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Abstract

We consider the rate-independent problem of a particle moving in a three - dimensional
half space subject to a time-dependent nonlinear restoring force having a convex potential
and to Coulomb friction along the flat boundary of the half space, where the friction co-
efficient may vary along the boundary. Our existence result allows for solutions that may
switch arbitrarily often between unconstrained motion in the interior and contact where the
solutions may switch between sticking and frictional sliding. However, our existence result
is local and guarantees continuous solutions only as long as the convexity of the potential
is strong enough to compensate the variation of the friction coefficient times the contact
pressure. By simple examples we show that our sufficient conditions are also necessary.

Our method is based on the energetic formulation of rate-independent systems as de-
veloped in [MTL02, MT04]. We generalize the time-incremental minimization procedure of
[MR06] for the present situation of a non-associative flow rule.

1 Introduction

The mathematical work on friction problems falls into two categories. In the first area one is
dealing with an elastic body that may come into unilateral contact with a given surface. Thus,
this area deals with partial differential equations formulated in Hilbert spaces. In the second
area one is interested in a finite-dimensional system that models one or several rigid bodies that
are driven by external and internal forces and may have unilateral contact with given surfaces or
amongst each other. We call the first area the “continuous case” and the second the “discrete
case”. The latter case also appears when the first one is spatially discretized for numerical
purposes.

A further criterion to distinguish frictional problems are the forces which are considered in
the models. In dynamic problems all possible forces (i.e. inertial, viscous, elastic and frictional
forces) are modeled. In quasi-static problems the inertial forces are neglected. If additionally no
viscous forces are considered the problem turns out to be rate-independent. In static problems
all data is assumed to be constant in time. We give a short overview of the corresponding
formulas:

dynamic (m > 0, ν ≥ 0): 0 ∈ mz̈︸︷︷︸
inertial force

+ νż︸︷︷︸
viscous force

+ r(t, z, ż)︸ ︷︷ ︸
frictional forces

− F (t, z)︸ ︷︷ ︸
restoring force

quasi-static (ν ≥ 0): 0 ∈ νż + r(t, z, ż) − F (t, z)
rate independent: 0 ∈ r(t, z, ż) − F (t, z)
static: 0 ∈ r(z, 0) − F (z)

Most articles in literature dealing with quasi-static problems assume ν = 0. We prefer to call
them rate-independent.

For the continuous case Signorini [Sig59] was the first to formulate the static problem of a linearly
elastic body submitted to frictionless unilateral contact with a rigid obstacle. The problem
was solved by Fichera [Fic72]. Then, Duvaut and Lions [DL72, DL76] gave the first proper
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formulation of unilateral contact with friction. The first existence results for this static friction
problem were obtained by Nečas, Jarušek and Haslinger [NJH80] using shifting techniques and
fixed point arguments. Eck and Jarušek [EJ00] improved the result using a penalization method
for the unilateral boundary conditions.

The quasi-static friction problem on a continuous level was first solved by Klarbring, Mikelić
and Shillor [KMS88, KMS89, KMS91]. In their models they still had to regularize the boundary
conditions and the friction using a so called non-local Coulomb law. The problem was solved
without any regularization and with a local friction law in the work of Andersson [And00] or
in the works of Rocca and Cocou [Roc99, Roc01]. An extension to nonlinear elasticity but
non-local friction laws can already be found in [TM05].

In all the continuous cases the analytical results assumes small displacements. This makes the
unilateral constraint easier since the tangential displacement is neglected. For instance, if the
admissible domain A is given in the form

{
z ∈ R

d : Φ(z) ≤ 0
}

with the friction surface ∂A, then
the correct, geometrically exact constraint reads Φ(x+u(t, x)) ≤ 0 for all points in the body x ∈
Ω, where u(t, ·) : Ω → R

d denotes the displacement. As u is assumed to be small this possibly
nonconvex constraint is replaced by the simpler convex condition Φ(x) + ∇Φ(x) · u(t, x) ≤ 0
for all x ∈ ∂Ω. In the discrete case one is interested in rigid bodies or systems of rigid bodies
with large displacement. Hence, one always uses the geometrically exact unilateral condition
and hence must deal with the arising non-convexity.

For the discrete case, Jankovsky [Jan81] was the first to treat the static friction problem with uni-
lateral contact. He obtained existence for all friction coefficients and uniqueness for “small” co-
efficients. Later Alart [Ala93] derived a necessary and sufficient condition for uniqueness. Klar-
bring [Kla90] provided a quasi-static two-degree of freedom model that displays non-uniqueness
and non-existence. We recall this model in Section 4.2. The quasi-static frictional contact
problem was solved for a linear elastic body with finitely many degrees of freedom and a flat
obstacle by Andersson [And99].

Martins et al. [PdCM03, GMM98] investigated quasi-static friction problems with two degrees
of freedom with nonlinear elasticity and curved obstacles. They study situations in which
discontinuous solutions may appear. For recent results on the discrete, dynamic case that
includes inertial terms we refer to [MM93, MM*05, BB05].

The present work is also devoted to the discrete case. We approach the general problem of
a mass-less particle that is subject to a general restoring force and to Coulomb friction if it
hits a unilateral constraint. For simplicity we formulate everything in three dimensions and
assume that the admissible set is the upper half space A =

{
z ∈ R

3 : z3 ≥ 0
}
. In contrast to

the usual modeling with a constant coefficient of friction (see the above literature) we allow for
a general smooth dependence of the friction coefficient μ(z1, z2) on the contact points (z1, z2) ∈
∂A. In fact, we will allow for more general friction by introducing a matrix that may model
some anisotropy concerning the sliding directions of the point. Together with the nonlinear
restoring force this makes our model general enough to extend our existence result to the
situation of a curved obstacle by using coordinate transformations that flatten the boundary.
The corresponding interplay of the curvature of the boundary and the convexity of the force
potential will be studied in subsequent work [Sch07].

Since we neglect inertia and viscosity terms our evolution problem turns out to be rate-
independent, i.e. a rescaling of time in the input functionals leads to the same rescaling of time
in the solution z. By z ∈ A ⊂ R

3 we denote the position of the particle and by F (t, z) ∈ R
3 the
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restoring force, then the contact problem with isotropic friction reads

0 ∈ C(z, ż) − F (t, z) ⊂ R
3,

where C(z, ż) is the set of possible contact forces. For z3 > 0 we have no contact and set
C(z, v) = {0}. In case of contact with z3 = ż3 = 0 we have the friction cone

C(z, ż) =
{
Σ ∈ R

3 : (Σ2
1+Σ2

2)
1/2 ≤ μ(z1, z2)Σ3, Σ1ż1 + Σ2ż2 = μ(z1, z2)Σ3(ż2

1 + ż2
2)

1/2
}

.

To explain our approach we reformulate this problem into an energetic formulation for rate-
independent systems similar to the one introduced in [MT99, MTL02, MT04]. This formulation
was originally developed to model shape-memory alloys but is now shown to apply to many
different rate-independent material models such as finite-strain elastoplasticity, damage, brittle
fracture, delamination and vortex pinning in superconductors (cf. [SM05]). We refer to [Mie05]
for a survey.

The energetic formulation is based on a energy functional E(t, z) and a dissipation functional
Ψ(t, z, ż). The functional E describes the energy that is stored in the system at time t if
the particle is in the position z ∈ A. In particular we have F (t, z) = −DE(t, z). We de-
fine the dissipation functional Ψ : [0, T ] × A × R

3 → [0,∞) in such a way that it depends
on the positive part of the normal pressure σ(t, z)

+
= max{0, 〈−DE(t, z), (0, 0,−1)〉}, namely

Ψ(t, z, v) = σ(t, z)
+

μ(z1, z2)(v2
1+v2

2)
1/2 for z3 = 0 and Ψ ≡ 0 for z3 > 0.

The general theory is based on a purely static stability condition (S) and the energy balance
(E). The conditions (S) and (E) have to hold for all t ∈ [0, T ]:

E(t, z(t)) ≤ E(t, y) + Ψ(t, z(t), y − z(t)) for all y ∈ A, (S)

E(0, z(0)) +
∫ t

0
∂τE(τ, z(τ))dτ = E(t, z(t)) +

∫ t

0
Ψ(τ, z(τ), ż(τ))dτ. (E)

We would like to mention that the stability condition (S) should not be confused with any
notion of stability known from the theory of differential equations. It is also different from the
global stability condition (S) in the energetic formulation used in [MT04, Mie05, MR06]. Our
condition (S) corresponds rather to (S)loc there.

In Section 2 we introduce our exact modeling including a more general friction law allowing
for anisotropy in (2.1). We provide several equivalent and more common formulations for our
problem, e.g., the formulation as variational inequality or as differential inclusion. Our main
existence result is stated in Theorem 2.2 and the proof is worked out in Section 3. It is based
on a semi-implicit time discretization. For a given partition 0 = t0 < t1 < · · · < tN = T we
define the incremental minimization problems

zk ∈ argmin {E(tk, y) + Ψ(tk−1, zk−1, y−zk−1) : y ∈ A}
where the initial condition z0 is given. As in [MR06] the essential step is to prove the estimate

α∗‖zk − zk−1‖ ≤ c∗ max{|tk − tk−1|, |tk−1 − tk−2|} + q∗‖zk−1 − zk−2‖.
Our main assumption is then α∗ > q∗ which implies an a priori Lipschitz estimate that is
uniform for all equidistant partitions. Here α∗ measures the uniform convexity of E(t, ·) and q∗
accounts for the sum of two products, see (2.4) and (2.5). The first product involves the normal
pressure σ

+
and the derivative of the friction coefficient Dμ and the second product involves

the friction coefficient μ and some off-diagonal terms of the Hessian D2E(t, ·).
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In Section 4 we illustrate the physical meaning of our assumptions by presenting two example
for nonexistence of solutions. In the first example the first product in q∗ is large whereas the
second examples is from [Kla90] in which the second product in q∗ is large.

2 Modeling and existence result

Apart of the usual modeling of the problem we will use, following [MT04], an energetic formu-
lation. Equivalent differential inclusions and variational inequalities to this formulation will be
presented later on.

In the following we call A :=
{
z ∈ R

3 : z3 ≥ 0
}

the admissible set of our solution and denote
by ν := (0, 0,−1)� the outward normal vector of the boundary ∂A =

{
z ∈ R

3 : z3 = 0
}

which
presents our obstacle. We assume that from a physical point of view the dependence of the
energy of the system on the time t and the position z ∈ A is known and we denote it by the
energy functional E

E : [0, T ] × R
3 → R.

Using E , we can describe the normal forces σ at the time t to which the body is subject
as σ(t, z) := 〈−DE(t, z), ν〉, where 〈·, ·〉 is the standard euclidian scalar product in R

3. In
most common models with Coulomb friction the roughness of the surface is modeled by some
coefficient of friction μ : ∂A → [0,∞). We will slightly generalize this description by allowing
for some anisotropy depending on the direction in which our particle will slide. For this we will
introduce the matrix of friction M : ∂A → R

3×3 that satisfies M(z)ν = 0 for all z ∈ ∂A.

The dissipation potential Ψ : [0, T ] ×A× R
3 → [0,∞) is now defined by

Ψ(t, z, v) :=
{

σ(t, z)
+
‖M(z)v‖ if z ∈ ∂A,

0 else,
(2.1)

with σ(t, z)
+

:= max{0, σ(t, z)} and ‖ · ‖ being the usual Euclidian norm. A careful checking
of the article shows that all results remain valid if one choses any other norm on R

3. For
simplicity of notation we decided to restrict to the Euclidian norm. Note that Ψ(t, z, v) has
the physical dimension of a power.Using the homogenuity of degree 1 of Ψ(t, z, ·) we may also
write Ψ(t, z, y − z) which has the physical dimension of an energy. It is a rough approximation
of the energy that is dissipated due to friction if the particle slides instantaneously at time t
from the position z to y. For μ = M1,1 = M2,2 and Mi,j = 0 else, we are again in the usual
isotropic setting of friction, as used in the introduction. After having introduced the energies E
and Ψ we are now able to formulate our problem, which consist of a stability condition (S) and
a energy balance (E). Note that this problem is rate-independent.

Problem 2.1 For a given initial value z̃ ∈ A and initial time T̃ ∈ [0, T ) find a time span Δ ∈
(0, T−T̃ ] and a solution z ∈ W1,∞([T̃ , T̃+Δ],A) such that z(T̃ ) = z̃ and for all t ∈ [T̃ , T̃+Δ]
the following two conditions hold:

E(t, z(t)) ≤ E(t, y) + Ψ(t, z(t), y − z(t)) for all y ∈ A, (S)

E(T̃ , z(T̃ )) +
∫ t

T̃
∂τE(τ, z(τ))dτ = E(t, z(t)) +

∫ t

T̃
Ψ(τ, z(τ), ż(τ))dτ. (E)

Here we denote by ż = d
dtz the derivative with respect to time. In the energy balance law (E)

the integral on the left-hand side expresses the work done by external forces while the integral
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on the right-hand side expresses the total amount of energy that is dissipated due to friction
along the path of z : [0, T ] → A.

The stability condition (S) expresses that the amount of energy that we might gain by switching
from z(t) to any other admissible position y is less than the energy that has to be paid for this
switch due to friction. Since z(t) is a minimizer of the right-hand side in (S) and since E(t, ·)
and Ψ(t, z, ·) are convex, it is immediate that (S) is equivalent to

0 ∈ ∂vΨ(t, z(t), 0) + DE(t, z(t)) + ∂XA(z(t)).

Here XA is the characteristic function with XA(z) :=
{

0 for z ∈ A,
+∞ otherwise,

and ∂XA its subdif-

ferential whereas ∂vΨ denotes the subdifferential of Ψ(t, z, ·).
Furthermore, if for some 0 < T1 < T2 ≤ T the functions z1 and z2 satisfy (S) and (E) on the
corresponding intervals [0, T1] and [T1, T2] and z2 further satisfies the initial condition z2(T1) =

z̃2 with z̃2 := z1(T1), then the concatenation z(t) =
{

z1(t) for t ∈ [0, T1],
z2(t) for t ∈ [T1, T2],

satisfies (S)

and (E) on the whole interval [0, T2]. Thus, if we assume that a solution exists on the interval
[0, T̃ ], then Problem 2.1 suggests the existence of a local extension of the solution.

2.1 Equivalent formulations

Since the contact problem with friction is usually described using different formulations we
would like to present equivalent and more familiar formulations of the conditions (S) and (E).
For details of the proof of the equivalences see [MT04]. Recalling the definition of XA we rewrite
(S) and (E) equivalently as the following differential inclusion:

0 ∈ ∂vΨ
(
t, z(t), ż(t)

)
︸ ︷︷ ︸

frictional force

+ DE(
t, z(t)

)
︸ ︷︷ ︸

−potential restoring force

+ ∂XA
(
z(t)

)
︸ ︷︷ ︸

normal contact force

for a.e. t ∈ [T̃ , T̃+Δ]. (2.2)

The above differential inclusion is further equivalent to the following variational inequality :

0 ≤ 〈DE(t, z(t)), v−ż(t)〉 + Ψ(t, z(t), v) − Ψ(t, z(t), ż(t)) + XTA(z)(v) −XTA(z)(ż) (2.3)

for all v ∈ R
3 and a.a. t ∈ [T̃ , T̃+Δ],

where TA(z) the tangential cone TA(z) :=
{
v ∈ R

3 : z + λv ∈ A for some λ > 0
}
.

Next we are even more specific and we assume our energy to be quadratic, E(t, z) := 1
2〈Hz, z〉−

〈f(t), z〉 with H ∈ R
3×3 being the symmetric and positive definite stiffness matrix and f :

[T̃ , T̃+Δ] → R
3 representing the external forces. Further we assume that we are in the situation

of isotropic friction with a scalar coefficient of friction μ : ∂A → [0,∞). For z ∈ M3 we denote
by zT ∈ R

2 the vector consisting of the first two components and by zN = z3 ∈ [0,∞), then
Problem 2.1 (or (2.2), (2.3)) is equivalent to finding the position z = (zT, zN) : [T̃ , T̃+Δ] → A
and the reaction forces r = (rT, rN) : [T̃ , T̃+Δ] → R

3 satisfying the following equations:

Hz − f(t) = r for all t ∈ [T̃ , T̃+Δ], (equation of motion)
− rT ∈ μ(zT)rN∂‖ · ‖(żT), (Coulomb friction law)
zN ≥ 0, rN ≥ 0, zNrN = 0. (unilateral contact condition)
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2.2 General assumptions

To avoid disturbing repetitions we will now introduce the assumptions on the energy functional
E , the matrix of friction M and the initial condition z̃ in a generic way, so that they can be
referenced in each section.

We start with the regularity assumption on the energy. Even if we do not need a second partial
derivative in time of E let us for simplicity assume that

E ∈ C2
(
[0, T ] ×A, [0,∞)

)
. (G1)

Further, we denote the Hessian matrix of E with respect to z by H(t, z) = D2E(t, z) ∈ R
3×3.

We now assume that E is α-uniformly elliptic in its second variable, i.e. there exists a posi-
tive constant α∗ > 0 such that the functional α(t, z) := min

{〈H(t, z)v, v〉 : v ∈ R
3, ‖v‖ = 1

}
satisfies

α(t, z) ≥ α∗ for all (t, z) ∈ [0, T ] ×A. (G2)

For the initial condition z̃ we have to assume that it satisfies (S) and hence is stable at time
t = T̃

0 ∈ DE(T̃ , z̃) + ∂vΨ(T̃ , z̃, 0) + ∂XA(z̃). (G3)

The next generic assumption we are going to make is about the regularity of the matrix of
friction

M ∈ C1
(
∂A, R3×3

)
with M(z)ν = 0 for all z ∈ ∂A. (G4)

Recall that we have defined ν as the unit outward normal vector.

While the above assumptions are somehow classical, the following assumption reveals the nature
of our problem and governs the interplay between the different physical data. We introduce the
function

q(t, z) :=
(
‖DM(z)‖σ(t, z)

+
+ ‖M(z)‖‖(H31(t, z),H32(t, z))‖

)
, (2.4)

which allows us to formulate the last major condition

q(T̃ , z̃) < α(T̃ , z̃). (G5)

2.3 Existence result

Before we present our main result we introduce the function

c(t, z) :=
(‖M(z)‖+1

) ‖∂tDE(t, z)‖. (2.5)

Theorem 2.2 (Existence of solution) Let as assume that (G1)–(G5) hold, then Problem
2.1 has a solution, i.e. there exists Δ > 0 and z ∈ W1,∞([T̃ , T̃+Δ],A) such that (S), (E) and
the initial condition hold. Furthermore, for each ρ > 0 there exists a time span Δ(ρ) > 0 such
that the solution z satisfies

‖ż‖L∞([T̃ ,T̃+Δ(ρ)]) ≤
c(T̃ , z̃)

α(T̃ , z̃) − q(T̃ , z̃)
+ ρ.

In Section 4 we present two examples that help to understand the physical meaning of as-
sumption (G5). The examples illustrate that no Lipschitz continuous solution exists in general
as soon as (G5) does not hold along the solution path. In Section 4.1 we treat a case where
‖DM(z)‖σ(t, z)

+
is big while the second term in q vanishes. In Section 4.2 we recall the classical

nonexistence example of [Kla90], where M is constant but (H31,H32) is large.
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3 Proof of the existence result

The basic structure of the existence proof consists of three steps. In Subsection 3.1 we construct
for a given time span Δ > 0 a sequence of approximative solutions (ẑl)l∈N ∈ W1,∞([T̃ , T̃+Δ],A)
using a time discretization technique. We follow the ideas developed in [Mie05], [MT04], [MR06]
but need to make suitable adjustments to handle the noncontinuity of the dissipation Ψ, see
(3.21).

In Subsection 3.2 we prove that if Δ > 0 is chosen in an appropriate way there exists a global
Lipschitz constant for all ẑl and due to the compactness theorem of Arzela-Ascoli we extract a
convergent subsequence zlk → z for k → ∞ with some limit function z ∈ W1,∞([T̃ , T̃+Δ],A).
In Subsection 3.3 we show that the function z represents a solution.

Next, we introduce an auxiliary dissipation functional. Since for fixed (t, v) ∈ [0, T ] × R
3 the

mapping z 
→ Ψ(t, z, v) is in general not continuous on A, we will expand its definition for
z ∈ ∂A to the whole set A and define the Lipschitz continuous functional

Ψ̃ : [0, T ] ×A× R
3 → [0,∞) with Ψ̃(t, z, v) := σ(t, z)

+
‖M(z)v‖. (3.1)

Replacing the non-continuous functional Ψ by the Lipschitz continuous functional Ψ̃ will facil-
itate the construction of a Lipschitz continuous solution candidate z in Subsection 3.2. In fact,
we will see in our construction that the obtained limit function z will satisfy Ψ

(
t, z(t), v

)
=

Ψ̃
(
t, z(t), v

)
for all (t, v) ∈ [T̃ , T̃+Δ] × R

3, which will allow us to rid ourselves of Ψ̃ again.

3.1 Time incremental minimization

To construct for a given time span Δ > 0 a sequence of approximative solutions we solve a time
discretized problem of the following type.

Definition 3.1 (Incremental Problem (IP)) For a given partition Π of the time interval
[T̃ , T̃+Δ], i.e.

Π : T̃ = t0 < t1 < · · · < tNΠ
= T̃ + Δ with NΠ ∈ N

and a given initial value z̃ ∈ A find a solution vector (zk)k=0,...,NΠ
with z0 = z̃ whose values zk

incrementally satisfy for k = 1, . . . , NΠ

zk ∈ argmin
{
E(tk, z) + Ψ̃(tk−1, zk−1, y−zk−1) : y ∈ A

}
. (IP)

Here “argmin” denotes the set of all minimizers.

We are going to solve the incremental problem (IP) for a sequence of partitions
(
Πl

)
l∈N

of the
time interval [T̃ , T̃+Δ]:

Πl : T̃ = tl0 < tl1 < · · · < tlN
Πl

= T̃ + Δ,

whose fineness fΠl , defined by fΠl := max
{
tlk−tlk−1 : tlk, t

l
k−1 ∈ Πl for 1 ≤ k ≤ NΠl

}
tends to 0.

Our aim is to show that the related sequence of solution vectors (zl
k)k=1,...,N

Πl
provides us with

a good time discrete approximation of the solution z ∈ W1,∞([T̃ , T̃+Δ],A).

For simplicity of notation, we will assume in the following to be given an arbitrary partition Π
of [T̃ , T̃+Δ] and we will write zk, tk instead of zl

k and tlk. A direct method in the calculus of
variations provides us now immediately with the following result, since E(tk, ·)+Ψ̃(tk−1, zk−1, ·−
zk−1) is uniformly convex on the convex domain A.
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Lemma 3.2 (Existence and Uniqueness of the solution of (IP)) Under the assumptions
(G1) and (G2) there exists for any given partition Π and initial value z̃ ∈ A a unique solution
(zk)k=0,...,NΠ

of (IP).

In the next lemma, we will show, that a discrete solution already has properties which are
discrete versions of the properties the continuous solution will have. We recall, that due to
assumption (G3) the initial condition z̃ is globally stable in the following sense:

E(T̃ , z̃) ≤ E(T̃ , y) + Ψ(T̃ , z̃, y−z̃) for all y ∈ A.

Since Ψ̃ ≥ Ψ, this implies global stability with respect to Ψ̃, too.

Lemma 3.3 (Properties of the solution of (IP)) Let the assumptions (G1) - (G5) hold
and assume Π : T̃ = t0 < · · · < tNΠ

= T̃ + Δ to be an arbitrary partition. Then the solution
(zk)k=0,...,NΠ

of (IP) satisfies for each k = 0, . . . , NΠ :

1. (stability) E(tk, zk) ≤ E(tk, y) + Ψ̃(tk−1, zk−1, y−zk) for all y ∈ A and

2. (unilateral contact condition) 〈zk, ν〉σ(tk, zk) = 0.

Proof: ad 1. Since (zk)k=1,...,NΠ
is a solution of (IP) we have, for each k = 1, . . . , NΠ,

E(tk, zk) + Ψ̃(tk−1, zk−1, zk−zk−1) ≤ E(tk, y) + Ψ̃(tk−1, zk−1, y−zk−1) for all y ∈ A.

Since Ψ̃ satisfies the triangle inequality

∀(t, y) ∈ [0, T ] ×A and ∀v1, v2 ∈ R
3 : Ψ̃(t, y, v1 + v2) ≤ Ψ̃(t, y, v1) + Ψ̃(t, y, v2),

the stability follows easily.

ad 2. We only have to show that if (zk)3 > 0 then σ(tk, zk) = 0 holds. Assume (zk)3 = c > 0.
Let us define g(λ) := E(tk, zk + λν) + Ψ̃(tk−1, zk−1, λν + zk−zk−1). We obtain g(λ) ≥ g(0) for
all λ ≤ c, since zk is a minimizer in A. Because of M(z)ν = 0 we have g(λ) = E(tk, zk + λν) +
Ψ̃(tk−1, zk−1, zk−zk−1) such that g is differentiable in 0 with

0 =
d
dλ

g(0) = 〈DE(tk, zk), ν〉 = σ(tk, zk),

which is the desired result for k ∈ {1, . . . , NΠ}. The argument for k = 0 is the same due to the
stability of z0.

3.2 Lipschitz continuity

The main step in the proof is to establish a uniform Lipschitz continuity of the discrete solutions
independent of the partition. Since the proof is quite technical and perhaps difficult to read, we
decided first to present a simplified version in Proposition 3.4, to make the reader familiar with
the main ideas of the proof. The general case is presented in Proposition 3.6 with a complete
proof. For the next proposition we define for a given time span Δ > 0 the constants

c∗ := c1 + c2 with c1 := ‖∂tDE‖L∞([T̃ ,T̃+Δ]×A) and c2 := c1‖M‖L∞(A), (3.2)

q∗ :=
(
‖σ‖L∞([T̃ ,T̃+Δ]×∂A)‖DM‖L∞(A) + ‖M‖L∞(A)

∥∥(
H3,1(t, z),H3,2(t, z)

)∥∥
L∞([T̃ ,T̃+Δ]×A)

)
.

(3.3)

Note that we have constants c∗ and q∗, while elsewhere we consider functions depending on
(t, z). The following global assumption (G5*) will guarantee for any given time span Δ > 0 the
existence of a solution on the whole interval [T̃ , T̃+Δ].
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Proposition 3.4 (Lipschitz continuity: global version) Let us assume (G1)–(G4) and that

c∗ < ∞, q∗ < α∗ (G5*)

hold with the constant α∗ being defined as in assumption (G2), then for all partitions Π of
[T̃ , T̃+Δ] the unique solution (zk)k=0,...,NΠ

of the corresponding incremental problem (IP) sat-
isfies

‖zk − zk−1‖ ≤ c∗
α∗ − q∗

fΠ for k = 1, . . . , NΠ. (3.4)

Sketch of the Proof: We introduce the difference operator δkζ := ζk − ζk−1 where ζ stands
for t or z. Let Π : T̃ = t0 < · · · < tNΠ

= T̃ +Δ be a given partition. The existence of a solution
(zk)k=0,...,NΠ

of the corresponding incremental problem is clear due to Lemma 3.2. The key in
proving (3.4) is to show for k ∈ {2, . . . , NΠ} the recursive estimate

α∗‖δkz‖ ≤ c∗ max{δkt, δk−1t} + q∗‖δk−1z‖ (3.5)

and for k = 1 the estimate
α∗‖δ1z‖ ≤ c∗δ1t. (3.6)

The rest will follow from an induction. We content ourselves with sketching the estimates for
the prove of (3.5). The ideas for (3.6) are analogous. To keep notation simple we introduce for
each k ∈ {1, . . . , NΠ} the functional Jk(z) := E(tk, z) + Ψ̃(tk−1, zk−1, z − zk−1) which satisfies

Jk(y) − Jk(zk) ≥ α∗
2
‖y − zk‖2 for all y ∈ A, (3.7)

with α∗ being defined in assumption (G2).

By applying (3.7) twice, once for the choice k and y = zk−1 and once for k−1 and y = zk, we
conclude that

α∗‖δkz‖2 ≤ Jk(zk−1) − Jk(zk) + Jk−1(zk) − Jk−1(zk−1). (3.8)

Note that Ψ̃ satisfies a triangle inequality with respect to its third argument, i.e.Ψ̃(τ, y, v) +
Ψ̃(τ, y, w) ≥ Ψ̃(τ, y, v + w) and Ψ̃(τ, y, 0) = 0 holds. If we set Ψ̃k(v) := Ψ̃(tk, zk, v) the four
terms involving Ψ̃ in (3.8) are Ψ̃k−1(0)−Ψ̃k−1(zk−zk−1)+Ψ̃k−2(zk−zk−1)−Ψ̃k−1(zk−1−zk−2).
Hence, the right side of equation (3.8) is bounded by

1∑
i,j=0

(−1)i+j+1Jk−i(zk−j) ≤
1∑

i,j=0

(−1)i+j+1E(tk−i, zk−j) + Ψ̃k−1(δkz) − Ψ̃k−2(δkz). (3.9)

Defining t(r) := tk − r · δkt and z(s) := zk−1 + s · δkz we estimate the sum of the energies using
the fundamental theorem of calculus by

1∑
i,j=0

(−1)i+j+1E(tk−i, zk−j) =
∫ 1

0

∫ 1

0
〈∂tDE(

t(r), z(s)
)
, δkz〉(−δkt) dr ds ≤ c1δkt‖δkz‖. (3.10)

After some technical calculation we get for the difference of the dissipations

Ψ̃k−1(δkz) − Ψ̃k−2(δkz) ≤ q∗‖δkz‖‖δk−1z‖ + c2δk−1t‖δkz‖. (3.11)

Now the estimates (3.8)–(3.11) yield α∗‖δkz‖2 ≤ (c∗ max{δkt, δk−1t} + q∗‖δk−1z‖) ‖δkz‖ but
this proves exactly (3.5). Exploiting the stability of (t0, z0) = (T̃ , z̃) one can prove in an
analogous way (3.6) which is equivalent to ‖δ1z‖ ≤ c∗

α∗−q∗ δ1t. The proof of (3.4) is now done
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by induction. The estimate (3.6) represents the start of the induction. For the induction step
we use the recursive estimate (3.5) and assume that (3.4) holds for k − 1. We conclude

α∗‖δkz‖ ≤ c∗ max{δkt, δk−1t} + q∗‖δk−1z‖ ≤ c∗fΠ + q∗
c∗

α∗ − q∗
fΠ ≤ α∗

c∗
α∗ − q∗

fΠ.

This closes the induction and proves (3.4) for k = 1, . . . , NΠ.

Remark 3.5 The above proof follows the ideas in [MR06], which treats a case where the dis-
sipation potential Ψ is much better behaved. The main new point is the estimate (3.11), which
uses specific properties of the frictional contact problem. Here it is essential to use the fact that
coming from non-contact into contact is quite different from losing contact. We refer to Step
2.3 in the proof of Proposition 3.6, in particular (3.21).

The observation that under the strong and global assumption (G5*) which includes the whole
set A our discrete solutions are uniformly Lipschitz continuous reveals that for a short time
span Δ > 0 the solution values remain in a neighborhood of the initial value z̃. Hence the
assumption (G5*), i.e. q∗ < α∗, seems to be far too strong and we should be able to replace
the assumption by a more local one. This motivates the definition of the functions q and c as
in (2.4) and (2.5) respectively. The physical meaning of these functions will be illustrated in
Section 4.

We now introduce definitions of local sets. For given γ, ε > 0 we denote by Bε(z) the closed
ball Bε(z) :=

{
w ∈ R

3 : ‖w − z‖ ≤ ε
}

and by Cγ,ε(t, z) the closed cylinder Cγ,ε(t, z) := [t, t +
γ] × Bε(z). Depending on γ, ε and corresponding to the function q and c we define, for fixed
(T̃ , z̃) ∈ [0, T ) ×A, the constants

q̃ :=
(
‖DM‖L∞(Bε(z̃))|σ+ |L∞(Cγ,ε(T̃ ,z̃)) + ‖M‖L∞(Bε(z̃))‖(H31,H32)‖L∞(Cγ,ε(T̃ ,z̃))

)
, (3.12)

c̃ := (‖M‖L∞(Bε(z̃)) + 1)‖∂tDE‖L∞(Cγ,ε(T̃ ,z̃)) and (3.13)

α̃ := inf
{

α(τ, y) : (τ, y) ∈ Cγ,ε(T̃ , z̃)
}

. (3.14)

This constants are local versions of the global constants q∗ and c∗ from above. The value q̃ is
situated between q(t, z) and q∗. Analog observations hold for c̃ and α̃.

Proposition 3.6 (Lipschitz continuity: local version) Let (G1)-(G5). Then there exists
a time span Δ > 0 and a constant C̃ > 0 such that for any partition Π of the time interval
[T̃ , T̃ + Δ] the solution (zk)k=0,...,NΠ

of the corresponding incremental problem (IP) satisfies

‖zk − zk−1‖ ≤ C̃fΠ (3.15)

for k = 1, . . . , NΠ.

Further, for each ρ > 0 we can choose the time span Δ(ρ) > 0 small enough to assure addition-
ally C̃ ≤ c(T̃ ,z̃)

α(T̃ ,z̃)−q(T̃ ,z̃)
+ ρ.

Remark 3.7 This implies a uniform Lipschitz continuity for a suitably large set of parti-
tions including all equi-distant partitions. Choose δ ∈ (0, 1), then for all partition Π =
{tk : k = 1, . . . , NΠ} satisfying

min {tk − tk−1 : k = 1, . . . , NΠ} ≥ δfΠ

estimate (3.15) implies ‖zk − zk−1‖ ≤ C̃

δ
(tk − tk−1) for k = 1, . . . , NΠ.
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Proof of Proposition 3.6:
Step 1. Localization. In the above proposition we replaced the global assumption (G5*)
of Proposition 3.4 by the local assumption (G5). This forces us to restrict ourself to a small
neighborhood of (T̃ , z̃).
Step 1.1. Choosing the local set. Let us assume that q(T̃ , z̃) < α(T̃ , z̃) holds. Due to the
continuity of E and M (see (G1) and (G4)) we now choose for a given ρ > 0 the values γ, ε > 0
such that the corresponding constants q̃, c̃ and α̃, as they were defined in (3.12)–(3.14), satisfy
q̃ < α̃ and c̃

α̃−q̃ ≤ c(T̃ ,z̃)

α(T̃ ,z̃)−q(T̃ ,z̃)
+ ρ. In the following we will show that C̃ := c̃

α̃−q̃ is the
desired Lipschitz constant. With the above constants c̃, q̃ and α̃ we can do estimations on the
cylinder Cγ,ε(T̃ , z̃) and the ball Bε(z̃) only. This motivates the introduction of the following
local incremental problem (IP) loc.
Step 1.2. The localized incremental problem (IP)loc. This problem will depend on the two
parameters r > 0 and Δ > 0.

For any given partition Π : T̃ = t0 < · · · < tNΠ
= T̃ + Δ, initial value z0 = z̃ and radius r > 0

find, for k = 1, . . . , NΠ,

zk ∈ argmin
{
E(tk, y) + Ψ̃(tk−1, zk−1, y − zk−1) : y ∈ Br(zk−1) ∩ A

}
.

The existence and uniqueness of a solution (zk)k=0,...,NΠ
is clear, see Lemma 3.2.

Step 1.3. Comparing (IP) and (IP)loc. Let us compare for fixed partition Π of [T̃ , T̃ +Δ], initial
value z0 and radius r > 0 the solution (xk)k=0,...,NΠ

of the local incremental problem (IP)loc

with the solution (yk)k=0,...,NΠ
of the original and global incremental problem (IP) (see 3.1).

In both problems we are looking, for each k = 1, . . . NΠ, for minimizers of the functional
Jk(z) := E(tk, z) + Ψ̃(tk−1, zk−1, z − zk−1). Due to the uniform convexity of Jk, see (G2),
both solutions are unique. Further, if for a given k ∈ {1, . . . , NΠ} the local solution satisfies
xj ∈ intBr(xj−1) for 1 ≤ j ≤ k then if follows xk = yk.
Step 1.4. Choosing parameters in (IP)loc. Next we fix the parameters r and Δ in (IP)loc such
that we can expect the solutions to remain in the cylinder Cγ,ε(T̃ , z̃). For this we choose the

radius r := ε
2 and the time span Δ := min

{
γ, ε

2
α̃−q̃

c̃

}
. The latter choice is motivated by our

conjecture that the solutions satisfy the Lipschitz constant C̃ = c̃
α̃−q̃ .

Step 2: Recursive estimate. For the third and crucial part of the induction step we introduce
the difference operator δkζ := ζk − ζk−1, where ζ stands for t or z. Let us fix k ∈ {2, . . . , NΠ}
and assume that zk−1 coincides with yk−1 of the solution of the global incremental problem (IP)
defined in 3.1. Further we assume zk−1 ∈ B ε

2
(z̃). As a consequence we have (tj , zj) ∈ Cγ,ε(T̃ , z̃)

for j ∈ {k−2, k−1, k}. We next show the recursive estimate

α̃‖δkz‖ ≤ c̃ max{δkt, δk−1t} + q̃‖δk−1z‖. (3.16)

Step 2.1. Estimating by the functionals Jk. The first step in estimating ‖zk−zk−1‖ is the
inequality

Jk(y) − Jk(zk) ≥ α̃

2
‖y − zk‖2 for all y ∈ B ε

2
(zk−1) ∩ A. (3.17)

In fact we express the difference Jk(y) − Jk(zk) by defining the function z(λ) := zk + λ(y − zk)
and using the fundamental theorem of calculus twice we get

Jk(y) − Jk(zk) =
∫ 1

0
s

∫ s

0
〈H(t, z(rs))(y − zk), (y−zk)〉dr ds + g(y) ≥ α̃

1
2
‖y−zk‖2 + g(y).
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with g(y) := 〈DE(t, zk), y − zk〉 + Ψ̃(tk−1, zk−1, y−zk−1) − Ψ̃(tk−1, zk−1, zk−zk−1).

Now, by definition the value zk satisfies zk = argmin
{

Jk(y) : y ∈ B ε
2
(zk−1) ∩ A

}
, which is

equivalent to g(y) ≥ 0 for all y ∈ B ε
2
(zk−1) ∩A. This proves (3.17).

We apply (3.17) twice, once for the index k and y = zk−1 and once for the index k−1 and y = zk

and we conclude by adding the inequalities that

α̃‖δkz‖2 ≤ Jk(zk−1) − Jk(zk) + Jk−1(zk) − Jk−1(zk−1). (3.18)

Our aim is now to estimate the right side of (3.18). Note that Ψ̃ satisfies a triangle inequality
with respect to its third argument, i.e.Ψ̃(τ, y, v) + Ψ̃(τ, y, w) ≥ Ψ̃(τ, y, v + w) and Ψ̃(τ, y, 0) = 0
holds. Setting Ψ̃k(x) := Ψ̃(tk, zk, x) the right side of equation (3.18) is estimated by

1∑
i,j=0

(−1)i+j+1Jk−i(zk−j) ≤
1∑

i,j=0

(−1)i+j+1E(tk−i, zk−j) + Ψ̃k−1(δkz) − Ψ̃k−2(δkz). (3.19)

2.2. Estimating the energy terms. We define t(r) := tk − r · δkt and z(s) := zk + s · δkz and
estimate the sum of the energies using the fundamental theorem of calculus by

1∑
i,j=0

(−1)i+j+1E(tk−i, zk−j) =
∫ 1

0

∫ 1

0
〈∂tDE(

t(r), z(s)
)
, δkz〉(−δkt) dr ds (3.20)

≤ ‖∂tDE‖L∞(Cγ,ε(T̃ ,z̃))‖δkz‖δkt.

Step 2.3. Estimating the dissipation terms. The estimation of the difference of the dissipations
in equation (3.19) is now quite technical and will be summarized in (3.22). We rewrite the
difference by

Ψ̃k−1(δkz) − Ψ̃k−2(δkz) = σ(tk−1, zk−1)+
(‖M(zk−1)δkz‖ − ‖M(zk−2)δkz‖)

+
(
σ(tk−1, zk−1)+ − σ(tk−2, zk−2)+

)‖M(zk−2)δkz‖.
We estimate the first term due the Lipschitz continuity of the matrix of friction M on Bε(z0)
(see (G4)) by ‖σ(t, z)

+
‖L∞(Cγ,ε(T̃ ,z̃))‖DM‖L∞(Bε(z))‖δk−1z‖‖δkz‖ while we split the difference of

the normal forces in the second term into(
σ(tk−1, zk−1)+ − σ(tk−1, zk−2)+

)
+

(
σ(tk−1, zk−2)+ − σ(tk−2, zk−2)+

)
. (3.21)

The second difference of the normal forces is dominated by ‖∂tDE‖L∞(Cγ,ε(T̃ ,z̃))δk−1t. The first
difference contains all the difficulties arising from switching between noncontact and contact.
Note that we didn’t use the modulus since we need to use sign conditions. We recall that the
value zk−1 coincides with the solution of the global incremental problem (IP) and hence satisfies
the unilateral contact condition due to the Lemma 3.3. Thus in the case zk−1 ∈ intA we have
σ(tk−1, zk−1)+ = 0 and the first difference of the normal forces is estimated by 0. Note that the
above estimates would not work if the difference σ+

k−1 −σ+
k−2 in (3.21) was splitted by inserting

±σ(tk−2, zk−1)+ .

In the case of zk−1 ∈ ∂A we have σ(tk−1, zk−1) ≥ 0 and we control the first difference by

〈DE(tk−1, zk−1), e3〉 − 〈DE(tk−1, zk−2), e3〉 =
∫ 1

0
〈H(tk−1, z(s))(δk−1z), e3〉ds

≤ ‖(H31,H32)‖L∞(Cγ,ε(T̃ ,z̃))‖δk−1z‖.
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Here we have used H33(tk−1, z(s))(δk−1z)3 ≤ 0 since H33 > 0 holds by the α-ellipticity (G2) and
(δk−1z)3 ≤ 0 because of (zk−1)3 = 0 while (zk−2)3 ≥ 0.

Summarizing the estimates for the difference of the dissipations we have

Ψ̃k−1(δkz) − Ψ̃k−2(δkz) ≤ ‖σ
+
‖L∞(Cγ,ε(T̃ ,z̃))‖DM‖L∞(Bε(z̃))‖δkz‖‖δk−1z‖ (3.22)

+
(
‖∂tDE‖L∞(Cγ,ε(T̃ ,z̃))δk−1t +

∥∥(
H3,1,H3,2

)∥∥
L∞(Cγ,ε(T̃ ,z̃))

‖δk−1z‖
)
‖M‖L∞(Bε(z̃))‖δkz‖.

Equations (3.18)–(3.22) together prove the desired recursive estimate (3.16).
Step 2.4. The case k = 1. For k = 1 we have to prove

α̃‖δ1z‖ ≤ c̃δ1t. (3.23)

Define J0(z) := E(t0, z)+Ψ̃(t0, z0, z−z0), then the stability assumption (G3) on (T̃ , z̃) = (t0, z0)
implies z0 = argmin

{
J0(y) : y ∈ B ε

2
(z̃) ∩ A

}
. Analogously to (3.18) we get

α̃‖δ1z‖2 ≤ J1(z0) − J1(z1) + J0(z1) − J0(z0). (3.24)

Note, that this time the sum of the dissipation terms vanishes and we have

1∑
i,j=0

(−1)i+j+1Jk−i(zk−j) =
1∑

i,j=0

(−1)i+j+1E(tk−i, zk−j) ≤ ‖∂tDE‖L∞(Cγ,ε(T̃ ,z̃))‖δ1z‖δ1t. (3.25)

This proves (3.23).
Step 3: Induction. Let now Π be a given partition of [T̃ , T̃ + Δ] and (zk)k=0,...,NΠ

a solution
of the corresponding (IP)loc. Our aim is to prove by induction on k = 1, . . . , NΠ that

‖zk−zk−1‖ ≤ c̃
α̃ − q̃

fΠ (3.26)

holds with zk ∈ B ε
2
(z̃) and zk coincides with the value yk of the corresponding global solution.

Step 3.1. Start of induction. The start of the induction follows from (3.23). Due to our choice
of Δ > 0 we have

‖z1 − z̃‖ ≤ c̃
α̃

fΠ ≤ c̃
α̃

Δ <
ε

2
.

As seen in Step 1.3 this also proves z1 = y1 with y1 being the global solution.
Step 3.2. Induction step. For the induction step we assume for k ∈ {2, . . . , NΠ} that ‖zk−1 −
zk−2‖ ≤ c̃

α̃−q̃ fΠ holds with zk−1 ∈ B ε
2
(z̃) and zk coincides with the global solution value yk.

Using the recursive estimate (3.16) we get

α̃‖zk − zk−1‖ ≤ c̃fΠ + q̃
c̃

α̃ − q̃
fΠ = α̃

c̃
α̃ − q̃

fΠ.

This proves (3.26). Again our choice of Δ > 0 together with the argument of Step 1.3 proves
zk ∈ intB ε

2
(zk−1) and zk = yk with yk being the global solution. To show zk ∈ B ε

2
(z̃) we

estimate

‖zk − z̃‖ ≤
k∑

j=1

‖zj − zj−1‖ ≤ c̃
α̃ − q̃

kfΠ ≤ c̃
α̃ − q̃

Δ ≤ ε

2
.

Step 3.3. Conclusion. We have shown that the local solution (zk)k=1,...,NΠ
of (IP)loc coincides

with the solution of the corresponding global incremental problem (IP). Further the solution
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satisfies ‖zk − zk−1‖ ≤ c̃
α̃−q̃ for all k = 1, . . . , NΠ. Since we have assured in Step 1.1 that

c̃
α̃−q̃ ≤ c(T̃ ,z̃)

α(T̃ ,z̃)−q(T̃ ,z̃)
+ ρ holds, this completes our proof.

With the help of our discrete solutions we now construct piecewise linear approximands.

Definition 3.8 (Approximative solution) For a given partition Π of [T̃ , T̃ + Δ] and initial
value z̃ let (zk)k=0,...,NΠ

be the unique solution of the incremental problem (IP) (see 3.1). Then

we call the piecewise linear function ẑ ∈ W1,∞
(
[T̃ , T̃ + Δ],A

)
defined by ẑ(t) := zk−1 + (zk −

zk−1)
t−tk−1

tk−tk−1
for t ∈ [tk−1, tk] and k = 1, . . . , NΠ the approximative solution, that corresponds

to the incremental problem (IP).

Proposition 3.9 (Lipschitz continuous limit function) If the assumptions (G1)–(G5) hold,
then there exists a positive time span 0 < Δ ≤ T − T̃ such that the following situation holds.

For each equi-distant sequence of partitions
(
Πl

)
l∈N

of the time interval [T̃ , T̃+Δ] with fΠl → 0
for l → ∞ the corresponding sequence of approximative solutions

(
ẑl

)
l∈N

has a convergent

subsequence (ẑlk)k∈N, i.e. there exists a limit function z ∈ W1,∞
(
[T̃ , T̃+Δ],A

)
such that

‖ẑlk − z‖L∞([T̃ ,T̃+Δ],A) → 0 for k → ∞

holds.

Further we can choose for each ρ > 0 a time span Δ(ρ) > 0 that is small enough to assure that
the limit function satisfies, on [T̃ , T̃ + Δ(ρ)], a Lipschitz constant C̃ with

C̃ ≤ c
(
T̃ , z̃

)
α
(
T̃ , z̃

) − q
(
T̃ , z̃

) + ρ.

Proof: The result follows directly from Remark 3.7 and the Arzela-Ascoli theorem.

3.3 Existence of solutions

Our remaining task is to show, that the limit function z ∈ W1,∞
(
[T̃ , T̃ + Δ],A

)
of Propo-

sition 3.9 provides us with a solution. For this we assume for the whole subsection that the
assumptions (G1)–(G5) hold and we further denote our limit function by z, the corresponding
(sub)sequence of approximative solutions by

(
ẑl

)
l∈N

and by Πl : T̃ = tl0 < · · · < tlN
Πl

= T̃ + Δ
the corresponding (sub)sequence of uniform partitions that satisfies fΠl → 0 for l → ∞.

Proposition 3.10 (Unilateral contact condition) If our limit function z satisfies z(t) ∈
intA, for some t ∈ [T̃ , T̃ + Δ], then

〈
σ(t, z(t)), ν

〉
= 0 holds.

Proof: This is a direct consequence of the unilateral contact condition of the discrete solutions
(see Lemma 3.3) and Proposition 3.9.

Corollary 3.11 As a consequence of Proposition 3.10 we have, along any limit function z :
[T̃ , T̃+Δ] → A, the equality Ψ̃

(
t, z(t), v

)
= Ψ

(
t, z(t), v

)
for all t ∈ [T̃ , T̃+Δ] and v ∈ R

3.
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Lemma 3.12 (Stability of z) For all t ∈ [T̃ , T̃ + Δ] the limit function z is stable, i.e.

E(t, z(t)) ≤ E(t, y) + Ψ (t, z(t), y − z(t)) for all y ∈ A. (3.27)

Proof: The discrete stability of solutions of (IP) in Lemma 3.3 together with the definition
of the approximative solutions 3.8 provide us with

E
(
tlk, ẑ

l(tlk)
)
≤ E

(
tlk, y

)
+ Ψ̃

(
tlk−1, ẑ

l(tlk−1), y − ẑl(tlk−1)
)

(3.28)

for all l ∈ N, k = 1, . . . , NΠl and all y ∈ A.

Let us now fix t ∈ [T̃ , T̃ + Δ]. For each l ∈ N we choose k(l) ∈ (0, . . . , NΠl) such that
|tlk(l) − t| ≤ fΠl holds. Hence we have |tlk(l) − t| → 0.

As a consequence we obtain

‖ẑl(tlk(l)) − z(t)‖ ≤ ‖ẑl(tlk(l)) − ẑl(t)‖ + ‖ẑl(t) − z(t)‖ → 0 for l → ∞,

due to the uniform Lipschitz continuity of the approximative solutions (see Remark 3.7). Our
regularity assumptions on E and M allow us to pass to the limit in (3.28) and we get (3.27).
Finally we replace Ψ̃ by Ψ, using Corollary 3.11.

A direct consequence of Lemma 3.12 is

Lemma 3.13 (Lower energy estimate) For all t ∈ [T̃ , T̃+Δ] we have the lower energy es-
timate

E(T̃ , z̃) +
∫ t

T̃
∂tE(τ, z(τ)) dτ ≤ E(t, z(t)) +

∫ t

T̃
Ψ

(
τ, z(τ), ż(τ)

)
dτ.

Proof: Since z ∈ W1,∞([T̃ , T̃ + Δ],A), it is differentiable almost everywhere. Take a t ∈
[T̃ , T̃+Δ] where z is differentiable and insert y = z(t + h) into (3.27) , move E(t, z(t)) to the
right-hand side and divide by h. Since the mapping Ψ(t, z, ·) : R

3 → [0,∞) is homogeneous of
degree 1 we conclude

0 ≤ 〈DE(t, z(t)), ż(t)〉 + Ψ(t, z(t), ż(t)) for almost all t ∈ [T̃ , T̃ + Δ].

Integration from T̃ to t and chain rule complete the proof.

In the following lemma, we will complete the proof of the Energy Equality (E) by deriving the
opposite estimate. But let us say something about the convergence of ( ˙̂zl)l∈N first. By our
construction we know that the sequence (ẑl)l∈N and its limit z belong to W1,∞([T̃ , T̃ + Δ],A)
and are uniformly bounded. Since for 1 < p < ∞ the space W1,p([T̃ , T̃ + Δ],A) is reflexive and
the following embeddings W1,∞ ↪→ W1,p ↪→ W1,1 are all continuous, we choose a subsequence
of (ẑl)l∈N, which we will still denote by (ẑl)l∈N , such that ẑl ⇀ z in W1,1([T̃ , T̃ + Δ],A).

Lemma 3.14 (Upper energy estimate) For all t ∈ [T̃ , T̃+Δ] the limit function z satisfies

E(T̃ , z̃) +
∫ t

T̃
∂tE(τ, z(τ))dτ ≥ E(t, z(t)) +

∫ t

T̃
Ψ

(
τ, z(τ), ż(τ)

)
dτ. (3.29)

Proof: We start by deriving a discrete version of (3.29). Let (Πl)l∈N be a sequence of
partitions with fΠl → 0. Let us fix l ∈ N and choose y = zl

k−1 in (IP) on page 7. Then for any
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k = 1, . . . , NΠl , we have E(tlk, z
l
k−1) ≥ E(tlk, z

l
k)+Ψ̃(tlk−1, z

l
k−1, z

l
k −zl

k−1). Since Ψ̃(t, z, ·) : R
3 →

[0,∞) is homogeneous of degree 1 this inequality is equivalent to

E(tlk−1, ẑ
l(tlk−1)) +

∫ tlk

tlk−1

∂τE(τ, zl
k−1) dτ ≥ E(tlk, ẑ

l(tlk)) +
∫ tlk

tlk−1

Ψ̃
(
tlk−1, z

l
k−1,

˙̂zl(τ)
)

dτ. (3.30)

Next, we want to sum equation (3.30) over k. For this reason we make both integrands inde-
pendent of the index k and we define the piecewise constant functions z̄l and Ψ̄l by z̄l(t) := zl

k

and Ψ̄l(t, z, w) := Ψ̃(tlk, z, w) for all t ∈ [tlk−1, t
l
k) and all k = 1, . . . , NΠl . Hence by adding up

(3.30), we obtain for arbitrary tl ∈ Πl

E(T̃ , z̃) +
∫ tl

T̃
∂τE

(
τ, z̄l(τ)

)
dτ ≥ E(tl, ẑl(tl)) +

∫ tl

T̃
Ψ̄l

(
τ, z̄l(τ), ˙̂zl(τ)

)
dτ. (3.31)

It remains for us to choose a subsequence, such that (3.31) converges to (3.29). Let us fix
t ∈ [T̃ , T̃+Δ] and for each l ∈ N we choose tl ∈ Πl such that |tl − t| ≤ fΠl . Due to the Lipschitz
continuity of the solutions with a Lipschitz constant independent of the partition (see Remark
3.7) and our smoothness assumption (G1) on E we immediately obtain the convergence of the
energy terms on the right side of equation (3.31),i.e.

E
(
tl, ẑl(tl)

)
→ E (t, z(t)) for l → ∞.

The integrands of the integrals on both sides are uniformly bounded due to the uniform bound-
edness of our approximative solutions and the continuity of the functions Ψ and ∂tE(t, ·). Hence,
for l tending towards infinity, we replace the integrals

∫ tl

T̃ dτ by
∫ t
T̃ dτ . Note that by our con-

struction of the piecewise constant functions z̄l we get the pointwise convergence z̄l(t) → z(t)
for all t ∈ [T̃ , T̃ + Δ]. This implies, on the one hand, the uniform convergence of the uniformly
bounded integrands due to the continuity of ∂tE(t, ·) and hence we obtain

∫ t

T̃
∂τE(τ, z̄l(τ))dτ →

∫ t

T̃
∂τE(τ, z(τ))dτ for l → ∞.

On the other side it implies the uniform convergence of the difference |Ψ̄l
(
t, z̄l(t), ˙̂zl(t)

) −
Ψ̃

(
t, z(t), ˙̂zl(t)

)| → 0. Here we had to exploit the regularity of E and M and the uniform bound-
edness of the derivatives ˙̂zl. Further we replace, using again Corollary 3.11, the functional Ψ̃
by Ψ in the above difference.

Hence, due to the convergence theorem of Lebesgue, we obtain∫ t

T̃
Ψ̄

(
τ, z̄l(τ), ˙̂zl(τ)

) − Ψ
(
τ, z(τ), ˙̂zl(τ)

)
dτ → 0 for l → ∞.

Summarizing the last convergence results and taking the lim inf l→∞ on both sides of equation
(3.31) we get

E(T̃ , z̃) +
∫ t

T̃
∂τE(τ, z(τ))dτ ≥ E(t, z(t)) + lim inf

l→∞

∫ t

T̃
Ψ

(
τ, z(τ), ˙̂zl(τ)

)
dτ︸ ︷︷ ︸

=:F (ẑl)

. (3.32)

Remember that we have ẑl ⇀ z in W1,∞([T̃ , T̃ + Δ],A). Since the mapping F : W1,∞([T̃ , T̃ +
Δ],A) → R is continuous and convex, it is also weakly lower sequentially continuous and with
(3.32) we directly obtain the desired (3.29).

16



Proof: (Theorem 2.2) In Proposition 3.9 we have shown, under the assumptions (G1)–(G5),
that there exists a time span Δ > 0 and a sequence of approximative solutions that uniformly
converges to a limit function z ∈ W1,∞(

[T̃ , T̃+Δ],A)
. Lemmas 3.12–3.14 show that the limit

function satisfies the conditions (S) and (E) and hence is a solution of Problem 2.1. The estimate
for the Lipschitz constant follows again from Proposition 3.9.

4 Examples of non-existence

We present two examples of non-existence of a Lipschitz continuous solution by violating the
assumption q(t, z) < α(t, z) in (G5). From a physical point of view this assumption assures that
no sliding direction exists for which the frictional force declines faster than the elastic force.
Otherwise the sliding velocity becomes unbounded in such a direction.

In the examples we restrict ourselves to a two-dimensional setting A =
{
z ∈ R

2 : z2 ≥ 0
}
, a

purely quadratic energy E(t, z) := 〈Hz, z〉 − 〈f(t), z〉 with constant Hessian matrix H ∈ R
2×2

and given external forces f ∈ C2([0, T ], R2). We assume isotropic friction and hence M(z) =(
μ(z1) 0

0 0

)
with μ being the classical coefficient of friction.

Consequently the normal force is σ(t, z) = 〈Hz − f(t), e2〉 and the dissipation potential turns
out to be Ψ(t, z, v) = σ(t, z)μ(z1)|v1|. For the function q we obtain q(t, z) = |Dμ(z1)| σ(t, z) +
μ(z1)H21.

Using the equivalent subdifferential formulation (see Section 2.1) our problem to solve is

−Hz(t) + f(t) ∈
{

σ (t, z(t)) μ (z1(t)) ∂| · | (ż1(t))
0

}
+

{
0

∂X[0,∞)

(
z2(t)

) }
⊂ R

2. (4.1)

4.1 First example: varying coefficient of friction

We consider a situation with one degree of freedom only and choose T̃ = 0, z̃ =
(

1
0

)
and

H =
(

H11 0
0 H22

)
. We make an ansatz of persistent contact z2(t) ≡ 0 or z(t) =

(
z1(t)

0

)
.

In fact the second line in (4.1) reads

−σ(t, z) = f2(t) ∈ (−∞, 0]

and if we choose f2(t) = −σ∗ for some constant normal force σ∗ > 0, the above ansatz is
justified. It remains to solve the first line in (4.1) that simplifies to

−H11z1(t) + f1(t) ∈ σ∗μ(z1(t))∂ |·| (ż1(t)).

Note that our functions α and q are here

α(t, z) = αconst = min{H11,H22}
q(t, z) = |Dμ(z1)| σ∗.

To violate α(t, z) > q(t, z) we choose a coefficient of friction that depends on z1.

μ(z1) =

⎧⎨
⎩

μ0 for z1 < 2
μ0 + (μ1−μ0)(z1−1) for z1 ∈ [2, 3].

μ1 for z1 > 3
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Note that our assumption (G5) min{H11,H22} = α(t, z) > q(t, z) = |μ0 − μ1|σ∗ immediately
implies (μ0−μ1)σ∗ < H11. In fact, for the simple force f1(t) = H11 + at with fixed a > 0 and
H11 > (μ0 − μ1)σ∗, we obtain the solution

z1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for t ≤ t1
a

H11
t + c1 for t1 ≤ t ≤ t2

a
H11−(μ0−μ1)σ∗ t + c2 for t2 ≤ t ≤ t3

a
H11

t + c3 for t3 ≤ t

for appropriate values c1, c2, c3 and times t1, t2 and t3, see Figure 4.1. Hence, for H11 =
(μ0−μ1)σ∗ the assumption is violated and regarding our solution we expect a jump to occur at
the time t2 = t3.

t3 t

z1(t)

t1 t2

1

2

3

z1

Figure 1: First example - solution z(t) = (z1(t), 0)�

This example indicates that one should be able to replace the function α(t, z) by ᾱ(t, z) :=
min

{〈H(t, z)v, v〉 : v ∈ R
3, v3 = 0, ‖v‖ = 1

}
in assumption (G5) as, for example, Ballard did in

[Bal99] or will be done in [Sch07].

4.2 Second example: varying normal force

The second example of non-existence was introduced by Klarbring [Kla90]. As in the first
example a jump will occur. Since the example is two-dimensional α(t, z) is defined by α(t, z) =
min

{〈Hv, v〉 : v ∈ R
2, ‖v‖ = 1

}
< H11. This time we assume μ to be constant with μ(z1) =

μ∗ > 0 and we obtain q(t, z) = μ∗H21. Note that we can violate the condition α > q by choosing

H11 < μ∗H12. For the initial value we choose again T̃ = 0 and z̃ =
(

1
0

)
. Hence the elastic

system is prestressed in normal and tangential direction at time T̃ = 0. We assume for the
external tangential force f1(t) ≡ 0 and choose the external normal force affine in time with
f2(t) = f∗ + at and a > 0. We have to choose f∗ < 0 such that the initial state is stable, i.e.
the frictional forces are greater then the elastic forces μ∗σ(0, z̃) = μ∗ (H21 − f∗) ≥ H11. Note
that due to a > 0 the frictional forces diminish in time and if H11 > μ∗H21 holds we have the
solution

z(t) =

⎧⎪⎪⎨
⎪⎪⎩

z̃ for t ≤ t1( −a
H11−μ∗H12

f2(t)
0

)
for t1 ≤ t ≤ t2

H−1f(t) for t2 ≤ t
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for appropriate times 0 ≤ t1 < t2. Hence, for t ∈ [t1.t2] the body slides from z̃ to the origin 0,
while for t > t2 we have loss of contact and the position z(t) coincides with the minimizer of E .
However, for H11 ≤ μ∗ |H21| a jump occurs from z̃ to H−1f(t1) at time t1 = t2.

As in the first example we see that we should replace the function α by the function ᾱ(t, z) :=
min

{〈H(t, z)v, v〉 : v ∈ R
3, v3 = 0, ‖v‖ = 1

}
in assumption (G5).

3z1(t)0 21 z1

roughμ0 μ1smooth

f1(t)

Figure 2: First example - varying coefficient of friction. The elastic system consists of a spring
with origin in zero whose shape is determined by the position z1(t).
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même; application a la mécanique du contact. Math. Modelling Numer. Anal., 27:203–202,
1993.

[And99] L.-E. Andersson. Quasistatic fricional contact problem with finitely many degrees of freedom,
LiTH-MAT-R-1999-22, Department of Mathematics. Linköping University, Sweden, 1999.
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