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Abstract

A partial differential equation motivated by electromagnetic field equations
in ferromagnetic media is considered with a relaxed rate dependent constitutive
relation. It is shown that the solutions converge to the unique solution of the
limit parabolic problem with a rate independent Preisach hysteresis constitutive
operator as the relaxation parameter tends to zero.

Classification: 35K55, 47J40, 35B40.

Key words: partial differential equations, hysteresis, asymptotic convergence, Preisach
operator.

1 Introduction

The aim of this paper is to study the following system of partial differential equations

0
a(au—l—ﬁw)—&u:f

w:?<u—7%—?)

where € is an open bounded set of RN, N > 1, F is a continuous rate independent
invertible hysteresis operator, f is a given function, v, o and 3 are given positive
constants.

in Qx (0,7), (1.1)

This system can be obtained by coupling the Maxwell equations, the Ohm law and a
constitutive relation between the magnetic field and the magnetic induction, provided
we neglect the displacement current. A detailed derivation will be given in Section 3
below. The meaning of the parameter v is to take into account in the constitutive
relation also a rate dependent component of the memory. A similar problem has been
considered recently in [1] in the context of soil hydrology, with 7 fixed and with a more
general form of the elliptic part. The reason for introducing the parameter v was to
regularize the resulting P.D.E.s and obtain solvability of the new system.

Our aim here is to justify this regularization by proving that in the simpler case (1.1),
the solutions of (1.1) converge as v — 0 to the (unique) strong solution (see [5]) of
the system

0

E(a_u—i—ﬁw) —Au=f
w = F(u)

(1.2)

as an extension of the results contained in Chapter 4 of [4|. For ~ positive, the second
equation in (1.1) defines a constitutive operator S : R x C°([0,T]) — C'([0,T]) which



with each u € C°([0,T]) and each initial condition w° € R associates w = S(w°, u).
Then (1.1) has the form

0

a(&u—i—ﬁS(wo,u))—Au:f. (1.3)
The regularizing properties of S enable us to solve the problem by means of a simple
application of the Banach contraction mapping principle. The passage to the limit as
v — 0 is achieved in several steps, using in particular a lemma constructed ad hoc
which allows us to pass to the limit in the nonlinear hysteresis term.

The outline of the paper is the following: after some remarks concerning Preisach
operators (Section 2), we explain the physical interpretation of our model system in
Section 3. Then we present in Section 4 the existence and uniqueness result while
Section 5 is devoted to the asymptotic convergence of the solution as v — 0.

2 The Preisach operator

We describe the ferromagnetic behaviour using the Preisach model proposed in 1935
(see [16]). Mathematical aspects of this model were investigated by Krasnosel’skii and
Pokrovskil (see [7], [8], and [9]). The model has been also studied in connection with
partial differential equations by Visintin (see for example [17], [18]). The monograph
of Mayergoyz (|15]) is mainly devoted to its modeling aspects.

Here we use the one-parametric representation of the Preisach operator which goes
back to [10]. The starting point of our theory is the so called play operator. This
operator constitutes the simplest example of continuous hysteresis operator in the space
of continuous functions; it has been introduced in [9] but we can also find equivalent
definitions in [2] and [18]; for its extension to less regular inputs, see also [12]| and [13].

Let r > 0 be a given parameter. For a given input function u € C°([0,7T]) and initial
condition z° € [—r,r|, we define the output & = P,(2°,u) € C°([0,T]) N BV(0,T) of
the play operator

P, : [—r,r] x C°([0,T]) — C°([0, 7)) N BV(0,T)

as the solution of the variational inequality in Stieltjes integral form

/0 (u(t) — £(t) — y() de(®) > 0 Yy e(0,T]), max |y(t)| < .

0<t<T

lut) =) < r Vit e 0,7, (2.1)
£(0) = u(0) — a°.

Let us consider now the whole family of play operators P, parameterized by r > 0,
which can be interpreted as a memory variable. Accordingly, we introduce the hysteresis
memory state space

A={N:Ry = R: [A(r) = A(s)| < |[r—s] Vr,s e Ry : lim A(r) =0},

r—-+00



together with its subspaces
Ag={ eA: A(r)=0for r > K}, Ao=JAx. (2.2)
K>0

For A € A, u € C%[0,T]) and r > 0 we set

e[\ u] = Pr(x(r),u) ool u] == u,

0

where x;

is given by the formula
29 := min{r, max{—r, u(0) — A(r)}}. (2.3)

It turns out that
or : A x CO([0,T]) — C°([0,T7)

is Lipschitz continuous in the sense that, for every w,v € C°([0,T]), A\,u € A and
r > 0 we have

rlA ul = ol Voo < max{[A(r) = u(r)], [[u = vlleoory . (2:4)

Moreover, if X € Ag and ||u|lcoqo,r)) < R, then p.[\ ul(t) = 0 for all » > R and
t €10,7]. For more details, see Sections I1.3, I1.4 of [11].

Now we introduce the Preisach plane as follows
P = {(r,v) e R*: r > 0}
and consider a function ¢ € Lj, () such that there exists 3, € L .(0,00) with

0 < p(r,v) < Bi(r) for a.e. (r,v) e Z.

We set .
g(r,v) ::/ o(r,z)dz for (r,v) € &

0
R
and for R > 0, we put b;(R) := Ba(r) dr.
0
Then the Preisach operator
W Ay x C°([0,T]) — C°([0,T))

generated by the function ¢ is defined by the formula

WA, u(#) = /0 gl on [ (1)) dr, (2.5)

for any given X\ € A, u € C°([0,T]) and ¢ € [0,T]. The equivalence of this definition
and the classical one in [15], [18], e.g., is proved in [10].

Using the Lipschitz continuity (2.4) of the operator g, , it is easy to prove that also
W is locally Lipschitz continuous, in the sense that, for any given R > 0, for every
A€ Ag and w,v € C([0,T71) with |[ullcoqor)), |[v]leoqo,ry < R, we have

R
[IWIA, u] = Wi, olleogory < /0 [A(r) = w(r)] Br(r) drr + bi(R) [Ju = vl |eopo.ry)-
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In view of (2.3), the initial value mapping u(0) — W[A, u|(0) can be represented by a
locally Lipschitz continuous function

Wy:R—-R: Wi (u(0)) := WA, u)(0) = /000 g(r, %) dr. (2.6)

The first result on the inverse Preisach operator was proved in [3]. We make use of the
following formulation proved in [11], Section II.3.

Theorem 2.1. Let A € A, and b > 0 be given. Then the operator bl + W[, :
C°([0,T]) — C°([0,T]) is invertible and its inverse is Lipschitz continuous.

Finally we have the following local monotonicity result for the Preisach operator W.

Theorem 2.2. Consider b >0, R >0, A\ € Ag and uw € WH1(0,T) be given such
that ||ul|coqor)) £ R. Put w:=0bu+ W[\ u]. Then

b (?9_1;@)2 < 20 %) < 4 (m)) (%(t))Q.

As we are dealing with partial differential equations, we should consider both the input
and the initial memory configuration A that additionally depend on x. If for instance
A(z,-) belongs to A, and u(x,-) belongs to C°([0,T]) for (almost) every z, then we
define

WP‘? u](l‘> t) = W[/\(l‘> ')7 U(ZL‘, )](t) = /OOO g(T, pr[/\(x7 ')7 U(ZL‘, )](t)) dr. (27)

3 Physical interpretation of the model system (1.1)

Let a ferromagnetic material occupy a bounded region 2 C R3; we set 2 := 2 x(0,T)
for a fixed T" > 0, and we assume that the body is surrounded by vacuum. We denote
by ¢ a prescribed electromotive force; then Ohm’s law reads

—

J=0(E+37) in 7,

where ¢ is the electric conductivity, J is the electric current density and E is the
electric field; we also prescribe J = 0 outside Z.

In 97, we consider the Ampére and the Faraday laws in the form

VxH = 4nJ+ —
cV X mJ + o

0B

vxiE = -2
v ot’

where ¢ is the speed of light in vacuum, H is the magnetic field, D is the electric
displacement and B is the magnetic induction.



In case of a ferromagnetic metal, o is very large, hence we can assume

- oD
A7 |J| >

E 1n @,

provided that the field § does not vary too rapidly.

Then we neglect the displacement current — in Ampére’s law; this is the so-called

eddy current approximation. By coupling this reduced law with Faraday’s and Ohm’s
laws, in Gauss units we get

47TU%—§+CQVXVXFI:47TCUVX§ in 9. (3.1)
For more details on these topics, we refer to a classical text of electromagnetism, for
example [6].
We now reduce this system to a scalar one describing planar waves. More precisely, let
Q be a domain of R?. We assume (using the orthogonal Cartesian coordinates .y, z)
that H is parallel to the z—axis and only depends on the coordinates x,y, i.e.

—

H = (0,0, H(z,y)).

Then
- 0? 0?
V X V X H = (0,0, —Ax’yH) (Ax,y = w + 8—3ﬂ) . (32)

We also assume that

— ~

B:(0,0,B($,y)), VX§=(0,0,f),
then equation (3.1) is reduced to a scalar equation

dro OB Adro -

— —— A, H=f=—"F. 3.3
02 at Y f c f ( )
The constitutive law between B and H will be chosen according to the “rheologi-
cal” circuit model (F'— L)|P as in [18, p. 54-55|, where a combination in series of a
ferromagnetic element

F: BY = HF +4z7M = (I+W)(HF),

where M is the magnetization and W is a Preisach operator, and of an induction
element

0B
ot ’
is coupled in parallel with a linear paramagnetic element

L: HY =~

P: BY = uH".



The general rheological rules for parallel and series combinations yield
Bf =BY = B H = H'+H" = H", B = B''4+B",

where B is the total induction and H is the total field. Denoting V := BfL, we
obtain

ov —
H = va—%(I—I—W)_I(V), B = V+puH. (3.4)
We thus rewrite (3.3) as
dwo O
2 a(V—f-MH) A H=F,

V=>1+W) (H—’y%—‘t/), o

which is precisely (1.1). The case, where the influence of the induction element L is
negligible, corresponds to the limit as v — 0.

4 Existence and uniqueness

In the setting (1.1) or (1.2), the space dimension is not relevant. We therefore consider
an open bounded set of Lipschitz class Q C RY | N > 1, set Q :=Q x (0,7), and fix
an initial memory configuration

M€ L2 Ag) for some K >0, (4.1)

where A is introduced in (2.2).

Let M(Q;C%([0,T])) be the Fréchet space of strongly measurable functions  —
C°([0,T]), i.e. the space of functions v : © — C°([0,7]) such that there exists a
sequence v, of simple functions with v, — v in C°([0,7]) a.e. in Q.

We fix a constant br > 0 and introduce the operator F : M(Q;C°([0,T])) —
M(Q;C°([0,T])) in the following way

Fu)(z,t) = Flu(x,))(t) = bru(z,t) + WAz, ), u(z, )] (t); (4.2)

here, W is the scalar Preisach operator defined in (2.5). In agreement with (2.6), we
have

F(u)(z,0) = bru’(z) + Wy (u'(z)). (4.3)

Now Theorem 2.1 yields that F is invertible and its inverse is a Lipschitz continuous
operator in C°([0,T]). Let us set G = F~! and let Lg be the Lipschitz constant of
the operator G.

At this point we introduce the operator

-1

G : M(Q; CO([O, T))) — M(Q;CO([O, T))) G:=F (4.4)
It turns out that
G(w)(z,t) = G(w(z,)(t)  Ywe M(QC([0,T])). (4.5)



It follows from Theorem 2.1 that G is Lipschitz continuous in the following sense
G (ur)(, ) — Gua)(x, leoory < Lg lJua (2, -) — ua(z, -)lleoo.r)
for any wuy, us € M(Q;C°([0,TY)), a.e. in Q.

Moreover Theorem 2.2 entails that there exist two constants ¢z and Cr such that

ou\’> _ OF(u) du ou\” _
) < < - e. . .
“ (at) S o a = (at) a.c.in ¢ (4.6)

On the other hand, (4.6) entails

ow\>  9G(w) dw ow\’ , _ 1 1
— | < — < —— .e. = — =—. (4
cg ((‘%) <~ S Cg (875) a.e. in @, with Cg p— cg s (4.7)

Consider now system (1.1) with homogeneous Dirichlet boundary conditions and set
V = H}(Q). We first state the existence and uniqueness result.

Theorem 4.1. (Existence and uniqueness)
Let o, 3, be given positive constants. Suppose that the following assumptions on the
data

fel?Q), veV, v e L*Q)

hold. Then (1.1) with homogeneous Dirichlet boundary conditions and initial conditions
u(z,0) = u’(z), w(z,0) = w’(z), (4.8)
admits a unique solution

uw € H(0,T; L*(Q)) N L0, T; V) N L*(0, T; W*2(Q)), w € L*(;C*([0,T))).

Proof. The proof is divided into two steps.

e STEP 1: THE SOLUTION OPERATOR S. We neglect for the moment the dependence
on the space parameter x within the constitutive relation

7y %—I; +G(w) = u. (4.9)

This means that we deal here with the following problem: for a given u € C°([0,T7]),
find w € C*([0,T]) such that

dw

w(0) = w.

(4.10)

Clearly, due to the Lipschitz continuity of G, problem (4.10) admits a unique solution
w € CY[0,T]) for every u € C°([0,7]). In this manner, we can define the solution
operator

S ([0, T])) — CH[0,T]) : urs w.

7



Let us show now that S is Lipschitz continuous in the sense that we prove that there
exists a constant Lg such that

||S(u1)—S(uQ)||Cl([07t]) S LS ||u1—u2||00([07ﬂ), Vul,UQ € CO([O,t]), Vit e [O,T] (4.11)

Let us consider uy, uy € C°([0,7]) and let wy,wy € C([0,T]) be such that w; = S(u;),
i =1,2. The initial data are fixed, that is, w;(0) = wy(0) = w’. For any t € [0,T] we
have

dw1 dwg 1 Lg
2y 22 < Z _ - _
7 (t) 7t (t)’ S lur () — ua(t)| + S ggfywl(ﬂ wy(7)]
1 Lg t dw1 dwg
< — t) — t — _— dr.
<) — (0] + = [T T ()

Hence, by Gronwall’s argument,
t d’LUl dU)Q
— — —= dr <

/0 i ar |74 s

which yields
dwy dws 1 Lg
— () - —=)| < Zen
W “' =53¢

. 1 1 Lg p
for every t € [0,7]. Hence (4.11) holds with Lg = [ —4+ — ] e .

T
[Jug — U2\|CO([0¢D

v Lg
We easily extend this estimate to the space dependent problem
ow —
T PO =, (4.12)
w(:,0) = w’(")

with given functions u € L?(Q;C°([0,T])), w° € L*(Q). It immediately follows from
(4.11) that the solution mapping

S L2(9:C°([0,T))) — L*(:;C*([0,T))) : U w (4.13)
associated with (4.12) is well defined and Lipschitz continuous, with Lipschitz constant
Lg.

STEP 2: FIXED POINT. Our model problem can be rewritten now as

P _
a(au—l—ﬁS(u))—Au:f (4.14)

with u(-,0) = u%(-) and homogeneous Dirichlet boundary conditions. The unique
solution will be found by the Banach contraction mapping principle.

Let us fix 2 € H'(0,T; L*(Q)); then z € L?(2;C°([0,T])) and therefore S(z) is well-
defined and belongs to L?*(2;C'([0,T])). Instead of (4.14), we consider the equation

0 _
o(autA5(2) = du=f (4.15)

8



which is nothing but the linear heat equation. As f € L?*(Q), this means that (4.15)
admits a unique solution u € H'(0,T; L*(Q)) N L*(0, T; W22(Q)) N L>(0,T;V).

We now introduce the set
B={ze HY0,T;L*Q)) : 2(-,0) = u°()}
and the operator o .
J:B— B: Z o,

which with every z € B associates the solution u € B of (4.15). In order to prove

that J~ is a contraction, consider now two elements 2,2, € B, and set u; := J(zl)
= J(z2). Then we have

0 _
i —ua) +5(5 S(21) = S(2))) — A(ur —uz) = 0.
We test this equation by a(ul — uy) and obtain
2
a 8t(u1_u2) (xtdx+——/|Vu1—u2 *(x,t) dx
Q@ 0 2 ; d
o at(ul —ug)| (x,t) 2a Qorggii |21 — 2| (2, 7) du,

where Lg is the Lispchitz constant of the operator S. This implies that

2

0
815(

BT

Uy — Up) o dt

(x,1) dx—i———/|V (uy — ug)[*(x,t) do
(4.16)

(x, 7)dx dt.

21—2’2

We set 6 := =2 and we introduce the following equivalent norm on H'(0,T; L*())
a
. on ) 1/2
_p+2
1l = { 1101220, +/ e’ (t) dt ¥n € H'(0,T; L*(9)).
; 3 || 2

0t2

If now we multiply (4.16) by e """ and integrate over t € (0,7, we obtain that

1
[l = wal[l = 5 [llr = 2]

and thus J is a contraction on the closed subset B of H'(0,T; L*(Q)), which yields
the existence and uniqueness of the solution u € H(0,T; L*(Q)) N L*(0, T; W*(Q)) N
L®(0,T; V). O



5 Asymptotic convergence

In this section we investigate the behaviour of the solution of our model problem if the
parameter vy goes to zero. We prove the following theorem.

Theorem 5.1. Under the assumptions of Theorem 4.1, let (u,,w,) for v >0 be the
unique solution of (1.1) with homogeneous Dirichlet boundary conditions, and initial
conditions

Uy (2,0) = u’(z), wg(x, 0) = F(u,)(z,0) = br u’(z) + WA(ZE,.)(UO(I')) (5.1)
according to (4.3). Then there exists

w€ HY0,T; L*(Q)) N L0, T; V) N L*(0,T; W*(Q))

such that 5 5
u u :
8—; 5 weakly in L*(Qr)
ow OF (u )
61: — 655 ) weakly in L?(Qr)
Au, — Au weakly in L*(Qr)
Uy — U strongly in L?(Q;C°([0,T7))
w, — F(u) strongly in L?(Q;C°([0,T7))
as v — 0, and u s the unique solution of the equation
0
at(om +BF () — Au=f in the L?(Qr) sense, (5.2)

with initial condition u(z,0) = u®(x) and homogeneous Dirichlet boundary condition.
Proof. The regularity of u, and w, allows us to differentiate (4.12) in time and obtain

O*w,  IG(w,)  Ou,

T 5 5 = o a.e. (5.3)
In the series of estimates below, we denote by C4,Cs,... any positive constant de-
pending only on the data of the problem, but independent of ”y
We now test the first equation of (1.1) by aé)—t and (5.3) by B . This yields
du,\ Ou, Ow, 9 ou
Ty X2 ) dr+ = — dx = —1)d A4
/Q<a(at)+ﬁat - + /|w7| v = / FE Y dr (5.4
and
v d Jwy G ( wV (9w7 / 0uV 6w7
& 2 dt/Q ( ) +h / ot at =P ot at (5:5)

10



Summing up (5.4), (5.5) and using (4.7), we obtain

o) 1d
de + ==
5, “ i ),
ow., : . :
Note that —t(x,O) = 0 by the choice of w,(z,0). This allows us to obtain the

following estimates

2
(9w7

ot

Guy

ot

a“” de + 82 dz < C.

2dt

( ||u7||H1(0,T;L2(Q))0L°°(O,T;V) < (%, (5.6a)
||w'y||H1(0,T;L2(Q)) S 03, (56b)
ow
Nal Ha—; < Cy, (5.6¢)
\ L= (0,T;L2())

and, by comparison, |[Au,||r2) < Cs. This entails that there exists a function u
and a sequence 7, — 0 such that

., — u weakly star in H'(0,T; L*(Q)) N L>(0,T; V) N L*(0,T; W**(12)).

On the other hand, by interpolation and after a suitable choice of representatives, we
deduce that (see [14], Chapter 4)

HY0,T; L*(Q)) N L>(0,T; V) c L*(Q;C°([0,1]))
with continuous and compact injection; this ensures that
., — u strongly in L*(€;C°([0,T1)),
in particular (passing to subsequences if necessary),
U, — u uniformly in [0,77, a.e. in Q. (5.7)
One might be tempted to use direcly equation (4.9), which yields

ow
||u7 g(ww)HLw(OTL?(Q)) <7 H -

Lo°(0,T3L2(Q))
and this, together with (5.6¢), entails that
w, — G(w,) — 0 strongly in L>(0,T; L*(2)) as v — 0.

However, this does not seem to be enough to conclude that w, — F(u), as neither G
nor F are continuous in L>(0,7; L*(f2)), and a refined argument has to be used.

From now on, we keep the sequence v, — 0 fixed as in (5.7). Our aim is now to show
that there exists a function w such that

w., — w uniformly in [0,7], a.e. in Q. (5.8)

In fact, this will allow us to pass to the limit in the nonlinear hysteresis term. We show
that (5.8) is obtained from (5.7) by using the following lemma:

11



Lemma 5.2. Consider a sequence of functions {u,}nen € C°([0,T]) such that
||tn, — wl|cogo,r7) — 0 as n — 00.

Let 0 < a, < a,(t) < b, be measurable functions, with lim b, = 0. Finally let

{vn}nen be solutions of the following Cauchy problem
dvy,
un(t) () + 0at) = wn (1),
0,(0) = u,(0).
Then
||vn — ul|cogo,77) — 0 as n — 00.

1
Proof. Put §,(t) = o Then
Qp

t
U (t) = e Jo By (0) + / Ba(s)e™ Js BnDdm gy () ds
0

hence, for all t € [0,T], we get

Un(t) = un(t) = e Jo DI (4, (0) — w, (1)) + / Bu(s) e 1o D (4 (5) — (1)) ds.

Let now € > 0 be given. Using the Ascoli-Arzela theorem, we find 6 > 0 independent
of n such that
|t1 — t2| <= |Un(t1) — Un(t2)| < E.

For t € [0,0] we have

t
o (t) —un(t)] < ¢ (ef;ﬁ"(f)df +/ Ba(s) e s 5"(7)d7d5) =ec.

0

Let now t > 9, and let
C = sup{|un(t1) — un(ta)], t1,t2 € [0,T],n € N}.

Then

t t—5
|0a(t) — un(t)| < Ce o o [, (s)emJs AN g5 4 C/ B (s)e™ J:n()dr g
t—6 0

=c (1 _ e s Bul) dT) 4 Ce s Balmar < oy Ce*%,

and thus Lemma 5.2 follows. [

Let ' C Q be a set of full measure (meas(Q2 \ ') = 0) such that, by virtue of (5.7),
Uy, (z,+) — u(x, ) converge uniformly for all = € €. Keeping now z € Q' fixed, set

Uy (@) =0 a (), wy(a ) =y ().

12



We recall from (4.2) that
F(z, ) (t) = F)(z,t)  Yve M(Q;C°([0,T])).

Our idea is to apply Lemma 5.2 to the Cauchy problem
- N dw
which we rewrite as
- - 5.10
w'Y = f(v’Y)a ( )

We now set

a,(t) = -

>From (4.6) we obtain that
0<vyer < ay(t) < yCp.

Hence, system (5.10) can be rewritten in the form

0 (1) 3 (0) + 8, (1) = (),

5,(0) = i, (0).

We have that
@i, — @ uniformly in C°([0,7]) as v, — 0,

hence by Lemma 5.2,
@, — @ uniformly in C°([0,7]) as v, — 0.
This in turn entails that
W, — F (@) uniformly in C°([0,7]) as 7, — 0.
Since z € ) has been chosen arbitrarily, we obtain
w., — F(u) uniformly in C°([0,7]), a.e. in Q as v, — 0.

By (5.6b), B
ow,, . OF (u)

T2
5 5 weakly in L*(Qr).
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This enables us to pass to the limit in the equation

s,
a(auﬂ, + fw,) — Au, = f.

We thus checked that wu is a solution of (5.2) with the required boundary and initial
condition. Since this solution is unique by the argument of [5], we conclude that

u, converges to u independently of how v tends to 0. This completes the proof of
Theorem 5.1. [J
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