate some examples. We only consider here N = 2. Based on Section 
4 an analogous algorithm for N = 3 can be designed. The numerical procedure 
is strongly related to the existence proof from Section 2.2. It is shown there (by 
means of the transformation s = j;77>-) that the situation is as follows. 

The solution of Problem (SD) is. characterized by a value A* > 0 such that 

lim771->-j'(77) =-A* 
77 LO 

and we have, setting 
s+ := [O, A*), s- :=(A*, oo ), 

that for A E s+ the solution of the initial value problem 

(5.1) 

satisfies 

(5.2) 

{ 
~7]N {.8(!)}' + (-af + D77N-1 f')' = 0, 

(IVP77 ) f(O).= 1, lim771->-J1(77) =-A, 
11LO 

lim /(77) > 0, 
77-+= 

and for A E s- the solution of (IV P77 ) satisfies 

(5.3) f ( 7]A) = 0, f' ( 'r/A) < 0 for some 'r/A > 0. 

This shows the convergence of the shooting algorithm (if performed exactly): 
Shooting Algorithm 
(1) 
(2) 
(3) 
(4) 

Choose A~ E s-, A~ E s+ ,j := 0. 
A · - .!. (Ai + Ai ) J. · - J. + 1 .- 2 I u. > .- • 

Compute the solution of (IV P77 ). 

If A Es+, 
A~ :=A, A{ := A{-1 , goto (2). 

(5) If A Es-, 

A{ :=A, A~ := A~- 1 , goto (2). 

(6) Stop. 
This algorithm either finds the solution in finitely many steps or generates se-

quences A{ E s-, Al Es+, such that 

IA{ - Al I = 2-i IA~ - A~ I ---t 0 for j ---t oo, 

and A"' E (Al, At). Several steps of the algorithm cannot be performed exactly. 
To approximate the solution of (IV P77 ) we integrate the equation as in the proof of 
Proposition 2.3. This incorporates the shooting parameter A: 

(5.4) f'('I) = -A'l~-l exp (- 2~ J •~'(f(s))ds) ,f(O) = 1. 
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We approximate the solution of (5.4) by the third order Adams-Bashforth +nethod. 
The integrands are approximated by the trapezoidal rule. The procedure is started 
by extrapolation steps starting from T/ = 0, based on Proposition 2.3. The number 
of such steps is increased for ; < 1 to deal with the singularity in (5.4). In this 
way we compute approximating values fi for f(T/i)· [However the examples given 
below all are computed with equidistant T/i = ih, for i = 1, 2, · · · and h > 0.) 

The occurrence of f ( T/i) = 0 is tested by lfi I < c: 1 for some control parameter 
t:1 > 0 and correspondingly f(T/i) > 0 and f(T/i) < 0 have to be interpreted. The 
parameter A is considered to be in s+ if for some i > l (l E N is a given control 
parameter, sufficient large) f(TJi) > 0 and f(TJk) remains dose to f(TJi) for l ~ k ~ i. 
To avoid misint~rpretation, in particular for ; ~ 1, when the self-similar solution 
is very flat in the vicinity of T/ = 0 (see Figure 4), we also require T/i 2:: T/s where T/s 
is the position of the shock in the limit case D = 0 (see (3.10) and (4.5)). 

To facilitate the detection of A E s-, (3 is extended monotonically for f < 0. 
The parameter A is considered to be ins-, if for some i, say i = l, f(T/1) < 0 and 
f ( T/i) > 0 for all i < l. 

For 0 ~ 17 ~ oo, let M(T/) denote the mass for the given T/ > 0, scaled by 1/wN 
(see also (3.3)): 

11 

(5.6) M(T/) := J f3(f(T/))T/N-1dTJ 
0 

where 
M(oo) - 2a - N. 

We approximate M(TJi) by the trapezoidal rule as a measure of accuracy and use it 
in the case of singular reactions ( L < oo) to detect convergence and estimate the 
position of the front L. 

This is done by the requirement f(1Ji) = 0 and mass error= ~ - M(T/i) < t:2, 

where t:2 > 0 is a control parameter. In the case L = oo we use the requirement 
f(TJi) = 0 and f'(T/i) = 0. An alternative in the finite case would be the use 
of Proposition 2.5. The choice of the discretization parameter h determines the 
accuracy of a solution in terms of t:1 and c: 2 . 

The shooting algorithm could also be based on Problem (IV P). If we then 
interpret the numerical procedure in terms of the original variable TJ, this amounts 
to a grading of the mesh {TJi}· For a/D < 1 this way may be preferable, but not 
for a/D ~ 1. 

In Figures 2-4 we show the solution profiles for the following data: 
f3(u) := u + ~k1(u)~; 
P = e = o.5, ki = 3, P = o.5; 
(u)~ is regularized by a straight line in [O, 10-14]; 

Q = 2.5. 
Figure 2: D = 3 =>). = 0.2653; 
Figure 3: D = 0.15 => ,\ = 5.3052; 
Figure 4: D = 0.009375 =? A = 84.883; 
h = 10-4 , c:1 = 10-s, c: 2 = 10-4 . 
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FIGURE 2. SELF-SIMILAR SOLUTION FOR ;; < 1. 
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FIGURE 3. SELF-SIMILAR SOLUTION FOR 'f> > 1. 
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