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ABSTRACT. This paper discusses the convergence of the qualocation method for 
Symm's integral equation on closed polygonal boundaries in lR 2 • Qualocation is a 
Petrov-Galerkin method in which the outer integrals are performed numerically by 
special quadrature rules. Before discretisation a nonlinear parametrisation of the 
polygon is introduced which varies more slowly than arc-length near each corner 
and leads to a transformed integral equation with a regular solution. We prove 
that the qualocation method using smoothest splines of any order k on a uniform 
mesh (with respect to the new parameter) converges with optimal order O(h1c). 
Furthermore, the method is shown to produce superconvergent approximations to 
linear functionals, retaining the same high convergence rates as in the case of a 
smooth curve. 

1. INTRODUCTION 

Symm's integral equation for a closed curve r, 

- _!_ flog Ix - elu(e)dr(e) = f(x)' x Er' 
71" lr (1.1) 

is a boundary integral equation of central importance for elliptic boundary value 
problems in the plane. Here f : r ~ :JR is given, and the problem is to find 
u: r ~ lR, or perhaps certain functionals of u. Equation (1.1) is closely related to 
the singular integral equation with Hilbert kernel for which the L2-theory has been 
developed by S.G. Mikhlin in his fundamental paper [15]. We assume throughout 
the paper that the transfinite diameter of r is not equal to 1, so that ( 1.1) is uniquely 
solvable. 

Many numerical methods have been proposed, but only for the Galerkin method 
is the theory wholly satisfactory. A number of numerical methods, among them the 
qualocation method [24, 26, 5], have aimed to achieve the high rate of convergence 
of the Galerkin method but with less computational effort. However, until now 
rigorous results for the qualocation method have been available only for a smooth 
curve r. The aim of this paper is to give a convergence theory for the qualocation 
method on a polygon. (The arguments can be extended without difficulty to the 
case of a curved polygon without cusps.) 

The convergence theory will be established by appealing to a theory recent-
ly presented by Elschner and Graham [9] for the collocation method for Symm's 
integral equation on a polygon. In this approach the first step is to introduce a 
parametrisation of the curve r which has the effect of smoothing out the singularities 
at the corners, and then to apply the collocation method on a mesh which is uniform 
with respect to the new parameter. From the point of view of the curve r, the effect 
of this is to squeeze the mesh at the corners. The Elschner and Graham results will 
be described and extended to the qualocation method in Section 3. 

In Section 4 we prove a superconvergence result for the error in approximating 
linear functionals of the solution to (1.1), showing that in most cases the qualocation 
method for the polygon achieves the same order of convergence as it does on a smooth 
curve. Section 5 contains some auxiliary spline approximation results, which are also 
of independent interest. 
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The present work arose from the realisation that the arguments of [9] are not 
restricted to the collocation method, but extend also to other methods expressible 
as projection methods with appropriate properties. In the next section we shall see 
that the qualocation method is a projection method in this sense. 

It should be mentioned that various fully discrete versions of the qualocation 
method have been proposed in recent times [25, 21, 19, 14]. These are not projection 
methods, so the arguments used in the present paper are not directly applicable. 

There is one unfortunate aspect of the analysis of Elschner and Graham [9], 
shared with many other recent papers on boundary integral equations [3, 4, 7, 8, 6, 
13, 17, 12], and now extended to this paper. It is that the stability of the method can 
only be proved if the possibility is allowed of modifying the approximate solution 
over some number of intervals near each corner. In practice such modifications have 
so far never been needed, but the possibility remains that they will be found to be 
needed in some situations in the future. The superconvergence results in Section 4 
generally require that stability holds without any corner modifications. 

2. THE QUALOCATION METHOD 

The first step in implementing the qualocation method, and any of the other methods 
mentioned here, is to introduce a parametrisation': [7r, 7r] -t r of the curve r, so. 
that ( 1.1) then becomes 

1 /_71" - ; _}og !r(s) - r(a)jw(a)da = g(s), s E [-7r, 7r}, (2.1) 

or 

Kw=g (2.2) 

where 

w(a) = lr'(a)ju(r(a)), g(s) = f(r(s)), (2.3) 

so that the Jacobian of the transformation has been absorbed into the new unknown 
function w. If the curve r is smooth then r should be chosen to be smooth, and to 
be such that lr'I > 0 on r. We defer until the next section the choice of' if r has 
corners. 

For n a natural number, we now introduce a uniform mesh on [-7r, 7r], defined 
by 

Si= -?r + ih, i = 0, ... , n with h = 27r /n. 
The qualocation method is like the Petrov-Galerkin method, in that it employs 

both a trial space vh (the space in which the approximate solution is sought), and 
a test space V~. We take these to be spline spaces of orders k and k' respectively. 
Thus for k 2:: 1, let Vh = Vhk be the space of 2?r-periodic (smoothest) splines of 
order k on the mesh { si}. That is, v E 'Vh if and only if v is 2?r-periodic, is 
a polynomial of degree at most k - 1 on each subinterval [si_1 , si], and has k - 2 
continuous derivatives. Similarly, for k' ;::: 1 let V~ = vt be the space of 27r-periodic 
(smoothest) splines of order k' on the same mesh. 
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It is convenient to define first the Petrov-Galerkin method for this pair of spaces. 
Letting ( u, v) denote the 1 2 inner product 

(u,v) := 1_: u(s)v(s)ds, (2.4) 

the Petrov-Galerkin method for (2.2) is: find Wh E vh such that 

(Kwh,x) = (g,x) Vx E v~. (2.5) 

The qualocation method differs from the Petrov-Galerkin method only to the 
extent that the inner product (2.4) is replaced by a discrete equivalent ( u, v )h, 

( u, v )h := Qh( uv), (2.6) 
where 

n-1 J 

Qh(g) = h I: I: wjg(si + h<j) 
i=O j=l 

with 
J 

o :::; ei < 6 < ... < ej < 1, L: w; = 1, w; > o. 
j=l 

Note that Qh is just the composition of the simple ]-point rule 
J 

Q(g) ==I: Wjg(ei). 
j=l 

(2.7) 

(2.8) 

(2.9) 

However, we shall see that the recommended rules are not any of the familiar qua-
drature rules (Gaussian, Simpson, etc.). The reason is that the integrand ( K wh)X 
on the left of (2.5) is not smooth on each subinterval, even if r is a smooth curve. 

Once the points and weights of the ]-point quadrature rule (2.9) are deter-
mined, the qualocation method for (2.2) is defined by: find Wh E vh such that 

(Kwh,X)h=(g,x)h VxEV~. (2.10) 

An important special case is the collocation method. Suppose that we take Vh = Vh, 
and for some number e E [O, 1), choose the rule Qin (2.9) to be the 1-point rule 

Qg==g(e). 
Then it is easily seen, by introducing a basis of Vh = Vh in (2.10), that (2.10) is in 
this case equivalent to the £-collocation method 

Kwh(ti) = g(ti), i = 0, ... ,n -1, 

where 

ti = Si +eh, i = 0, ... , n - 1. 

For the case of a smooth curve it is well known [23] that this method is stable fork 
even provided e =f. 1/2, and for k odd provided e ¥= 0. 

Since the e-collocation method is known to be unstable for the two exceptional 
cases indicated above, it is natural for us to exclude them in what follows. We shall 
also insist that k and k' (the .orders of Vh and Vh) have the same parity, because 
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it is only in this case that stability results are known for either the qualocation or 
Petrov-Galerkin methods. 

Assum pt ion (A). We assume that k and k' (the orders of Vh and V~ respec-
tively) are either both even, or both odd. 

Assumption (B). In the rule Q, with J ~ 1 and points and weights satisfying 
(2.8), the following two cases are excluded: 

i) J = 1, k and k' even, ei = 1/2, 

ii) J = 1, k and k' odd, ei = 0. 

Under these assumptions the next result asserts that the qualocation solution 
exists, and has convergence properties at least as good as those of the basic col-
location method ([1] for the case k even with c = 0, [22] for the case k odd with 
c = 1/2). Of course the interesting versions of the qualocation method, as we have 
indicated already, have faster convergence than the collocation method, but it is 
useful to establish first that at least nothing is lost in going to the more general 
qualocation method. 

Here and in what follows Ht, t E lR, refers to the periodic Sobolev space of 
order t on [-7r, 7r], with norm given by 

llvll~ := lv(O)l 2 + 2: lml 2tlv(m)l 2
, (2.11) 

m:ftO 

where the Fourier coefficients of v are defined by 

v(m) = (v, exp(ims))/(27r)112
. 

It is well known (see e.g. [27]) that, for smooth r, the operator K defined in (2.2) 
takes the form K = A+ T, where 

Av(s) := -; 1-: log l2e-1l 2 sin(s - a)/2lv(a)da 

(27rt1
/

2 (2= v(m)lml-l exp(ims) + v(o)) 
m:ftO 

(2.12) 

is an isometry from Ht to Ht+l for any t E IR., and T is an integral operator with 
smooth (periodic) kernel. Note that if r is the circle given by the parametrisation 
1( s) = r exp( is) then T is simply the linear functional v ~ -(1+2 log r )v(0)/(27r )112 • 

The following result incorporates both the stability theorem of [5, Theorem 3], 
and a simple version of the convergence theorem of [5, Theorem 2]. (The fact that 
for r a circle the result holds for all h, not just for h sufficiently small, is clear 
from the proof of [5, Theorem 2]: the restriction to h sufficiently small enters the 
argument only when we consider perturbations from the case of a circle.) 

Theorem 2.1. Let assumptions (A) and (B) hold, and assume that r is smooth. 
Then, given g E Ht+l fort > -1/2, a unique solution wh E Vh of (2.10) exists for 
all h sufficiently small. If r is a circle of radius not equal to 1 and b'I = constant 
then wh exists and is unique for all h. For alls, t satisfying 

s < k -1/2' t > -1/2' -1 ~ s ~ t ~ k' 
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we have 

In particular, the maximal order of convergence given by Theorem 2.1 is. 

I lw - whl l-1 ::; chk+1 I lwllk. 
Saranen [20) established that for k odd the convergence rate of the mid-point collo-
cation method (i.e., e-collocation with e = 1/2) is generally faster than the 0( hk+l) 
rate allowed by Theorem 2.1 (it can reach O(hk+2) if w is sufficiently smooth). From 
our present perspective it is convenient to consider the mid-point collocation meth-
od as a special case of the qualocation method: according to [5], Saranen's result 
is recovered whenever the quadrature rule Q in (2.9) is symmetric. The explicit 
qualocation methods for k considered later have this property, but achieve still 
higher orders of convergence than the mid-point collocation method. 

In [5) it is shown that faster convergence can be achieved for certain special 
choices of the points {ej} and weights {wj}, the crucial consideration being the 
behaviour near zero of a certain function E : [-1 /2, 1 /2) ~ IR, 

where 

E(y) ==I: wjn(ej, Y )(1 + Ll'(ej, Y )) , 
j 

n(e,y) 
Ll'(e,y) 

F~(e,y) 

(2.13) 

(2.14) 

with the + sign holding in (2.14) if k and k' are even, and the - sign if k and k' are 
odd. 

Definition. The qualocation method (2.10) is of order k + 1 + b if b (the 
additional order) is the largest non-negative integer such that 

E(y) = O(IYlk+i+b), y E [-1/2, 1/2). 

We see from (2.13) and (2.14) that the method (2.10) is of order~ k+ 1 without 
any special choice of the qualocation rule. Some simple rules of order > k + 1 are 
shown in Table 1, extracted from [5]. 
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k k' e1 W1 e2 W2 b order 
1 1 1/2 1 - - 1 3 
1 1 0 3/7 1/2 4/7 3 5 
1 3 0.2308296503 1/2 1 - e1 1/2 3 5 
2 2 0 1 - - 0 3 
2 2 0 3/7 1/2 4/7 2 5 
2 2 0.2308296503 1/2 1 - ei 1/2 2 5 

TABLE 1. Some interesting qualocation methods 

Note that the first entry in the table is the mid-point collocation method for 
piecewise constant basis functions, which (as shown by Saranen [20]), achieves an 
order of 3. The next item in the table, however, is a qualocation method with 
piecewise constant trial and test functions that achieves an order of 5, two higher 
than the mid-point collocation method. The fourth entry in the table is again a 
collocation method, this time collocation at the breakpoints with piecewise linear 
functions. It too is followed by higher order qualocation methods based on piecewise 
linear trial functions, again with test functions of the same degree. 

The significance of the order is seen in the following theorem, also taken from 
[5]. 
Theorem 2.2. If the qualocation method {2.10) is of order k + 1 + b with b ~ 0, 
and if the assumptions of Theorem 2.1 hold, then for all s, t satisfying 

s < k - 1/2' t > -1/2' -1 - b:::; s :::; t:::; k 

we have 

In particular, the fastest order of convergence is seen by setting s == -1 - b and 
t = k, to give 

Thus the" order", as defined above, is the fastest order of convergence obtainable 
with the particular qualocation method. As a particular example, we find for the 
second entry in Table 1 the result 

llw - whll-4:::; ch5 jlwll4 · 
For the application later in this paper we need to write the qualocation approx-

imation as a projection method. Thus we define: 

Ih: H 1 ~ Vh: (Ihv,x)h = (v,x)h \Iv E H 1
, Vx E V~. (2.15) 

Proposition 2.1. If Assumptions {A) and {B) hold then IIh is a well defined projec-
tion operator with range vh. 

Proof. To show that IIhv is uniquely determined by (2.15) it is only necessary to 
introduce bases {Vi} and { vH for vh and v~, and then to show that the matrix 
((Vi, vj)h) is non-singular. But this follows immediately from Theorem 3 of [5] 
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(which proves stability of the qualocation method for an operator L0 ), on taking the 
legitimate special case Lo = I, the identity. If v E Vh then Ihv = v satisfies (2.15), 
thus Ih is a projection with range Vh. D 

It then follows, if Assumptions (A) and (B) hold, that the qualocation approx-
imation (2.10) can be written as: find wh E Vh such that 

IhKwh = IIhg. (2.16) 

Next we introduce Rh, a solution operator for the qualocation equation. Writing 
w = K-1g, so that w is the exact solution of the equation Kw = g, the solution of 
the qualocation equation (2.16) may be written as wh = Rhw, where Rh is a linear 
operator. As a special case of Theorem 2.2 we obtain the following result, needed 
in the subsequent arguments. 

Proposition 2.2. If r is a circle of radius not equal to 1 and h''I = constant then 
Rh exists as an operator from H 0 to H 0 , and satisfies 

(2.17) 

for alls, t such that s < k - 1/2, t > -1/2 and -l - b < s < t < k, with c 
independent of h. 

3. THE QUALOCATION METHOD FOR POLYGONAL I' 

Let r be a closed polygon enclosing a simply connected bounded domain in 1R2 . 

Suppose that r has corners x 0 , x1 , .. ., Xr-l and that, for each j, the interior angle at 
Xj is (1 - x1}rr, 0 < lx1I < 1. The side joining Xj to Xj+i is denoted rj and 1rj1 
denotes its length. 1r1 is the length of r. 

We first introduce a nonlinear parametrisation r : [-7r ,-rr] ~ r which varies 
more slowly than arc-length parametrisation in the vicinity of each corner of r. By 
forcing r to vary slowly enough near each corner, the solution w of the transformed 
equation (2.2) then can be made as regular as desired on [-7r,7r] (provided f is 
smooth), and hence w can be optimally approximated by splines of any order k on 
the uniform grid 

Si= -71" + ih, i = 0, ... ,n, h := 27r/n. (3.1) 

To define the parametrisation r, choose a grading exponent q E lN and introduce 
r + 1 points given by: 

-71" < So < S1 < ... < Sr-1 < 7r, Sr = So + 271" , 
with their differences having the values 

/ I r-l / 
Sj+l - Sj = 27rlI'11 1 

q L 1r ml1 
q' j = o, .. ., r - 1. 

m=O 
(3.2) 

These will be preimages of the corner points Xj under 'Y· For notational convenience 
we extend Si, S; and x; to i,j E 7l by requiring Xj to be r-periodic in j and by 
defining Srm+j = Sj + 2m7r, j = 0, .. ., r - 1, Snm+i = Si+ 2m7r, i = 0, .. ., n - 1, 
m E 7l. Then we will be concerned with parametrisations r : [-7r, 7r] ~ r which 
(for all j) satisfy the assumptions: 
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(Al) r(S;) = x;; 
(A2) (s - S;tq(r(s) - x;), (S;+i - stq(r(s) - Xi'+i) E C00 [Sj, S;+i]i 

(A3) lr'(s)! > 0, s E (S;, Si+i)i 

(A4) lims-si lr(s) - xii/ls - Silq = II'il/(Si+l - Sj)q. 
Note that by (3.2) the limit in (A4) does not depend on j. Furthermore, the 

image of the mesh (3.1) under 'Y is graded with exponent q to the corner points x;, 
but the corner points are not necessarily images of mesh points under 'Y· 

Example 3.1. Following [9], choose any 5 in the range 

0 < 5 < (1/2) min{Sj+i - Si : j = 0, ... , r - 1}. 

Then, for j = 0, ... , r - 1, set 

r(s) = 
( 

S·-s )q 
Xj - Si~ Si-l (xi - Xj-1 ), s E [Si - 5, Sj], 

The gaps on [-7r, 7r] can be filled , in principle, by introducing monotonically incre-
asing C00 connecting functions. 

The next example gives a more practical construction, following [13, 6]. 

Example 3.2. For j = 0, ... , r - 1, define 
(s - S3)q 

r(s) = Xj + ( s) (S ) (xj+l - Xj)' s E [Sj, Sj+l], s - j q + i+l - s q 

where the usual periodicity convention !( s + 27r) = 'Y( s) is adopted. If q = 1 we 
have 

s-S· 
r(s) = Xj + S;+i - JSj (xj+l - Xj)' s E [Sj, Sj+1]' 

and condition (3.2) means that (S;+1 - S;)/II';I = 27r/II'I for all j, so the parame-
trisation is then proportional to arc-length. 

More general constructions of 'Y, allowing also different grading exponents at 
the corners, can be found in [9, 10, 11]. 

Following [27], we rewrite (2.2) as the second kind equation 

(I+ M)w = e, with M = A-1(K-A), e = A-1g, (3.3) 

where A : H 0 --+ H 1 is the isometric isomorphism defined in (2.12). Recall that A 
coincides with K when r is the circle of radius e-1/2 • Since it is a standard result 
[15, 18] that A-1 = -H D + J, where D is the (periodic) differentiation operator, 
H is the Hilbert transform 

Hv(s) = -~p.v. j_1r cot (s - a) v(a)da 
27r -7r 2 

and J is the linear functional v --+ ( v, 1 )/27r, we further have 

M = HD(A-K) + J(K-A). (3.4) 
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It turns out that M is a Mellin convolution operator local to each corner; see [27] 
for q = 1 and [9] in the general case. 

We now recall some analytical results on Equations (2.2) and (3.3) which are 
needed in the convergence analysis of the qualocation method. The first theorem 
follows from [9, Theorem 2 and Lemma 7] when the parametrisation 1 takes the 
simple form of Example 3.1. Combining this with the perturbation arguments in 
[10], one obtains the result for parametrisations satisfying (Al )-(A4). 

Theorem 3.1. The operators 

I + M : H 0 
-t H 0 and K : H 0 -t H 1 

are continuously invertible, and we have the strong ellipticity estimate 

Re((I + M + T)v,v) ~ cllvll~ Vv E H 0
, 

where T is some compact operator on H 0 • 

The next result, which follows from [9, Corollary 5], shows that the unique 
solution w of (2.2) is smooth provided the right side f of (1.1) is smooth and the 
grading exponent q is large enough. For l > 0, H1(I') is defined as the restriction of 
the usual Sobolev space H1+112 (JR2 ) to r. 
Theorem 3.2. Let l E JN, q > (l + 1/2) maxi(l + lxil), and suppose f E H 1+sf2(r). 
Then the unique solution of {2.2) satisfies w E Hl and, for all j, 

Dmw(s) = O(ls - S1·ll-m-1/2) S 0 l as s -t i , m = , ... , . (3.5) 

The following result, taken from [11], describes the properties of the kernel 
function 

Ks,a :=~log 1(s)-1(a) 
( ) 7r 2e-1/2 sin( s - a) /2 (3.6) 

of the integral operator A - K. Note that less precise kernel estimates have been 
given in [9, 10]. 

Theorem 3.3. On each compact subset of !Rx IR\{(Sj, 81): j E ~, the derivatives 
D!D;: K( s, a) of order i + m ~ q are bounded and 27r-periodic. Moreover, for each j 
and sufficiently small 8 > 0, for s, a E [Si - 8, Si+ 8]\{Sj} we have the estimates 

IK(s, a)I ~cl log( ls - Sil+ la - Sil)!, 

ID!D;;K(s, a)I ~ c(is - Sil+ la - sjn-i-m' 1 ~ i + m ~ q. 

We now consider the qualocation method (2.10) for the approximate solution of 
Equation (2.2) with right side g E H 1 assuming throughout that Assumptions (A) 
and (B) hold. Define the projection operator Rh : H 0 -t Vt by letting Rhv E Vt 
solve the qualocation equation IlhA(Rhv) = IlhAv. That is to say, Rh is the solution 
operator of the qualocation method for the particular case of a circle of radius e-1/ 2 . 

Using (3.3) and Proposition 2.1, it is easily seen that (2.10) may be written IlhA(I + 
M)wh = IlhAe. Hence wh solves (2.10) if and only if IlhAwh = IlhA(e - Mwh), 
and by the definition of Rh, this is equivalent to wh =Rh( e - Mwh)· Hence (2.10) 
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is equivalent to the following non-standard projection method for the second kind 
equation (3.3): 

(3.7) 

As is usual for Mellin convolution equations, we are only able to prove stability 
for a slightly modified method. Introduce, for T sufficiently small, the truncation 
operator 

T'" v ( s) = { 0 , s E [Si. - T, Si + T] , j = O, ... , r - 1 , 
v( s) , otherwise. . 

Then for any fixed natural number i* and for n sufficiently large, define 

Ki"h =A+ (K - A)Ti"h, 

and consider the modified qualocation method 

(3.8) 

If i* = 0 then (3.8) is equivalent to (2.10) (or (2.16)). Otherwise, (3.8) can be 
obtained from (2.5) by a slight change to the coefficient matrix of the corresponding 
linear system. By mimicking the derivation of (3.7) from (2.10), it is easily seen 
that (3.8) is equivalent to 

.• h (I+ RhMT' )wh = Rhe. (3.9) 

The following theorem, which is the main result of this section, establishes the 
convergence of the (modified) qualocation method with optimal order in the L2 
norm. 

Theorem 3.4. Suppose that q > (k+l/2)maxj(l+ !Xii) and f E Hk+5/ 2(r). Then 
there exists i* such that (3.8) has a unique solution for all h sufficiently small and 

(3.10) 

where c is a constant which depends on w and i* but is independent of h. 

Proof. Following (9, Theorem 9] we first verify the stability of (3.9), that is the 
estimate 

(3.11) 

for all h sufficiently small, where i* is large enough and c does not depend on h. 
Since, by Theorem 3.1, I+ Mis invertible and strongly elliptic, we obtain stability 
of the finite section operators T'"(I + M)T'", T ~ 0 (see e.g. (16] or (18, page 33]), 
which implies the estimate ( cf. (9, Theorem 6]) 

(3.12) 

Now (3.11) is obtained with the aid of (3.12) and the following perturbation result: 

For each 8 > 0, there exists i* ~ 1 such that for all h sufficiently small 

(3.13) 
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A proof of this is given in [9, Lemma 8], for the case of the basic collocation method. 
The arguments there use quasi-interpolants and are based on kernel estimates for 
M and on the bounds 

(3.14) 

following from Proposition 2.2. Thus the assertion extends immediately to the 
general case of the qualocation method. 

A simpler proof of (3.13), which employs Theorem 3.3 and (3.14) but avoids 
the use of quasi-interpolants, can be found in [11]. 

To prove the error estimate (3.10), we observe that 

I lw - whllo ::; 11(1 - Rh)wllo + llwh - Rhwl lo, 
where the first term is of order hk by Proposition 2.2 (with s = 0, t = k) and 
Theorem 3.2 (with l = k ). 

Furthermore, using (3.11) and then (3.9) with (3.3) and the first inequality of 
(3.14), we obtain 

llwh - Rhwllo < .• h cll(J + RhMT' )(wh - Rhw)llo 
llRh[(I + M)w - (I+ MTi•h)Rhw]llo 

< ell(!+ MTi*h)(I - Rh)w + M(I - Ti*h)wllo 
< ell(! - Rh)wllo +ell(! - Ti*h)wllo. 

It remains to verify that the last term is of order hk. Now by the choice of q stated 
in the hypothesis we have from (3.5) 

w(s) = O(js - Silk-1/ 2 ), s ---t Sj, 

for all j, which yields the assertion. D 

The approximation Wh to w defined in (3.9) may be used to construct a cor-
responding approximation uh to the solution u of the original boundary integral 
equation (1.1): 

Then, under the assumptions of the preceding theorem, this approximation conver-
ges to u with order O(hk) in a certain weighted L2 norm, where the weight vanishes 
with order O(ls - Sil 1- 1fq)as s ---t Si for any j; see [9]. 

In other situations integral functionals· of u may be required, such as those 
representing the solutions of boundary value problems by interior potentials. These 
may be written as smooth linear functionals of the solution w of (2.2): 

r uvdr=/_'1f w(a)v(a)da=(w,v), lr -w 
(3.15) 

where v = v o 1 and v E C00 (r), v real. Since 

l(w,v)- (wh,v)I::; llw -whll-1llvll1, 
the following corollary is then of interest. Its proof is entirely analogous to that of 
Theorem 8 in [12]. 
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Corollary 3.1. Under the hypotheses of Theorem 3.4, 

llw - whll-1::; chk+f3, 

where (3 == 1ifi*==0, and (3 == 1/2 if i*;::: 1. 

In the next section we shall obtain faster convergence rates for the approxima-
tion ( wh, v) to (3.15), using certain special qualocation methods, under the assump-
tion that the method is stable with i* == 0. 

4. SUPERCONVERGENCE RESULTS FOR LINEAR FUNCTIONALS 

Let r be a simple closed polygon as in the preceding section, and suppose that 
the qualocation method (2.10) satisfies Assumptions (A) and (B) and is of order 
k + 1 + b, b ;::: 0. We further assume that (2.10), or equivalently (3.9) with i* == 0, 
is stable in H0 so that, given g E H1, a unique solution wh E Vf of (2.10) exists for 
all h sufficiently small. 

The following theorem establishes superconvergence of the qualocation approx-
imation to the functional (3.15). 

Theorem 4.1. Suppose the hypothesis of Theorem 3.2 holds with l == min(2k, k+b), 
and that v := v o ,-1 E C00 (r). Suppose also that Theorem 3.4 holds with i* = 0. 
Then we have the error estimate 

( 4.1) 

In particular, Theorem 4.1 shows that linear functionals of the mid-point col-
location method with splines of odd order k can achieve an order of k + 2, as shown 
by Saranen [20] for smooth r. +'his confirms the O(h3 ) convergence of the piecewise 
constant collocation observed in the numerical experiments of [9]. More interesting-
ly, we see that the last two qualocation methods in Table 1 can yield an order of 5 in 
the polygonal case, just as for smooth r. The order is only 3 for the second and the 
third methods in the table, since the convergence rate established in ( 4.1) is never 
better than the O(h2k+1) rate achieved by the corresponding Galerkin method. Fi-
nally, we note that all other higher order qualocation methods contained in Tables 
1 and 4 of [5] achieve the same orders of convergence as in the smooth case. 

Proof of Theorem 4.1. Let z be the unique solution of K z == v. Since by assumption 
v o ,-1 E C00 (r), Theorem 3.2 implies z E H1• Furthermore, since K == A(I + M) 
and A and K are self-adjoint with respect to the scalar product (2.4), we obtain 

(w - wh,v) (w - wh, Kz) ==((I+ M)(w -wh), Az) 
- ((I - Rh)(I + M)(w -wh),Az) (4.2) 

((I - Rh)w, Az) +((I - Rh)M(w - wh), Az), 

where we used (3.3) and (3. 7) to obtain the third equality. 

We now estimate the first term on the right side of ( 4.2). Setting 

k1 == min( k, b) == l - k , 
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Proposition 2.2 (with s = -k1 - 1, t = k) gives 

1((1 - Rh)w, Az)I :::; ll(J - Rh)wll-1-k111Azlli+k1 
:::; 11(1 - Rh)wll-1-k1llzllz:::; chk+ki+lllwllk+k1 :::; chl+i 

since w E Hl by Theorem 3.2. It remains to find an analogous bound for the last 
term in ( 4.2). By Proposition 2.2 (with s = -1, t = 0) and by duality, we have 

l(J - Rh)M(w - wh), Az)I = l(M(w - wh), (I - R~)Az)I 

:::; llM(w - wh)lloll(J - R~)Azllo:::; chllAzll1llM(w - wh)llo 
:::; chllM(w - wh)llo. 

So it suffices to establish the estimate 

llM(w - wh)llo = O(h1
). 

Comparing (3.3) and (3. 7) again, we get RhM( w - wh) == wh - Rhw, hence 

(I+ MRh)M(w - wh) = M(w - wh) + M(wh - Rhw) == M(I - Rh)w. 
Together with the stability of (3. 7), this implies the estimate 

llM(w - wh)llo:::; cllM(J - Rh)wllo. 
To corn plete the proof of ( 4 .1), it now remains to show 

llM(J - Rh)wllo == O(hl). 
In order to do so, we shall prove that 

llM(J - Ph)wllo == O(h1
) 

and 

( 4.3) 

( 4.4) 

where Ph denotes the orthogonal projection of H0 onto Vhk with respect to the L2 
inner product (2.4). The proof of ( 4.4) is postponed to the next section; see Corollary 
5.1 with /3 == -1. 

Since M takes the form (3.4), relation ( 4.3) follows from the estimate 

llD(A- K)(I - Ph)wllo + ll(A- K)(I - Ph)wllo == O(h1
). (4.5) 

To verify this, we use the following localisation procedure. Choose 5 > 0 sufficiently 
small and let ?/Ji be 27r-periodic non-negative C00 cut-off functions such that ?/Ji = 1 
in some neighbourhood of Si and supp 1/Ji c [Si - 5, Si+ 5]. Then we have 

D(A- K)w == L1/JiD(A- K)'lj;iw + Tw (4.6) 
j 

where, in view of Theorem 3.3, the kernel functions of the integral operator T and 
its L 2 ad joint T* have bounded derivatives of order :::; q - 1 on [-7r, 7r] x [-7r )lr]. 
Since by assumption q > (l + 1/2) maxi(l + lxji), and hence q ~ k + 1, T* is a 
bounded operator of H0 into Hk. Therefore, its L 2 adjoint T is a bounded map of 
H-k into H0 and we obtain 

I IT(J - Ph)wl lo :::; cl 1(1 - Ph)wll-1c ~ ch2kllwll1c :::; ch2k, ( 4.7) 

using a standard spline approximation result; see e.g. [18, Corollary 1.36]. 
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Now we look at the jth term in the sum ( 4.6) representing D(A - K) local 
to the jth corner. Without loss of generality we can assume that this is situated 
at S; = 0 and write 'lj; instead of 7/;; for convenience. By Theorem 3.3 the kernel 
function b(s, o-) of the integral operator Bv := 'lj;D(A- K)'lj;v satisfies the estimates 

ID:n;b(s, o-)1 ::; c(lsl + lo-1)-i-m-l, i + m::; l - k, 
s, o- E [-7r, 7r) \ { 0} . 

( 4.8) 

Furthermore, Theorem 3.2 implies that the exact solution of (3.2) multiplied by a 
suitable cut-off function satisfies 

( 4.9) 

Noting that the same type of arguments (with even better kernel estimates) applies 
to the operator A - K, we finally obtain ( 4.5) with the aid of ( 4.6)-( 4.9) and the 
theorem below. D 

Theorem 4.2. Suppose that the kernel function of the operator 

Bv( s) = L: b( s, u )v( u )du 

satisfies {4.8), and assume that {4.9) holds. Then we have 

llB(J - Ph)wllo = O(hl). 

In the case of rather general Mellin convolution operators B, approximation 
results of this type have been obtained in [4, 7) for (discontinuous) piecewise poly-
nomials, whereas [8) contains a partial result for smoothest splines which, however, 
does not cover the above result. Modifying the approach of [8) slightly, we are able 
to give the 

Proof of Theorem 4.2. Following [2] and (8], we first introduce suitable quasi-
interpolants, leading to local spline approximation results. Let µ be the ( k - 1) 
fold convolution of k copies of the characteristic function of (0, 1 ), and define the 
B-spline Bi(s), s E IR, i E 'JZ, as the 27r-periodic extension of µ(h-1(s + 7r) - i). 
Note that {Bi : i = 0, ... , n - 1} is a basis of Vhk if n ~ k, and for any element 
v = ~i (iBi E Vh\ the inequalities 

c-1 h L j(il 2
::; llvll~::; eh L j(il 2 (4.10) 

i i 

hold (see e.g. [2, Chap. 4, Theorem 2.5]), where here and in what follows c is some 
positive constant independent of h. 

Let { si} be the uniform mesh introduced in the preceding section. Furthermore, 
let Ii = (si, Si+1) and t = (si+l-k, Si+k), and for n sufficiently large introduce the 
set 
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For any v E H0 we now define the quasi-interpolant Phv E v: by 

Phv(s) .- ?= {h-1 Jrn. v(t)A(h-1(t + 7r) - i)dt}µ(h-1(s + 7r) - i) 
iE:T 

I: {h- 1 J,v(t)A(h-1(t+7r)- i)dt}Bi(s), (4.11) 
iE:T,O~i<n Ii . 

where A is a bounded function on IR satisfying su pp A = [ 0, 1], Jrn. A ( s) ds = 1, and 
if k > 1, 

Jm. Jm. A(s)µ(a)(s - a);dsda = 0, 1 ~ j ~ k -1. 

For instance, A can be chosen as the product of the characteristic function of (0, 1) 
with a uniquely determined polynomial of degree k - 1 (see [2, Chap. 4, proof of 
Theorem 2.4]). Note that the equality in ( 4.11) is clear from the 27r-periodicity 
of v. Thus ( 4.11) is a slight modification of the spline approximations considered 
in [2, Chap. 4], ensuring that Phv = 0 on (-h,h). Moreover, (4.11) reproduces 
polynomials locally in the sense that if v is a polynomial of degree :::; k - 1 on an 
interval t then Phv(s) = v(s) for alls E Ji, any i E J with 0 :::; i :::; n - 1 (see 
[2, Chap. 4, Remark 3.1]), and for these i we have the local error estimates (see [2, 
Chap. 4, Theorem 3.1]) 

f Iv - Phvl 2ds:::; ch2
m Z 1Dmvj 2ds Vv E Hm, m = 1, ... , k. ( 4.12) h h 

By virtue of ( 4.10), the estimate 

1, Iv -Avl2ds ~ c /r, lvl2ds Vv E H0 
( 4.13) 

is valid for any 0 :::; i :::; n - 1. 
Since we may write 

B(I - Ph)w = B(I - Ph).sl-k .sk-1(1 - Ph)w, 

Theorem 4.2 is now a consequence of the estimates 

where by duality the latter is equivalent to . 

llsl-k(I - Ph)B*vllo:::; chl-kllvllo Vv E H0
, 

B* being the integral operator with kernel b( a, s ). 
To establish (4.14), we observe that (4.12) (with m = k) implies 

1, lsk-1(1 - A)wl2ds ~ [s;l2(k-l)ch2k h, IDkwl2ds 

~ i(s;+k/s;)l2(l-k)ch2k h, isk-lDkwl2ds ~ ch2k h, isk-l Dkwl2ds 
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for all i E :J with 0 ::; i ::; n - 1. Analogously, by ( 4.13) we have for any i satisfying 
Ii n {(-(k + l)h, -3h/2) U (3h/2, (k + l)h)} # 0 

h, lsk-l(I - 1\)wl2ds ::; c h, lsk-lwl2ds ::; ch2k h, ls-1wl2ds. ( 4.17) 

Finally, combining the estimate 

j
h - jh jh isk-l(I - Ph)wl 2ds = isk-lwl 2ds ::; ch2k ls-1wl 2ds, 

-h -h -h 
with ( 4.16) and ( 4.17), we obtain 

I lsk-l(I - 1\)wl I~ ::; ch2k{llsk-l Dkwl I~+ lls- 1wll~} 

which with the aid of ( 4.9) gives ( 4.14). 

To prove ( 4.15), we write 

s1-k(I - Ph)B*v = s1-k(I - Ph)(l - Xh)(I - Ph)B*v + s1-k(I - Ph)XhB*v, 

where Xh denotes the characteristic function of (-h, h ); recall that XhPhv = 0 for 
any v E H 0 • Now Lemma 4.1 below (with (! = l - k) implies the estimates 

lls1-k(J - Ph)XhB*vllo::; ch1-kllB*vllo::; ch1-kllvllo, 
lls1-k(I - Ph)(l - Xh)(I - Ph)B*vll::; clls1-k(I - Ph)B*vllo 

for all v E H 0 . Thus it remains to verify the inequality 

lls1-k(I - Ph)B*v Ila ::; chl-k llv Ila Vv E H0 • (4.18) 

Using the facts that ( 4.8) is also valid for the kernel of B* and that an integral 
operator with Mellin convolution kernel !sl"(lsl + jal)-e-i, (! ~ 0, is bounded on 
L2(-7r )lf') (see e.g. [4, 7]), we now obtain that Sm nm B* are bounded operators on 
H 0 form= 0, .. ., l - k. Using (4.12) (with m = l - k) and arguing as in the proof 
of ( 4.16), we get 

h, ls1-k(J -1\)B*vl2ds 

< l(s· /s· - )l2(Z-k)ch2(Z-k)i lsZ-knI-kB*vl2ds - i+l i+l k -
Ii 

( 4.19) 

::; ch2(l-k) h, lsl-k nz-k B*vl2ds 

for any i E :J with 0 ::; i ::; n - 1. Furthermore, we have the obvious estimate 

j (l+k)h - ( ) - ( ) ls1-k(I - Ph)B*vl 2ds:::; ch2 l-k ll(J - Ph)B*vll~:::; ch2 l-k llB*vll~, 
-(l+k)h 

and combining this with ( 4.19) yields 

lls1-k(I - Ph)B*vll~ ::; ch2(l-k){lls1-k nI-k B*vll~ + llB*vll~} 
::; ch2(l-k) llv II~ 

which completes the proof of ( 4.18). D 
To complete the proof of Theorem 4.2, we need the following lemma. Its proof 

is based on. the technique introduced in [8, Lemma 3.3]. 

16 



Lemma 4.1. If{! 2 0 then, for all v E H 0 and h > 0, 

(i) 11 lsl"Ph(l - Xh)vllo::; cll lsl"vllo, 
(ii) 11 lsl"Phxhvllo::; ch"llvllo· 

Proof. (i) Let {Bi : i = 0, ... , n - 1} be the basis of Vt defined above, and let 
G-;;_ 1 = (9ii)i,j~0 be the inverse of the Gram matrix Gn = ((Bj, Bi))i,~0 • Then the 
orthogonal projection Ph onto Vf takes the form 

Phv(s) = ~ { ~g;;(v, B;)} B;(s). ( 4.20) 

We now fix an integer io 2 1 which will be chosen sufficiently large later on, and set 
ti = lsil when supp Bin (-ioh, ioh) = 0 and ti = ioh otherwise. Observe that ( 4.20) 
can be written 

( 4.21) 

where the mappings Mn : L~ -+ en, Hn : en -+ en and Fn : en -+ L~ are given by 

Mnv (tf h-1f 2(v, Bi))~-l, 

Hn((i)~-1 

Fn((i)~- 1 

Here L~ denotes the weighted L2 space with norm I I ls l"v Ila, and en refers to the 
n-dimensional Euclidean space equipped with the standard scalar product (·, ·) and 
the corresponding norm I · I· 

To prove (i), we check that the operators Fn, Mn(l - Xh) and Hn are uniformly 
bounded in n provided i 0 is appropriately chosen. Since the second estimate of 
( 4.10) easily gives 

11 lsl" L (iBil I~ ::; eh L t~"l(il 2 , . . 
' ' 

we first obtain, for all n and ((i)~-1 E en, 

II lsl"Fn((i)~-1 11~::; C L l(il 2
, ( 4.22) 

i 

hence the result for Fn. To verify the uniform boundedness of Mn( 1-Xh) : L~ -+ en, 
we note that for any v E L~, 0 ::; i ::; n - 1 and io 2 1 . 

ltf h-112((1 - Xh)v, B;)l2 < t~•h-1 J.:'+> lsl2"lvl2ds J.:'+> lsl-2"1(1 - Xh)B;l 2ds 

< ch-1llB;ll~ J.:i+' lsl2"lvl2ds 
which gives 

IMn(l - Xh)vl 2 = L ltf h-112((1 - Xh)v, Bi)l 2
::; cll lsl"vll~ · ( 4.23) 

' 
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Thus it remains to prove 

( 4.24) 

for i 0 large enough. Defining the diagonal matrix 

Dn = diag {tf, i = 0, ... , n - 1} 

and setting 

we observe that 

Therefore, ( 4.24) follows from the relations 

( 4.25) 

and 

( 4.26) 

To prove ( 4.25), we note that ( 4.10) implies 

and hence 

C-1 I ( (i) I 2 :::; (Jn ( (i), ( (i)) :::; C I ( (i) I 2 , 

which gives the result. It remains to verify ( 4.26). The elements kii of Kn take the 
form 

Thus we have for all i, j 

where the supremum is taken over all indices l, m satisfying ll - ml :::; k - l. Conse-
quently, by the definition of ti, this supremum can be made as small as desired for 
all n 2:: i 0 if i 0 is chosen sufficiently large, and we now obtain ( 4.26) with the aid of 
the first inequality in ( 4.25). 

(ii) By virtue of ( 4.21 ), ( 4.22) and ( 4.24 ), it suffices to show the estimate 

1Mnxhvl2 = 2::>;eh-1 l(xhv, Bi)l 2
:::; ch2"llvll~ Vv E H0

, Vn E lN. 
i 

The latter is true because ti :::; eh for all i satisfying supp Bi n ( -h, h) =f. 0. D 
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5. SOME SPLINE APPROXIMATION RESULTS 

The superconvergence results depend on proving the estimate ( 4.4) for the operator 
Ph - Rh, where Ph is the orthogonal projection of H 0 onto the set Vh of smoothest 
2?r-periodic splines of order k on a uniform mesh, with mesh spacing h = 27r /n, and 
Rh denotes the solution operator of the qualocation method (2.10) for the circle. 
This will now be established, in a more general setting, as a corollary of two spline 
approximation results which also seem to be of independent interest. 

With 'Pm ( s) := e£ms / (27r )112, let 

Th:= {cpm: -n/2 < m ~ n/2}. 
Furthermore, let Ph : 1 2 = H0 

-t Vh be the projection defined by 

Ph9 E vh' (Ph9,X) = (g,x) Vx E Th. (5.1) 
Note that the orthogonal projection Ph is defined by 

Phg E vh, (Phg,x) = (g,x) Vx E vh. (5.2) 
Theorem 5.1. For 0 ~ t ~ 2k, 

llPhg - Ph9llo ~ chtll9llt, 

Proof. As usual, define 

Ah= {m E 'll: -n/2 < m ~ n/2}, A~= Ah\{O}, 
and 

{ 

'Po ifµ= 0, 
1/J,.. = 2g,..(~t 'Pm ifµ E Ah, 

so that { '1f;µ : µ E Ah} is a basis for Vh. Here and elsewhere m = µ means m = µ 
(mod n). Then Ph9 has the explicit formula 

Ph9 = L fJ(µ )'l/;µ ' (5.3) 
µEAh 

since we easily verify that (5.1) is then satisfied, using the easily proved relation 

('l/;µ, 'Pv) = 5µv, forµ, 1J E Ah. 
On the other hand Phg has the explicit formula 

(5.4) 

since we then have (Phg, '1f;o) = fJ(O)'l/;o = (g, 'l/;o), and for µ E A'h, 

(Phg, 1/J,..) = J;,.. (~r 9(m) = (g, 1/J,..), 

so that (5.2) is satisfied. The denominator ( 'l/;µ, 'l/;µ) in (5.4) can be written, for 
µ E Ah,, as 
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(5.5) 

where for jyj ~ 1/2 

00 ( ) 2k D*(y) := L !--- = 1 + E*(y) 
l=-oo + Y 

(5.6) 

and 

E *( )·- 2k"' 1 < 2k y . - y LJ ( l )2k - cy . 
l:1:0 +y 

(5.7) 

Thus 

hg - Ph9 - Jr, D•(~/n) [x=,. (~/ 9(m) - (i + E* m) 9(µ)] ,P,. 

- "~h D•(~/n) [-E* m 9(µ) + l=,.' (~) k 9(m)] ~ (;) k 'Pv, 

givmg 

llPhg - Mll~ - "~-~ D•(:/n)21-E· (;) 9(µ) + l=,.' (~r 9(m)l
2 
(;) 

2

k 

- "~h D•(~/n) 1-E* m 9(µ) + l=,.' (~/ 9(m)j2 

< 2 "~' IE* m 9(µ)12 + 2 "~'Ix=,.' (~r 9(m)l2 =:A+ B, 

where we have used D*(y) 2:: 1, (a+ b)2 ~ 2(a2 + b2 ) and the notation 

I:'= I: 
m==.µ. m==.µ. 

m:1:µ. 

Now for 0 ~ t ~ 2k, by (5.7) 

A < c L 1~1
4

k 19(µ)1 2 ~ c L l!:l 2

t 19(µ)1 2 

µ.EAh n µ.EAh n 

- ch2t L jµj 2tjg(µ)l 2 ~ ch2tllgll~, 
µ.EAh 

20 



and 

B < 2,.~.1µ1 2k (J;,. · 1~ 1 k l§(m)1)2 

< cn
2
k "~h (J;,. 'lm~k+t lml'l§(m)I) 

2 

< cn2k "~' (J;,., lml~k+•l) c~ 'IPl2'l§(p)l2) 
Because 2(k + t) > 1 we have 

"'"'' 1 """ 1 1 1 c ~ lml2(k+t) = Li Iµ+ lnl2(k+t) = n2(k+t) L ll + µ/nl2(k+t) ::; n2(k+t) ' 
m=µ l:f:O l:f:O 

so 

B::; ch2t L L 'lml2tl§(m)l 2
::; ch2tjjgjj~ · 

µEA~ m=.µ 

Putting the results together, we obtain 

II Phg - Phg 11~ ::; eh 2t Ilg II~ , 
for 0 ::; t ::; 2k. D 

Now let L be the (periodic) pseudo-differential operator of real order f3 defined 
by 

Lv = v(O)cpo + L lml,t3v(m)cpm' 
m:f:O 

or by 

Lv = v(O)cpo + L sign mlml,t3v(m)cpm. 
m:f:O 

In the former case L is "even", in the latter case it is "odd". With V~ denoting the set 
of smoothest splines of order k' on the same mesh as above, we define gh = Rhg E Vh 
to be the solution of the qualocation equation ( cf. (2.10): 

(5.8) 
where the qualocation method is assumed to be (in the sense of [5]) both stable and 
of order k - f3 + b: that is to say, the "additional order of convergence" is b ~ 0. 
We also need to assume that the qualocation method is "well defined", i.e. (see 
[5, (2.12), (2.13)]) either k > /3 + 1, or k > /3 + 1/2 and the breakpoints are not 
quadrature points. 

Theorem 5.2. If gh E Vh is the solution of the well defined qualocation method 
(5.8 ), assumed to be stable and to have additional order of convergence b, then for 
0 ::; t ::; k - /3 + b and t > /3 + 1/2 

j jgh - Phgl lo ::; cht llgl lt+max(,t3,0) 

if g E Ht+max(,t3,0). 
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Proof. Since 9h E Vh we have 

which together with (5.3) gives 

9h - Ph9 - 2:= (gh(µ) - g(µ) )'l/;µ 

- (9h(O) - 9(0)),Po + L (9h(µ) - 9(µ)) L ( !!:_) k 'Pm, 
µEAh m=.µ m 

and hence 

I lgh - Phgll~ = l9h(O) - 9(0)12 + "~~ J;,, l9h(µ) - 9(µ)121~ f 2k 

< lfJh(O) - g(O)l 2 + c L lfJh(µ) - g(µ)l 2
• 

Now [5, (3.4)] gives 

fJh(O) - g(O) = L wi L 1

[m],ag(m)cpm/n(ei), 
j m:O 

with (form =f. 0) 

{ 
lml,8 if L is even 

[m],a = sign mlml,8 if L is odd. 

Thus with T := t + max.((3, 0) 

l9h(O) - 9(0)1 2 < (J;
0 

'lm113 19(m)1) 
2 

= (r=
0 
'lmlll-rlmn§(m)I) 

2 

< L 1 lml 2(,8-r) L 'jmj 2,.lfJ(m)j2 

m=.O m=.O 

< ch2(-r-,8)ll911! ~ ch2tllgll!, 
because T - f3 ~ t - f3 > 1/2 and T - f3 ~ t. And also from [5, (3.4)], for µ E Ah,, 

9h(µ) - 9(µ) = - ~~:~:~ 9(µ) + 14.(µ)' 

where because the method is stable inf ID(y)I > 0, and because the method is of 
additional order b, 

IE(y)I ~ cjyjk-/3+b .for jyj ~ 1/2; 

and 

Rn(µ)= D (!!:.)-1 
L:wi I: '[m] fJ(m)cp~(ei)(l + /:),.' (ej, (!!:.)), 

n j m:µ µ ,8 n. n 

where from [5, Lemma 1 (iv)] j!:;:,.'(x, y)I ~ c for x E [O, 1] and IYI ~ 1/2, giving 

I
µ 12(k-/3+b) I: lfJh(µ) - fJ(µ)l 2 ~ c I: :;;: lfJ(µ)l 2 + c I: IRn(µ)l 2 == Y + z. 

µEAh µEAh µEAh 
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Because t ::; k - (3 + b and t ::; T, 

and 

Now 

Thus , 

y = c L 1;12(k-/Hb) 19(µ)12::; c L 1!!:_12t 19(µ)12 
µEAh µEAh n 

- ch2
t L lµl 2tl9(µ)j 2 ::; ch2tll9ll:::; ch2tll9ll;, 

µEAh 

Z = c ,.~h IR..(µ)1 2 ~ c ,.~h (x=,. 'I: fl l9(m)I) 
2 

< c ,.~h lµl-2fl (X:,. 'lmlfl-.,.lml.,.19(m)1) 
2 

< c L lµl-213 L 'lml2(/3-T) L 1 IPl 2,.19(P)l2 

< ch2(T-/3) L lµl- 213 L 'lml2,.19(m)l2 · 
µEAh m=:µ 

< { 1 if (3 > 0 
n-/3 if (3 ::; 0 

= n -/3+max(/3,0) . 

Z::; ch2t+2(max(/3,0)-/3)n2(max(/3,0)-/3) L L 'jml2Tl9(m)l2::; ch2tll9ll;. 
µEAh m=:µ 

Thus on combining terms, we find 

I l9h - Ph91 I~ ::; ch2tl 1911; = ch2tl l9ll:+max(/3,0). 
0 

Corollary 5.1. Let 9h be as in Theorem 5.2, with (3 ::; 0. Then for 0 < t ::; 
min(2k, k - (3 + b), t > (3 + 1/2, 

llPhg - 9hllo::; chtll9llt · 
In particular, applying the last result to the pseudodifferential operator ( 2.12) 

which is of order ~1, we obtain an estimate which implies (4.4). 
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