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Classi
al solutions of drift�diffusion equations 1
Abstra
tWe regard drift�di�usion equations for semi
ondu
tor devi
es in Lebesguespa
es. To that end we reformulate the (generalized) van Roosbroe
k systemas an evolution equation for the potentials to the driving for
es of the 
urrentsof ele
trons and holes. This evolution equation falls into a 
lass of quasi-linear paraboli
 systems whi
h allow unique, lo
al in time solution in 
ertainLebesgue spa
es. In parti
ular, it turns out that the divergen
e of the ele
tronand hole 
urrent is an integrable fun
tion. Hen
e, Gauss' theorem applies,and gives the foundation for spa
e dis
retization of the equations by means of�nite volume s
hemes. Moreover, the strong di�erentiability of the ele
tronand hole density in time is 
onstitutive for the impli
it time dis
retizations
heme. Finite volume dis
retization of spa
e, and impli
it time dis
retizationare a

epted 
ustom in engineering and s
ienti�
 
omputing. � This investi-gation puts spe
ial emphasis on non-smooth spatial domains, mixed boundary
onditions, and heterogeneous material 
ompositions, as required in ele
troni
devi
e simulation.
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2 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg1 Introdu
tionIn 1950 van Roosbroe
k [48℄ established a system of partial di�erential equationsdes
ribing the motion of ele
trons and holes in a semi
ondu
tor devi
e due to driftand di�usion within a self-
onsistent ele
tri
al �eld. In 1964 Gummel [28℄ publishedthe �rst report on the numeri
al solution of these drift�di�usion equations for an op-erating semi
ondu
tor devi
e. From that time on van Roosbroe
k's system has beenthe ba
kbone of many a model in semi
ondu
tor devi
e simulation. The �rst papersdevoted to the mathemati
al analysis of van Roosbroe
k's system appeared in theearly seventies of the previous 
entury [38, 39℄; for a histori
al synopsis and furtherreferen
es see [11℄. In 1986 Gajewski and Gröger proved the global existen
e anduniqueness of weak solutions under realisti
 physi
al and geometri
al 
onditions[13℄. The key for proving these results and also for establishing stable numeri
alsolving pro
edures is the existen
e of a Lyapunov fun
tion for the van Roosbroe
ksystem. This solution theory entails restri
ting 
onditions on the models for there
ombination of ele
tron�hole pairs, see [11, 2.2.3℄, [14, Ch. 5℄, [15, Ch. 6℄, [18℄, and[19℄. In this paper we relax the 
ondition on the rea
tion terms in the equations
onsiderably, up to the point that some external 
ontrol to the generation or anni-hilation of ele
trons or holes 
an be applied individually. In parti
ular, this aims atradiative re
ombination of ele
tron-hole pairs in semi
ondu
tor lasers, and at thegeneration of ele
tron-hole pairs in optoele
troni
 dete
tors. Notwithstanding thisgeneralization, we 
ontinue to use the name van Roosbroe
k system for the modelequations.Van Roosbroe
k's system 
onsists of 
urrent�
ontinuity equations � one for ele
-trons, another one for holes � whi
h are 
oupled to a Poisson equation for theele
trostati
 potential, and 
omprise generative terms, �rst of all re
ombination ofele
tron�hole pairs. The 
urrent�
ontinuity equations 
an be viewed as quasi-linearparaboli
 equations. However, the natural formulation of balan
e laws is in integralform
∂

∂t

∫

ω

uk dx =

∫

∂ω

ν · jk dσω +

∫

ω

rk dx. (1.1)Here u2 and u1 is the density of ele
trons and holes, respe
tively, jk is the 
orre-sponding �ux, and rk is a rea
tion term. ω is any (suitable) sub-domain of thewhole domain under 
onsideration, ν the outer unit normal to the boundary ∂ω of
ω and σω the ar
 measure on ∂ω. In the weak formulation of the balan
e law theboundary integral of the normal 
omponent of the 
urrent is expressed as the volumeintegral of the divergen
e of the 
orresponding 
urrent. Very little is known aboutthe question whether the weak solutions also satisfy the original balan
e law equa-tions (1.1). Obviously, this depends on the appli
ability of Gauss' theorem. So, theproblem is about the divergen
e of the 
urrents in weak solutions being fun
tions �Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 3not only distributions. In parti
ular, this 
omes to bear in the numeri
al treatmentof van Roosbroe
k's system. The 
hoi
e for spa
e dis
retization of drift�di�usionequations is the �nite volume method, see [17℄, whi
h rests on the original balan
elaw formulation (1.1) of the equations.In this paper we solve this problem for the spatially two-dimensional van Roosbroe
ksystem by showing that it admits a 
lassi
al solution in a suitably 
hosen Lebesguespa
e�at least lo
ally in time. Aiming at the in
lusion of rather general re
om-bination and generation pro
esses for ele
tron-hole pairs we 
annot expe
t globalexisten
e anymore, and we 
annot rely on a Lyapunov fun
tion. Instead we applylo
al methods for quasi-linear evolution equations. To that end, we rewrite vanRoosbroe
k's system as an evolution equation for the ele
tro
hemi
al potentials ofele
trons and holes, and apply a re
ently obtained result on quasi-linear paraboli
equations in Lebesgue spa
es, see [31℄. This yields a 
lassi
al solution of van Roos-broe
k system lo
ally in time with 
urrents the divergen
e of whi
h is Lebesgueintegrable to some exponent greater than one. The strong di�erentiability of theele
tron and hole density in time is 
onstitutive for the impli
it time dis
retizations
heme whi
h is a

epted 
ustom in engineering and s
ienti�
 
omputing, see forinstan
e [11℄.Please note that in devi
e simulation one is always 
onfronted with 
onta
ted devi
esof heterogeneous material 
omposition. That leads to mixed boundary 
onditionsand jumping material 
oe�
ients in the model equations. Hen
e, standard theoremson existen
e, uniqueness and regularity do not apply.
2 Van Roosbroe
k's systemBasi
 variablesIn the following we investigate van Roosbroe
k's model for a semi
ondu
tor devi
ewhi
h des
ribes the �ow of ele
trons and holes in a self-
onsistent ele
tri
al �eld dueto drift and di�usion. The physi
al quantities one is interested in are: the densities
u1 and u2 of holes and ele
trons, the densities j1 and j2 of the hole and ele
tron
urrent, the ele
trostati
 potential ϕ̃ of the self-
onsistent ele
tri
al �eld, and theele
tro
hemi
al potentials φ̃1 and φ̃2 of holes and ele
trons These unknowns haveto satisfy Poisson's equation and the 
urrent�
ontinuity equations for ele
trons andholes with some side 
onditions. The latter are given by the relations between thepotentials and the densities.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



4 H.-Chr. Kaiser, H. Neidhardt, J. RehbergSpatial domainWe study only semi
ondu
tor devi
es whi
h are quasi translational invariant in onespa
e dire
tion or angular symmetri
. In that 
ase van Roosbroe
k's system in realspa
e 
an be redu
ed to a similar set of equations in the plane. That means, weregard a 
ut through the devi
e perpendi
ular to the dire
tion of invarian
e. Let
Ω̂ be the resulting two-dimensional (bounded) representative domain. Parts of thedevi
e may be insulating, for instan
e formed by an oxide. Then, ele
trons and holes
an move only in a sub-domain Ω of Ω̂. This also 
overs the 
ase of 
harges whi
hare arti�
ially immobilized on a sub-domain Ω̂\Ω. Furthermore, we mark out a part
Γ̂ of the boundary of Ω̂ where the devi
e borders on an insulator. The remainingpart of the boundary represents (possibly several) 
onta
ts of the devi
e. We alsomark out a part Γ of Ω's boundary. In the 
ase of a stand alone drift�di�usionmodel of the semi
ondu
tor devi
e again Γ represents areas of the devi
e borderingto an insulator, whereas the remaining part is the 
onta
t area.External 
ontrolIn real�world modeling of semi
ondu
tor devi
es van Roosbroe
k's system oftenserves as a 
omponent in a 
ompound model of the devi
e. Then the superordinatedsystem � for instan
e a 
ir
uit model � may exer
ise a 
ontrol on van Roosbroe
k'ssystem. Apart of a superordinated 
ir
uit model, 
ompound models 
omprising inaddition to van Roosbroe
k's system equations for the latti
e temperature or thepower of lasing modes play an important role in devi
e simulation, see for instan
e[11, 2, 4, 3℄. But the 
on
ept of external 
ontrol also 
omes to bear in segmentationof the simulation domain, in parti
ular in 
onne
tion with multis
ale modeling, seefor instan
e [32, 33, 30℄.If van Roosbroe
k's equations serve as a 
omponent of a 
ompound model, thensystem parameters, state equations, boundary 
onditions, et alii, possibly bear adi�erent physi
al meaning than in the stand-alone model.We make assumptions about an external 
ontrol from the initial time T0 up to atime T1.2.1 Poisson equationThe solution of the Poisson equation with mixed boundary 
onditions,

−∇ · (ε∇ϕ̃) = d̃(t) + u1 − u2 on Ω̂,
ϕ̃ = ϕD̂(t) on D̂

def

= interior(∂Ω̂ \ Γ̂),
ν · (ε∇ϕ̃) + εΓ̂ϕ̃ = ϕΓ̂(t) on Γ̂, (2.1)Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 5gives the ele
trostati
 potential ϕ̃ on Ω̂ subje
t to the ele
tron and hole density u2and u1. Stri
tly speaking, the densities uk, k = 1, 2, are only de�ned on Ω but, weextend them by zero to Ω̂.The parameters in (2.1) have the following meaning: ε is a bounded, measurablefun
tion on Ω̂ with values in the set of real, symmetri
, 2 × 2, positive de�nitematri
es and 
orresponds to the spatially varying diele
tri
 permittivity on the spa
eregion o

upied by the devi
e. Moreover, we assume
‖ε(x)‖B(R2) ≤ ε• and (ε(x)ξ) · ξ ≥ ε•‖ξ‖2

R2 for almost all x ∈ Ω̂ and all ξ ∈ R
2with two stri
tly positive 
onstants ε• and ε•. Furthermore, εΓ̂ is a non-negativefun
tion on Γ̂, representing the 
apa
ity of the part of the devi
e surfa
e borderingon an insulator. We assume that D̂ is not empty or εΓ̂ is positive on a subset of

Γ̂ with positive ar
 measure. In other words, the devi
e has a Diri
hlet 
onta
t orpart of its surfa
e has a positive 
apa
ity. ϕD̂(t) and ϕΓ̂(t) are the voltages appliedat the 
onta
ts of the devi
e, and d̃(t) represents a 
harge. In the 
ase of a standalone drift�di�usion model ϕD̂, ϕΓ̂, and d̃ are 
onstant in time, and d̃ solely is the
harge density of dopants in the semi
ondu
tor materials 
omposing the devi
e. Ingeneral, ϕD̂, ϕΓ̂, and d̃ are fun
tion whi
h are de�ned on the time interval [T0, T1]where a possible 
ontrol a
ts on the devi
e.2.2 Current�
ontinuity equationsThe 
urrent�
ontinuity equations for holes and ele
trons (k = 1, 2, respe
tively)
u′k −∇ · jk = rk(t, ϕ̃, φ̃1, φ̃2) on Ω (2.2)
hara
terize the evolution of the ele
tron and hole density under the a
tion of the
urrents jk and the rea
tions rk subje
t to the mixed boundary 
onditions

φ̃k(t) = φD,k(t) on D
def

= interior(∂Ω \ Γ),
ν · jk = 0 on Γ, (2.3)from the initial 
onditions

φ̃k(T0) = Φ0
k. (2.4)Ea
h rk, k = 1, 2 is a rea
tion term whi
h models the generation and annihila-tion of ele
trons and holes. In parti
ular, this term 
overs the re
ombination ofele
trons and holes in the semi
ondu
tor devi
e. r1 and r2 
an be rather generalfun
tions of the parti
le and 
urrent densities, see �2.4. We require that the set

D = interior(∂Ω \ Γ) is not empty. The boundary values φD,1, φD,2 in general de-pend on time. Moreover, the rea
tions rk may expli
itly depend on time. Thisdependen
e on time, again, allows for a 
ontrol of the system by some other part ofa superordinated 
ompound model.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



6 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg2.3 Carrier and 
urrent densitiesVan Roosbroe
k's system has to be 
omplemented by a pres
ription relating thedensity of ele
trons and holes as well as the densities of the ele
tron and hole 
urrentto the 
hemi
al potentials of these 
harge 
arriers. We assume
uk(t, x)

def

= ρk(t, x)Fk (χk(t, x)) , x ∈ Ω, k = 1, 2, (2.5)where χ1 and χ2 are the 
hemi
al potentials
χk

def

= φ̃k + (−1)kϕ̃+ bk, k = 1, 2, (2.6)and φ̃2, φ̃1 are the ele
tro
hemi
al potentials of ele
trons and holes, respe
tively.
bk, ρk, k = 1, 2 are positive, bounded fun
tions on Ω. They des
ribe the ele
troni
properties of the materials 
omposing the devi
e. b2 and b1 are the band edge o�setsfor ele
trons and holes, and ρ2, ρ1 are the 
orresponding e�e
tive band edge densitiesof states. If the equations under 
onsideration form part of a 
ompound model forthe semi
ondu
tor devi
e, then bk, ρk, k = 1, 2, may depend on time. For instan
e,the ρk 
ould be subje
t to an external 
ontrol of the devi
e temperature. Then theydepend on time via the temperature. Mathemati
ally, we assume the following.2.1 Assumption. For every t ∈ [T0, T1] the fun
tions ρk(t) are essentially boundedon Ω and admit positive lower bounds whi
h are uniform in t ∈ [T0, T1]. Themappings

[T0, T1] ∋ t 7→ ρk(t) ∈ L2(Ω), k = 1, 2 (2.7)are di�erentiable on the interval ]T0, T1[ with Hölder 
ontinuous derivatives ρ′k.The fun
tions F1 and F2 represent the statisti
al distribution of the holes and ele
-trons on the energy band. In general, Fermi�Dira
 statisti
s applies, i.e.
Fk(s)

def

=
2√
π

∫ ∞

0

√
t

1 + et−s
dt, s ∈ R. (2.8)However, often Boltzmann statisti
s Fk(s) = es is a good approximation.As for the kineti
 relations spe
ifying the 
urrent�
ontinuity equations we assumethat the ele
tron and hole 
urrent is driven by the negative gradient of the ele
tro-
hemi
al potential of ele
trons and holes, respe
tively. More pre
isely, the 
urrentdensities are given by

jk(t, x) = −Gk (χk(t, x))µk(x)∇φ̃k(t, x) , x ∈ Ω, k = 1, 2. (2.9)The mobilities µ2 and µ1 for the ele
trons and holes, respe
tively, are measurable,bounded fun
tion on Ω with values in the set of real, 2×2, positive de�nite matri
essatisfying for almost all x ∈ Ω̂ and all ξ ∈ R
2

‖µk(x)‖B(R2) ≤ µ• and (µk(x)ξ) · ξ ≥ µ•‖ξ‖2
R2, k = 1, 2,Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 7with two stri
tly positive 
onstants µ• and µ•. The mobilities are a

ounted for onthe parts of the devi
e where ele
trons and holes 
an move due to drift and di�usion.2.2 Remark. In semi
ondu
tor devi
e modeling, usually, the fun
tions Gk and Fk
oin
ide, see for instan
e [44℄ and the referen
es there. However, a rigorous formu-lation as a minimal problem for the free energy reveals that Gk = F ′
k is appropriate.This topi
 has been thoroughly investigated for analogous phase separation prob-lems, see [40, 41, 22, 23℄, see also [18℄ and [24℄. In order to 
over both 
ases weregard independent fun
tions Gk and Fk.2.3 Assumption. Mathemati
ally, we demand that the distribution fun
tions Fk,

Gk, k = 1, 2, are de�ned on the real line, take positive values, and are either exponen-tials, or twi
e 
ontinuously di�erentiable and polynomially bounded. Moreover, F ′
1,

F ′
2 are stri
tly positive on R. In the sequel we will 
all su
h distribution fun
tions'admissible.' This in
ludes Boltzmann statisti
s, as well as Fermi�Dira
 statisti
s(see (2.8)).Let us 
omment on the (e�e
tive) band edges bk and the (e�e
tive) densities ofstates ρk, see (2.5) and (2.6): Basi
ally the band edge o�sets bk and the e�e
tiveband edge densities of states ρk are material parameters. In a heterogeneous semi-
ondu
tor devi
e they are generi
ally pie
ewise 
onstant on the spatial domain Ω.As Assumption 3.7 reveals, we 
annot 
ope with su
h a situation as far as the bandedges bk are 
on
erned. However, in the 
ase of Boltzmann statisti
s one 
an rewrite(2.5) and (2.6) as

uk = ρke
bke(φ̃k+(−1)kϕ̃) on Ω, k = 1, 2,with modi�ed e�e
tive densities of states and identi
ally vanishing band edge o�sets.In the 
ase of Fermi�Dira
 statisti
s this reformulation is not possible and one has tore
ourse to some approximation of the bk by fun
tions 
on�rming to Assumption 3.7.Dis
ontinuities of the band edge o�sets up to now seem to be an obsta
le in whateverapproa
h to solutions of van Roosbroe
k's equations, if the statisti
al distributionfun
tion is not an exponential, see for instan
e [19℄.There are 
ompound multis
ale models of semi
ondu
tor devi
es su
h that the ef-fe
tive band edges and the e�e
tive densities of states result by ups
aling fromquantum me
hani
al models for the ele
troni
 stru
ture in heterogeneous semi
on-du
tor materials, see [2, 3, 35℄. In view of an o�ine 
oupling to ele
troni
 stru
ture
al
ulations we allow for an expli
it dependen
e of ρk, and bk on time.2.4 Rea
tion ratesThe rea
tion terms on the right hand side of the 
urrent�
ontinuity equations 
anbe rather general fun
tions of time, of the ele
trostati
 potential, and of the ve
torPreprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



8 H.-Chr. Kaiser, H. Neidhardt, J. Rehbergof the ele
tro
hemi
al potentials. r1 and r2 des
ribes the produ
tion of holes andele
trons, respe
tively � generation or annihilation, depending on the sign of therea
tion term. Usually van Roosbroe
k's system 
omprises only re
ombination ofele
trons and holes: r = r1 = r2.We have formulated the equations in a more generalway, in order to in
lude also 
oupling terms to other equations of a superordinated
ompound model. That is why we also allow for an expli
it time dependen
y of therea
tion rates.Our formulation of the rea
tion rates, in parti
ular, in
ludes a variety of mod-els for the re
ombination and generation of ele
trons�hole pairs in semi
ondu
tors.This 
overs non-radiative re
ombination of ele
trons and holes like the Sho
kley�Read�Hall re
ombination due to phonon transition and Auger re
ombination. But,radiative re
ombination (photon transition), both spontaneous and stimulated, isalso in
luded. Mathemati
al models for stimulated opti
al re
ombination typi
allyrequire the solution of additional equations for the opti
al �eld. Thus, the re
om-bination rate may be a non-lo
al operator. Moreover, by 
oupling van�Roosbroe
kssystem to the opti
al �eld some additional 
ontrol of this opti
al �eld may alsointera
t with the internal ele
troni
s. For instan
e, in modeling and simulation ofedge�emitting multiple�quantum�well lasers van�Roosbroe
k's system augmentedby some Helmholtz equation often serves as a transversal (to the light beam) model,and a 
ontrol of the opti
al �eld is exer
ised by a master equation or some modelfor the longitudinal (on the axis of the light beam) behavior of the laser, see forinstan
e [51, 2, 3℄.Modeling re
ombination of ele
tron�hole pairs in semi
ondu
tor material is an artin itself, see for instan
e [36℄. However, for illustration, let us list some 
ommonre
ombination models, see for instan
e [44, 11℄ and the referen
es 
ited there.Sho
kley�Read�Hall re
ombination (phonon transitions):
r1 = r2 = rSRH =

u1u2 − n2
i

τ2(u1 + n1) + τ1(u2 + n2)
,where ni is the intrinsi
 
arrier density, n1, n2 are referen
e densities, and τ1, τ2 arethe lifetimes of holes and ele
trons, respe
tively. ni, n1, n2, and τ1, τ2 are parametersof the semi
ondu
tor material; thus, depend on the spa
e variable, and ultimately,also on time.Auger re
ombination (three parti
le transitions):

r1 = r2 = rAuger = (u1u2 − n2
i )(c

Auger
1 u1 + cAuger

2 u2),where cAuger
1 and cAuger

2 are the Auger 
apture 
oe�
ients of holes and ele
trons,respe
tively, in the semi
ondu
tor material.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 9Stimulated opti
al re
ombination:
r1 = r2 = rstim =

∑

j

f(σj)
|ψj |2∫
|ψj|2

,where f additionally depends on the ve
tor of the densities, and on the ve
tor of theele
tro
hemi
al potentials. σj , ψj are the eigenpairs of a s
alar Helmholtz�operator:
∆ψj + ǫ(u1, u2)ψj = σjψj .In laser modeling ea
h eigenpair 
orresponds to an opti
al (TE) mode of the laserand |ψj |2 is the intensity of the ele
tri
al �eld of the σj�mode. ǫ is the diele
tri
permittivity (for the opti
al �eld); it depends on the density of ele
trons and holes.The s
alar Helmholtz�equation originates from the Maxwell equations for the opti
al�eld [50℄.The fun
tional analyti
 requirements on the rea
tion terms will be established inAssumption 3.6.3 Mathemati
al prerequisitesIn this se
tion we introdu
e some mathemati
al terminology and make pre
ise as-sumptions about the problem.3.1 General AssumptionsFor a Bana
h spa
e X we denote its norm by ‖·‖X and the value of a bounded linearfun
tional ψ∗ on X in ψ ∈ X by 〈ψ∗ |ψ〉X. If X is a Hilbert spa
e, identi�ed withits dual, then 〈· | ·〉X is the s
alar produ
t in X. Just in 
ase X is the spa
e R

2, thes
alar produ
t of a, b ∈ R
2 is written as a·b. Upright X denotes the dire
t sum X⊕Xof slanted X with itself. B(X;Y ) is the spa
e of linear, bounded operators from Xinto Y , where X and Y are Bana
h spa
es. We abbreviate B(X) = B(X;X) andwe denote by B∞(X) the spa
e of linear, 
ompa
t operators on the Bana
h spa
e

X. The notation [X, Y ]θ means the 
omplex interpolation spa
e of X and Y to theindex θ ∈ [0, 1]. The (distributional) ∇�
al
ulus applies. If ψ is a (di�erentiable)fun
tion on an interval taking its values in a Bana
h spa
e, then ψ′ always indi
atesits derivative.3.2 Spatial DomainsThroughout this paper we assume that Ω̂ as well as Ω are bounded Lips
hitz domainsin R
2, see [25, Ch. 1℄. By ↑ we denote the operator whi
h extends any fun
tionPreprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



10 H.-Chr. Kaiser, H. Neidhardt, J. Rehbergde�ned on Ω by zero to a fun
tion de�ned on Ω̂. Conversely, ↓ denotes the operatorwhi
h restri
ts any fun
tion de�ned on Ω̂ to Ω. The operators ↑ and ↓ are adjoint toea
h other with respe
t to the duality indu
ed by the usual s
alar produ
t in spa
esof square integrable fun
tions.With respe
t to the marked out Neumann boundary parts Γ̂ ⊂ ∂Ω̂ and Γ ⊂ ∂Ω ofthe boundary of Ω̂ and Ω we assume ea
h being the union of a �nite set of openar
 pie
es su
h that no 
onne
ted 
omponent of ∂Ω̂ \ Γ̂ and ∂Ω \ Γ 
onsists onlyof a single point. We denote the parts of the boundary where Diri
hlet boundary
onditions are imposed by D̂
def

= interior(∂Ω̂ \ Γ̂) and D
def

= interior(∂Ω \ Γ).3.3 Fun
tion spa
es and linear ellipti
 operatorsWe exemplarily de�ne spa
es of real-valued fun
tions on spatial domains with respe
tto the bounded domain Ω ⊂ R
2 and its boundary. Spa
es of fun
tions on Ω̂ andparts of its boundary may be similarly de�ned and are denoted by hatted symbols.If r ∈ [1,∞[, then Lr is the spa
e of real, Lebesgue measurable, r-integrable fun
tionson Ω and L∞ is the spa
e of real, Lebesgue measurable, essentially bounded fun
tionson Ω. W 1,r is the usual Sobolev spa
e W 1,r(Ω), see for instan
e [46℄. W 1,r

Γ is the
losure in W 1,r of
{
ψ|Ω : ψ ∈ C∞

0 (R2), suppψ ∩ (∂Ω \ Γ) = ∅
}
,i.e. W 1,r

Γ 
onsists of all fun
tions from W 1,r with vanishing tra
e on D. W−1,r
Γdenotes the dual of W 1,r′

Γ , where 1/r + 1/r′ = 1. 〈· | ·〉W 1,2

Γ

is the dual pairingbetween W 1,2
Γ and W−1,2

Γ . Correspondingly, the divergen
e for a ve
tor of squareintegrable fun
tions is de�ned in the following way: If j ∈ L2, then ∇ · j ∈W−1,2
Γ isgiven by

〈∇ · j |ψ〉W 1,2

Γ

= −
∫

Ω

j · ∇ψ dx, ψ ∈ W 1,2
Γ . (3.1)

σ is the natural ar
 measure on the boundary of Ω. We denote by L∞(∂Ω) and
Lr(∂Ω), the spa
es of σ-measurable, essentially bounded, and r-integrable, r ∈
[1,∞[, fun
tions on ∂Ω, respe
tively. Moreover, W s,r(∂Ω) denotes the Sobolev spa
eof fra
tional order s ∈]0, 1] and integrability exponent r ∈ [1,∞[ on ∂Ω, see [25,Ch. 1℄. Mutatis mutandis for fun
tions on σ-measurable, relatively open parts of
∂Ω.Let us now de�ne in a stri
t sense the (linear) Poisson operator and the ellipti
operators governing the 
urrent 
ontinuity equations.3.1 De�nition. We de�ne the Poisson operator −∇ · ε∇ : Ŵ 1,2 → Ŵ−1,2

Γ̂
by

〈−∇ · ε∇ψ1 |ψ2〉Ŵ 1,2

Γ̂

def

=

∫

Ω̂

ε∇ψ1 · ∇ψ2 dx+

∫

Γ̂

εΓ̂ψ1ψ2 dσ̂, (3.2)Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 11for ψ1 ∈ Ŵ 1,2 and ψ2 ∈ Ŵ 1,2

Γ̂
. P0 denotes the restri
tion of −∇ · ε∇ to Ŵ 1,2

Γ̂
; wedenote the maximal restri
tion of P0 to any range spa
e whi
h 
ontinuously embedsinto Ŵ−1,2

Γ̂
by the same symbol P0.3.2 De�nition. With respe
t to a fun
tion ς ∈ L∞ we de�ne the operators

−∇ · ςµk∇ : W 1,2 →W−1,2
Γ , k = 1, 2, by

〈−∇ · ςµk∇ψ1 |ψ2〉W 1,2

Γ

def

=

∫

Ω

ς µk∇ψ1 · ∇ψ2 dx, ψ1 ∈W 1,2, ψ2 ∈W 1,2
Γ .If, in parti
ular, ς ≡ 1, then we simply write ǎk for −∇ · µk∇. Moreover, we denotethe restri
tion of ǎk to the spa
e W 1,2

Γ by ak, i.e. ak : W 1,2
Γ →W−1,2

Γ .3.3 Proposition. (see [26℄ and [27℄) There is a number q̂ > 2 (depending on Ω̂, εand Γ̂) su
h that for all q ∈ [2, q̂] the operator P0 : Ŵ 1,q

Γ̂
→ Ŵ−1,q

Γ̂
is a topologi
alisomorphism. Moreover, there is a q̌ > 2 (depending on Ω, µ1, µ2 and Γ) su
h thatfor all q ∈ [2, q̌] the operators ak : W 1,q

Γ → W−1,q
Γ provide topologi
al isomorphisms,and additionally, generate analyti
 semigroups on W−1,q

Γ .3.4 De�nition. From now on we �x a number q ∈]2,min(4, q̂, q̌)[ and de�ne p def

= q
2
.With respe
t to this p we de�ne the operators

Ak : ψ 7→ akψ, ψ ∈ Dk
def

= dom(Ak)
def

=
{
ψ ∈W 1,2

Γ : akψ ∈ Lp
}
, k = 1, 2,

A : D → Lp, A
def

=
(
A1 0
0 A2

)
, D def

= dom(A) = D1 ⊕D2 →֒ Lp .3.5 Remark. If ψ ∈ Dk, k = 1, 2, then ν ·(µk∇ψ)|Γ = 0 in the sense of distributions,see for instan
e [5, Ch. 1.2℄ or [16, Ch.1.2℄.After having �xed the number q and, 
orrespondingly, the spa
e Lp, we will nowformulate our mathemati
al requirements on the rea
tion terms:3.6 Assumption. The rea
tion terms rk, k = 1, 2, are mappings
rk : [T0, T1] × Ŵ 1,q × W1,q → Lp.Moreover, we assume that there is a real number η ∈]0, 1] and for any boundedsubset M ⊂ Ŵ 1,q ⊕ W1,q a 
onstant rM su
h that

∥∥rk(t, v, ψ) − rk(ť, v̌, ψ̌)
∥∥
Lp

≤ rM
(
|t− ť|η + ‖v − v̌‖Ŵ 1,q + ‖ψ − ψ̌‖W1,q

)
,

t, ť ∈ [T0, T1], (v, ψ), (v̌, ψ̌) ∈M.3.7 Assumption. The fun
tions bk : [T0, T1] → W 1,q, k = 1, 2, are Hölder 
ontin-uous. Moreover, they are Hölder 
ontinuously di�erentiable when 
onsidered as Lpvalued.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



12 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg3.4 Representation of Diri
hlet boundary valuesFor setting up the Poisson and 
urrent�
ontinuity equations in appropriate fun
tionspa
es we must split up the solution into parts, where one part represents the inho-mogeneous Diri
hlet boundary values ϕD̂ and φD,k, k = 1, 2. In this se
tion we treatof just this representation. We make the following assumptions about the Diri
hletboundary values of the ele
tro
hemi
al potentials φk, k = 1, 2, and for their initialvalues, see (2.3), (2.4).3.8 Assumption. There is a Hölder 
ontinuous fun
tion
Φ = (Φ1,Φ2) : [T0, T1] → W1,q, k = 1, 2,su
h that for all t ∈ [T0, T1]

ǎkΦk(t) = 0 (3.3)
tr
(
Φk(t)

)∣∣
D

= φD,k(t) (3.4)Moreover, we assume, that ea
h Φk, k = 1, 2, � as a fun
tion with values in Lp �is di�erentiable and its derivative is Hölder 
ontinuous.3.9 Remark. It should be noted that (3.3) and the de�nition of the operators ǎkimply ν ·µk∇Φk = 0 on Γ in the distributional sense, see for instan
e [5, Ch. 1.2℄ or[16, Ch. II.2℄. This implies for the 
urrent densities (2.9) that ν · jk = 0 on Γ in thedistributional sense, provided that χk ∈W 1,q.We will now give a su�
ient 
ondition on φD,k for the existen
e of a Φk with theassumed properties.3.10 Lemma. 1. If ψ ∈ W 1−1/q,q(D), then there is a unique fun
tion Ψ ∈ W 1,qful�lling
ǎkΨ = 0, and tr(Ψ)

∣∣
D

= ψ.2. If ψ : [T0, T1] → W 1−1/q,q(D) is Hölder 
ontinuous with index η, then the fun
tion
Ψ : [T0, T1] → W 1,q whi
h is given for ea
h t ∈ [T0, T1] by item 1 is also Hölder
ontinuous with index η. Moreover, if ψ � as a fun
tion with values in W 1/2,2(D)� is Hölder 
ontinuously di�erentiable with Hölder index η, then Ψ is Hölder 
on-tinuously di�erentiable with Hölder index η.Proof. Let ex : W 1−1/q,q(D) → W 1−1/q,q(∂Ω) be a linear and 
ontinuous extensionoperator, and let tr−1 be a linear and 
ontinuous right inverse of the tra
e operator
tr : W 1,q(Ω) → W 1−1/q,q(∂Ω). Su
h operators exist a

ording to [25, Thm 1.4.3.1℄and [25, Thm 1.5.1.3℄, respe
tively. Thus, tr−1 ◦ exψ ∈W 1,q. Moreover, let ψ̆ be thesolution of the di�erential equation

akψ̆ = ǎk ◦ tr−1 ◦ exψ (3.5)Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 13in W 1,q
Γ . This solution exists and is unique be
ause the right hand side of (3.5) isfrom W−1,q

Γ and the operators ak are isomorphisms from W 1,q
Γ onto W−1,q

Γ . We nowde�ne
Ψ

def

= tr−1 ◦ exψ − ψ̆. (3.6)The asserted properties of Ψ follow dire
tly from the 
onstru
tion.The se
ond assertion is proved by observing that all steps in the �rst part of theproof depend linearly on the datum.3.11 Assumption. We assume that the initial values Φ0
k belong to W 1,q, k = 1, 2.Moreover, there is a θ ∈]1/2 + 1/q, 1[ su
h that for ea
h of the initial values Φ0

k thedi�eren
e Φ0
k − Φk(T0) belongs to the 
omplex interpolation spa
e [Lp,Dk]θ.3.12 Remark. For all θ ∈]1/2 + 1/q, 1[ the spa
e [Lp,Dk]θ 
ompa
tly embeds into

W 1,q
Γ →֒ L∞, see [31, Thm. 5.2℄.With respe
t to the inhomogeneous terms ϕD̂ and ϕΓ̂ in the boundary 
onditions ofPoisson's equation (2.1) we make the following assumptions.3.13 Assumption. There is a Hölder 
ontinuous fun
tion ϕ◦ : [T0, T1] → Ŵ 1,q su
hthat ϕ◦ � as a fun
tion from [T0, T1] into L̂p � is Hölder 
ontinuously di�erentiable.For all t ∈ [T0, T1] it holds true

−∇ · ε∇ϕ◦(t) = 0, (3.7)
tr
(
ϕ◦(t)

)∣∣
D̂

= ϕD̂(t). (3.8)The fun
tion
[T0, T1] ∋ t 7→ ϕΓ̂(t) ∈ L∞(Γ̂)is di�erentiable and possesses a Hölder 
ontinuous derivative.3.14 Remark. Similar to Lemma 3.10 it is possible to give a su�
ient 
ondition onthe existen
e of a representing fun
tion t 7→ ϕ◦(t) whi
h only rests on the fun
tion

t 7→ ϕD̂(t). We do not 
arry out this here.3.15 Remark. For all t ∈ [T0, T1] we extend ϕΓ̂(t) by zero to a σ̂�measurable,essentially bounded fun
tion on ∂Ω̂. Due to the 
ontinuous embedding
Ŵ 1,q′

Γ̂
→֒ Ŵ 1,q′ →֒W 1−1/q′,q′(∂Ω̂) →֒ Lq

′

(∂Ω̂),see [25, Thm 1.5.1.3℄, there is a 
ontinuous embedding
L∞(∂Ω̂) →֒ Lq(∂Ω̂) →֒ Ŵ−1,q

Γ̂
.Thus, ϕΓ̂(t), t ∈ [T0, T1] 
an be regarded as an element of Ŵ−1,q

Γ̂
. We denote ϕΓ̂ asa fun
tion from [T0, T1] into Ŵ−1,q

Γ̂
by ϕ•. The Hölder 
ontinuous di�erentiability of

ϕΓ̂ entails the Hölder 
ontinuous di�erentiability of ϕ• : [T0, T1] → Ŵ−1,q

Γ̂
with thesame Hölder exponent.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



14 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg3.5 The linear Poisson equationLet us assume the following about d̃� the doping pro�le (or 
ontrol parameter) onthe right hand side of Poisson's equation (2.1).3.16 Assumption. The fun
tion d̃ : [T0, T1] → Ŵ−1,q

Γ̂
is 
ontinuously di�erentiablewith Hölder 
ontinuous derivative. We de�ne a �generalized doping�

d : [T0, T1] → Ŵ−1,q

Γ̂
by d(t)

def

= d̃(t) + ϕ•(t), t ∈ [T0, T1]. (3.9)We now de�ne what is a solution of Poisson's equation (2.1).3.17 De�nition. Let uk ∈ Ŵ−1,q

Γ̂
, k = 1, 2 be given. We say that ϕ̃ is a solution ofPoisson's equation (2.1) at t ∈ [T0, T1], if
ϕ̃ = ϕ+ ϕ◦(t), (3.10)and ϕ ∈ Ŵ 1,q

Γ̂
is the unique solution of

P0ϕ = d(t) + u1 − u2. (3.11)
ϕ and ϕ̃ depend parametri
ally on t, u1, and u2. If 
onvenient, we indi
ate thedependen
e on t by writing ϕ(t) and ϕ̃(t), respe
tively.3.18 Remark. With respe
t to the boundary 
onditions in (2.1) it should be notedthat (3.8) and the property ϕ ∈ Ŵ 1,q

Γ̂
give ϕ̃|D̂ = ϕD̂. Additionally, if d̃, u1, and

u2 belong to the spa
e L̂1, then (3.9), (3.10) and (3.11) together with (3.7) imply
ν · (ε∇ϕ̃) + εΓ̂ϕ̃ = ϕΓ̂(t), see for instan
e [5, Ch. 1.2℄ or [16, Ch. II.2℄.Throughout this se
tion we demand several times Hölder 
ontinuity of fun
tionsand/or their derivatives. Clearly, there is a 
ommon Hölder exponent whi
h we willdenote from now on by η.4 Pre
ise Formulation of the ProblemWe are now going to de�ne the problem outlined in �2.4.1 De�nition. We say the van Roosbroe
k system admits a lo
al in time solution,if there is a time T ∈]T0, T1] and (ϕ̃, φ̃) = (ϕ̃, φ̃1, φ̃2) su
h that

φ̃(T0) = (φ̃1(T0), φ̃2(T0)) = (Φ0
1,Φ

0
2) ∈ W1,q, (4.1)

ϕ
def

= ϕ̃− ϕ◦ ∈ C([T0, T ]; Ŵ 1,q

Γ̂
) ∩ C1(]T0, T [; Ŵ 1,q

Γ̂
) (4.2)Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 15
φ

def

= φ̃− Φ ∈ C1(]T0, T [,Lp) ∩ C(]T0, T ],D) ∩ C([T0, T ], [Lp,D]θ), (4.3)ful�ll the Poisson equation and the 
urrent 
ontinuity equations:
P0(ϕ(t)) = d(t) + ↑u1(t) − ↑u2(t) t ∈ [T0, T ], (4.4)

u′k(t) −∇ · jk(t) = rk(t, ϕ̃(t), φ̃(t)), k = 1, 2, t ∈]T0, T [. (4.5)The 
arrier densities and the 
urrent densities are given by
uk(t)

def

= ρk(t)Fk

(
χk(t)

)
, (4.6)

jk(t)
def

= Gk
(
χk(t)

)
µk∇φ̃k(t), (4.7)

χk(t)
def

= φ̃k(t) + (−1)k↓ϕ̃(t) + bk(t). (4.8)and satisfy
uk ∈ C([T0, T ], L∞) ∩ C1(]T0, T [, Lp), (4.9)

jk ∈ C([T0, T ], Lq), (4.10)
∇ · jk ∈ C(]T0, T ], Lp) (4.11)for k = 1, 2.5 Reformulation as a quasi-linear paraboli
 systemIn this se
tion we provide the tools to rewrite the problem from De�nition 4.1 asa quasi-linear system for the 
ontinuity equations. To that end we eliminate theele
trostati
 potential from the 
ontinuity equations. Repla
ing the 
arrier densities

u1 and u2 on the right hand side of (4.4) by (4.6) making use of (4.8) and (3.10) oneobtains a nonlinear Poisson equation for ϕ. We solve this equation with respe
t topres
ribed parameters bk and φ̃k, k = 1, 2, whi
h we will assume here to be from L∞.This way to de
ouple van Roosbroe
k's equations into a nonlinear Poisson equationand a system of paraboli
 equations is also one of the fundamental approa
hes tothe numeri
al solution of the van Roosbroe
k system. It is due to Gummel [28℄ andwas the �rst reliable numeri
al te
hnique to solve these equations for 
arriers in anoperating semi
ondu
tor devi
e stru
ture.5.1 The nonlinear Poisson equationWe are now going to prove the unique solvability of the nonlinear Poisson equationand some properties of its solution. First we show that the supposed admissibilityof the 
arrier distribution fun
tions Fk ensures that the relation between a potentialand its 
orresponding 
arrier density is monotone and even 
ontinuously di�eren-tiable when 
onsidered between adequate spa
es.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



16 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg5.1 Lemma. Let ρ and g be from L∞ and F = Fk be an admissible 
arrier distri-bution fun
tion, see Assumption 2.3.1. The operator
Ŵ 1,2

Γ̂
∋ h 7−→ ↑ρF(g + ↓h) ∈ L̂2 (5.1)is well de�ned, 
ontinuous and bounded. Its 
omposition with the embedding L̂2 →֒

Ŵ−1,2

Γ̂
is monotone.2. The Nemy
kii operator

L∞ ∋ h 7−→ ρF(g + ↓h)indu
ed by the fun
tion
Ω × R ∋ (x, s) 7−→ ρ(x)F(g(x) + s),maps L∞ 
ontinuously into itself and is even 
ontinuously di�erentiable. Its Fré
hetderivative at h ∈ L∞ is the multipli
ation operator given by the essentially boundedfun
tion

Ω ∋ x 7−→ ρ(x)F ′(g(x) + h(x)). (5.2)Proof. Indeed, the assumption that the 
arrier distribution fun
tions should be ad-missible assures that the operator (5.1) is well de�ned, 
ontinuous and bounded, see[47℄ for the 
ase of an exponential, and see [1, Chapter 3℄ for the 
ase of a polyno-mially bounded fun
tion. The asserted monotoni
ity follows from the monotoni
ityof the fun
tion F and the fa
t that the duality between Ŵ 1,2

Γ̂
and Ŵ−1,2

Γ̂
is theextension of the L̂2 duality:

〈↑ρF(g + ↓h1) − ↑ρF(g + ↓h2) | h1 − h2〉Ŵ 1,2

Γ̂

=

∫

Ω̂

(
↑ρF(g + ↓h1) − ↑ρF(g + ↓h2)

)
(h1 − h2) dx

=

∫

Ω

(ρF(g + ↓h1) − ρF(g + ↓h2)) (↓h1 − ↓h2) dx ≥ 0 for all h1, h2 ∈ Ŵ 1,2

Γ̂
.The se
ond assertion follows from a result by Gröger and Re
ke, see [42, Thm 5.1℄.5.2 Corollary. The mappinĝ

W 1,q ∋ h 7−→ ↑ρF(g + ↓h)takes its values in L̂∞ and is also 
ontinuously di�erentiable. Its derivative at apoint h ∈ Ŵ 1,q equals the multipli
ation operator whi
h is indu
ed by the fun
tion
↑ρF ′(g + ↓h).Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 175.3 Theorem. Under Assumption 2.3 on the distribution fun
tions F1, F2 andAssumption 2.1 the following statements are true:1. For any pair of fun
tions z = (z1, z2) ∈ L∞ the operator
ϕ 7−→ P0ϕ− ↑ρ1F1(z1 − ↓ϕ) + ↑ρ2F2(z2 + ↓ϕ) (5.3)is strongly monotone and 
ontinuous from Ŵ 1,2

Γ̂
to Ŵ−1,2

Γ̂
, where the operator P0 isa

ording to De�nition 3.1. The monotoni
ity 
onstant of (5.3) is a least that of

P0.2. For all f ∈ Ŵ−1,2

Γ̂
and z = (z1, z2) ∈ L∞ the nonlinear Poisson equation

P0ϕ− ↑ρ1F1(z1 − ↓ϕ) + ↑ρ2F2(z2 + ↓ϕ) = f (5.4)admits exa
tly one solution ϕ whi
h we denote by L(f, z). This solution belongs to
Ŵ 1,2

Γ̂
and satis�es the estimate

‖ϕ‖Ŵ 1,2

Γ̂

≤ 1

m

∥∥↑ρ1F1(z1) − ↑ρ2F2(z2) + f
∥∥
Ŵ−1,2

Γ̂

,where m is the monotoni
ity 
onstant of P0.3. The maximal restri
tion of the operator (5.3) to the range spa
e Ŵ−1,q

Γ̂
has thedomain Ŵ 1,q

Γ̂
. Moreover, if M is a bounded subset of Ŵ−1,q

Γ̂
⊕ L∞, then the set

{L(f, z) : (f, z) ∈M} is bounded in Ŵ 1,q

Γ̂
.4. The mapping L : Ŵ−1,q

Γ̂
⊕L∞ → Ŵ 1,q

Γ̂
is 
ontinuously di�erentiable. Let (F, Z) =

(F, Z1, Z2) be from Ŵ−1,q

Γ̂
⊕ L∞; we de�ne the fun
tion

Nk
def

= ↑ρkF ′
k(Zk + (−1)k↓L(F, Z)), (5.5)and we also denote the 
orresponding multipli
ation operator on Ω̂ by Nk. Then theFré
het derivative ∂L at a point (F, Z) = (F, Z1, Z2) is the bounded linear mappinggiven by

[∂L(F, Z)] (f, z) = (P0 + N1 + N2)
−1 (f + N1

↑z1 −N2
↑z2
)
, k = 1, 2 (5.6)for all (f, z) = (f, (z1, z2)) ∈ Ŵ−1,q

Γ̂
⊕ L∞ .5. The norm of ∂L(F, Z) ∈ B(Ŵ−1,q

Γ̂
⊕ L∞; Ŵ 1,q

Γ̂
) 
an be estimated as follows:

‖∂L(F, Z)‖
B(Ŵ−1,q

Γ̂
⊕L∞;Ŵ 1,q

Γ̂
)

≤ 2‖P−1
0 ‖

B(L2;Ŵ 1,q

Γ̂
)

√
‖N1 + N2‖L∞‖N1 + N2‖L1 + ‖P−1

0 ‖
B(Ŵ−1,q

Γ̂
;Ŵ 1,q

Γ̂
)

+ ‖P−1
0 ‖

B(L̂2;Ŵ 1,q

Γ̂
)

√
‖N1 + N2‖L∞‖P−1/2

0 ‖
B(Ŵ−1,q

Γ̂
;L̂2)Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



18 H.-Chr. Kaiser, H. Neidhardt, J. RehbergProof. 1. The assumption that D̂ is not empty or εΓ̂ is positive on a set of positivear
 measure ensures that the operator P0 is strongly monotone. Thus, taking intoa

ount Lemma 5.1, the mapping (5.3) is strongly monotone and 
ontinuous from
Ŵ 1,2

Γ̂
to Ŵ−1,2

Γ̂
.2. The se
ond assertion follows from the �rst one by standard results on monotoneoperators, see for instan
e [16℄.3. For f ∈ Ŵ−1,2

Γ̂
the solution L(f, z) is from Ŵ 1,2

Γ̂
and hen
e,

−↑ρ1F1

(
z1 − ↓L(f, z)

)
+ ↑ρ2F2

(
z2 + ↓L(f, z)

)
∈ L̂2 →֒ Ŵ−1,q

Γ̂
,see Lemma 5.1. By the se
ond assertion of the theorem, the set

{L(f, z) : (f, z)∈M} is bounded in Ŵ 1,2

Γ̂
.From this we 
on
lude again by Lemma 5.1 that the set

{
↑ρ1F1

(
z1 − ↓L(f, z)

)
− ↑ρ2F2

(
z2 + ↓L(f, z)

)
: (f, z) ∈M

}is bounded in L̂2, and hen
e, is bounded in Ŵ−1,q

Γ̂
. Thus, the set

{
↑ρ1F1

(
z1 − ↓L(f, z)

)
− ↑ρ2F2

(
z2 + ↓L(f, z)

)
+ f : (f, z) ∈M

}is also bounded in Ŵ−1,q

Γ̂
. Consequently, the image of this set under P−1

0 is boundedin Ŵ 1,q

Γ̂
.4. We de�ne an auxiliary mapping K : Ŵ 1,q

Γ̂
⊕ Ŵ−1,q

Γ̂
⊕ L∞ → Ŵ−1,q

Γ̂
by

K(ϕ, f, z)
def

= P0ϕ− ↑ρ1F1(z1 − ↓ϕ) + ↑ρ2F2(z2 + ↓ϕ) − fsu
h that K
(
L(f, z), f, z

)
= 0 for all f ∈ Ŵ−1,q

Γ̂
and all z ∈ L∞. The assertionfollows from the Impli
it Fun
tion Theorem if we 
an prove that K is 
ontinuouslydi�erentiable and the partial derivative with respe
t to ϕ is a topologi
al isomor-phism between Ŵ 1,q

Γ̂
and Ŵ−1,q

Γ̂
. For any ϕ ∈ Ŵ 1,q

Γ̂
, f ∈ Ŵ−1,q

Γ̂
, and z ∈ L∞ thepartial derivatives of K are given by

∂ϕK(ϕ, f, z) = P0 +

2∑

k=1

↑ρkF ′
k(zk + (−1)k↓ϕ) ∈ B(Ŵ 1,q

Γ̂
; Ŵ−1,q

Γ̂
), (5.7)

∂fK(ϕ, f, z) = −I ∈ B(Ŵ−1,q

Γ̂
; Ŵ−1,q

Γ̂
), (5.8)

∂zk
K(ϕ, f, z) = (−1)k↑ρkF ′

k(zk + (−1)k↓ϕ) ∈ L̂∞ →֒ B(L∞; Ŵ−1,q

Γ̂
) (5.9)and they are 
ontinuous, see Lemma 5.1 and [42, �5℄.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 19Now we 
onsider the equation
P0ψ +

2∑

k=1

↑ρkF ′
k(zk + (−1)k↓ϕ)ψ = f ∈ Ŵ−1,q

Γ̂
(5.10)Be
ause∑2

k=1
↑ρkF ′

k(zk+(−1)k↓ϕ) is a positive fun
tion from L̂∞, (5.10) has exa
tlyone solution ψ ∈ Ŵ 1,2

Γ̂
by the Lax-Milgram-Lemma. Moreover,

2∑

k=1

↑ρkF ′
k(zk + (−1)k↓ϕ)ψ ∈ L̂2 →֒ Ŵ−1,q

Γ̂
,and P0 : Ŵ 1,q

Γ̂
→ Ŵ−1,q

Γ̂
is a topologi
al isomorphism. Thus, a rearrangement ofterms in (5.10) gives ψ ∈ Ŵ 1,q

Γ̂
.5. We now estimate the Fré
het derivative (5.6):

∥∥(P0 + N1 + N2)
−1(f + N1

↑z1 −N2
↑z2)

∥∥
Ŵ 1,q

Γ̂

≤
∥∥(P0 + N1 + N2)

−1f
∥∥
Ŵ 1,q

Γ̂

+
∥∥(P0 + N1 + N2)

−1(N1
↑z1 −N2

↑z2)
∥∥
Ŵ 1,q

Γ̂

. (5.11)We treat the right hand side terms separately; for the se
ond addend one obtains
∥∥(P0 + N1 + N2)

−1(N1
↑z1 −N2

↑z2)
∥∥
Ŵ 1,q

Γ̂

≤
∥∥∥(P0 + N1 + N2)

−1
√

N1 + N2

∥∥∥
B(L̂2;Ŵ 1,q

Γ̂
)
‖g‖L2 , (5.12)where the fun
tion g ∈ L2 is de�ned by

g(x)
def

=
N1(x)z1(x) −N2(x)z2(x)√

N1(x) + N2(x)
for x ∈ Ω. (5.13)Please note that the fun
tions Nk are stri
tly positive almost everywhere in Ω dueto the positivity of the distribution fun
tions and Assumption 2.1. For the fun
tion

g in (5.13) one has the following bound:
‖g‖L2 ≤

√
‖N1 + N2‖L̂1 (‖z1‖L∞ + ‖z2‖L∞) .Making use of the operator identity

(P0 + N1 + N2)
−1 = P−1

0 − P−1
0 (N1 + N2)(P0 + N1 + N2)

−1 (5.14)Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



20 H.-Chr. Kaiser, H. Neidhardt, J. Rehbergone obtains
∥∥∥(P0 + N1 + N2)

−1
√

N1 + N2

∥∥∥
B(L̂2;Ŵ 1,q

Γ̂
)
≤
∥∥∥P−1

0

√
N1 + N2

∥∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

+
∥∥∥P−1

0

√
N1 + N2

√
N1 + N2(P0 + N1 + N2)

−1
√
N1 + N2

∥∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

≤
∥∥P−1

0

∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

√
‖N1 + N2‖L̂∞ ×

×
(

1 +
∥∥∥
√

N1 + N2(P0 + N1 + N2)
−1/2

∥∥∥
2

B(L̂2)

)We note that ∥∥∥
√

N1 + N2(P0 + N1 + N2)
−1/2

∥∥∥
B(L̂2)

≤ 1 (5.15)be
ause the bounded multipli
ation operator N1 +N2 is form subordinated to P0 +

N1 +N2, see for instan
e [34, VI.2.6℄. Thus, we get for the se
ond addend of (5.11):
∥∥(P0 + N1 + N2)

−1(N1
↑z1 −N2

↑z2)
∥∥
Ŵ 1,q

Γ̂

≤ 2
∥∥P−1

0

∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

√
‖N1 + N2‖L̂∞

√
‖N1 + N2‖L̂1 (‖z1‖L∞ + ‖z2‖L∞) (5.16)Applying (5.14) to the �rst term on the right hand side of (5.11) we �nd

∥∥(P0 + N1 + N2)
−1f
∥∥
Ŵ 1,q

Γ̂

≤
∥∥P−1

0

∥∥
B(Ŵ−1,q

Γ̂
;Ŵ 1,q

Γ̂
)
‖f‖Ŵ−1,q

Γ̂

+
∥∥P−1

0

∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

∥∥(N1 + N2)(P0 + N1 + N2)
−1
∥∥
B(Ŵ−1,q

Γ̂
;L̂2)

‖f‖Ŵ−1,q

Γ̂

. (5.17)The terms ∥∥P−1
0

∥∥
B(Ŵ−1,q

Γ̂
;Ŵ 1,q

Γ̂
)
and ∥∥P−1

0

∥∥
B(L̂2;Ŵ 1,q

Γ̂
)
are �nite. As for the remainingterm

∥∥(N1 + N2)(P0 + N1 + N2)
−1
∥∥
B(Ŵ−1,q

Γ̂
;L̂2)

≤
√
‖N1 + N2‖L̂∞

∥∥∥
√
N1 + N2(P0 + N1 + N2)

−1/2
∥∥∥
B(L̂2)∥∥∥(P0 + N1 + N2)

−1/2P1/2
0

∥∥∥
B(L̂2)

∥∥∥P−1/2
0

∥∥∥
B(Ŵ−1,q

Γ̂
;L̂2)we note that ∥∥∥P−1/2

0

∥∥∥
B(Ŵ−1,q

Γ̂
;L̂2)

is �nite, sin
e Ŵ−1,q

Γ̂
embeds 
ontinuously into Ŵ−1,2

Γ̂and P1/2
0 : L̂2 → Ŵ−1,2

Γ̂
is a topologi
al isomorphism. Again, P0 is form subordinatedto P0 + N1 + N2. Hen
e, besides (5.15) one has
‖(P0 + N1 + N2)

−1/2P1/2
0 ‖

B(L̂2) ≤ 1.Thus, we get from (5.17):
∥∥(P0 + N1 + N2)

−1f
∥∥
Ŵ 1,q

Γ̂

≤
∥∥P−1

0

∥∥
B(Ŵ−1,q

Γ̂
;Ŵ 1,q

Γ̂
)
‖f‖Ŵ−1,q

Γ̂

+
∥∥P−1

0

∥∥
B(L̂2;Ŵ 1,q

Γ̂
)

√
‖N1 + N2‖L̂∞

∥∥∥P−1/2
0

∥∥∥
B(Ŵ−1,q

Γ̂
;L̂2)

‖f‖Ŵ−1,q

Γ̂

. (5.18)Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 21Inserting (5.16) and (5.18) into (5.11) �nishes the proof.5.4 Corollary. Let the assumptions of Theorem 5.3 be satis�ed. Then holds true:1. The mapping L : Ŵ−1,q

Γ̂
⊕ L∞ → Ŵ 1,q

Γ̂
is boundedly Lips
hitzian, i.e. for anybounded subset M ⊂ Ŵ−1,q

Γ̂
⊕ L∞ there is a 
onstant LM su
h that

∥∥L(f, z) −L(f̌ , ž)
∥∥
W 1,q ≤ LM

(∥∥f − f̌
∥∥
Ŵ−1,q

Γ̂

+ ‖z − ž‖L∞

)for all (f, z), (f̌ , ž) ∈M .2. Let additionally Assumption 3.16 be satis�ed. If
z = (z1, z2) ∈ C([T0, T ],L∞) ∩ C1(]T0, T [,Lp),then the fun
tion [T0, T ] ∋ t 7→ ϕ(t) ∈ Ŵ 1,q

Γ̂
given by ϕ(t)

def

= L(d(t), z(t)) ∈ Ŵ 1,q

Γ̂
is
ontinuous, and 
ontinuously di�erentiable on ]T0, T [. Its derivative is

ϕ′(t) =
[
∂L
(
d(t), z(t)

)] (
d′(t), z′(t)

)

= (P0 + N1 + N2)
−1 (d′(t) + N1

↑z′1 −N2
↑z′2
)
,where Nk is again de�ned by (5.5) � there (F, Z) spe
i�ed as (d(t), z(t)).5.2 Derivation of the quasi-linear systemWe start now with the reformulation of the van Roosbroe
k system as de�ned inDe�nition 4.1 as a quasi-linear paraboli
 system for the 
ontinuity equations. Theaim of eliminating the ele
trostati
 potential in mind, we �rst look for a substitutefor its time derivative. In order to a
hieve this, we formally di�erentiate Poisson'sequation (4.4) with respe
t to time. This gives

P0ϕ
′ = d′ + ↑(u′1 − u′2). (5.19)From (4.5) one obtains

u′1 − u′2 = ∇ · j1 −∇ · j2 + r1(t, ϕ̃, φ̃) − r2(t, ϕ̃, φ̃). (5.20)Inserting (5.20) into (5.19), one gets
P0ϕ

′ = d′ + ↑
(
∇ · j1 −∇ · j2 + r1(t, ϕ̃, φ̃) − r2(t, ϕ̃, φ̃)

)
. (5.21)Just in 
ase, r = r1 = r2 is only re
ombination, this is pre
isely the well known
onservation law for the total 
urrent, see [11℄. Clearly, (5.21) leads to

↓ϕ
′ = ↓P−1

0

(
d′ + ↑

(
∇ · j1 −∇ · j2 + r1(t, ϕ̃, φ̃) − r2(t, ϕ̃, φ̃)

))
. (5.22)Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



22 H.-Chr. Kaiser, H. Neidhardt, J. RehbergNow we di�erentiate (4.6) (with (4.8)) with respe
t to time and obtain
u′k = ρkF ′

k(φ̃k + (−1)k↓ϕ̃+ bk)
[
φ̃′
k + (−1)k↓ϕ̃

′ + b′k
]

+ ρ′kFk(φ̃k + (−1)k↓ϕ̃+ bk), k = 1, 2, (5.23)Pending further noti
e we do not write out the argument φ̃k + (−1)k↓ϕ̃ + bk of thedistribution fun
tion Fk and its derivative. We also abstain from drawing out theargument of the rea
tion terms rk. A

ording to (3.10) we split ϕ̃′ = ϕ′ + ϕ′
◦ andinsert (5.23) into the 
urrent 
ontinuity equation (4.5). Thus, we �nd

[
φ̃′
k + (−1)k↓ϕ

′
]
ρkF ′

k −∇ · jk = rk −
[
(−1)k↓ϕ

′
◦ + b′k

]
ρkF ′

k − ρ′kFk, k = 1, 2.Using (5.22) we get further
ρkF ′

kφ̃
′
k −∇ · jk + (−1)kρkF ′

k↓P−1
0

(
d′ + ↑

(
∇ · j1 −∇ · j2 + r1 − r2

))

= rk −
[
(−1)k↓ϕ

′
◦ + b′k

]
ρkF ′

k − ρ′kFk, k = 1, 2.Dividing this by ρkF ′
k we obtain

(
φ̃′

1

φ̃′
2

)
−
(

1 + ↓P−1
0

↑F ′
1ρ1 −↓P−1

0
↑F ′

2ρ2

−↓P−1
0

↑F ′
1ρ1 1 + ↓P−1

0
↑F ′

2ρ2

)( 1
ρ1F ′

1

0

0 1
ρ2F ′

2

)( ∇ · j1
∇ · j2

)

=

(
r1
ρ1F ′

1

+ r1↓P−1
0

↑ − r2↓P−1
0

↑

−r1↓P−1
0

↑ + r2
ρ2F ′

2

+ r2↓P−1
0

↑

)
+

(
↓P−1

0 d′ + ↓ϕ
′
◦ − b′1 − ρ′

1

ρ1
F1

F ′
1

−↓P−1
0 d′ − ↓ϕ

′
◦ − b′2 − ρ′

2

ρ2
F2

F ′
2

)This evolution equation 
an be written in the 
ondensed form
φ̃′ − [I + Z(t, φ̃)]E(t, φ̃)∇ · j = Y (t, φ̃) (5.24)where φ̃ = (φ̃1, φ̃2) and ∇ · j def

= (∇ · j1,∇ · j2). Moreover, I denotes the identity.The 
oe�
ients Z, E, and Y are given in the following way: First we split o� theDiri
hlet inhomogeneities of ϕ̃ in the sense of �3.4 and we repla
e ϕ by the solutionof the nonlinear Poisson equation, see Theorem 5.3. With respe
t to an arbitrary
ψ = (ψ1, ψ2) ∈ W1,q we set

Qk(t, ψ)
def

= ψk + (−1)k↓L
(
d(t), z(t)

)
+ (−1)k↓ϕ◦(t) + bk(t), k = 1, 2, (5.25)where z def

= (z1, z2) with
zk(t)

def

= ψk + (−1)k↓ϕ◦(t) + bk(t), k = 1, 2. (5.26)Now we de�ne
Z(t, ψ)

def

=

(
↓P−1

0
↑F ′

1(Q1(t, ψ))ρ1(t) −↓P−1
0

↑F ′
2(Q2(t, ψ))ρ2(t)

−↓P−1
0

↑F ′
1(Q1(t, ψ))ρ1(t) ↓P−1

0
↑F ′

2(Q2(t, ψ))ρ2(t)

) (5.27)
E(t, ψ)

def

=
(
E1(t,ψ) 0

0 E2(t,ψ)

)
, Ek(t, ψ)

def

=
1

ρk(t)F ′
k(Qk(t, ψ))

(5.28)
R(t, ψ)

def

=

(
r1(t,L(d(t), z(t)) + ϕ◦(t), ψ)

r2(t,L(d(t), z(t)) + ϕ◦(t), ψ)

)
, (5.29)Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 23and �nally
Y (t, ψ)

def

=
[
I + Z(t, ψ)

]
E(t, ψ)R(t, ψ) −X(t, ψ), (5.30)where X(t, ψ) =

(
X1(t, ψ), X2(t, ψ)

) with
Xk(t, ψ)

def

= (−1)k↓
(
P−1

0 d′(t) + ϕ′
◦(t)
)

+ b′k(t) +
ρ′k(t)

ρk(t)

Fk(Qk(t, ψ))

F ′
k(Qk(t, ψ))

, (5.31)
k = 1, 2. Please note

Z(t, ψ)E(t, ψ) =
(

↓P
−1

0
↑ −↓P

−1

0
↑

−↓P
−1

0
↑

↓P
−1

0
↑

)
. (5.32)Next we apply the de�nition (2.9) of the 
urrents jk and get

∇ · jk = ∇ ·
(
Gk(φ̃k + (−1)k↓ϕ+ (−1)k↓ϕ◦ + bk)µk∇φ̃k

)
, k = 1, 2,or in shorter notation

∇ · j = ∇ ·G(t, φ̃)µ∇φ̃, (5.33)where � see also (5.25) and (2.9) �
G(t, ψ)

def

=
(
G1(t,ψ) 0

0 G2(t,ψ)

)
, Gk(t, ψ)

def

= Gk
(
Qk(t, ψ)

)
. (5.34)Now, putting together (5.33) and (5.24) we obtain in 
on
lusion the evolution equa-tion

φ̃′ −
[
I + Z(t, φ̃)

]
E(t, φ̃)∇ ·G(t, φ̃)µ∇φ̃ = Y (t, φ̃) (5.35)whi
h has to be 
omplemented by the boundary 
onditions (2.3) and the initial
ondition (2.4), see also Remark 3.9.6 The quasi-linear paraboli
 equationEvolution equations of the type (5.35) were investigated in [31℄: (5.35) has a unique,lo
al in time solution, if the fun
tions E, G, Z and Y de�ned by (5.28), (5.34), (5.27)and (5.30), respe
tively, satisfy the following 
onditions.6.1 Assumption. With respe
t to q ∈]2,∞[ and p = q/2, as spe
i�ed in De�-nition 3.4, there is an η ∈]0, 1] and further for any bounded set M ⊂ W1,q existpositive 
onstants EM , GM , YM , and ZM su
h that the mappings

E : [T0, T1] × W1,q −→ L∞, (6.1)
G : [T0, T1] × W1,q −→ W1,q, (6.2)
Z : [T0, T1] × W1,q −→ B∞(Lp), (6.3)
Y : [T0, T1] × W1,q −→ Lp (6.4)Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



24 H.-Chr. Kaiser, H. Neidhardt, J. Rehbergsatisfy the 
onditions
min
k=1,2

inf
t∈[T0,T1]
ψ∈M

vraimin
x∈Ω

Ek(t, ψ)(x) > 0 (6.5)
min
k=1,2

inf
t∈[T0,T1]
ψ∈M

vraimin
x∈Ω

Gk(t, ψ)(x) > 0 (6.6)and for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :
‖E(t, ψ) −E(ť, ψ̌)‖L∞ ≤ EM

(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, (6.7)

‖G(t, ψ) −G(ť, ψ̌)‖W1,q ≤ GM

(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, (6.8)

‖Z(t, ψ) − Z(ť, ψ̌)‖B(Lp) ≤ ZM
(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, (6.9)

‖Y (t, ψ) − Y (ť, ψ̌)‖Lp ≤ YM
(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
. (6.10)6.2 De�nition. Let the Assumptions 3.8 and 6.1 be satis�ed. Further, let A :

D → Lp be the operator from De�nition 3.4 and let V be a Bana
h spa
e su
hthat D →֒ V →֒ W1,q. We say the evolution equation (5.35) with initial 
ondition
φ̃(T0) = Φ0 ∈ W1,q has a unique lo
al solution φ̃ = φ + Φ with respe
t to V if
Φ0 − Φ(T0) ∈ V implies the existen
e of a number T ∈]T0, T1] su
h that the initialvalue problem
φ′(t) +

[
I + Z

(
t, φ(t) + Φ(t)

)]
E
(
t, φ+ Φ(t)

)
G
(
t, φ(t) + Φ(t)

)
Aφ(t)

= Y
(
t, φ(t) + Φ(t)

)
− Φ′(t) + J

(
t, φ(t)

)
, φ(T0) = Φ0 − Φ(T0) (6.11)admits a unique solution

φ ∈ C1(]T0, T [,Lp) ∩ C(]T0, T ],D) ∩ C([T0, T ], V ). (6.12)For (t, ψ) ∈ [T0, T1] × W1,q
Γ the term J in (6.11) is given by

J(t, ψ)
def

=
[
I + Z

(
t, ψ + Φ(t)

)]
E
(
t, ψ + Φ(t)

)
∇G

(
t, ψ + Φ(t)

)
· µ∇

(
ψ + Φ(t)

)
.6.3 Remark. We have to 
larify the relation between (5.35) and (6.11). If φ̃ = φ+Φis a solution in the sense of De�nition 6.2, then

∇ ·G(t, φ̃)µ∇φ̃ = G(t, φ̃) Aφ+ ∇G(t, φ̃) · µ∇φ̃ (6.13)is satis�ed, whi
h allows to rewrite (6.11) in the form (5.35).6.4 Remark. If φ̃ = (φ̃1, φ̃2) is a solution of (5.35) in the sense of De�nition 6.2,then
tr
(
φ̃k(t)

)∣∣
D

= tr
(
Φk(t)

)∣∣
D

= φD,k(t), k = 1, 2, t ∈ [T0, T ].The Neumann boundary 
ondition
0 = ν · µk∇φ̃k(t)

∣∣
Γ

= ν · µk∇Φk(t)
∣∣
Γ
, k = 1, 2, t ∈ [T0, T ],holds in the distributional sense, see Remark 3.9.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
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Classi
al solutions of drift�diffusion equations 256.5 Proposition. (See [31℄.) Let the Assumptions 3.8 and 6.1 be satis�ed. Forea
h γ ∈
]

1
2

+ 1
q
, 1
[ the initial value problem (5.35) with initial value Φ0 ∈ W1,qhas a unique lo
al solution φ with respe
t to the 
omplex interpolation spa
es V def

=[
Lp,D

]
γ
.We are now going to show that the mappings E, G, Y and Z satisfy Assumption 6.1.To that end we need the following preparatory lemma.6.6 Lemma. If ξ : R → R is 
ontinuously di�erentiable, then ξ indu
es a Nemy
kiioperator from L∞ into itself whi
h is boundedly Lips
hitzian. If ξ : R → R is twi
e
ontinuously di�erentiable, then it indu
es a Nemy
kii operator from W 1,q into itselfwhi
h is boundedly Lips
hitzian.The proof is straightforward. Re
all that, a

ording to De�nition 3.4, q is �xed andlarger than two.6.7 Lemma. Let the Assumptions 3.7, 3.13 and 3.16 be satis�ed. Then the equation(5.25) de�nes mappings Qk : [T0, T1] × L∞ → L∞, k = 1, 2, and the restri
tion ofea
h Qk to [T0, T1] × W1,q takes its values in W 1,q. Moreover, there is a number

η ∈]0, 1] and then for any bounded subset M ⊂ L∞ a positive number QM existssu
h that for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :
‖Qk(t, ψ) −Qk(ť, ψ̌)‖L∞ ≤ QM

(
|t− ť|η + ‖ψ − ψ̌‖L∞

)
, k = 1, 2.Analogously, for ea
h bounded subset M ⊂ W1,q there is a positive number QM su
hthat for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :

‖Qk(t, ψ) −Qk(ť, ψ̌)‖W 1,q ≤ QM

(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, k = 1, 2.The proof is obtained from Corollary 5.4.6.8 Lemma. Let the Assumptions 3.7, 3.13 and 3.16 be satis�ed. If ξ : R → R is
ontinuously di�erentiable, then ξ indu
es operators

[T0, T1] × L∞ ∋ (t, ψ) 7−→ ξ(Qk(t, ψ)) ∈ L∞, k = 1, 2.Moreover, there is a 
onstant η ∈]0, 1] and for any bounded set M ⊂ L∞ a 
onstant
ξM su
h that for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :

‖ξ
(
Qk(t, ψ)

)
− ξ
(
Qk(ť, ψ̌)

)
‖L∞ ≤ ξM

(
|t− ť|η + ‖ψ − ψ̌‖L∞

)
, k = 1, 2.If ξ is twi
e 
ontinuously di�erentiable, then the restri
tion of ξ◦Qk to [T0, T1]×W1,qmaps into W 1,q, k = 1, 2. Moreover, there is a number η ∈]0, 1] and for any boundedsubset M ⊂ W1,q a 
onstant ξM su
h that for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :

‖ξ
(
Qk(t, ψ)

)
− ξ
(
Qk(ť, ψ̌)

)
‖W 1,q ≤ ξM

(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, k = 1, 2.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



26 H.-Chr. Kaiser, H. Neidhardt, J. RehbergThe proof follows from Lemma 6.6 and Lemma 6.7.6.9 Lemma. Let the Assumptions 3.7, 3.13 and 3.16 be satis�ed. Then there isa number η ∈]0, 1] su
h that the mappings E and G de�ned by (5.28) and (5.34)satisfy the 
onditions (6.1), (6.5), (6.7), and (6.2), (6.6), (6.8), respe
tively.Proof. The fun
tions 1
F ′

k

are 
ontinuously di�erentiable by Assumption 2.3. Conse-quently, by Lemma 6.8 the mappings Ẽk, given by
[T0, T1] × L∞ ∋ (t, ψ) 7−→ 1

F ′
k

(
Qk(t, ψ)

) ∈ L∞, k = 1, 2,are well de�ned. Moreover, Lemma 6.8 provides a 
onstant η ∈]0, 1] su
h that forany bounded set M ⊂ L∞ a 
onstant CM exists su
h that for all t, ť ∈ [T0, T1] andall ψ, ψ̌ ∈M :
‖Ẽk(t, ψ) − Ẽk(ť, ψ̌)‖L∞ ≤ CM

(
|t− ť|η + ‖ψ − ψ̌‖L∞

)
, k = 1, 2.Sin
e W1,q embeds 
ontinuously into L∞ for any bounded set M ⊂ W1,q there is a
onstant, again named CM , su
h that for all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :

‖Ẽk(t, ψ) − Ẽk(ť, ψ̌)‖L∞ ≤ CM
(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, k = 1, 2.The identity Ek = 1

ρk
Ẽk and Assumption 2.1 now imply (6.1) and (6.7). A

ordingto Lemma 6.7 the sets

{Qk(t, φ) : (t, φ) ∈ [T0, T1] ×M} , k = 1, 2,are bounded in L∞. Sin
e the derivative of the 
arrier distribution fun
tions Fk,
k = 1, 2, are 
ontinuous and positive, (6.5) immediately follows.Using the se
ond assertion of Lemma 6.8 we verify (6.2), (6.6), and (6.8) in a similarmanner.6.10 Lemma. Let the Assumptions 3.7, 3.13, and 3.16 be satis�ed. Then the map-ping Z given by (5.27) de�nes a family {Z(t, ψ)}(t,ψ)∈[T0,T1]×W1,q of linear, 
ompa
toperators Z(t, φ) : Lp → Lp . Additionally, there is a Hölder exponent η ∈]0, 1] and
onstants ZM su
h that (6.3) and (6.9) are satis�ed.Proof. It su�
es to show the analogous assertions for the entries of the operatormatri
es Z(t, ψ). Firstly, Lemma 6.8 gives us the estimate
‖F ′

k

(
Qk(t, ψ)

)
− F ′

k

(
Qk(ť, ψ̌)

)
‖B(Lp)

≤ ‖F ′
k

(
Qk(t, ψ)

)
− F ′

k

(
Qk(ť, ψ̌)

)
‖L∞

≤ CM
(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
, k = 1, 2,Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 27where the 
onstant CM 
an be taken uniformly with respe
t to t, ť ∈ [T0, T1] and
ψ, ψ̌ from any bounded set M ⊂ W1,q. This estimate together with Assumption 2.1implies (6.9). As ↓P−1

0
↑ is a linear and even 
ompa
t operator from Lp into itself,this gives (6.3).6.11 Lemma. Let the Assumptions 3.6, 3.7, 3.13, and 3.16 be satis�ed. Then themapping Y de�ned by (5.30) meets the 
onditions (6.4) and (6.10).Proof. At �rst one dedu
es from the assumptions and Corollary 5.4 that (5.29)de�nes a mapping R : [T0, T1] × W1,q → Lp for whi
h there is a Hölder exponent

η ∈]0, 1]. Moreover, for any bounded set M ⊂ W1,q exists a 
onstant CM su
h thatfor all t, ť ∈ [T0, T1] and all ψ, ψ̌ ∈M :
‖R(t, ψ) − R(ť, ψ̌)‖Lp ≤ CM

(
|t− ť|η + ‖ψ − ψ̌‖W1,q

)
.Applying Lemma 6.9 and Lemma 6.10 one obtains (6.4) and (6.10) for the mapping

[T0, T1] × W1,q ∋ (t, ψ) 7−→
[
I + Z(t, ψ)

]
E(t, ψ)R(t, ψ).The addends b′k and ↓ϕ

′
◦ of (5.31) have the required properties due to Assumption 3.7and Assumption 3.13, respe
tively. For P−1

0 d′ they follow from Assumption 3.13 (seealso Remark 3.15), Assumption 3.16 and the fa
t that P0 is an isomorphism from
Ŵ 1,q

Γ̂
onto Ŵ−1,q

Γ̂
. The addend ρ′

k
(t)

ρk(t)
Fk(Qk(t,ψ))
F ′

k
(Qk(t,ψ))

of (5.31) 
an be treated by means ofLemma 6.8 and Assumption 2.1.We are now going to establish existen
e and uniqueness of a lo
al solution to theevolution equation (5.35).6.12 Theorem. Under the Assumptions 3.6, 3.7, 3.8, 3.11, 3.13 and 3.16 the quasi-linear paraboli
 equation (5.35) with the initial 
ondition φ̃(T0) = Φ0 admits a uniquelo
al solution in the sense of De�nition 6.2 with respe
t to the interpolation spa
e
V = [Lp,D]θ.Proof. A

ording to the Lemmas 6.9, 6.10, 6.11 the mappings E, G, Z, and Y ,de�ned by (5.28), (5.34), (5.27), and (5.30), respe
tively, ful�ll Assumption 6.1.Hen
e, the result follows from Proposition 6.5, see also Remarks 6.3 and 6.4.7 Main resultWe are going to show that a solution of the evolution equation (5.35) in the senseof De�nition 6.2 provides a solution of the van Roosbroe
k system in the sense ofDe�nition 4.1.We start with a te
hni
al lemma.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



28 H.-Chr. Kaiser, H. Neidhardt, J. Rehberg7.1 Lemma. Let ξ : R → R be twi
e 
ontinuously di�erentiable. The 
omposition
ξ ◦ψ is from C([T0, T ], L∞), if ψ∈C([T0, T ], L∞). If ψ 
omposed with the embedding
L∞→֒Lp, p ≥ 1, is 
ontinuously di�erentiable in Lp on ]T0, T [, then ξ ◦ ψ 
om-posed with the same embedding is 
ontinuously di�erentiable in Lp on ]T0, T [ and itsderivative is given by

dξ ◦ ψ
dt

(t) = ξ′
(
ψ(t)

)
ψ′(t) ∈ Lp, t ∈]T0, T [.Proof. If h1, h2 ∈ L∞, then, by Lemma 5.1 � see also Assumption 2.3, we maywrite

ξ(h1) − ξ(h2) = ξ′(h1)(h1 − h2) + T (h1, h2)((h1 − h2)where T (h1, h2) 
onverges to zero in L∞ if h1∈L∞ is �xed and h2 approa
hes h1 inthe L∞-norm. Now we set h1 = ψ(t) and h2 = ψ(ť) and divide both sides by t− ť. Inthe limit ť→ t there is limť→t T (ψ(t), ψ(ť)) = 0 in L∞, while limť→t
ψ(t)−ψ(ť)

t−ť
= ψ′(t)in Lp by supposition.Our next aim is to justify formula (5.23).7.2 Lemma. Let the Assumptions 3.7, 3.8, 3.13, and 3.16 be satis�ed and assumethat φ̃ is a solution of (5.35). We de�ne

z
def

= (z1, z2) with zk(t)
def

= φ̃k(t)+bk(t)+(−1)k↓ϕ◦(t), k = 1, 2, t ∈ [T0, T ], (7.1)and ϕ(t)
def

= L
(
d(t), z(t)

). Then Qk(t, φ̃(t)) = zk(t) + (−1)k↓ϕ(t), and the fun
tions
[T0, T ] ∋ t 7−→ Gk(t, φ̃(t)) = Gk

(
Qk(t, φ̃(t))

)
∈ L∞,and

[T0, T ] ∋ t 7−→ uk(t)
def

= ρk(t)Fk

(
Qk(t, φ̃(t))

)
∈ L∞are 
ontinuous and 
on
atenated with the embedding L∞→֒Lp they are 
ontinuouslydi�erentiable on ]T0, T [. The time derivative of uk is given by

u′k(t) = ρ′k(t)Fk

(
Qk(t, φ̃(t))

)

+ ρk(t)F ′
k

(
Qk(t, φ̃(t))

)[
φ̃′
k(t) + b′k(t) + (−1)k↓ϕ

′
◦(t) + (−1)k↓ϕ

′(t)
] (7.2)

k = 1, 2, t ∈]T0, T ].Proof. Due to Assumption 3.8 and De�nition 6.2 the fun
tion φ̃ belongs to the spa
e
C([T0, T ],L∞) ∩ C1(]T0, T [,Lp) (7.3)see also Remark 3.12. Hen
e, the Assumptions 3.7 and 3.13 ensure that the fun
-tion z also belongs to this spa
e, and by Corollary 5.4, so does the fun
tion ϕ =

L
(
d(t), z(t)

). Thus, we may apply Lemma 7.1.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 297.3 Remark. Lemma 7.2 justi�es the formal manipulations in �5.2. First, (5.23) isgiven a stri
t sense. Furthermore, the di�erentiation of Poisson's equation (5.19) hasthe following pre
ise meaning: sin
e φ̃ is from the spa
e (7.3), the fun
tion t 7→ ϕ(t)is di�erentiable � even in a mu
h 'better' spa
e than φ̃� see Corollary 5.4. Hen
e,the right hand side of (4.4) is di�erentiable with respe
t to time in the spa
e Ŵ−1,q

Γ̂and (5.19) is an equation in the spa
e Ŵ−1,q

Γ̂
.We 
ome now to the main results of this paper.7.4 Theorem. Under the Assumptions 3.6, 3.7, 3.8, 3.11, 3.13, and 3.16 vanRoosbroe
k's system with initial 
ondition φ̃(T0) = Φ0 ∈ W1,q admits a unique lo
alin time solution in the sense of De�nition 4.1.Proof. By Theorem 6.12 the auxiliary evolution equation (5.35) admits � in thesense of De�nition 6.2 � a unique lo
al solution φ̃ satisfying the initial 
ondition

φ̃(T0) = Φ0. Let us show that � in the sense of De�nition 4.1 � the pair {ϕ̃, φ̃},with ϕ̃ given by
ϕ̃(t)

def

= ϕ◦(t) + L
(
d(t), z(t)

)
, t ∈ [T0, T ], (7.4)and z a

ording to (7.1), is a lo
al solution of van Roosbroe
k's system. First, (4.3)is identi
al with (6.12). By the embedding V →֒ W1,q

Γ →֒ L∞ (see Remark 3.12) thefun
tion [T0, T ] ∋ t 7→ φ(t) ∈ L∞ is 
ontinuous, and so is the fun
tion [T0, T ] ∋ t 7→
Φ(t) ∈ L∞ in view of Assumption 3.8. Thus, φ̃ ∈ C([T0, T ],L∞) ∩ C1(]T0, T [,Lp).Moreover, for z, see (7.1), one obtains from the Assumptions 3.7 and 3.13 that
z ∈ C([T0, T ],L∞) ∩ C1(]T0, T [,Lp). Consequently, property (4.2) follows by Corol-lary 5.4, while (4.9) results from Lemma 7.2. The Poisson equation (4.4) withdensities (4.6) is obviously satis�ed by (7.4) due to the de�nition of L. (4.10) fol-lows from ∇φ̃k ∈ C(]T0, T ],Lq), k = 1, 2, and Lemma 7.2. (4.11) is implied by (6.12)and (6.13). It remains to show that the 
ontinuity equations (4.5) are satis�ed. Forthis, one �rst notes the relations

Qk(t, φ̃(t)) = φ̃k(t) + (−1)k↓ϕ̃(t) + bk(t) = zk(t) + (−1)k↓ϕ(t), k = 1, 2, (7.5)and
R(t, φ̃(t)) =

(
r1(t,ϕ̃(t),φ̃(t))

r2(t,ϕ̃(t),φ̃(t))

)
, (7.6)whi
h follows from the de�nitions (5.25) and (5.29) of R and Q, and (7.1), (7.4).Further, in Assumption 3.6 we demand that the mappings rk, k = 1, 2, take theirvalues in Lp � 
onsequently, R takes its values in Lp. From (7.2) and (5.28) onegets

Ek(t, φ̃(t))u′k(t) = φ̃′
k(t) + b′k(t) + (−1)k↓ϕ̃

′(t) +
ρ′

k
(t)

ρk(t)
Fk(Qk(t,φ̃(t)))

F ′
k
(Qk(t,φ̃(t)))

,Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
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30 H.-Chr. Kaiser, H. Neidhardt, J. Rehbergand by means of the evolution equation (5.35) we obtain
E(t, φ̃(t))u′(t) =

[
I + Z(t, φ̃(t))

]
E(t, φ̃(t))∇ ·G(t, φ̃(t))µ∇φ̃(t)

+
[
I + Z(t, φ̃(t))

]
E(t, φ̃(t))R(t, φ̃(t)) +

(
↓P

−1

0
d′(t)−↓ϕ

′(t)

↓ϕ
′(t)−↓P

−1

0
d′(t)

)
.We now make use of the representation (4.7) of the 
urrents j = (j1, j2), and get

E(t, φ̃(t))
[
u′(t) −∇ · j(t) −R(t, φ̃(t))

]

= Z(t, φ̃(t))E(t, φ̃(t))
[
∇ · j(t) +R(t, φ̃(t))

]
+
(

↓P
−1

0
d′(t)−↓ϕ

′(t)

↓ϕ
′(t)−↓P

−1

0
d′(t)

)
.We already know that the formal di�erentiation of Poisson's equation is justi�ed,see Remark 7.3. Thus, (5.19) yields

E(t, φ̃(t))
[
u′(t) −∇ · j(t) −R(t, φ̃(t))

]

= Z(t, φ̃(t))E(t, φ̃(t))
[
∇ · j(t) +R(t, φ̃(t))

]
+
(

↓P
−1

0
↑(u′

2
(t)−u′

1
(t))

↓P
−1

0
↑(u′

1
(t)−u′

2
(t))

)
,and, observing (5.32) and (7.6), we get

[
E(t, φ̃(t)) +

(
↓P

−1

0
↑ −↓P

−1

0
↑

−↓P
−1

0
↑

↓P
−1

0
↑

)] (
u′
1
(t)−∇·j1(t)−r1(t,ϕ̃(t),φ̃(t))

u′
2
(t)−∇·j2(t)−r2(t,ϕ̃(t),φ̃(t))

)
= 0. (7.7)The operator on the left is 
ontinuous on Lp; we show now that its kernel is trivial.Let f1, f2 ∈ Lp be su
h that

[
E(t, φ̃(t)) +

(
↓P

−1

0
↑ −↓P

−1

0
↑

−↓P
−1

0
↑

↓P
−1

0
↑

)] (
f1
f2

)
= 0.This is equivalent to the relations

f2 = −E1(t,φ̃(t))

E2(t,φ̃(t))
f1 and ↓P−1

0
↑
((

1 + E1(t,φ̃(t))

E2(t,φ̃(t))

)
f1

)
= −E1(t, φ̃(t))f1.

P−1
0

↑
(
(1 + E1(t,φ̃(t))

E2(t,φ̃(t))
)f1

) is a 
ontinuous mapping from W 1,q
Γ into L̂∞. Indeed, theembedding L̂p →֒ Ŵ−1,q

Γ̂
is 
ontinuous, and P0 is an isomorphism between Ŵ 1,q

Γ̂
and

Ŵ−1,q

Γ̂
, see Proposition 3.3. Hen
e, we may multiply both sides with f1 + E1(t,φ̃(t))

E2(t,φ̃(t))
f1and integrate over Ω; this yields

∫

Ω
↓P−1

0
↑
(
f1 + E1(t,φ̃(t))

E2(t,φ̃(t))
f1

)(
f1 + E1(t,φ̃(t))

E2(t,φ̃(t))
f1

)
dx

=

∫

Ω̂

P−1
0

↑
(
f1 + E1(t,φ̃(t))

E2(t,φ̃(t))
f1

)
↑
(
f1 + E1(t,φ̃(t))

E2(t,φ̃(t))
f1

)
dx

= −
∫

Ω

E1(t, φ̃(t))
(
1 + E1(t,φ̃(t))

E2(t,φ̃(t))

)
f 2

1 dx (7.8)Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
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Classi
al solutions of drift�diffusion equations 31The quadrati
 form ψ 7→
∫
Ω̂
(P−1

0 ψ)ψ dx is non-negative on L̂2 and extends by
ontinuity to L̂p, where it is also non-negative. On the other hand, the fun
tion
E1(t, φ̃(t))

(
1 + E1(t,φ̃(t))

E2(t,φ̃(t))

) is almost everywhere on Ω stri
tly positive. Therefore,the right hand side of (7.8) 
an only be non-negative if f1 is zero almost everywhereon Ω. Hen
e, (7.7) establishes the 
ontinuity equations (4.5).To prove uniqueness of a solution of van Roosbroe
k's system in the sense of Def-inition 4.1 one assures that any solution in the sense of De�nition 4.1 pro
ures asolution in the sense of De�nition 6.2. Indeed this has been done on a formal stageby the reformulation of van Roosbroe
k's system as a quasi-linear paraboli
 systemin �5. In fa
t, all formal steps 
an be 
arried out in the underlying fun
tion spa
es.We a

omplish this in the sequel for the 
ru
ial points. (4.4) and (4.6) ensure, that
ϕ is a solution of (5.4). Hen
e, Corollary 5.4 implies that ϕ indeed is 
ontinuouslydi�erentiable in Ŵ 1,q

Γ̂
, and, 
onsequently, (5.21) makes sense in Ŵ−1,q

Γ̂
. The deriva-tion of (4.6), see also (4.8), is justi�ed by Lemma 7.1. Thus, (5.23) holds in a stri
tsense. The division by ρkF ′

k is allowed be
ause both fa
tors have (uniform) upperand lower bounds. The rest of the manipulations up to (5.35) is straight forward tojustify.Next we want to establish the natural formulation of the balan
e laws in van Roos-broe
k's system in integral form, see (1.1), whi
h is one of the 
entral goals of thispaper. At �rst, one realizes that the boundary integral has to be understood in thedistributional sense � as is well known from Navier-Stokes theory, see [45℄ � if oneonly knows that the 
urrent is a q�summable fun
tion and that its divergen
e is
p�summable. More pre
isely, the following proposition holds.7.5 Proposition. Let ω ⊂ R

2 be any bounded Lips
hitz domain. Assume j : ω → R
2to be from Lq(ω; R2) and let the divergen
e (in the sense of distributions) ∇ · j of jbe p�integrable on ω. If q > 2 and p = q

2
, then there is a uniquely determined linear
ontinuous fun
tional jν ∈W

−1+ 1

q′
,q
(∂ω) su
h that

∫

ω

j · ∇ψ dx+

∫

ω

ψ∇ · j dx = 〈jν |ψ|∂ω〉 for all ψ ∈W 1,q′(ω), (7.9)where 〈· | ·〉 on the right hand side denotes the duality between W
1− 1

q′
,q′

(∂ω) and
W

−1+ 1

q′
,q
(∂ω). If, in addition, the fun
tion j is 
ontinuously di�erentiable on ω andthe partial derivatives have 
ontinuous extensions to ω, then

∫

ω

j · ∇ψ dx+

∫

ω

ψ∇ · j dx =

∫

∂ω

ψ|∂ων · j dσω for all ψ ∈W 1,q′(ω),where ν is the outer unit normal of ∂ω, and σω is the ar
�measure on ∂ω.Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
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32 H.-Chr. Kaiser, H. Neidhardt, J. RehbergProof. The �rst statement is a slight generalization, see [30, Lemma 2.4℄, of wellknown results from [45, Ch. 1℄. The se
ond assertion has been proved in [8, Ch. 5.8℄.7.6 Theorem. If (ϕ̃, φ̃) is a solution of van Roosbroe
k's system in the sense ofDe�nition 4.1, and ω ⊂ Ω is an open Lips
hitz domain, then there are unique
ontinuous fun
tions jkν :]T0, T ] → W
−1+ 1

q′
,q
(∂ω), k = 1, 2, su
h that

∂

∂t

∫

ω

uk(t) dx = 〈jkν(t) | 1〉 +

∫

ω

rk(t, ϕ̃(t), φ̃(t)) dx, k = 1, 2, (7.10)where 〈· | ·〉 again denotes the duality between W 1− 1

q′
,q′

(∂ω) and W−1+ 1

q′
,q
(∂ω).Proof. From (4.5) we obtain for any open Lips
hitz domain ω ⊂ Ω

∫

ω

u′k(t) −∇ · jk(t) dx =
∂

∂t

∫

ω

uk(t) dx−
∫

ω

∇ · jk(t) dx =

∫

ω

rk(t, ϕ̃(t), φ̃(t)) dx,where jk is de�ned by (4.7). Using Proposition 7.5 we �nd for every t ∈]T0, T ]a unique element jkν(t)∈W−1+ 1

q′
,q
(∂ω) su
h that (7.10) holds. Moreover, 
ontinu-ity passes over from the fun
tions (4.10) to the mappings ]T0, T ] ∋ t 7→ jkν(t) ∈

W
−1+ 1

q′
,q
(∂ω).If the 
urrents jk(t) are 
ontinuously di�erentiable on ω and the partial derivativeshave 
ontinuous extensions to ω, then by the se
ond part of Proposition 7.5 theformula (7.10) takes the form (1.1).8 Numeri
sTheorem 7.6 is the basis for spa
e dis
retization of drift�di�usion equations bymeans of the �nite volume method (FVM). The FVM was adopted for the numeri
alsolution of van Roosbroe
k's equations by Gajewski, and this approa
h has beenfurther investigated in [12, 10, 17, 9℄. To dis
retise the spatial domain one uses apartition into simplex elements. Let E be the set of all edges eil = xi − xl of thistriangulation, where x1, x2,. . . are the verti
es. Moreover, we de�ne the Voronoi 
ellassigned to a vertex xi by

Vi
def

= {x in the spatial simulation domain, su
h that
‖x− xi‖ ≤ ‖x− xl‖ for all verti
es xl of the triangulation},where ‖·‖ refers to the norm in the spatial simulation spa
e R

2. Now, to get a spa
edis
rete version of the 
urrent�
ontinuity equation, we spe
ify (7.10) with ω = Vi,Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



Classi
al solutions of drift�diffusion equations 33and approximate 〈jkν(t) | 1〉 pie
ewise by jkilσ(∂Vi ∩ ∂Vl), σ being the ar
 measureon the boundary of ω = Vi. The intermediate value jkil 
an be obtained as follows:The main hypothesis with respe
t to the dis
retization of the 
urrents � due toS
harfetter and Gummel [49℄ � is that the ele
tron and hole 
urrent density j2 and
j1 are 
onstant along simplex edges. This assumption allows to 
al
ulate j1il and
j2il � the 
onstant values on the edge eil � in terms of the node values of theele
trostati
 potential and the parti
le densities, see for instan
e [17℄. Thus, oneends up with the following FVM dis
retization of van Roosbroe
k's system for allinterior Voronoi 
ells Vi:

ε(xi)
∑

l : eil∈E

(∇ϕ)ilσ(∂Vk ∩ ∂Vl) =
(
d̃(xi) + u1(xi) − u2(xi)

)
|Vi|,

∂uk
∂t

(xi)|Vi| − jkilσ(∂Vi ∩ ∂Vl) = rk(t, ϕ̃, φ̃1, φ̃2)(xi)|Vi|,where |Vi| is the volume of the Voronoi 
ells Vi. Here we have tested the Poissonequation also with the 
hara
teristi
 fun
tion 1Vi
of the Voronoi 
ell Vi, and wehave applied Gauss' theorem. In view of Proposition 7.5 we assume, additional toAssumption 3.16, d̃ : [T0, T1] → L̂p, and observe that ϕ• 
an be 
hoosen su
h that

〈ϕ• | 1Vi
〉 = 0 for interior Voronoi 
ells Vi, see Remark 3.15. Again, we approxi-mate the right hand side of (7.9) pie
ewise by (∇ϕ)ilσ(∂Vi ∩ ∂Vl), and we assume� in 
onsonan
e with the hypothesis about 
urrents � that the gradient of theele
trostati
 potential is 
onstant on the edges of the triangulation, that means

(∇ϕ)il = (ϕ(xi) − ϕ(xl))/‖xi − xl‖.Usually, this �nite volume dis
retization of spa
e has been 
ombined with impli
ittime dis
retization, see for instan
e [11℄. Please note that the strong di�erentiabilityof the ele
tron and hole density in time is 
onstitutive for this approa
h.9 Outlook to three spatial dimensionsMu
h of semi
ondu
tor devi
e simulation relies on spatially two-dimensional mod-els. However, with in
reasing 
omplexity of ele
troni
 devi
e design spatially three-dimensional simulations be
ome ever more important, see for instan
e [17, 21, 20℄.This raises the question whi
h of the results for the two-dimensional 
ase 
arry overto the three-dimensional 
ase. In parti
ular, 
an one expe
t that in three spatialdimensions the divergen
e of the 
urrents belongs to a Lebesgue spa
e, and is itpossible to establish strong di�erentiability of the 
arrier densities under the ratherweak assumptions about the rea
tion terms of this paper.Conditio sine qua non for a modus operandi as in this paper is that in the three-Preprint 1189, Weierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin 2006



34 H.-Chr. Kaiser, H. Neidhardt, J. Rehbergdimensional 
ase the operators
−∇ · ε∇ : Ŵ 1,q

Γ̂
→ Ŵ−1,q

Γ̂
and −∇ · µk∇ : W 1,q

Γ → W−1,q
Γprovide isomorphisms for a summability index q > 3. Unfortunately, this is not so forarbitrary three-dimensional spatial domains, see [37℄. However, one 
an proof su
ha result for 
ertain 
lasses of three-dimensional material stru
tures and boundary
onditions, see [7℄, for instan
e for layered media and Diri
hlet boundary 
onditions.Dauge proved the result in [6℄ for the Diri
hlet Lapla
ian on a 
onvex polyhedron,provided the Diri
hlet boundary part is separated from its 
omplement by a �niteunion of line segments. It would be satisfa
tory to 
ombine this 
on
lusion with aheterogeneous material 
omposition.Under the hypothesis the afore mentioned isomorphisms exist there are results onquasilinear paraboli
 systems � analogous to Proposition 6.5 � see [43℄ and [29℄,su
h that one 
an obtain 
lassi
al solutions of the spatially three-dimensional drift�di�usion equations very mu
h in the same way as here in the two-dimensional 
ase.A
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