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Abstra
tA doubly nonlinear paraboli
 equation of the form α(ut)−∆u+W ′(u) = f ,
omplemented with initial and either Diri
hlet or Neumann homogeneousboundary 
onditions, is addressed. The two nonlinearities are given by themaximal monotone fun
tion α and by the derivative W ′ of a smooth but pos-sibly non
onvex potential W ; f is a known sour
e. After de�ning a propernotion of solution and re
alling a related existen
e result, we show that fromany initial datum emanates at least one solution whi
h gains further regular-ity for t > 0. Su
h regularizing solutions 
onstitute a semi�ow S for whi
huniqueness is satis�ed for stri
tly positive times and we 
an study long timebehavior properties. In parti
ular, we 
an prove existen
e of both global andexponential attra
tors and investigate the stru
ture of ω-limits of single tra-je
tories.1 Introdu
tionIn this paper we are interested in the following doubly non linear paraboli
 equation
α(ut) − ∆u+W ′(u) = f, for a.e. (x, t) ∈ Ω × (0,+∞), (1.1)where Ω ⊂ R
N , 1 ≤ N ≤ 3, is a bounded domain with smooth boundary ∂Ω. Here

α is a di�erentiable and strongly monotone (i.e., α′ ≥ σ > 0) fun
tion in R, W ′ isthe derivative of a λ-
onvex (i.e., W ′′ ≥ −λ, λ ≥ 0) 
on�guration potential, and
f is a sour
e. The equation is 
omplemented with the initial 
onditions and withhomogeneous boundary 
onditions of either Diri
hlet or Neumann type. Equationslike (1.1), apart from their own mathemati
al interest, 
an arise in large variety ofappli
ations, as the modelization of phase 
hange phenomena [9, 11, 25, 33, 34℄, gas�ow through porous media [23℄ and damaging of materials [10, 24, 37℄.Existen
e of (at least) one solution to initial-boundary value problems for a 
lassof doubly nonlinear equations in
luding (1.1) was proved in the paper [15℄ (see also[3, 7, 44℄ for pre
eding related results). The questions of regularity, uniqueness,
ontinuous dependen
e on data and long time behavior of solutions, however, werenot dealt with in [15℄ and remained widely open for a long time. Moreover, theresults of [15℄ require the restri
tive assumption that α is bounded in the senseof operators (i.e. it maps bounded sets into bounded sets), whi
h is not alwaysful�lled in physi
al appli
ations (see the papers quoted above referring to spe
i�
models). On a

ount of these 
onsiderations, in the former paper [43℄, written in
ollaboration with U. Stefanelli, we introdu
ed a new 
on
ept of solution (stronger1



than that in [15℄, see Def. 3.1 below) and showed existen
e of this kind of solutionwith essentially no restri
tion on α. This permitted to prove also uniqueness, atleast in some spe
ial 
ases, as well as existen
e of nonempty ω-limits. A further
ontribution in this �eld has been re
ently given in [19℄, where a doubly nonlinearequation stri
tly related to (1.1), but of degenerate type, is addressed from theviewpoint of both well-posedness and long time behavior.One of the main issues of this paper is a regularization property, holding for t > 0,of the solutions to the IBV problem for (1.1). Due to the strong paraboli
ity of thesystem (α′ ≥ σ > 0) su
h a fa
t is to be expe
ted; however, the proof requires asomehow tri
ky ma
hinery due to the presen
e of very general nonlinearities. Thekey point, resembling in some way the approa
h given also in [19℄, 
onsists in anAlikakos-Moser [1℄ iteration s
heme, operated here on the (formal) time derivativeof (1.1), 
oupled with the use (in�nitely many times) of the uniformGronwall lemma(see, e.g., [49℄). In this way we demonstrate that, if the sour
e f is essentiallybounded, then there exist solutions u(t) (
alled �regularizing solutions� in the sequel,see Def. 3.4) whi
h, for t > 0, are in L∞(Ω) together with their Lapla
ian and with
W ′(u(t)). Moreover, for t > 0 uniqueness holds, whereas from any initial datum 
anstart more than one traje
tory, unless the datum is more regular itself.The regularization property serves also as a starting point to improve the resultsof [43℄ regarding the long time behavior. A
tually, in 
ase the potential W is realanalyti
 we 
an show, using the Simon-�ojasiewi
z method (
f. [31, 32, 48℄, seealso [14, 26℄), that ω-limits of all single traje
tories 
ontain only one point. This
an be done without the severely restri
tive assumptions on the growth of α at ∞whi
h were 
onsidered in [43℄. We remark that the Simon-�ojasiewi
z method is adeep and powerful tool that in re
ent year has been applied to 
hara
terize ω-limitsets of solutions to several di�erent types of nonlinear evolution equations (see, e.g.,[13, 14, 22, 28, 29℄ among the many related works).From the viewpoint of long time behavior, however, our main result regards theexisten
e and regularity properties of attra
tors. We have to stress that a 
ontribu-tion to this question was already provided in [45℄, where a (rather weak) notion ofglobal attra
tor was introdu
ed for a 
lass of equations in
luding (1.1). However,due to the very general and abstra
t setting adopted there (very similar to that of[15℄), the attra
tor 
onstru
ted in [45℄ seems not very �exible from the point of viewof regularity (more pre
isely, it appears di�
ult to 
hara
terize it beyond its mereexisten
e property). Moreover, the result in [45℄ holds only under the boundednessassumption on α 
onsidered in [15℄ and 
onsequently is not suitable for our spe
i�
situation.Here, also thanks to the mu
h more spe
i�
 form of equation (1.1), we 
an provethe existen
e of a global attra
tor in the natural phase spa
e (i.e. under the pre
ise
onditions ensuring existen
e). The key point is the use of the so-
alled energymethod by J. Ball (
f. [6℄, see also [39℄ and the referen
es therein), whi
h permitsto prove this result without reinfor
ing the 
onditions on the sour
e f (namely, wedo not need to ask summability of its spa
e derivatives) and despite the apparent2



la
k of a dissipative estimate in the natural phase spa
e (see Remark 5.1 below).We point out that, due to the (possible) non-uniqueness at t = 0, the semi�ow Sasso
iated to (1.1) for whi
h we 
an prove existen
e of the global attra
tor has tobe 
arefully de�ned (in parti
ular, �nonregularizing� solutions have to be ex
luded,see Remark 3.11). This is in agreement with other works where equations with (atleast partial) la
k of uniqueness are addressed (see, e.g., [5, 6, 35, 42, 45, 46℄).Our �nal issue is 
on
erned with exponential attra
tors, whose existen
e is proved byusing as a te
hni
al tool the so-
alled method of short traje
tories (or ℓ-traje
tories)due to Málek and Praºák [35℄. A
tually, this devi
e permits to get in a simple waythe 
ontra
tive estimates required to have the exponential attra
tion property. Westress that this approa
h is quite similar to that used in [38℄, where the equation(stri
tly related to (1.1) or, more pre
isely, to its time derivative)
α(u)t − ∆u+W ′(u) = f, for a.e. (x, t) ∈ Ω × (0,+∞), (1.2)is addressed (although under partly di�erent assumptions on the nonlinearities).We 
on
lude with the plan of the paper. In the next Se
tion some preliminary ma-terial is re
alled. Next, our results are presented in a rigorous way in Se
tion 3,where in parti
ular the required notions of solution are introdu
ed. The subsequentSe
tion 4 
ontains the proof of the regularization property and Se
tions 5 and 6 aredevoted to global and exponential attra
tors, respe
tively. Finally, an abstra
t exis-ten
e Theorem for global attra
tors, partially generalizing [5, Thm. 3.1℄, is reportedin the Appendix.2 PreliminariesIn this se
tion we introdu
e some notations and re
all some preliminary notionswhi
h are needed to state our problem in a pre
ise way. First of all, we set H :=

L2(Ω) and denote by (·, ·) the s
alar produ
t in H and by ‖ · ‖ the related norm.The symbol ‖ · ‖X will indi
ate the norm in the generi
 Bana
h spa
e X. Moreover,fo
using on the Diri
hlet 
ase, we set V := H1
0 (Ω), V ′ := H−1(Ω) and identify Hand H ′ so that we obtain the Hilbert triplet V ⊂ H ⊂ V ′, where in
lusions are
ontinuous and 
ompa
t. The notation 〈·, ·〉 will stand for the duality between Vand V ′. We also let B : V → V ′ denote the distributional Lapla
e operator, namely

B : V → V ′, 〈Bu, v〉 = (∇u,∇v) ∀u, v ∈ V. (2.1)Remark 2.1. Here and in the sequel we assumed Diri
hlet 
onditions just for sim-pli
ity. Indeed, the (homogeneous) Neumann 
ase works as well with the followingsimple 
hange: we have to set V := H1(Ω), V ′ := H1(Ω)′ and, in pla
e of (2.1),
B : V → V ′, 〈Bu, v〉 = (u, v) + (∇u,∇v) ∀u, v ∈ V. (2.2)All the results and proofs in the sequel then still work with no further 
hange.3



In order to 
orre
tly des
ribe the asymptoti
 behavior of solutions, we need tointrodu
e the spa
e of Lp
loc-translation bounded fun
tions. As X is a Bana
h spa
eand p ∈ [1,+∞) we set

T p(T,∞;X) :=

{

v ∈ Lp
loc(T,∞;X) : sup

t≥T

∫ t+1

t

‖v(s)‖p
X ds <∞

}

, (2.3)whi
h is a Bana
h spa
e with respe
t to the natural (graph) norm
‖v‖p

T p(T,∞;X) := sup
t≥T

∫ t+1

t

‖v(s)‖p
X. (2.4)Next, we re
all the uniform Gronwall Lemma (see, e.g., [49, Lemma III.1.1℄), whi
hwill be repeatedly used in the sequel:Lemma 2.2. Let y, a, b ∈ L1

loc(0,+∞) three non negative fun
tions su
h that y′ ∈
L1

loc(0,+∞) and, for some T ≥ 0,
y′(t) ≤ a(t)y(t) + b(t) for a.e. t ≥ T , (2.5)and let k1, k2, k3 three nonnegative 
onstants su
h that

‖a‖T 1(T,∞;R) ≤ k1, ‖b‖T 1(T,∞;R) ≤ k2, ‖y‖T 1(T,∞;R) ≤ k3. (2.6)Then, we have that
y(t+ τ) ≤

(

k2 + k3/τ
)

ek1 for all t ≥ T . (2.7)Now, let us re
all some basi
 fa
ts about absorbing sets and attra
tors. Assumingthat X is a 
omplete metri
 spa
e, we shall (
onventionally) 
all a semi�ow on Xa family S of maps from [0,∞) to X , 
alled traje
tories, satisfying properties (S1)-(S5) listed below. We stress that this de�nition, whi
h partly follows the approa
hin [5, 6℄ (see also [42℄), is not standard at all. A
tually, in Ball's terminology, S
ould be noted like a �strongly-weakly 
ontinuous generalized semi�ow with unique
ontinuation�. We say here �semi�ow� just for brevity.(S1 � existen
e) For all u0 ∈ X there exists at least one u ∈ S su
h that u(0) = u0;(S2 � translation invarian
e) For all u ∈ S and T ≥ 0, the map v : [0,∞) → Xgiven by v(t) := u(T + t) still belongs to S;(S3 � 
on
atenation) For all u, v ∈ S su
h that for some T > 0 it is u(T ) = v(0),the map z : [0,∞) → X 
oin
iding 
on u on [0, T ] and given by z(t) = v(t− T ) on
(T,∞) belongs to S;(S4 � unique 
ontinuation for T > 0) For all u, v ∈ S su
h that u(T ) = v(T ) forsome T > 0, it is u(t) = v(t) for all t ∈ [T,∞);(S5 � strong-weak semi
ontinuity) We assume that, beyond the strong topologyindu
ed by the metri
, X is endowed with a weaker topology. Then, we �rstly askthat all elements of S are weakly 
ontinuous from [0,∞) to X . Next, that for allsequen
e {un} ⊂ S su
h that un(0) =: u0,n tends strongly (i.e. with respe
t to themetri
) to some u0 ∈ X , there exist a subsequen
e (not relabelled) of {un} and
u ∈ S with u(0) = u0 su
h that, for all t > 0, un(t) tends weakly to u(t).4



Remark 2.3. Regarding (S5), if X is a Bana
h spa
e, a natural 
hoi
e for the�weak topology� mentioned there is of 
ourse that indu
ed by the weak (or, in some
ases, the weak star) 
onvergen
e. We will show in the sequel (see in parti
ular theAppendix) that the la
k of a more usual �strong-strong� 
ontinuity property doesnot prevent use of time regularization-
ompa
tness methods to get existen
e of theglobal attra
tor. This fa
t has been noted also in other re
ent papers [40, 51℄.We assumed property (S4), whi
h is not 
ompletely standard, just to �t the 
ase ofour system for whi
h uniqueness holds only from t > 0. If S is a semi�ow, we de�nethe spa
e of regularized values of S as
Xreg :=

{

u(t) : u ∈ S, t > 0
}

. (2.8)Moreover, if u ∈ S, we re
all that the (strong) ω-limit of u is the set of all limit(w.r.t. the metri
) points of subsequen
es of u(t) as t ր ∞. >From (S2) and (S4),it is also apparent that it 
an be naturally asso
iated to a semi�ow S the family
{S(t)}, t ∈ [0,∞), of operators from Xreg to itself, with S(t) mapping x ∈ Xreg into
u(t), where u ∈ S is the (unique) traje
tory su
h that u(0) = x. It is then 
learthat {S(t)} satis�es the usual semigroup properties. Due to the la
k of uniqueness,
S(t) 
annot be extended to the whole X . Nevertheless, we 
an introdu
e the familyof multivalued mappings {T (t)}, t ∈ [0,∞), given by

T (t) : X → 2X , T (t)u :=
{

v(t) : v ∈ S, v(0) = u
} (2.9)and by (S4) it is then 
lear that the restri
tion of T (t) to Xreg 
oin
ides with S(t).Next, we re
all that a 
ompa
t subset A of the phase spa
e X is the global attra
torfor the semi�ow S if the following 
onditions are satis�ed:(A1) The set A is stri
tly invariant, i.e., T (t)A = A for all t ≥ 0;(A2) A attra
ts the images of all bounded subsets of X as tր +∞, namely

lim
tր+∞

dist(T (t)B,A) = 0, for all bounded B ⊂ X , (2.10)where dist is the non-symmetri
 Hausdor� distan
e between sets in X (see, e.g.,[21, 49℄).We point out that the global attra
tor represents the �rst (although extremely im-portant) step in the understanding of the long-time dynami
s of a given evolutivepro
ess. However, it may also present some drawba
ks. First of all, it may beredu
ed to a single point, thus failing in 
apturing all the transient behaviour ofthe system. Moreover, in general it is extremely di�
ult to estimate the rate of
onvergen
e in (2.10) and to express it in terms of the physi
al parameters of thesystem. In this regard, simple examples show that this rate of 
onvergen
e may bearbitrarily slow. This fa
t makes the global attra
tor very sensitive to perturbationsand to numeri
al approximation. The 
on
ept of exponential attra
tor has thenbeen proposed (see, e.g., [16℄) to possibly over
ome this di�
ulty. We re
all that a5




ompa
t subset M of the phase spa
e X is 
alled an exponential attra
tor for thesemi�ow S if the following 
onditions are satis�ed:(E1) The set M is positively invariant, i.e., T (t)M ⊂ M for all t ≥ 0;(E2) The fra
tal dimension (see, e.g., [36, 49℄) of M in X is �nite;(E3) The set M attra
ts exponentially fast the images of the bounded sets B of thephase spa
e X . Namely, for every bounded B ⊂ X there exist C, β > 0 dependingon B and su
h that
dist(T (t)B,M) ≤ Ce−βt, ∀ t ≥ 0. (2.11)Thanks to (E3) it follows that, 
ompared to the global attra
tor, an exponential at-tra
tor is mu
h more robust to perturbation and to the important issue of numeri
alapproximation (see, e.g., [16℄ and [20℄). Moreover, when the exponential attra
tor

M exists, it 
ontains the global attra
tor A. Thus, in this 
ase also A has �nitefra
tal dimension. We point out that, however, also the theory of exponential at-tra
tors presents some disadvantages, like the la
k of uniqueness of M, whose 
hoi
eor 
onstru
tion may be in some sense arti�
ial. However, we refer to [18℄ where itis proposed a 
onstru
tion of an exponential attra
tor whi
h sele
ts a proper onevalued bran
h of the exponential attra
tors depending in an Hölder 
ontinuous wayon the dynami
al system under study. In re
ent years several di�erent te
hniqueshave been provided to guarantee existen
e of exponential attra
tors. Beyond theoriginal method [16℄ based on a dire
t veri�
ation of the dis
rete squeezing property,we quote the �de
omposition te
hnique� developed in [17℄ and, in parti
ular, the so-
alled method of �ℓ-traje
tories� (or �short traje
tories�), introdu
ed by Málek andPraºák in [35℄, whi
h provides a simpli�ed framework whi
h 
an be adopted to verifythe theoreti
al 
onditions of [16℄ leading to existen
e of M. Sin
e we shall use thismethod in the sequel, we re
all here, for 
onvenien
e of the reader, its highlights,partly adapting the presentation in [35℄ to our more spe
i�
 framework.Let X be a Hilbert spa
e and, for given τ > 0, let us set Xτ := L2(0, τ,X ). Weassume that there exists a subset B1 of X su
h that for any u0 ∈ B1 there existsat least one map u ∈ Cw([0,∞);X ) su
h that u(0) = u0. These maps u are 
alled�solutions� in what follows, and we assume that they form a semi�ow S on the set B1endowed with the strong and weak topologies inherited from X . We then introdu
ethe spa
e of ℓ-traje
tories (where ℓ > 0) as
B1

ℓ :=
{

χ : (0, ℓ) → X , χ is a solution on (0, ℓ)
}

. (2.12)The spa
e B1
ℓ inherits its topology from Xℓ. Moreover, a

ording to (S4), any ℓ-traje
tory has, among all solutions, unique 
ontinuation. We shall assume that

B1
ℓ is relatively 
ompa
t in Xℓ, (2.13)where the 
losure is taken with respe
t to the topology of Xℓ. Then, the method of

ℓ-traje
tories basi
ally 
onsists in lifting the dynami
al system from the phase spa
e6



of initial 
onditions to the spa
e B1
ℓ of ℓ-traje
tories. In parti
ular, by (S4) we 
ande�ne a semigroup Lt on B1

ℓ by setting
{Lt

χ} (τ) := u(t+ τ), τ ∈ [0, ℓ], (2.14)where χ is an ℓ-traje
tory and u is the unique solution su
h that u|[0,ℓ] = χ. We thende�ne Then, the assumptions that lead to the existen
e of the exponential attra
torin the spa
e of ℓ-traje
tories endowed with the topology of Xℓ read as follows (see[35℄):(M1) There exists a spa
e Wℓ 
ompa
tly embedded into Xℓ and τ > 0 su
h that
Lτ : Xℓ → Wℓ is Lips
hitz 
ontinuous on B1

ℓ ;(M2) For all τ > 0 the family of operators Lt : Xℓ → Xℓ is uniformly (w.r.t. t ∈ [0, τ ])Lips
hitz 
ontinuous on B1
ℓ ;(M3) For all τ > 0 there exist c > 0 and β ∈ (0, 1] su
h that for all χ ∈ B1

ℓ and
t1, t2 ∈ [0, τ ] it holds that ‖Lt1

χ− Lt2
χ‖Xℓ

≤ c|t1 − t2|
β.In [35, Theorem 2.5℄ it is proved that, under the assumptions above, there existsan exponential attra
tor Mℓ in Xℓ for the dynami
al system Lt on B1

ℓ . One of thestriking features of this method is that, on
e we have 
onstru
ted an exponentialattra
tor in the spa
e of ℓ-traje
tories, we 
an re
over the dynami
s in the originalphase spa
e B1 and obtain an exponential attra
tor M for the semi�ow S. Tothis end, we introdu
e the evaluation map e : B1
ℓ → X whi
h assigns to a given

ℓ-traje
tory χ its end point. More pre
isely, we de�ne
e : B1

ℓ → X , given by e(χ) := χ(ℓ). (2.15)By requiring(M4) The map e is Hölder 
ontinuous on B1
ℓ ,we obtain the exponential attra
tor in the phase spa
e as the image of Eℓ (see [35,Theorem 2.6℄), namely we have that M := e(Mℓ) is an exponential attra
tor forthe semi�ow S on the spa
e B1.Remark 2.4. In general, the semi�ow S is originally de�ned on a spa
e X �larger�than the bounded set B1 (usually, but not in our 
ase, on the whole X ), and B1is 
hosen �a posteriori� as a bounded, absorbing and positively invariant set for the�original� S. One of the advantages of this approa
h is then that property (2.13)requires in general very little smoothing e�e
t (and is usually straighforward to be
he
ked in 
on
rete situations). We also note that, on
e we have the exponentialattra
tor M on B1, as B1 is absorbing, M turns out to be an exponential attra
toron the whole spa
e X .3 Main resultsWe begin by spe
ifying our basi
 assumptions on data. First of all, we ask

α ∈ C1(R; R), α(0) = 0, α′(r) ≥ σ > 0 for all r ∈ R. (hpα)7



Next, given λ ≥ 0 and an open (either bounded or unbounded) interval I ⊂ R with
0 ∈ I, we assume that the potential W ful�lls

W ∈ C1,1
loc (I; R), W ′(0) = 0, W ′′ ≥ −λ a.e. in I, (hpW1)

lim
r→∂I

W ′(r) sign r = +∞. (hpW2)Property (hpW1) is 
alled λ-
onvexity in what follows (see [2℄ for the de�nition).Sin
e W is de�ned up to an additive 
onstant, it is also not restri
tive to supposethat
∃ η > 0 : W (r) ≥

ηr2

2
for all r ∈ I. (3.1)We then introdu
e the basi
 phase spa
e for our analysis:

X2 :=
{

u ∈ H : Bu, W ′(u) ∈ H
}

, (3.2)whi
h is endowed with the metri

d2

2(u, v) := ‖u− v‖2 + ‖Bu−Bv‖2 + ‖(W ′ + λ)(u) − (W ′ + λ)(v)‖2. (3.3)Pro
eeding as in 
ite [41, Lemma 3.8℄ (
ompare also with [45, Se
. 3℄), it is easyto show that X2 is a 
omplete metri
 spa
e. It is also 
lear that X2 ⊂ V ∩ H2(Ω)(
ontinuously); however, if I 6= R, in general the in
lusion is stri
t.We 
an now list our hypotheses on the initial and sour
e data:
u0 ∈ X2, (hpu0)
f ∈ L∞(Ω). (hpf)Then, standardly identifying α and W ′ as operators from H to itself, we introdu
etheDe�nition 3.1. We 
all an X2-solution to the Problem (P) given by

α(ut) +Bu+W ′(u) = f, in H, a.e. in (0,∞), (3.4)
u|t=0 = u0, in H (3.5)one fun
tion u : [0,∞) → H satisfying (3.4), (3.5), and, for some C > 0,

u, ut, α(ut), Bu, W
′(u) ∈ L∞(0,∞;H), (3.6)

d2
2(u(t), 0) = ‖u(t)‖2 + ‖Bu(t)‖2 + ‖(W ′ + λ)(u(t))‖2 ≤ C2 for all t ∈ [0,∞).(3.7)We note that (3.4)�(3.5) give a rigorous formulation of the IBV problem for (1.1).With 
ondition (3.7) we ask the solution to stay in the phase spa
e X2 for any (andnot just a.e.) value of the time variable. We 
an now re
all the statement of theexisten
e result proved in [43, Thm. 2.5℄:8



Theorem 3.2. Assume (hpα), (hpW1)�(hpW2), and (hpu0)�(hpf). More pre
isely,suppose that for some κ > 0 it is
d2

2(u0, 0) = ‖u0‖
2 + ‖Bu0‖

2 + ‖(W ′ + λ)(u0)‖
2 ≤ κ2. (3.8)Then, Problem (P) admits at least one X2-solution, whi
h additionally satis�es

‖ut‖
2
L2(0,t;V ) ≤ C2. (3.9)Moreover, the 
onstants C in (3.7), (3.9) depend only on Ω, α, W , f , and (linearly)on κ in (3.8). In parti
ular, they do not depend on the time t.We remark that (3.9), whi
h was not stated in [43, Thm. 2.5℄ sin
e the 
oer
ivityhypotheses on α 
onsidered there were weaker, follows easily from the proof in [43,Se
. 3℄ thanks to the last assumption in (hpα). Let us now see that some solutionsto Problem (P) gain more spatial regularity for t > 0. With this aim, we introdu
ethe new spa
e

X∞ :=
{

u ∈ L∞(Ω) : Bu, W ′(u) ∈ L∞(Ω)
}

, (3.10)whi
h is naturally endowed with the (
omplete) metri

d2
∞(u, v) := ‖u−v‖2

L∞(Ω)+‖Bu−Bv‖2
L∞(Ω)+‖(W ′+λ)(u)−(W ′+λ)(v)‖2

L∞(Ω). (3.11)We also introdu
e weaker notions of 
onvergen
e (and, in fa
t, weaker topologies)on the spa
es X2, X∞. Namely, we say that a sequen
e {un} tends to u weakly in
X2 (in X∞) if un → u, Bun → Bu, and (W ′ + λ)(un) → (W ′ + λ)(u) weakly in H(weakly star in L∞(Ω), respe
tively). When we 
onstru
t below the semi�ow S on
X2, property (S5) will be impli
itly intended with respe
t to this weak stru
ture.To pro
eed, we need to introdu
e a 
ouple of fun
tionals de�ned on the spa
e X2,the �rst of whi
h has the meaning of energy:

E(u) :=

∫

Ω

[

|∇u|2

2
+W (u) − fu

]

, (3.12)
F(u) :=

1

2
‖Bu+W ′(u)‖2 − (f, Bu+W ′(u)). (3.13)It is 
lear that, sin
e (3.1) and (hpf) hold, both fun
tionals are �nite and boundedfrom below on X2. Moreover, mimi
king the pro
edure given in [43, Se
. 3℄, i.e.,formally testing (3.4) by λut + (Bu+W ′(u))t, and using in parti
ular (hpW1), one
an expe
t that solutions u to Problem (P) satisfy

d

dt

(

λE + F
)

(u(t)) ≤ 0 for a.e. t ≥ 0. (3.14)Setting then G := λE + F and noting that there exist η1, η3 > 0 and η2 ≥ 0 su
hthat
η1d

2
2(u, 0) − η2 ≤ G(u) ≤ η3

(

d2
2(u, 0) + 1

)

∀u ∈ X2, (3.15)9



relation (3.14) takes the form of a de
ay (or Liapounov) 
ondition for the distan
e
d2.However, the formal pro
edure used to get (3.14) seems very di�
ult to be justi�edif we just know that u is an X2-solution. A
tually, (3.4) is settled in H and (3.6)does not imply that the test fun
tion λut + (Bu+W ′(u))t takes values in H .To over
ome this di�
ulty, we re
all that the existen
e Theorem 3.2 was shownin [43℄ via approximation and 
ompa
tness methods. We sket
h here, and partlyre�ne, just the highlights of this pro
edure. Let us substitute α and W in (3.4) withregularized fun
tions αn and Wn still satisfying (hpα), (hpW1) and su
h that

αn, (W
′
n + 2λ Id) are Lips
hitz 
ontinuous with their inverses, (3.16)

αn, (W
′
n + 2λ Id) → α, (W ′ + 2λ Id) in the sense of graphs [4℄, (3.17)the latter 
onvergen
es intended as nր ∞. Then, noting as (Pn) the problem stillgiven by (3.4) (with the regularized fun
tions) and (3.5) (note that the initial datumis not regularized), it is not di�
ult to show theProposition 3.3. For every n > 0, Problem (Pn) has one and only one solution unsu
h that
un,tt ∈ L2(0,∞, H), un, un,t ∈ L2(0,∞, H2(Ω)). (3.18)Moreover, un satis�es estimates (3.6), (3.7) with C independent of n. Finally, forany subsequen
e of n ր ∞, there exists a subsubsequen
e (still noted here as un)su
h that un suitably (i.e., in the sense spe
i�ed by (3.6) and (3.7)) tends to u,where u is an X2-solution to Problem (P).We point out that the proof of the above Proposition 
ould be performed just byre�ning the estimates and the passage to the limit in [43, Se
. 3℄. We omit, forbrevity, the te
hni
al details of the argument and rather fo
us our attentions onthe more subtle 
onsequen
es of working with solutions un of (Pn). Of 
ourse, thefun
tions un do satisfy (3.14) (where, of 
ourse, Wn repla
es W in G). However,the 
onvergen
e un → u spe
i�ed by estimate (3.7) is too weak to let (3.14) passto the limit with n. Moreover, due to nonuniqueness for the problem (P), theremight exist some X2-solutions whi
h are not, or at least are not known to be, limitof (sub)sequen
es of solutions to (Pn). A
tually, we shall note in the sequel aslimiting (respe
tively, nonlimiting) the solutions to (P) whi
h are (respe
tively, arenot) limits of (sub)sequen
es of solutions to (Pn). For all these reasons, we haveto introdu
e a new 
on
ept of solution, where a (mu
h weaker than (3.14)) form ofLiapounov property (
f. (3.20) below) for G is postulated. From the proofs, it will be
lear that all limiting solutions satisfy (3.20), but there might also exist nonlimitingsolutions satisfying it.De�nition 3.4. A regularizing solution to Problem (P) is an X2-solution whi
h,additionally, ful�lls the regularization property
ut, α(ut), Bu, W

′(u) ∈ L∞(Ω × (T,∞)) ∀T > 0 (3.19)10



and the Liapounov 
ondition
G(u(t)) ≤ G(u(0)) for all t ≥ 0. (3.20)Then, we have the following result, whi
h will be proved in the next Se
tion 4:Theorem 3.5 (Regularizing solutions). Let (hpα), (hpW1)�(hpW2) and (hpu0)�(hpf) with (3.8) hold. Then, Problem (P) admits at least one regularizing solution.Moreover, there exist 
onstants c1, c2 > 0 and a 
ontinuous and monotone fun
tion

φ : [0,∞) → [0,∞), all independent both of the initial data and of time, andexpli
itly 
omputable in terms of Ω, α, W , f , su
h that, for every regularizingsolution and all T > 0, it is
‖ut(t)‖

2
L∞(Ω) ≤ c1

1 + G(u0)

T c2
∀ t ≥ T, (3.21)

d2
∞(u(t), 0) ≤ φ

(

c1
1 + G(u0)

T c2

)

∀ t ≥ T. (3.22)In parti
ular, thanks to the se
ond inequality in (3.15) and to (3.8), the bounds(3.21), (3.22) depend only on the �radius� κ of the initial datum with respe
t to d2.Theorem 3.5 is the starting point for all the subsequent investigations. As a �rst
onsequen
e, using the last of (3.21) and (hpW2), from straightforward argumentsthere follows theCorollary 3.6 (Separation). Let (hpα), (hpW1)�(hpW2) and (hpu0)�(hpf) hold,and let u be a regularizing solution. Then, for any T > 0 there exist r < 0, r > 0,with inf I < r < 0 < r < sup I, su
h that
r ≤ u(x, t) ≤ r ∀x ∈ Ω, t ≥ T. (3.23)Remark 3.7. The separation property (3.23) stated in the Corollary improves theanalogous property shown in [43, Prop. 2.10℄ and holding for less regular solutions(i.e., X2-solutions in our notation) under additional assumptions on W .The lo
al Lips
hitz 
ontinuity of W ′ (following from (hpW1)) and the simple argu-ment used in [43, Proof of Thm. 2.11℄ permit then to obtain immediately theCorollary 3.8 (Uniqueness). Assume (hpα), (hpW1)�(hpW2) and (hpu0)�(hpf).Let also u, v be a pair of X2-solutions satisfying, for some T, c ≥ 0,

d∞(u(t), 0) + d∞(v(t), 0) ≤ c ∀ t ≥ T, (3.24)with c independent of t. Then, u ≡ v on [T,∞).The proof of the next result will be detailed in Se
tion 4.Corollary 3.9. Under assumptions (hpα), (hpW1)�(hpW2) and (hpu0)�(hpf), theset S of regularizing solutions to Problem (P) is a semi�ow, whose spa
e of regular-ized values is 
ontained into X∞. 11



Remark 3.10. Comparing our assumptions on α, W with those taken in [43℄, wepoint out that here (
f. (hpW2)), if I 6= R, we are not able to 
onsider potentialsbounded in I (like, e.g., the �double obsta
le� W (r) ∼ I[−1,1](r)−λr
2/2, I[−1,1] beingthe indi
ator fun
tion of [−1, 1]). More pre
isely, this restri
tion is not requiredin the proof of Theorem 3.5, where only (hpW1) is used, but in the subsequentCorollaries 3.6 and 3.8. Con
erning α, di�erently from [43℄, we 
annot 
onsider herethe 
ase in whi
h α is a maximal monotone fun
tion with some multivalued bran
h,and in parti
ular we are not able to deal with the situation where the domain of αis stri
tly in
luded in R (as it happens, e.g., in the appli
ation to irreversible phasetransitions 
onsidered in [25, 33, 34℄). Indeed, in 
ase domα 6= R, one 
an stilldedu
e (3.21), but not (3.22), whi
h is 
ru
ial for the long time analysis.Remark 3.11. The non-uniqueness of solutions to (P) 
an be pre
ised as follows.Given an initial datum u0 ∈ X2, from it more than one solution 
an emanate. Inparti
ular, there are one, or more, regularizing solutions, starting from u0, at leastone of whi
h is limiting, and all these regularizing solutions are taken as elementsof the semi�ow S. Other solutions 
an also exist whi
h are not elements of S.In parti
ular, (nonlimiting) smooth solutions enjoying (3.21) but not (3.20) areex
luded from S.Let us now 
ome to the long time behavior.Theorem 3.12 (Global attra
tor). Assume (hpα), (hpW1)�(hpW2) and (hpu0)�(hpf). Then, the semi�ow S asso
iated with Problem (P) admits the global at-tra
tor A, whi
h is 
ompa
t in X2 and �sequentially weakly 
ompa
t� in X∞ (i.e.,sequen
es in A admit subsequen
es �weakly� 
onverging in X∞).Theorem 3.13 (Exponential attra
tors). Suppose that (hpα), (hpW1)�(hpW2)and (hpu0)�(hpf) hold. Then, the semi�ow S asso
iated with Problem (P) admitsan exponential attra
tor M. More pre
isely, M is a 
ompa
t subset of V whi
hattra
t exponentially fast with respe
t to the V -norm any d2-bounded subsets of X2.Remark 3.14. We showed existen
e of M by working in V rather than in X2 sin
e,due to the nonlinear 
hara
ter ofW , it seems di�
ult to prove a 
ontra
ting estimatein the metri
 d2. Instead, re�ning our pro
edure it should be possible to 
hoose, atleast, X = V ∩H2(Ω). Nevertheless, in this 
ase, the argument (espe
ially the proofof (M1)) would have be
ome very te
hni
al.As re
alled in Se
tion 2, the existen
e of M entails that the global attra
tor A is
ontained in M and has �nite fra
tal dimension in V .As a �nal issue, by virtue of the L∞-bound on ut, we are able to sharpen the resultsin [43℄ 
on
erning ω-limits of the elements of S. A
tually, sin
e α(0) = 0, it is 
lear(
f. [43, Thm. 2.13℄) that the stationary states u∞ of (3.4) are solutions of

Bu∞ +W ′(u∞) = f in H. (3.25)12



It is well known that, sin
e W needs not be 
onvex, (3.25) may well admit in�nitelymany solutions [27℄, all of whi
h, due to (hpW1), (hpW2) and standard ellipti
regularity results, belong to X∞. Thus, given u ∈ S, the question of the 
onvergen
eof all the traje
tory u(t) to one of these solutions may be non trivial. As in [43℄,we are able to show this property by making use of the so-
alled �ojasiewi
z-Simoninequality [31, 32, 48℄, at least provided that
W |I0 is real analyti
, (3.26)where I0 ⊂ I is an open interval 
ontaining 0 and su
h that W ′(r)r > 0 for all

r ∈ I \ I0. Clearly, I0 exists thanks to (hpW2); moreover, by maximum prin
iplearguments, any solution to (3.25) takes values in a 
ompa
t subset of I0. Then, wehave the followingTheorem 3.15 (Convergen
e to the stationary states). Let us assume hypotheses(hpα), (hpW1)�(hpW2), (hpu0)�(hpf) and (3.26). Then, letting u be a regular-izing solution, the ω-limit of u 
onsists of a unique fun
tion u∞ solving (3.25).Furthermore, as tր +∞,
u(t) → u∞ strongly in V ∩ C(Ω), (3.27)i.e., we have 
onvergen
e for the whole traje
tory u(t).The di�eren
e between this result and [43, Thm. 2.18℄ lies in the fa
t that, thanksto (3.19), we need not assume any growth 
ondition on α. Roughly speaking, the

L∞-bound on ut 
ombined with the regularity and the 
oer
ivity of α (see (hpα))redu
es the nonlinearity α to an almost �linear� 
ontribution and makes the analysisof the 
onvergen
e of the traje
tory simpler. In fa
t, Theorem 3.15 
an be provedby simply adapting the proof given in [14℄. We leave the details to the reader.Remark 3.16 (The asymptoti
ally autonomous 
ase). For the sake of studying
ω-limits, we 
ould also 
onsider time dependent sour
es, by assuming, instead of(hpf),

f ∈ L2(0,+∞;L∞(Ω)), ft ∈ L1(0,+∞;L∞(Ω)). (3.28)Indeed, it 
ould be shown that Theorem 3.5 and Corollaries 3.6, 3.8, and 3.9 stillhold in this setting. Moreover, assuming also that there exist c, ξ > 0 su
h that
t1+ξ

∫ ∞

t

‖f(s)‖2 ds ≤ c for all t ≥ 0, (3.29)Theorem 3.15 
ould be extended as well (see also [14, 26℄ for this kind of assump-tions).4 Regularization in timeProof of Theorem 3.5. We shall use an Alikakos-Moser [1℄ iteration argumentfor whi
h some a priori estimates are needed. In parti
ular, we shall work on the13



(formal) time derivative of (3.4), namely given by
α′(ut)utt +But +W ′′(u)ut = 0. (4.1)Of 
ourse, (4.1) needs not make sense if u is just an X2-solution. However, we 
anwrite it for Problem (Pn), derive the estimates at the level n, and then let thempass to the limit n ր ∞ using the semi
ontinuity properties of norms w.r.t. weak
onvergen
es. This approa
h has the drawba
k that, at a �rst stage, the estimateswill hold only for the �limiting solutions�. They will be properly extended to allregularizing solutions in the se
ond part of the proof.Before pro
eeding, we introdu
e some further notation. For simpli
ity, we shall omitthe index n of the approximation in all what follows. The symbol c will stand fora positive 
onstant, possibly varying even inside one single line, whi
h is allowed todepend on the data Ω, α, W , f , but neither on the initial values, nor on time. The
onstant(s) c will be also independent of the exponents pj of the iteration pro
ess(see below) and, of 
ourse, of n. Some c's whose pre
ise value is needed will bedistinguished by noting them as ci, i ≥ 0. Let us now set, for p ∈ [2,∞),
ap(s) :=

∫ s

0

α′(r)|r|p−2r dr (4.2)and noti
e that (re
all that α(0) = 0)
σ

p
|s|p ≤ ap(s) ≤ α(s)|s|p−2s ∀ s ∈ R. (4.3)Moreover, it is 
lear that (at least formally, as noted above)

d

dt
ap(ut) = α′(ut)|ut|

p−2ututt. (4.4)Then, testing (4.1) by ut, re
alling the se
ond of (hpW1) and adding λ‖ut‖
2 on bothhands sides, and integrating over (0, t), we get

2‖a2(ut(t))‖L1(Ω) + 2‖ut‖
2
L2(0,t;V ) ≤ 2‖a2(ut(0))‖L1(Ω) + c‖ut‖

2
L2(0,t;H). (4.5)To 
ontrol the latter term in the right hand side above, we 
an use (3.9). The otherone, by (4.3) with p = 2 and Young's inequality, be
omes

2‖a2(ut(0))‖L1(Ω)) ≤ ‖α(ut(0))‖2 + ‖ut(0)‖2 ≤ c(1 + κ)2, (4.6)where the latter inequality is a 
onsequen
e of a 
omparison in (3.4) (written for(Pn)) and of assumption (hpu0) (κ is as in (3.8)). A
tually, α−1 is Lips
hitz 
ontin-uous due to (hpα). In 
on
lusion, from (4.5) we obtain
2‖a2(ut)‖L∞(0,∞;L1(Ω)) + 2‖ut‖

2
L2(0,∞;V ) ≤ c0(1 + κ)2. (4.7)We 
an now des
ribe the two estimates whi
h are at the 
ore of the iteration pro
ess.14



First estimate. Let j ≥ 1, pj > 1, and let us test (4.1) by |ut|
pj−2ut, so that

d

dt

∫

Ω

apj
(ut) +

(

But, |ut|
pj−2ut

)

≤ λ‖ut‖
pj
pj

(4.8)(we agree, here and in the sequel, to note by ‖ · ‖p the norm in Lp(Ω) for p ∈ [1,∞]).By de�nition of B and Poin
aré's inequality (everything works with minor 
hangesalso in the Neumann 
ase),
(

But, |ut|
pj−2ut

)

≥
4(pj − 1)

p2
j

∫

Ω

∣

∣

∣

∣

∇
(

|ut|
pj−2

2 ut

)

∣

∣

∣

∣

2

≥
c1
pj
‖ut‖

pj

3pj
, (4.9)for some c1 > 0. Assuming then that there exist Tj , ℓj > 0 su
h that

pj‖apj
(ut)‖T 1(Tj ,∞;L1(Ω)) ≤ ℓj, pj‖ut‖

pj

T
pj (Tj ,∞;Lpj (Ω))

≤ ℓj (4.10)and multiplying (4.8) by pj , from Lemma 2.2 we get, for τj ∈ (0, 1],
pj‖apj

(ut(t+ τj))‖L1(Ω) ≤ ℓj

(

λ+
1

τj

)

∀ t ≥ Tj , (4.11)when
e, re
alling (4.3), we also have
‖ut(t+ τj)‖

pj
pj
≤
ℓj
σ

(

λ+
1

τj

)

∀ t ≥ Tj . (4.12)Moreover, integrating pj times (4.8) over (t, t+ 1) for t ≥ Tj + τj , and taking (4.9),(4.11) into a

ount, it is not di�
ult to infer
∫ t+1

t

‖ut(s)‖
pj

3pj
ds ≤

ℓj
c1

(

2λ+
1

τj

)

∀ t ≥ Tj + τj . (4.13)Interpolation argument. By elementary interpolation of Lp spa
es, we have
‖ut(t)‖7pj/3 ≤ ‖ut(t)‖

1/7
pj

‖ut(t)‖
6/7
3pj

∀ t ≥ Tj + τj . (4.14)Hen
e, still for t ≥ Tj + τj ,
∫ t+1

t

‖ut(s)‖
7pj/6

7pj/3 ds ≤ ‖ut‖
pj/6

L∞(t,t+1,Lpj (Ω))

∫ t+1

t

‖ut(s)‖
pj

3pj
ds. (4.15)Thus, from (4.12) and (4.13),

‖ut‖
7pj/6

T
7pj/6(Tj+τj ,∞;L7pj/3(Ω))

≤

(

ℓj
σ

)1/6(

λ+
1

τj

)1/6
ℓj
c1

(

2λ+
1

τj

)

. (4.16)In 
on
lusion, there exists c2 depending only on c1, σ, λ and su
h that
‖ut‖

pj

T
7pj/6(Tj+τj ,∞;L7pj/3(Ω))

≤ c2ℓj

(

1 +
1

τj

)

. (4.17)15



Se
ond estimate. We now test (3.4) by |ut|
q−2ut, with q > 1 to be 
hosen later.Owing to the bound (3.7) and using (hpα), it is 
lear that

∫

Ω

α(ut)|ut|
q−2ut ≤ ‖ − Bu−W ′(u) + f‖2‖ut‖

q−1
2q−2 ≤ c(1 + κ)‖ut‖

q−1
2q−2. (4.18)Consequently,

σ‖ut‖
q
q ≤ c(1 + κ)‖ut‖

q−1
2q−2. (4.19)The above relations (4.18)�(4.19) hold pointwise in t. Then, integrating (4.18) over

(t, t+ 1) for t greater than a suitable S and using the latter inequality in (4.3), weget, for some c3 depending only on C, σ,
q‖aq(ut)‖T 1(S,∞;L1(Ω)) + q‖ut‖

q
T q(S,∞;Lq(Ω)) ≤ c3q(1 + κ)

∫ t+1

t

‖ut(s)‖
q−1
2q−2 ds. (4.20)Bootstrap. At this point, if we take in the previous argument

S = Tj+1 := Tj + τj , q = pj+1 :=
7pj

6
+ 1, (4.21)relation (4.20) is readily rewritten as

pj+1‖apj+1
(ut)‖T 1(Tj+1,∞;L1(Ω)) + pj+1‖ut‖

pj+1

T
pj+1 (Tj+1,∞;Lpj+1(Ω))

≤ c3pj+1(1 + κ)

∫ t+1

t

‖ut(s)‖
pj+1−1
2pj+1−2 ds. (4.22)Hen
e, re
alling (4.17), the left hand side above is majorized by

c3pj+1(1 + κ)c
7/6
2 ℓ

7/6
j

(

1 +
1

τj

)7/6

≤ c4ℓ
7/6
j pj

(

1 +
1

τj

)7/6

(1 + κ). (4.23)Thus, we 
an de�ne
ℓj+1 := c4ℓ

7/6
j pj

(

1 +
1

τj

)7/6

(1 + κ), (4.24)so that (4.23) implies (4.10) at the step j + 1. More pre
isely, sin
e by (4.7) we 
antake
T1 := 0, p1 := 2, ℓ1 := c0(1 + κ)2, (4.25)assuming that ǫ ∈ (0, 1) is given, we also 
hoose

τj :=
ǫ

j2
, so that Tj+1 = Tj + τj ≤ cǫ ∀ j ≥ 1 (4.26)and for c > 0 independent of j. At this point, let us set, for notational simpli
ity,
b := 7/6, Bj :=

j
∑

i=0

bi ≤ 6bj+1. (4.27)16



Then, it is not di�
ult to get from (4.24) (
f. also (4.25))
ℓj+1 ≤ c

Bj−1

4 cb
j

0 (1 + κ)pj+1

j
∏

i=1

pbj−i

i

j
∏

i=1

(

1 +
i2

ǫ

)bj−i+1

, (4.28)when
e, noting that
c5b

j ≤ pj ≤ c6b
2j ∀ j ≥ 1 (4.29)and for some c5, c6 > 0 independent of j, and passing to the logarithm, it is notdi�
ult to show that

( j
∏

i=1

pbj−i

i

)1/pj

≤ c, (4.30)
(

j
∏

i=1

(

1 +
i2

ǫ

)bj−i+1
)1/pj

≤
c

ǫc7
. (4.31)Colle
ting the above estimates, we infer

ℓ
1/pj+1

j+1 ≤
c(1 + κ)

ǫc7
. (4.32)Thus, (4.12) (written at the step j + 1) gives, for all j ∈ N,

‖ut(t)‖pj
≤
c(1 + κ)

ǫc8
∀ t ≥ Tj+1. (4.33)>From (4.17) we also have

‖ut‖T pj+1−1(Tj+1,∞;L2(pj+1−1)(Ω))
≤
c(1 + κ)

ǫc8
. (4.34)Finally, taking the limit of (4.33) as j ր ∞ we obtain

‖ut(t)‖∞ ≤
c9(1 + κ)

ǫc8
∀ t ≥ cǫ, (4.35)where the last c is the same as in (4.26). Hen
e, by arbitrariness of ǫ, ut(t) isessentially bounded for a.e. t > 0. More pre
isely, squaring (4.35), re
alling (3.8),and owing also to the �rst inequality in (3.15), (3.21) follows at on
e. Re
alling(hpα), and using in parti
ular that α is de�ned on the whole real line, we alsoobtain

‖α(ut)‖∞ ≤ φ

(

c1
1 + G(u0)

T c2

)

∀ t ≥ T, (4.36)where φ depends only on α. Then, rewriting (3.4) as
Bu+W ′(u) + λu = f + λu− α(ut), (4.37)and viewing it as a time dependent family of ellipti
 problems with monotone non-linearity and uniformly bounded for
ing term, it is not di�
ult to obtain also (3.22)17



as a 
onsequen
e of standard maximum prin
iple arguments. More pre
isely, one
an test (4.37) by |W ′(u) + λu|p−2(W ′(u) + λu) for p ∈ [2,∞) and then let pր ∞.To 
on
lude the proof of Theorem 3.5, we re
all that the pro
edure above has tobe intended in the framework of Problem (Pn). Then, the bounds (3.21), (3.22),as well as the Liapounov 
ondition (3.20), pass easily to the limit n ր ∞ thanksto lower semi
ontinuity of norms with respe
t to weak and weak star 
onvergen
es.More pre
isely, to obtain (3.20) the following property (of straightforward proof) isused:Lemma 4.1. The fun
tional G is weakly sequentially lower semi
ontinuous in X2,namely, we have
G(u) ≤ lim inf

nր∞
G(un) (4.38)if {un} ⊂ X2 tends to some limit u weakly in X2. The same property holds also for

F .The proof of Theorem 3.5 is however not yet 
omplete sin
e, up to now, we havejust showed that any limiting solution is a regularizing solution and ful�lls (3.21),(3.22) and (3.20). To 
on
lude, we have to prove that any regularizing solution u(i.e. also a nonlimiting one) satis�es (3.21) and (3.22) (while (3.20) is now postulatedin De�nition 3.4). Here, the key point is to noti
e that, by (3.19) and Cor. 3.8,taken any s > 0, from the �datum� u(s) at most one solution emanates. Thus,any regularizing u is also �limiting� as it is restri
ted to [s,∞). This means that,referring for instan
e to (3.21), we have at least
‖ut(t)‖

2
L∞(Ω) ≤ c1

1 + G(u(s))

(T − s)c2
∀ t ≥ T > s > 0. (4.39)Then, (3.21) follows easily by �rst using (3.20) (with s in pla
e of t) and then takingthe limit for s ց 0. The bound (3.22) is proved exa
tly in the same way and
on
ludes the proof of Theorem 3.5.Remark 4.2. Noti
e that, for any regularizing solution, there holds the property(slightly stronger than (3.20))

G(u(t)) ≤ G(u(s)) for all t ≥ s ≥ 0. (4.40)Indeed, if s = 0, then (4.40) redu
es to (3.20). Otherwise, u 
oin
ides on [s,∞)with a limiting solution. Thus, (4.40) 
an be shown by noting as before that u islimiting on [s,∞), 
onsidering (Pn) w.r.t. the �initial� datum u(s), and �nally letting
nր ∞.Proof of Corollary 3.9. Property (S1) is evident and (S4) follows from Cor. 3.8.Next, (S2) and (S3) are immediate on
e one notes that v (in (S2)) and z (in (S3))ful�ll (3.20) thanks to Remark 4.2. Finally, let us prove (S5). Although we 
oulduse here the regularization properties (3.21), (3.22), we rather give a proof whi
h18



essentially relies only on (3.7), sin
e we think it is interesting to noti
e that thestrong-weak semi
ontinuity properties require no smoothing e�e
t.Thus, to show the �rst of (S5), we start by observing that, due to (3.6), any u ∈ Sstays in Cw([0,∞);H2(Ω)), so that we just have to prove that, as s, t ∈ [0,∞) and stends to t, (W ′ + λ)(u(s)) goes to (W ′ + λ)(u(t)) weakly in H . To see this, we �rstnoti
e (
f. also [41, Se
. 6℄) that there exists c ≥ 0 su
h that ‖(W ′ + λ)(u(s))‖ ≤ cfor all (not just a.e.) s ∈ [0,∞). Then, it is 
lear that, as s→ t, any subsequen
e of
(W ′+λ)(u(s)) admits a subsequen
e weakly 
onvergent inH , whose limit is identi�edas (W ′ + λ)(u(t)) thanks to the 
onvergen
e u(s) → u(t), whi
h is strong in H , themonotoni
ity of W ′ + λ Id, and [8, Lemma 1.3, p. 42℄. This proves weak 
ontinuityof single traje
tories. If we use (3.21), (3.22), we a
tually get more, namelyW ′(u(·))is strongly 
ontinuous with values in C(Ω) at least for stri
tly positive times.To 
on
lude, let us show the se
ond property in (S5). Letting then un, u0,n as in (S5),as u0,n tends to u0 in X2, it is in parti
ular bounded in X2. This entails that (3.7),(3.21), (3.22) hold uniformly in n. By 
ompa
tness arguments (similar to thosein [43, Subse
. 3.3℄) and using [47, Cor. 4℄, we then obtain that (a not relabelledsubsequen
e of) un satis�es, for all T > 0,

un → u strongly in C0([0, T ];V ), (4.41)
(W ′ + λ)(un) → (W ′ + λ)(u) weakly in L2(0, T ;H), (4.42)where u is an X2-solution to Problem (P) with initial datum u0, and it satis�es (3.7),(3.21) and (3.22). In parti
ular, given any t > 0, by (4.41) un(t) goes to u(t) stronglyin V . Then, by uniform boundedness, this 
onvergen
e is also weak in H2(Ω). Asbefore, the monotoni
ity of W ′ + λ Id and the bound ‖(W ′ + λ)(un(t))‖ ≤ c, whi
his uniform both in n and in t, permit to show that (W ′ +λ)(un(t)) → (W ′+λ)(u(t))weakly in H (no further extra
tion of subsequen
e is required here, sin
e the limitis already identi�ed). To 
on
lude, we have to see that u is a regularizing solution(i.e. it also ful�lls (3.20)). To prove this, it su�
es to write (3.20) for un and takethe liminf as nր ∞. Indeed, the left hand side 
an be treated by Lemma 4.1, whilethe right hand side passes dire
tly to the limit sin
e u0,n → u0 strongly in X2 andit is easy to 
he
k that G is 
ontinuous with respe
t to d2.5 Long time behaviorProof of Theorem 3.12. We shall show the following fa
ts:(L1) The semi�ow S possesses a Liapounov fun
tion;(L2) The set of stationary points of S is bounded in X2;(L3) The semi�ow S is asymptoti
ally 
ompa
t, namely for any sequen
e {u0

n

}

n∈Nbounded in X2 and any positive sequen
e {tn}n∈N
, tn ր ∞, any sequen
e of theform {un(tn)}, where un ∈ S and un(0) = u0

n, is pre
ompa
t in X2.By the theory of global attra
tors (see, e.g., [30, Theorem 3.2℄ or [5, Thm. 5.1℄),19



(L1)�(L3) would imply the existen
e of a global attra
tor 
ompa
t in X2. However,here neither the �standard� theory in [30℄, nor the �generalized� theory in [5℄, 
an bedire
tly applied sin
e we have no uniqueness and just strong-weak semi
ontinuity.Nevertheless, we shall show in the Appendix that the validity of [5, Thm. 5.1℄ 
anbe extended also to this 
ase.Remark 5.1. The use of this method permits to bypass the dire
t proof of existen
eof an X2-bounded absorbing set, whi
h seems di�
ult to get here due to the possiblyfast growth of α at ∞. Of 
ourse, a posteriori the dissipativity property will besatis�ed just as a 
onsequen
e of the existen
e of the global attra
tor.To pro
eed, we �rst noti
e that, by the energy estimate (obtained testing (3.4) by
ut), E is a Liapounov fun
tional. Note that the regularity of any X2-solution issu�
ient to justify this estimate (and this is the reason why we do not use herethe fun
tional G, whi
h also enjoys a Liapounov property, at least for regularizingsolutions, by Remark 4.2). Thus, (L1) holds. Se
ond, (L2) is an easy 
onsequen
eof well-known ellipti
 regularity results (we even have boundedness in X∞). Thus,it just remains to show (L3), whose proof will be split in a number of steps.Lemma 5.2. Given 0 < τ < T < ∞, there exists c depending on τ, T and on theinitial datum su
h that any regularizing solution u satis�es the further bounds

‖utt‖L2(τ,T ;H) + ‖ut‖L∞(τ,T ;V ) ≤ c, (5.1)
‖But‖L2(τ,T ;H) ≤ c. (5.2)Proof. We 
an prove (5.1)�(5.2) by working on (Pn) and then letting n ր ∞.As before, we omit the subs
ript n, for simpli
ity. Indeed, sin
e we just 
onsiderstri
tly positive times, u 
an be thought as a limiting solution. In this regard, (5.1)is obtained by testing (4.1) by (t− τ)utt and using monotoni
ity of α together with(3.9) and (3.19). Next, (5.2) follows by making a 
omparison in (4.1) and using the
ontinuity of W ′′, (3.19) and (3.23). The te
hni
al details of the pro
edure, as wellas the standard argument for passing to the limit with n, are left to the reader.To pro
eed, we set, just to avoid some te
hni
alities, f ≡ 0. We have theLemma 5.3. Let z ∈ S. Setting, for s > 0,

H(z(s)) := −
(

α(zt(s)), (Bzt +W
′′(z)zt)(s)

)

−
1

2

(

α(zt(s)), (Bz+W ′(z))(s)
)

, (5.3)for any τ,M > 0 there holds
F(z(τ +M)) = e−MF(z(τ)) +

∫ τ+M

τ

es−τ−MH(z(s)) ds. (5.4)Proof. Sin
e we work on [τ,∞), we 
an use the further regularity properties (5.1)�(5.2), whi
h allow us to test (3.4) by (Bzt +W ′′(z)zt) + 1
2
(Bz+W ′(z)). Integratingover (τ, τ +M), we readily get 5.4. 20



Remark 5.4. Let us note that, using, e.g., [12, Lemme 3.3, p. 73℄, we get, morepre
isely, that the fun
tion t 7→ G(z(t)) is absolutely 
ontinuous on [τ,∞) for all
τ > 0. This permits, in parti
ular, to improve (in our spe
i�
 
ase) the �rst 
onditionin (S5). Namely, the elements of our semi�ow S belong to C((0,∞);X2) (
omparealso with [5, (C1)℄.Let us now 
omplete the proof of (L3). We use here the �energy method� originallydevised by Ball in [6℄ (see also [39℄ for an extension to nonautonomous systems).Take τ,M as before, and let vn be the (unique) regularizing solution satisfying, for
t ∈ [0,∞), vn(t) = un(tn + t−M−τ) (so that, in parti
ular, vn(0) = un(tn−M−τ),
vn(τ) = un(tn −M) and vn(τ + M) = un(tn)). Sin
e by (3.22) there exists k > 0su
h that d∞(vn(t), 0) ≤ k for all n ∈ N and t ∈ [0,∞), by weak 
ompa
tness wehave that there exist χ−M , χ ∈ X2 su
h that vn(τ) → χ

−M and vn(τ + M) → χweakly in X∞. Then, writing (5.4) for z = vn, we get
F(un(tn)) − e−MF(un(tn −M)) = F(vn(τ +M)) − e−MF(vn(τ))

=

∫ τ+M

τ

es−τ−MH(vn(s)) ds =: H(vn). (5.5)Next, let us note that, at least up to a not relabelled subsequen
e, vn properlytends to an X2-solution v. Thus, in parti
ular, we have that v(τ) = χ
−M and

v(τ + M) = χ. Moreover, still by (3.22), d∞(v(t), 0) ≤ k for all t ∈ [0,∞). Thus,setting v0 := limnր∞ vn(0), sin
e by the existen
e property there must exist at leastone z ∈ S su
h that z(0) = v0, by Corollary 3.8 it must be z ≡ v on [0,∞), whi
hmeans that v is itself an element of S and, 
onsequently, satis�es (5.4). Thus, notingthat, by (5.1), (5.2) and weak 
ompa
tness, H(vn) tends to H(v), taking the lim supin (5.5) one gets
lim sup

nր∞

F(un(tn)) ≤ ke−M + lim sup
nր∞

H(vn)

= ke−M + H(v)

= ke−M + F(v(τ +M)) −F(v(τ))e−M

≤ ke−M + F(χ). (5.6)Sin
e un(tn) tends to χ weakly in X2 and using on
e more Lemma 4.1, it is then easyto see that F(un(tn)) tends to F(χ), whi
h readily entails that un(tn) → χ stronglyin X2, i.e. (L3).Remark 5.5. We point out that the attra
tor A turns out to be more regular.More pre
isely, it is bounded and hen
e �weakly� 
ompa
t in X∞. Indeed, it is easyto realize that the set of stationary points of (P) mentioned in property (L2) is alsobounded in X∞. Moreover, (3.22) entails that S is (sequentially) �weakly� 
ompa
t,i.e. (L3) holds, in X∞. Thus, Ball's pro
edure sket
hed in the Appendix 
an berepeated with respe
t to the �weak� topology in X∞. As a further 
onsequen
e, itis now easy to see that A is also strongly 
ompa
t in W 2,p(Ω) for all p ∈ [1,∞).Remark 5.6. On a

ount of the previous Remark, our pro
edure entails existen
eof an absorbing ser B0 for S bounded in X∞ (not just in X2).21



6 Exponential attra
torsIn this se
tion we prove Theorem 3.13 by means of the method of ℓ-traje
tories. Inorder to apply the theory of [35℄ sket
hed in Se
tion 2, we take X := V endowed withits standard norm. In 
omparison with the global attra
tor, whi
h was 
onstru
tedin the smaller spa
e X2, we are thus working with weaker norm and topology.We know from the previous Se
tion that S admits an absorbing set B0 bounded in
X∞. We let (uniqueness holds on B0, thus we 
an use the �semigroup� S(·))

B1 := ∪t∈[0,T0]S(t)B0, (6.1)where T0 > 0 is su
h that S(t)B0 ⊂ B0 for all t ≥ T0 and the 
losure is takenw.r.t. the weak topology of X∞. Due to the uniform 
hara
ter of estimate (3.22)(now the initial data are in B0, so they are uniformly bounded in X∞), B1 is stillabsorbing and bounded in X∞. Moreover, we 
laim that B1 is positively invariant.To prove this fa
t, we let τ > 0 and assume that u0 ∈ B1 is given by
u0 = lim

nր∞
S(tn)u0,n, (6.2)where {u0,n} ⊂ B0 and {tn} ⊂ [0, T0]. Then, using uniform boundedness, weak
ompa
tness arguments and the uniqueness property of solutions it is not di�
ultto realize that

S(tn + τ)u0,n = S(τ)
(

S(tn)u0,n

)

→ S(τ)u0 (6.3)weakly in X∞ as n ր ∞ (note that we 
annot use dire
tly (S5) sin
e we do notknow that S(tn)u0,n 
onverges strongly inX2). This readily entails that S(τ)u0 ∈ B1,whi
h is then positively invariant.At this point, possibly making a positive and �nite time shift, we 
onsider elementsof S starting from initial data in B1. Following [35, Se
. 2℄ and Se
tion 2 in thispaper, we set Xℓ := L2(0, ℓ;X ), where the 
hoi
e of ℓ ∈ (0,∞) is here arbitrary, andde�ne B1
ℓ as the set of ℓ-traje
tories whose initial datum lies in B1. Using that B1is positively invariant and weakly 
losed in X∞, it is not di�
ult to show that B1

ℓ isalso 
losed with respe
t to the norm in Xℓ.We now show the validity of 
onditions (M1), (M2) and (M3) reported in Se
tion 2.To do this, we prove a number of a priori estimates involving the di�eren
e of twosolutions. Namely, we take u1, u2 solving (P) and starting from u0,1, u0,2 ∈ B1,respe
tively, and set u := u1 − u2. Then, writing (3.4) for u = u1 and for u = u2,and taking the di�eren
e, we have
α(u1,t) − α(u2,t) +Bu+W ′(u1) −W ′(u2) = 0. (6.4)In the sequel, the varying 
onstant c > 0 and the 
onstants c1, c2, · · · > 0, whosenumeration is restarted, will be allowed to depend on B1 and on ℓ, additionally.Thus, let us test (6.4) by ut. We get

σ‖ut‖
2 +

d

dt
‖u‖2

V ≤ c‖u‖2, (6.5)22



where we also used the Young inequality and that, thanks to (3.22), there exists c > 0depending on B1 su
h that ‖W ′′(u1(r))‖∞ + ‖W ′′(u2(r))‖∞ ≤ c for all r ∈ [0,∞).Then, by Gronwall's Lemma,
‖u(y)‖2

V ≤ ec(y−s)‖u(s)‖2
V ≤ e2cℓ‖u(s)‖2

V =: c1‖u(s)‖
2
V (6.6)for all s, y su
h that 0 ≤ y−s ≤ 2ℓ. Then, taking s ∈ [0, ℓ], t ∈ [s, 2ℓ] and integrating(6.5) over [s, t], we infer

σ

∫ t

s

‖ut(r)‖
2 dr + ‖u(t)‖2

V ≤ c

∫ t

s

‖u(r)‖2 + ‖u(s)‖2
V . (6.7)Thus, using (6.6) integrated for y ∈ [s, t] to estimate the �rst term in the right handside above, we get, for t = 2ℓ,

σ

∫ 2ℓ

s

‖ut(r)‖
2 dr + ‖u(2ℓ)‖2

V ≤ c2‖u(s)‖
2
V , (6.8)when
e, integrating for s ∈ [0, ℓ],

σℓ‖ut‖
2
L2(ℓ,2ℓ;H) + ℓ‖u(2ℓ)‖2

V ≤ c2‖u‖
2
L2(0,ℓ;V ). (6.9)Now, let us noti
e that a dire
t 
omparison argument in (3.4) gives

‖u‖2
H2(Ω) ≤ c

(

‖u‖2 + ‖Bu‖2
)

≤ c3‖u‖
2 + c3‖ut‖

2, (6.10)where the last inequality holds by the lo
al Lips
hitz 
ontinuity of α and W ′ andTheorem 3.5. Thus, evaluating the above formula in y ∈ [ℓ, 2ℓ], and using (6.6),
‖u(y)‖2

H2(Ω) ≤ c3c1‖u(s)‖
2
V + c3‖ut(y)‖

2. (6.11)Finally, integrating for s ∈ [0, ℓ] and y ∈ [ℓ, 2ℓ] and re
alling (6.9),
‖u‖2

L2(ℓ,2ℓ;H2(Ω)) ≤ c4‖u‖
2
L2(0,ℓ;V ). (6.12)We are in the position to show properties (M1), (M2) and (M3). Setting

Wℓ :=
{

v ∈ L2(0, ℓ;H2(Ω)) : vt ∈ L2(0, ℓ;H)
}

, (6.13)from (6.12) and (6.9) we have, respe
tively,
‖Lℓu1 − Lℓu2‖L2(0,ℓ;H2(Ω)) ≤ c‖u1 − u2‖L2(0,ℓ;V ), (6.14)
∥

∥

∥
(Lℓu1 − Lℓu2)t

∥

∥

∥

L2(0,ℓ;H)
≤ c‖u1 − u2‖L2(0,ℓ;V ), (6.15)whi
h imply property (M1) thanks to a straightforward appli
ation of the Aubin-Lions 
ompa
tness Lemma. 23



Con
erning property (M2), this follows from (6.6) taking y = s + t, with t varyingin [0, τ ], τ > 0, and integrating for s ∈ [0, ℓ] (the 
onstant c1 will a
tually take thevalue e2cτ , instead of e2cℓ, with these 
hoi
es).Finally, property (M3) is a simple and dire
t 
onsequen
e of the time-regularity(3.9) of the time derivatives of the solutions (
f. [35, Lemma 2.2℄).A

ording now to [35, Theorem 2.5℄, our pro
edure entails existen
e of an expo-nential attra
tor Mℓ in the spa
e of short traje
tories. To show the existen
e of anexponential attra
tor also in the physi
al state spa
e, we have to 
he
k the regularity(M4) for the evaluation map e, whi
h follows easily from (6.6) by taking y = ℓ andintegrating for s ∈ [0, ℓ]. Thus, thanks also to Remark 2.4, the set M := e(Mℓ) isan exponential attra
tor in X = V for the semi�ow S.Remark 6.1. We stress on
e more that M is a 
ompa
t set in V, but it is able toattra
t exponentially fast only the sets whi
h are bounded in X2 (a
tually for initialdata lying in V also the existen
e theory requires additional 
onditions).7 AppendixWe show here that the 
onstru
tion of global attra
tors for generalized semi�ows(i.e., in our terminology, semi�ows with �strong-strong� 
ontinuity properties butwith no uniqueness at all) given in [5℄ 
an be extended to our situation. A
tually,in 
omparison with J. Ball's proof, we have some simpli�
ation (mainly of te
hni-
al 
hara
ter) due to the unique 
ontinuation (S3). On the other hand, sin
e ourproperty (S5) is weaker than J. Ball's �strong-strong� 
ontinuity [5, (H4)℄, we haveto suitably modify some points, whi
h be
ome now slightly more 
ompli
ated. Forthe reader's 
onvenien
e we report at least the highlights of all steps of J. Ball'sargument. Con
erning the proofs, we just point out the di�erent points, instead.Basi
ally, we will see that when in J. Ball's proofs [5, (H4)℄ is used, we 
an repla
eit by the 
ombined use of (S5) and the asymptoti
 
ompa
tness (L3). In agreementwith our spe
i�
 situation, the phase spa
e will be indi
ated as X2 in what follows,but of 
ourse everything holds for a generi
 metri
 spa
e additionally endowed withsome �weak� topology.Proposition 7.1 (Lemma 3.4 in [5℄). Let (S1)�(S5) and (L3) hold and let B ⊂ X2a bounded set. Then, the ω-limit ω(B) is nonempty, 
ompa
t, fully invariant andattra
ts B.Proof. It is obvious from (L3) that ω(B) is nonempty and easy to show dire
tlythat it is 
losed. We now prove that, for all z ∈ ω(B), there exists a 
ompletetraje
tory ψ taking values in ω(B) and su
h that ψ(0) = z (we re
all that �
ompletetraje
tory� means that ψ : R → X2 is su
h that ψ(· + τ) ∈ S for all τ ∈ R). Letthen {un} ⊂ S and tn ր ∞ su
h that un(tn) → z and {un(0)} ⊂ B. By (S2),the sequen
e {vn}, de�ned by vn(·) := un(tn + ·), lies in S and satis�es vn(0) → z24



strongly. Then, by (S5), there exist a nonrelabelled subsequen
e of n and a solution
v ∈ S su
h that, for all t > 0, un(tn + t) = vn(t) → v(t) weakly in X2. On the otherhand, setting wn(·) := un(tn/2 + ·), it is wn ∈ S. Moreover, we noti
e that, withno modi�
ations in the proof, it is still valid here [5, Prop. 3.1℄, whi
h says that(L3) entails eventual boundedness, i.e., that for any bounded B there exists τB ≥ 0su
h that ∪t≥τB

T (t)B is still bounded. Thus, we have that {wn(0)} is bounded and
onsequently, thanks to (L3), un(tn + t) = wn(tn/2 + t) 
onverges strongly to itslimit whi
h is already identi�ed as v(t). Moreover, it is 
lear that v(t) ∈ ω(B) for all
t ≥ 0. This shows that from z originates a (semi)traje
tory v taking values in ω(B).The same tri
k used above permits to adapt also J. Ball's proof that v extends toa 
omplete traje
tory ψ. Next, noting that on ω(B) uniqueness holds, the aboveproperty also entails the 
omplete invarian
e of ω(B) (whi
h did not ne
essarily holdin Ball's 
ase). Finally, the proof that ω(B) is 
ompa
t and attra
ts B is essentiallythe same as in [5℄.Proposition 7.2 (Lemma 3.5 in [5℄). Let (S1)�(S5) and (L3) hold and let S bepointwise dissipative, namely let there exist B0 bounded in X2 su
h that any u ∈ Seventually takes values in B0. Then, there exists τ > 0 su
h that, for any δ > 0, theset

B1 :=
⋃

t≥τ

T (t)(B(B0, δ)), (7.1)with B(B0, δ) denoting the open δ-neighbourhood of B0, is an absorbing set for S.Proof. Let δ > 0. By 
ontradi
tion, let us assume that some bounded B is notabsorbed by B1. Then, there exist {un} ⊂ S and tn ր ∞ with {un(0)} ⊂ Bsu
h that, for all n, un(tn) 6∈ B1. By eventual boundedness, there exists τ > 0(note it does not depend on δ) su
h that γτ (B) = ∪t≥τT (t)B is bounded. Let usthen set vn(·) := un(tn/2 + ·), so that vn(0) = un(tn/2) and vn(tn/2) = un(tn).By (L3), at least for a subsequen
e, vn(0) → z strongly. This entails by (S5)that there exists v ∈ S su
h that vn(t) → v(t) weakly for all t ∈ [0,∞). Asbefore, sin
e vn(t) = un(tn/2 + t) and {un(0)} is bounded, by (L3) the 
onvergen
e
vn(t) → v(t) is a
tually strong. Moreover, it is easy to see (pro
eed exa
tly as in [5℄)that vn(t) 6∈ B(B0, δ) for all t ∈ [0, tn/2− τ ]. Thus, passing to the (strong) limit, wehave that v(t) 6∈ B(B0, δ) for all t ∈ [0,∞). Sin
e v is a traje
tory, this 
ontradi
tsthe point dissipativity of S and gives the assert.Proposition 7.3 (Theorem 3.3 in [5℄). Let (S1)�(S5) and (L3) hold and let S bepointwise dissipative. Then, S admits the global attra
tor A.Proof. It is as in [5℄, up to minor modi�
ations.Proposition 7.4 (Theorem 5.1 in [5℄). Let (S1)�(S5) and (L1)�(L3) hold. Then, Sis pointwise dissipative (hen
e, by the previous result, it admits the global attra
tor).25



Proof. Although it is similar to that in [5℄, we prefer to give some more detail.First, it is easy to prove that, noting as V the Liapounov fun
tional and as E0 theset of rest (i.e., stationary) points of S, given u ∈ S, V is 
onstant on ω(u) and
ω(u) is 
ontained in E0. To 
on
lude, we show that, given an arbitrary δ > 0, any
u ∈ S eventually takes values in the (bounded) set B0 := B(E0, δ). A
tually, if by
ontradi
tion u(tn) 6∈ B0 for a diverging sequen
e {tn}, de�ning vn(·) := u(tn/2 + ·)and being, as before, {vn} ⊂ S and {vn(0)} bounded, by asymptoti
 
ompa
tness
u(tn) = vn(tn/2) has a subsequen
e whi
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