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Abstract

In this paper we announce some new mathematical results on the stability of quasi-
static paths of a single particle linearly elastic system with Coulomb friction and persistent
normal contact with a flat obstacle.A quasi-static path is said to be stable at some value of
the load parameter if, for some finite interval of the load parameter thereafter, the dynamic
solutions behave continuously with respect to the size of the initial perturbations (as in
Lyapunov stability) and to the smallness of the rate of application of the external forces,
ε (as in singular perturbation problems). In this paper we prove sufficient conditions for
stability of quasi-static paths of a single particle linearly elastic system with Coulomb friction
and persistent normal contact with a flat obstacle. The present system has the additional
difficulty of its non-smoothness: the friction law is a multivalued operator and the dynamic
evolutions of this system may have discontinuous accelerations.

1 Introduction

The study of the stability of frictional contact systems has deserved an increasing attention (
Shevitz [SP94] , Adly & Goeleven [AG04] , Van de Wouv & Leine [WL04] , Brogliato [Bro04] ,
Sinou et al. [STJ03] , Duffour & Woodhouse [DW04]) due to its relevance in many engineering
applications ( Ibrahim [Ibr94] , Kinkaid et al. [KRP03] , Sinou et al. [STJ04]) as well as in
geophysics ( Gu et al. [GRRT84] , Scholz [Sch98]).

The concept of stability that one has in mind in many mechanical situations is the concept of
Lyapunov stability, which, in particular, can be used to study the stability of the equilibrium
configurations under constant applied loads(dynamic trajectories with zero velocity and accel-
eration). In what concerns the non-smooth friction problems, a discussion on the attractiveness
of equilibrium sets with the application of LaSalle’s principle can be found in Van de Wouw and
Leine [WL04] , while the works of Shevitz [SP94] and Brogliato [Bro04] develop non-smooth
Lyapunov functions.

A related but different issue is the stability of quasi-static paths of mechanical systems under
slowly varying applied loads. In general, the concept of Lyapunov stability cannot be applied to
quasi-static paths because such paths are not, in general, true solutions of the original governing
dynamic equations (Loret et al. [LSM00]). But the ”stability of quasi-static paths” can be
related to the theory of singular perturbations (see again [LSM00]): the physical time t can be
recognised as a fast (dynamic) time scale and a loading parameter λ, whose rate of change with
respect to time, ε = dλ/dt, is arbitrarily small, can be recognised as a slow (quasi-static) time
scale. Changing the independent variable t into λ in the governing system of dynamic differential
equations or inclusions, one is led to a system in which some of the highest order derivatives
with respect to λ appear multiplied by the small parameter ε. In this manner, following the
mathematical definition of stability of quasi-static paths proposed by Martins et al. [MSPC04]
, [MMPRSC05] a quasi-static path is stable at some point if, in some subsequent finite interval
of the load parameter, any dynamic trajectory does not deviate from the quasi-static one more
than some desired amount, provided that the initial conditions for the dynamic evolution are
sufficiently close to the quasi-static path, and the loading is applied sufficiently slowly.
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After the study of some smooth cases and some problems that have a not very severe non-
smoothness (the elastic-plastic problems with linear hardening) [MMPRSC05] , this paper ap-
plies the same definition to a class of linearly elastic problems with friction that has a more
severe non-smoothness: discontinuous acceleration and friction forces.

The structure of the article is the following. In Section 2, the governing dynamic and quasi-
static equations and conditions are presented, and the definition of stability of quasi-static
paths is recalled. In Section 3, existence results for dynamic and quasi-static problems with
persistent frictional contact are recalled and refined. Section 4 contains an auxiliary result on
the regularity of the solution of the quasi-static problem, which is shown to have a derivative
with bounded variation. This result is essential to estimate, in Section 5, a contribution that
involves the product of the inertia term in the dynamic equation with the derivative of the
quasi-static solution. The main result of this paper, the stability of the quasi-static path, is
then proved in the final Section 5.

2 Governing equations and definition of stability of the quasi-
static path

We consider a linear elastic system with two degrees of freedom: a single particle system. Its
configuration is determined by the displacement u ∈ R

2 of the particle. In the following we
write ut and un for the tangential and normal displacement components, respectively. This
is motivated by the assumption that the particle cannot penetrate a rigid obstacle and this
restriction is modelled by the inequality un ≥ 0. The evolution of the system is described in
terms of the load parameter λ, which is linked via the small load rate parameter ε > 0 to the
physical time t: λ = εt. The elastic behaviour is modelled by the 2×2 positive definite stiffness
matrix K, while the applied and the reaction forces acting on the particle are represented by
the vector functions with values in R

2, f(λ) and r(λ), respectively:

K =
(

ktt ktn

knt knn

)
, f(λ) =

(
ft(λ)
fn(λ)

)
, r(λ) =

(
rt(λ)
rn(λ)

)
. (2.1)

The derivative d( )/dλ is denoted by
( )′. Furthermore, μ ≥ 0 denotes the coefficient of friction,

and in the whole article we assume that for some given time Λ > 0 we have

f ∈ C1([0,Λ], R2). (2.2)

The equation of motion in the dynamic case is

ε2u′′(λ) + Ku(λ) − f(λ) = r(λ), (3-a)

where, without loss of generality, we assume a unit mass. The equation of motion in the quasi-
static case reads

Ku(λ) − f(λ) = r(λ). (3-b)

The unilateral contact conditions satisfied by the solutions are given by

un ≥ 0, unrn = 0, rn ≥ 0. (4)

Introducing the set-valued sign function

sign(s) :=

⎧⎨
⎩

−1 for s < 0
[−1, 1] for s = 0
+1 for s > 0
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we can formulate the Coulomb friction law as follows

−rt(λ) ∈ μrn(λ)sign
(
u′

t(λ)
)
. (5)

In the whole article we assume that we are in situations of persistent contact, so that un ≡ 0.
Then, in the dynamic case, the equations (3-a), (4) and (5) lead to the dynamic problem
with persistent contact:

For given u0, v0 ∈ R find ut ∈ W2,∞([0,Λ], R) satisfying the initial conditions

ut(0) = u0, εu′
t(0) = v0, (6)

and such that, for all λ ∈ [0,Λ],

ε2u′′
t (λ) + kttut(λ) − ft(λ) ∈ −μ(kntut(λ) − fn(λ))sign

(
u′

t(λ)
)
, (7)

kntut(λ) − fn(λ) ≥ 0. (8)

To distinguish the dynamic solution from the quasi-static one, the latter is denoted by ūt. By
taking ε = 0 in (7) we formally get the corresponding quasi-static problem with persistent
contact, which reads:

For given ū0 ∈ R, find ūt ∈ W1,∞([0,Λ], R) satisfying

ūt(0) = ū0, (9)

and such that, for all λ ∈ [0,Λ],

kttūt(λ) − ft(λ) ∈ −μ (kntūt(λ) − fn(λ)) sign
(
ū′

t(0)
)
, (10)

kntūt(λ) − fn(λ) ≥ 0. (11)

Note that for λ = 0 this immediately implies some restrictions on the initial condition ū0.
We can now introduce the

Definition 2.1 (stability of a quasi-static path) Let ūt be a quasi-static path, i.e. a solu-
tion of the quasi-static problem (9)-(11). We call the quasi-static path ūt stable at λ = 0, if
there exists some positive interval of loading parameter values 0 < Δλ ≤ Λ, such that for every
δ > 0, we can find constants Cini(δ) > 0 and Cε(δ) > 0, such that for each parameter ε and
initial conditions u0 and v0 at λ = 0 with

|v0| + |u0 − ū0| < Cini(δ) and ε < Cε(δ) (12)

the dynamic solution ut of (6)-(8) remains near the quasi-static path in the following sense

|εu′
t(λ)| + |ut(λ) − ūt(λ)| < δ, (13)

for all λ ∈ [0,Δλ].

3 Existence of solutions

In the article of Martins et al. [MMMP05] it is shown in a quite more general situation, that
for initial conditions with positive normal reaction (i.e. kntu0 − fn(0) > 0) there exists some
λ∗ ∈ (0,Λ] for which a solution of (6)-(8) exists in the interval [0, λ∗].
In order to guarantee existence of solution up to an arbitrary given load parameter Λ > 0, we
need a stronger assumption on f that holds on the whole interval [0,Λ].
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Lemma 3.1 (Existence of a dynamic solution) There exists a constant C > 0 that de-
pends on all data except the external normal force fn, such that, for each normal force fn

satisfying
−fn(λ) > C, for all λ ∈ [0,Λ], (1)

a solution of (6)-(8) exists in [0,Λ].

Remark 3.2 By classical results from the theory of differential inclusions we know that for
general f ∈ C2([0,Λ], R2) there exists a solution ut ∈ W2,∞([0,Λ], R) of the inclusion (7) with
the initial conditions (6). See for example Aubin [AC84] , Page 98, Theorem 3. The rest of
the Proof consists of using energy estimates to show that under assumption (1) on the external
normal force fn, this solution ut automatically satisfies (8) for all λ ∈ [0,Λ]. The full proof can
be found in [MMRS06] .

Lemma 3.3 (Existence of a quasi-static solution) Assume that μ > 0 and the quasi-static
initial condition ū0 ∈ R satisfies

|kttū0 − ft(0)| ≤ μ (kntū0 − fn(0)) , (2)

and let
ktt − μ|knt| > 0 (3)

hold. Then there exists a constant C > 0 that depends on all data except the external normal
force fn, such that, for each normal force fn satisfying

−fn(λ) > C, for all λ ∈ [0,Λ], (4)

there exists a quasi-static solution ūt ∈ W1,∞([0,Λ], R2) of the problem (9)-(11). Furthermore
the solution satisfies

|ū′
t| ≤

(μ + 1)‖f ′‖L∞([0,Λ])

ktt − μ|knt| . (5)

Remark 3.4 The proof follows directly from a result in Mielke& Schmid [MS07] , where ex-
istence of a quasi-static solution even without the limitation of persistent contact was proven.
Persistent contact is shown under the assumption −fn > C analogous to the prove of Lemma
3.1. Klarbring [Kla90] has shown that if (3) does not hold, one cannot expect in general the
existence of a continuous solution to (9)-(11).

In the following we assume that fn always satisfies a condition of the form (1) and we focus on
the inclusions (7) and (10).

4 Variation of the derivative of the quasi-static path

A short calculation shows that the inclusion (10) is equivalent to the following sweeping process
formulation

−ū′
t(λ) ∈ NC(λ)(ūt(λ) ⊂ R, (1)

where the set C(λ) is defined by

C(λ) :=
[
ft(λ) + μfn(λ)

ktt + μknt
,

ft(λ) − μfn(λ)
ktt − μknt

]
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and the corresponding normal cone in u is denoted by NC(u).

In the following we denote by Π : 0 = τ0 < τ1 < · · · < τNΠ
= Λ, with NΠ ∈ N, a partition of the

interval [0,Λ], and we denote by Π[0,Λ] the set of all partitions of [0,Λ].

The variation of a function of one variable, f : [0,Λ] → R
n, is defined as

var(f ; 0,Λ) := sup
Π∈Π[0,Λ]

NΠ∑
j=1

‖f(τj)−f(τj−1)‖.

We say that f is of bounded variation if var(f ; 0,Λ) < ∞ holds.

Lemma 4.1 (bounded variation of the derivative) Assume that the moving set C(λ) ⊂ R

is defined by C(λ) := [g(λ), h(λ)] with functions g, h ∈ C1([0,Λ], R) satisfying var(g′; 0,Λ) < ∞
and var(h′; 0,Λ) < ∞, and also h(λ) − g(λ) > 0 for all λ ∈ [0,Λ]. Then there exists a solution
of

−u′(λ) ∈ NC(λ)(u(λ). (2)

Further u is differentiable from the right for all λ ∈ [0,Λ), i.e.

u′(λ) = lim
h↘0

u(λ + h) − u(λ)
h

.

Additionally the right derivative u′ is a right continuous function with bounded variation, var(u′; 0,Λ) ≤
var(g′; 0,Λ) + |g′(0)| + var(h′; 0,Λ) + |h′(0)|.

Remark 4.2 The proof of this Lemma adapts to the present context of a particle with non-
prescribed normal force, some arguments used by Marques [Mon94] and Martins et al. [MMR06]
for cases with prescribed normal force. The full proof can be found again in [MMRS06] .

5 Stability of the quasi-static path

From Lemma (3.1) and (3.3) we know that there exist solutions ut, ūt : [0,Λ] → R of the
dynamic problem (6)-(8) and of the quasi-static problem (9)-(11), respectively. First we rewrite
the inclusions (7) and (10) by using the functions ρ, ρ̄ : [0,Λ] → [−1, 1] as follows

ε2u′′
t (λ) + kttut(λ) − ft(λ) = ρ(λ)μ(ktnut(λ)−fn(λ)),

−ρ(λ) ∈ sign(u′
t(λ)),

(1)

kttūt(λ) − ft(λ) = ρ̄(λ)μ(ktnūt(λ)−fn(λ)),
−ρ̄(λ) ∈ sign(ū′

t(λ)).
(2)

Note that due to our assumption on fn we have r̄n = (kntūt − fn) ≥ c > 0 and then ρ̄(λ) =
kttūt(λ)−ft(λ)

μ(ktnūt(λ)−fn(λ)) ∈ W1,∞([0,Λ], [−1, 1]). Consequently the right derivative of ρ̄(λ) that we will
denote by ρ̄′(λ) exists for almost all λ ∈ [0,Λ]. By differentiating the first line in (2) we have

kttū
′
t − f ′

t = ρ̄′μ(ktnūt(λ)−fn(λ)) + ρ̄μ(kntū
′
t − f ′

n).

To simplify the formula we use the fact that ρ̄′ 
= 0 implies ū′
t(λ) = 0 due to the right continuity

of the right derivative ū′
t(λ) and the inclusion in (2) .We deduce the following estimate

|f ′
t| + μ|f ′

n|
μ(kntūt − fn)

≥ |ρ̄′|. (3)
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Hence, due to r̄n = (kntūt − fn) ≥ c > 0, |ρ̄′| is uniformly bounded.
Subtracting the equations in (1) and (2) leads us to

ε2u′′
t + ktt(ut − ūt) = μ (ρrn − ρ̄r̄n) = μ(ρ − ρ̄)rn + μρ̄(rn − r̄n). (4)

Before multiplying the above equation by (u′
t − ū′

t), we observe that the inclusion in (1) is
equivalent to −u′

t(y − ρ) ≤ 0, for all y ∈ [−1, 1], and (2) is equivalent to −ū′
t(ȳ − ρ̄) ≤ 0, for all

ȳ ∈ [−1, 1]. Choosing y = ρ̄ and ȳ = ρ we get the monotonicity condition

(u′
t − ū′

t)(ρ − ρ̄) ≤ 0.

Multiplying then (4) by (u′
t − ū′

t), we are immediately led to the estimate

ε2u′′
t (u

′
t − ū′

t) + ktt(ut − ūt)(u′
t − ū′

t) ≤ μρ̄(rn − r̄n)(u′
t − ū′

t). (5)

This estimate is rewritten after some rearrangements as

d
dλ

(
ε2

2
(u′

t)
2

)
+

d
dλ

(ktt − μρ̄knt)(ut − ūt)2

2
+

μknt(ut − ūt)2

2
d
dλ

ρ̄ ≤ ε2u′′
t ū

′
t (6)

Next we integrate the above estimate and further use the estimate (3) on ρ̄′ to obtain

ε2

2
(u′

t(λ))2 +
ktt−μ|knt|

2
(ut(λ)−ūt(λ))2 ≤C

∫ λ

0
(ut(s) − ūt(s))2 ds

+ ε2

∫ λ

0
u′′

t (s)ū
′
t(s) ds (7)

+
ε2

2
u2

1 +
ktt + μ|knt|

2
(u0 − ū0)2 (8)

for some finite constant C > 0 defined by estimate (3). Next we apply Gronwall’s Lemma to
estimate (ut(λ) − ūt(λ))2. In a first step we divide both sides by ktt−μ|knt|

2 , which is positive
due to the assumption (3). We omit the exact and lengthy result and we represent it in the
following simplified form. There exist positive constants C1 < ∞ and C2 < ∞, depending on
the data K,μ and f only, such that

(ut(λ) − ūt(λ))2 ≤ C1G(ε, λ) exp (C2λ)

holds, with G(ε, λ) := ε2
∫ λ
0 u′′

t (s)ū′
t(s) ds + ε2

2 u2
1 + (u0 − ū0)2. We can use this to estimate

the first integral on the right hand side of (8) by
∫ λ
0 (ut(s) − ūt(s))

2 ds ≤ C3G(ε, λ) with C3

depending on K,μ, f and Λ only.
Using this estimate there exists a constant C4(K,μ, f,Λ) such that

ε2

2
(u′

t(λ))2+
ktt−μ|knt|

2
(ut(λ)−ūt(λ))2

≤ C4

(
ε2

∫ λ

0
u′′

t (s)ū
′
t(s) ds +

ε2

2
u2

1 + (u0 − ū0)2
)

(9)

holds for all λ ∈ [0,Λ]. The remaining task is to estimate the integral ε2
∫ λ
0 u′′

t (s)ū′
tXS(s) ds.

This uses the results proved in Lemma 4.1 and adapts the argument in [MMR06] to the present
case of non-prescribed normal force. The full proof can be found in the article [MMRS06] .
We now summarise our results in
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Theorem 5.1 (Stability of the Quasi-Static Path) Let the stiffness matrix K be positive
definite and the coefficient of friction μ > 0 be such that ktt > μ|knt| holds. In addition, let the
initial condition ū0 of the quasi-static problem satisfy |kttū0−ft(0)| ≤ μ(kntū0−fn(0))+, and let
the external force f satisfy f ∈ C1

(
[0,Λ], R2

)
, var(f ′; 0,Λ) < ∞ and inf {−fn(λ) : λ ∈ [0,Λ]} ≥

C, for some constant C > 0 that depends on all data except fn (see (1) ) . Then the dynamic
(6)-(8) and the quasi-static (9)-(11) problems with persistent contact have solutions and the
quasi-static path is stable at time 0 in the sense of definition 2.1.
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2004.

[WL04] N. Van de Wouw and R.I. Leine Attractivity of equilibrium sets of systems with dry friction
Nonlinear Dynamics,35 (1):19–39, 2004.

[Bro04] B. Brogliato Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued
mappings Systems and Control Letters,51: 343–353.2004.

[STJ03] J.J. Sinou, F. Thouverez and L. Jezequel Center manifold and multivariable approximants ap-
plied to non-linear stability analysis International Journal of Nonlinear Mechanics,38 (9):1421–
1442, 2003.

[DW04] P. Duffour and J. Woodhouse Instability of systems with a frictional point contact. Part 1:
basic modelling. Part 2: model extensions Journal of Sound and Vibration ,271 (1-2): 365–410,
2004.

[Ibr94] R.A. Ibrahim Friction-induced vibration, chatter, squeal, and chaos, Part I: Mechanics of
contact and friction, Part II: Dynamic and modelling ASME Applied Mechanics Reviews,47:
209–253, 1994.

[KRP03] N.M. Kinkaid, O.M. O’Reilly and P. Papaclopoulos Automotive disc brake squeal Journal of
Sound and Vibration, 267 (1): 105–166, 2003.

[STJ04] J.J. Sinou, F. Thouverez and L. Jezequel Application of a nonlinear modal instability approach
to brake systems Journal of Vibration and Acoustics-Transactions of the ASME,126 (1): 101–
107, 2004.

[GRRT84] J.C. Gu, J.R. Rice, A.L. Ruina and S.T. Tse Slip motion and stability of a single degree
of freedom elastic system with rate and state dependent friction J Mech Phys Solids,32: 167–
196,1984.

[Sch98] C.H. Scholz Earthquakes and friction Laws Nature,391: 37–42,1998.

7



[LSM00] B. Loret, F.M.F. Simões and J.A.C. Martins Flutter instability and ill-posedness in solids and
fluid-saturated porous media in: Petryk H (eds) Material Instabilities in Elastic and Plastic
Solids. International Centre for Mechanical Sciences, Courses and Lectures, 414:, 2000.

[MSPC04] F.M.F. Simões, A. Pinto da Costa, J.A.C. Martins and I. Coelho 2004 submitted
[MMPRSC05] J.A.C. Martins, M.D.P. Monteiro Marques, A. Petrov, N.V. Rebrova, V.A. Sobolev aand

I. Coelho (In)stability of quasi-static paths of some finite dimensional smooth or elastic-plastic
systems J Phys Conf–Inst of Physics, 2005.

8


