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Abstra
tIn this paper, we study an optimal 
ontrol problem for a singular systemof partial di�erential equations that models a nonisothermal phase transitionwith a non
onserved order parameter. The 
ontrol a
ts through a third bound-ary 
ondition for the absolute temperature and plays the role of the outsidetemperature. It is shown that the 
orresponding 
ontrol-to-state mapping iswell de�ned, and the existen
e of an optimal 
ontrol and the �rst-order opti-mality 
onditions for a quadrati
 
ost fun
tional of Bolza type are established.1 Introdu
tionLet Ω ⊂ IR3 be an open and bounded domain with smooth boundary Γ , and let
T > 0 be given. We denote Qt = Ω × (0, t) , Γt = ∂Ω × (0, T ) , for any t ∈ (0, T ] .We 
onsider the following phase �eld system:

µ(θ)χt = −F ′
1(χ) −

(

β1

θ
+ β2

)

F ′
2(χ) −

F ′
3(χ)

θ
, in QT , (1.1)

CV θt + (β1F
′
2(χ) + F ′

3(χ))χt − ∆θ = 0 , in QT , (1.2)
∂θ

∂n
+ kθ = u , on ΓT , (1.3)

χ(·, 0) = χ0, θ(·, 0) = θ0 , in Ω . (1.4)This system 
onstitutes a model for a nonisothermal phase transition o

urring in the
ontainer Ω that is 
ontrolled by the outside temperature u . In this 
onne
tion, θstands for the (positive) absolute temperature, χ is a non
onserved order parameterthat 
hara
terizes the phase transition, CV , β1, β2, k are positive physi
al 
onstants,and µ, F1, F2, F3 are given nonlinearities. Typi
ally, χ must attain values in [0, 1] ;for instan
e, if χ represents the liquid fra
tion in a melting-solidi�
ation pro
ess,then {χ = 0} 
hara
terizes the solid phase, {χ = 1} the liquid phase, and {0 <

χ < 1} a mixture of both phases.The system (1.1)�(1.4), as well as nonlo
al versions thereof, has been extensivelystudied in re
ent years for the 
ase of thermal insulation, i.e., if the boundary 
on-dition (1.3) is repla
ed by
∂θ

∂n
= 0 , on ΓT . (1.3) ′1



In this 
onne
tion, we refer to the papers [1, 2, 4, 6℄. A very general 
ase withboundary 
ondition of the form (1.3) was re
ently studied in [3℄. Noti
e, however,that the smoothness assumptions for the 
ontrol u in [3℄ are stronger than in thispaper, so that we have a weaker regularity of the temperature �eld θ . More pre
isely,we assume here that u ∈ L∞(ΓT ) so that (1.2), (1.3) has to be understood in theweak sense; in parti
ular, we only 
an expe
t that θt ∈ L2(0, T ; (H1(Ω))∗) , whileunder the assumptions of [3℄ one obtains that θt ∈ L2(QT ) . In this sense, also thewellposedness results stated below deserve some interest on their own right.However, we do not strive for the largest possible generality in this paper, sin
e wewant to stress the 
ontrol aspe
ts. Noti
e also that (depending on the form of µ(θ))Eq. (1.1) may be
ome singular, so that the positivity of θ must be guaranteed. Inaddition, the typi
al form of the nonlinearity F2 is given by
F2(χ) = κ

(

χ log(χ) + (1 − χ) log(1 − χ)
)

, κ > 0 , (1.5)whi
h indu
es another singularity. In fa
t, it is then ne
essary to bound χ uniformlyaway from both 0 and 1 .We thus 
onsider the following optimal 
ontrol problem (whi
h will be denoted by(P) in the following):Minimize
J [u, (χ, θ)] :=

T
∫

0

∫

Γ

u2(x, t) dx dt + ‖θ(·, T ) − θT‖
2 + ‖χ(·, T ) − χT‖

2, (1.6)subje
t to (1.1)�(1.4) (state equations) and to the pointwise 
ontrol 
onstraints
u ∈ U := {u ∈ L∞(ΓT ); 0 < u1 ≤ u(x, t) ≤ u2 a.e. } . (1.7)Here, u1 > 0, u2 > 0 are given 
onstants, (θT , ΓT ) ∈ L2(Ω)2 is the desired �nal stateat time T , and ‖ · ‖ denotes the L2(Ω) norm. Noti
e that the regularity resultsproved below will guarantee that χ, θ ∈ C([0, T ]; L2(Ω)) , whi
h implies that J iswell de�ned.It is the aim of this note to show that the optimal 
ontrol problem (P) admits asolution pair [u∗, (χ∗, θ∗)] and to derive the �rst-order optimality 
onditions. Tothis end, we �rst study in Se
tion 2 the state system (1.1)�(1.4) for �xed u ∈ U ,showing the wellposedness. The te
hnique used di�ers from the one employed in[1, 4, 6℄ for similar problems; indeed, we will reverse the order of arguments usedthere. In addition, we obtain new results for the state system itself. The 
on
ludingSe
tion 3 is devoted to the existen
e of an optimal solution [u∗, (χ∗, θ∗)] and to thederivation of �rst-order ne
essary 
onditions.2 Wellposedness of the state systemThe proof of existen
e and uniqueness of the solution of the state system (1.1)�(1.4)follows the ideas developed in [1, 6] , but the order of arguments is reversed in the2



sense that we �rst derive a priori bounds for the solution and then treat a trun
atedsystem that 
oin
ides with the initial system inside these bounds.We generally assume:(H1) χ0, χT , θ0, θT ∈ L∞(Ω) , and there is some 0 < δ < 1 su
h that δ ≤ χ0(x) ≤
1 − δ , θ0(x) ≥ δ , for a.e. x ∈ Ω .(H2) F1, F3 ∈ C2[0, 1] , F2 ∈ C2(0, 1) , and it holds

lim
sց0

F ′
2(s) = −∞, lim

sր1
F ′

2(s) = +∞ . (2.1)(H3) µ ∈ C1(0,∞) , and there is some µ̂ > 0 su
h that
µ(s) ≥ µ̂min

{

1,
1

s

}

∀ s > 0 . (2.2)(H4) u ∈ U := {u ∈ L∞(ΓT ); u1 ≤ u(x, t) ≤ u2 a.e. } ,with given 
onstants u1 > 0, u2 > 0 .Remark 2.1 Condition (2.1) is satis�ed if µ(s) = µ̂s−α with some µ̂ > 0 and
0 ≤ α ≤ 1 . Note that the 
ase α = 1 
orresponds to the Caginalp phase �eldmodel, while α = 0 gives the analogue of the Penrose�Fife model. Noti
e also that(2.2) is more general than the 
ondition

µ(s) ≥ µ̂

(

1 +
1

s

)

, µ̂ > 0 , ∀ s > 0 , (2.2) ′whi
h was needed to derive the very general well-posedness results of [3℄.2.1 A priori boundsFor what follows, we introdu
e the fun
tion l ∈ C1(0,∞) ,
l(s) :=

1

sµ(s)
> 0 for s > 0 .To simplify notation, we assume without loss of generality that µ̂ = CV = 1 , andwe denote, for 0 < χ < 1 ,

h1(χ) := β1F
′
2(χ) + F ′

3(χ) , h2(χ) := β2F
′
2(χ) + F ′

1(χ) .Then, rearranging terms in (1.1) and substituting χt from (1.1) in (1.2), we mayrewrite (1.1), (1.2) in the form
χt = −l(θ)[h1(χ) + h2(χ)θ] , (2.3)

θt − ∆θ = l(θ)h1(χ)[h1(χ) + h2(χ)θ] . (2.4)We have the following result. 3



Proposition 2.2 Suppose that (H1)�(H3) are ful�lled. For any θ ∈ L∞(QT )satisfying θ(x, t) ≥ θ a.e. in QT for some θ > 0 , there is a unique solution χ ∈
L∞(QT ) to (2.3) su
h that χt ∈ L∞(QT ) and χ(x, 0) = χ0(x) for a.e. x ∈ Ω.Moreover, there are 
onstants 0 < χ < χ < 1 , whi
h are independent of θ , su
hthat

χ ≤ χ(x, t) ≤ χ a.e. in QT . (2.5)Proof: There is some set N ⊂ Ω of zero measure su
h that θ(x, t) ≥ θ > 0 and
χ0(x) ∈ IR for every x ∈ Ω \ N , and for any su
h x it follows that the initial valueproblem

χt(x, t) = l(θ(x, t)) [h1(χ(x, t)) + h2(χ(x, t))θ(x, t)] , for a.e. t ∈ (0, T ) ,

χ(x, 0) = χ0(x) , (2.6)has a unique lo
al Carathéodory solution. Now observe that, owing to the gen-eral hypotheses (H1)�(H3), there are 
onstants 0 < χ1 < χ2 < 1 su
h that
h1 < 0 , h2 < 0 on (0, χ1] , and h1 > 0 , h2 > 0 on [χ2, 1) , respe
tively. Thus,
χt(x, t) > 0 whenever χ(x, t) ∈ (0, χ1] , and χt(x, t) < 0 whenever χ(x, t) ∈ [χ2, 1) .Consequently, we must have

χ := min{δ, χ1} ≤ χ(x, t) ≤ χ := max{1 − δ, χ2} , a.e. in QT .From this we 
an infer that the solution to (2.6) exists in fa
t on the entire timeinterval [0, T ] , and the assertion follows.In order to obtain a priori bounds for the energy balan
e equation (2.1) (respe
tively,(2.4)) under the boundary 
ondition (1.3), and in order to apply an iterative methodto 
onstru
t the solution to the system, we now repla
e in Eq. (2.4) the possiblyunbounded term l(θ) by a trun
ation. To this end, let 0 < ε < 1 , and de�ne
ϕε(s) := max{ε, s} , lε(s) :=











1

ϕε(sµ(s))
, for s > 0 ,

ε−1 , for s ≤ 0 .

(2.7)Obviously, 0 < lε(s) ≤ ε−1 for all s ∈ IR , and thus lε ∈ L∞(IR) . We now 
onsiderthe trun
ated problem
θt − ∆θ = lε(θ)h1(χ)[h1(χ) + h2(χ)θ] , (2.8)together with the boundary 
ondition (1.3) and the initial 
ondition (1.4) for θ . Asusual, we 
all θ a (weak) variational solution to (2.8), (1.3), (1.4) if

θ ∈ W :=
{

η ∈ L2(0, T ; H1(Ω)) ; ηt ∈ L2(0, T ; (H1(Ω))∗)
}

, (2.9)and
〈θt(t), v〉 +

∫

Ω

∇θ(t) · ∇v dx +
∫

Γ

(k θ(t) − u(t)) v dσ

=
∫

Ω

lε(θ(t)) h1(χ(t)) [h1(χ(t)) + h2(χ(t)) θ(t)] v dx

∀ v ∈ H1(Ω) , a.e. t ∈ (0, T ) , (2.10)4



θ(0) = θ0 , (2.11)where 〈·, ·〉 denotes the dual pairing between (H1(Ω))∗ and H1(Ω) . We have thefollowing result.Proposition 2.3 There are 
onstants 0 < ε0 ≤ δ0 , δ1 > 0 , depending only on
χ, χ, u1, u2, δ, ‖θ0‖L∞(QT ) , su
h that the following holds: whenever θ ∈ L2(QT ) is avariational solution to (2.8), (1.3), (1.4) for some 0 < ε ≤ ε0 and some χ ∈ L∞(QT )satisfying χ ≤ χ ≤ χ a.e. in QT , then

0 < δ0 ≤ θ ≤ δ1 a.e. in QT . (2.12)In parti
ular, θ ≥ ε a.e. in QT , that is, θ satis�es Eq. (2.4).Proof:Step 1: Let ε > 0 and χ ∈ L∞(QT ) with χ ≤ χ ≤ χ a.e. in QT be �xed, and let
θ ∈ W∩L∞(QT ) be an asso
iated variational solution. Then θt−∆θ+cε(x, t) θ ≥ 0in QT in the weak sense, where cε = −lε(θ) h1(χ) h2(χ) ∈ L∞(QT ) . Thus, we 
aninfer from the maximum prin
iple for paraboli
 equations that θ ≥ θε

1 a.e. in QT ,where θε
1 is the strong solution to the problem

θε
1,t − ∆θε

1 + c(x, t)θε
1 = 0 in QT , (2.13)

∂θε
1

∂n
+ k θε

1 = u1 on ΓT , (2.14)
θε
1(x, 0) = θ0(x) for a.e. x ∈ Ω , (2.15)whi
h is positive a.e. in QT . Thus, θ > 0 a.e. in QT .Step 2: We now show that there is some c > 0 that does not depend on ε > 0 su
hthat

1

ϕε(θµ(θ))
[h2

1(χ) + h1(χ)h2(χ)θ] ≥ −c ϕε(θ) a.e. in QT . (2.16)Indeed, if θ ≥ 1 then it follows from µ̂ = 1 that θ µ(θ) ≥ min{1, θ−1} θ ≥ 1 . Hen
e,
ϕε(θµ(θ)) ≥ 1 , so that the expression on the left-hand side of (2.16) is boundedfrom below by −c1 ϕε(θ) for c1 := max

χ≤χ≤χ
|h1(χ) h2(χ)| .On the other hand, if θ < 1 then θ ≤ θ µ(θ) , and thus θ ≤ ϕε(θ µ(θ)) . Therefore,

1

ϕε(θ µ(θ))
[h2

1(χ) + h1(χ) h2(χ) θ] ≥ −
h2

2(χ) θ2

4 ϕε(θ µ(θ))
≥ −c2 ϕε(θ) ,with c2 := 1

4
max

χ≤χ≤χ
h2

2(χ) . Hen
e, (2.16) holds with the 
hoi
e c = max{c1, c2} .
5



Step 3: Using the fa
t that ϕε(θ) ≤ θ + ε a.e., we 
on
lude from (2.16) that θt −
∆θ + c θ ≥ −c ε in the weak sense. Hen
e, θ ≥ θε a.e. in QT , where θε solves

θε
t − ∆θε + c θε = −c ε in QT , (2.17)

∂θε

∂n
+ k θε = u1 on ΓT , (2.18)

θε(x, 0) = δ for a.e. x ∈ Ω . (2.19)From the general regularity theory of linear paraboli
 problems we infer that θε issmooth. Moreover, we have θε → θ0 uniformly on QT as ε ց 0 , where θ0 denotesthe solution to (2.17)�(2.19) for ε = 0 . Sin
e min
(x,t)∈QT

θ0(x, t) =: 2 δ0 > 0 , there issome ε̂ > 0 su
h that θε ≥ δ0 whenever 0 < ε < ε̂ . Noti
e that δ0 , ε̂ only dependon u1, δ, χ, χ .Step 4: To establish the global upper bound for θ , noti
e that, by Step 3, θ ≥ θε ≥
δ0 > 0 whenever 0 < ε ≤ ε̂ . In parti
ular, if 0 < ε ≤ min{δ0, ε̂} , then θ ≥ ε > 0and thus ϕε(θ) = θ , so that, using (H3),

lε(θ) = (θ µ(θ))−1 ≤ (min{θ, 1})−1 ≤ (min{δ0, 1})
−1 =: κ̃ .It thus follows from the maximum prin
iple of paraboli
 equations that θ ≤ θ̃ a.e. in

QT , where θ̃ solves the problem
θ̃t − ∆θ̃ − κ̃ max

χ≤χ≤χ
|h1(χ) h2(χ)| θ̃ = κ̃ max

χ≤χ≤χ
h2

1(χ) in QT , (2.20)
∂θ̃

∂n
+ k θ̃ = u2 on ΓT , (2.21)

θ̃(x, 0) = θ0(x) for a.e. x ∈ Ω . (2.22)Putting δ1 := ‖θ̃‖L∞(QT ) , ε0 := min{δ0, ε̂} , we have proved the assertion.Remark 2.4 The trun
ation pro
edure was needed, sin
e l may be unbounded on
(0,∞) . This is not the 
ase if (H3) is repla
ed by the 
ondition µ(θ) ≥ θ−1 , sin
ethen l ∈ L∞(0,∞) .2.2 Wellposedness of the State SystemIn this se
tion, we are going to prove the following result.Theorem 2.5 Suppose that (H1)�(H4) are ful�lled. Then the system (1.1)�(1.4)admits for every u ∈ U a unique solution (χ, θ) su
h that

χ, χt ∈ L∞(QT ) , χ ≤ χ ≤ χ a.e. in QT , (1.1) holds a.e. in QT , (2.23)6



θ ∈ W ∩ L∞(QT ) is a weak solution to (1.2)�(1.4) in the sense of (2.13), (2.14) ,(2.24)
0 < γ1 ≤ θ ≤ γ2 a.e. in QT , (2.25)with 
onstants γ1, γ2 that depend only on δ, u1, u2, ‖θ0‖L∞(Ω) . Moreover, (χ, θ) isthe only solution to (1.1)�(1.4) that satis�es (2.23), (2.24), and

ess inf
QT

θ(x, t) > 0 . (2.26)Proof: Let χ, χ and ε0, δ0, δ1 be the positive 
onstants introdu
ed in Propositions2.2 and 2.3, respe
tively. We �x ε ∈ (0, ε0] , set ρ(θ) := min{θ, δ1} , and 
hoosesome α > 0 su
h that
lε(θ) h1(χ) h2(χ) + α > 0 for θ ≥ 0 , χ ≤ χ ≤ χ . (2.27)Now let u ∈ U be arbitrary, but �xed. We then 
onsider the initial-boundary valueproblem

χt = lε(θ̃)[h1(χ) + h2(χ) θ̃] =: f(χ, θ̃) , in QT , (2.28)
θt − ∆θ + α θ = lε(θ̃) h2

1(χ̃) + [lε(θ̃) h1(χ̃) h2(χ̃) + α] ρ(θ̃)

=: g(χ̃, θ̃) , in QT , (2.29)
∂θ

∂n
+ k θ = u , on ΓT , (2.30)

χ(·, 0) = χ0 , θ(·, 0) = θ0 , in Ω , (2.31)where χ̃ ∈ L2(QT ) satis�es χ ≤ χ̃ ≤ χ a.e. in QT , and where θ̃ ∈ L2(QT ) ful�lls
γ1 ≤ θ̃ ≤ γ2 a.e. in QT , (2.32)with 
onstants 0 < γ1 < γ2 , whi
h will be de�ned below.Arguing as in the proof of Proposition 2.2, we 
an infer that (2.28), (2.31) admitsa unique solution χ ∈ L∞(QT ) su
h that χt ∈ L∞(QT ) and χ ≤ χ ≤ χ a.e. in

QT . Moreover, it follows from the general theory of paraboli
 equations (
f. [5℄)that the problem (2.29), (2.30), (2.31) has a weak solution θ ∈ W that depends
ontinuously on the data θ0 ∈ L2(Ω) , u ∈ L2(0, T ; L2(Γ)) , and on the right-handside g (with respe
t to the topology of L2(0, T ; (H1(Ω))∗ )). Now, by 
onstru
tionof α , the right-hand side of (2.29) is nonnegative. Hen
e, θ ≥ θ a.e. in QT , where
θ is the (smooth) solution to the problem

θt − ∆θ + α θ = 0 , in QT , (2.33)
∂θ

∂n
+ k θ = u1 , on ΓT , (2.34)
θ(·, 0) = δ , in Ω , (2.35)7



whi
h is positive. Consequently,
θ ≥ γ1 := min

(x,t)∈QT

θ(x, t) > 0 a.e. in QT .On the other hand, the right-hand side of (2.29) is bounded in the form
|g(χ̃, θ̃)| ≤ ε−1 max

χ≤χ≤χ
h2

1(χ) + ε−1 max
χ≤χ≤χ

|h1(χ) h2(χ)| δ1 + α δ1 =: σ .Using the maximum prin
iple on
e more, we �nd that θ ≤ θ , where θ solves
θt − ∆θ + α θ = σ , in QT , (2.36)

∂θ

∂n
+ k θ = u2 , on ΓT , (2.37)
θ(·, 0) = ‖θ0‖L∞(Ω) , in Ω . (2.38)In 
on
lusion, we have γ1 ≤ θ ≤ γ2 a.e. in QT with γ2 := ‖θ‖L∞(QT ) .Now let

M :=
{

(χ̃, θ̃) ∈ C
(

[0, T ]; L2(Ω)
)2

; χ ≤ χ ≤ χ and
γ1 ≤ θ̃ ≤ γ2 a.e. in QT

}

. (2.39)Clearly, M is a nonempty and 
losed subset of C([0, T ]; L2(Ω))2 . Moreover, if Fdenotes the operator that assigns to ea
h (u, (χ̃, θ̃)) ∈ U×M the asso
iated solutionto (2.29)�(2.31), then F(u, ·) maps M into M for any �xed u ∈ U . We now showthat F(u, ·) is a 
ontra
tion on M with respe
t to a suitably weighted norm on
C([0, T ]; L2(Ω))2 . To this end, we show the following stability result.Lemma 2.6 Suppose that (ui, (χ̃i, θ̃i)) ∈ U × M, i = 1, 2 , are given, and let
(χi, θi) = F (ui, (χ̃i, θ̃i)), i = 1, 2 . Denote χ̃ := χ̃1 − χ̃2, θ̃ := θ̃1 − θ̃2, u :=
u1 − u2, χ := χ1 − χ2, θ := θ1 − θ2 . Then there is some 
onstant C > 0 , de-pending only on χ, χ, γ1, γ2, ε , su
h that

‖χ(t)‖2 + ‖θ(t)‖2 +

t
∫

0

‖∇θ(s)‖2 ds +

t
∫

0

∫

Γ

θ2 dσ ds +

t
∫

0

‖θ(s)‖2 ds

≤ C





t
∫

0



‖χ(s)‖2 + ‖χ̃(s)‖2 + ‖θ(s)‖2 + ‖θ̃(s)‖2 +
∫

Γ

u2 dσ



 ds



 . (2.40)Proof: The pair (χ, θ) satis�es the initial-boundary value problem
χt = f(χ1, θ̃1) − f(χ2, θ̃2) , in QT , (2.41)
θt − ∆θ + α θ = g(χ̃1, θ̃1) − g(χ̃2, θ̃2) , in QT , (2.42)
∂θ

∂n
+ k θ = u , on ΓT , (2.43)

χ(·, 0) = 0 , θ(·, 0) = 0 , in Ω , (2.44)8



where Eq. (2.41) holds a.e. in QT , while the equations for θ have to be understoodin the weak sense (see (2.10), (2.12)).Now observe that f, g are globally Lips
hitz 
ontinuous on [χ, χ]×[γ1, γ2] , i.e., thereis some Lε > 0 su
h that
|f(χ1, θ1) − f(χ2, θ2)| + |g(χ1, θ1) − g(χ2, θ2)| ≤ Lε

(

|χ1 − χ2| + |θ1 − θ2|
)

∀ (χ1, θ1), (χ2, θ2) ∈ [χ, χ] × [γ1, γ2] . (2.45)Now multiply (2.41) by χ and integrate over Qt for t > 0 . Then it follows from(2.45), using Young's inequality, that
‖χ(t)‖2 ≤ Lε

t
∫

0

(

3‖χ(s)‖2 + ‖θ̃(s)‖2
)

ds . (2.46)Next, we test the variational form of (2.42)�(2.44) by θ . Using Young's inequal-ity and (2.45), we easily see that there is a 
onstant C̃ > 0 , depending only on
χ, χ, γ1, γ2, ε , su
h that

‖θ(t)‖2 +

t
∫

0

‖∇θ(s)‖2 ds +

t
∫

0

‖θ(s)‖2 ds +

t
∫

0

∫

Γ

θ2 dσ ds

≤ C̃





t
∫

0

(

‖χ̃(s)‖2 + ‖θ̃(s)‖2
)

ds +

t
∫

0

∫

Γ

u2 dσ ds



 . (2.47)Combining (2.46) and (2.47), we obtain the assertion.Proof of Theorem 2.5 (
ontinued) Consider for ω > 0 the norm
‖(χ, θ)‖ω := max

0≤t≤T
e−ω t (‖χ(t)‖ + ‖θ(t)‖) , (2.48)whi
h is equivalent to the standard norm of C

(

[0, T ]; L2(Ω)
)2 . Multiplying (2.40)by 2e−2ωt , we �nd that

e−2 ω t (‖χ(t)‖ + ‖θ(t)‖)2 ≤ 2 e−2ω t
(

‖χ(t)‖2 + ‖θ(t)‖2
)

≤
C

ω
(1 − e−2 ω T ) max

0≤s≤t
e−2 ω s

(

‖χ(s)‖2 + ‖χ̃(s)‖2 + ‖θ(s)‖2 + ‖θ̃(s)‖2
)

+2 C

t
∫

0

∫

Γ

u2 dσ ds ,when
e
‖(χ, θ)‖2

ω ≤
C

ω
(1 − e−2ω T )

(

‖(χ, θ)‖2
ω + ‖(χ̃, θ̃)‖2

ω

)

+2 C

t
∫

0

∫

Γ

u2 dσ ds . (2.49)9



Choosing ω > 0 appropriately large, it follows that there are 
onstants Lω ∈
(0, 1), Cω > 0 , whi
h are independent of u , su
h that

‖(χ, θ)‖2
ω ≤ Lω‖(χ̃, θ̃)‖2

ω + Cω

t
∫

0

∫

Γ

u2 dσ ds . (2.50)In parti
ular, the mapping F(u, ·) is a 
ontra
tion on M (uniformly in u ∈ M )with respe
t to ‖ · ‖ω , and thus enjoys a unique �xed point (χ̂, θ̂) in M , whi
h inturn is the unique solution to the problem
χt = lε(θ)[h1(χ) + h2(χ) θ] , in QT , (2.51)

θt − ∆θ + α θ = lε(θ)h
2
1(χ) + [lε(θ)h1(χ) h2(χ) + α] ρ(θ) , (2.52)together with the initial and boundary 
onditions (1.3), (1.4). Clearly, χ̂, χ̂t ∈

L∞(QT ) , while θ̂ ∈ W . Moreover, Proposition 2.3 implies that θ̂ ≥ ε a.e. in QT ,that is, ϕε(θ̂) = θ̂ , whi
h implies that (χ̂, θ̂) solves in fa
t Eq. (2.3). Also, weobviously have that
θ̂t − ∆θ̂ + α θ̂ ≤ lε(θ̂) h1(χ̂) [h1(χ̂) + h2(χ̂) θ̂] + α θ̂in the weak sense, and the same 
omparison argument as in Step 4 in the proof ofProposition 2.3 yields that θ̂ ≤ δ1 a.e. in QT , and thus, ρ(θ̂) = θ̂ . Therefore, (χ̂, θ̂)solves also (2.4), and thus (1.1)�(1.4).Finally, if (χ, θ) is any solution to (1.1)�(1.4) that satis�es (2.23), (2.24), (2.26),then it follows from Proposition 2.2 that χ ≤ χ ≤ χ a.e. in QT , and Proposition2.3 implies that (2.12) holds. But then in fa
t (χ, θ) ∈ M and thus, χ = χ̂, θ = θ̂ .This 
ompletes the proof of the theorem.Remark 2.7 Observe that (2.50) implies the Lips
hitz 
ontinuous dependen
e ofthe solution with respe
t to the 
ontrol u . Indeed, if u1, u2 ∈ U are given, then itholds for the 
orresponding solutions (χ1, θ1) , (χ2, θ2) the estimate

‖(χ1, θ1) − (χ2, θ2)‖2
ω ≤

Cω

1 − Lω

t
∫

0

∫

Γ

|u1 − u2|
2 dσ ds . (2.53)3 The Optimal Control Problem3.1 Existen
e of Optimal ControlsWe now study the optimal 
ontrol problem (P). We �rst show the existen
e ofoptimal 
ontrols. To this end, let {un} ⊂ U be a minimizing sequen
e, and let

(χn, θn) ∈ M denote the solution of (1.1)�(1.4) asso
iated with un, n ∈ IN . Clearly,
{un} is bounded in L∞(QT ), {χn}, {χn,t} are bounded in L∞(QT ) , and {θn} is10



bounded in W ∩ L∞(QT ) . Hen
e, for a subsequen
e, whi
h is again indexed by n ,we have the 
onvergen
es
un → u∗ weakly-star in L∞(QT ) ,

χn → χ∗ , χn,t → χ∗
t , weakly-star in L∞(QT ) ,

θn → θ∗ , weakly in W and weakly-star in L∞(QT ) . (3.1)Sin
e W is 
ontinuously embedded in C([0, T ; L2(Ω)) and 
ompa
tly embedded in
L2(QT ) , we also have

θn → θ∗ , weakly in C([0, T ]; L2(Ω)) and strongly in L2(QT ) . (3.2)In parti
ular, θn(T ) → θ∗(T ) weakly in L2(Ω) .Next, we subtra
t Eq. (2.3) for (χ, θ) = (χn, θn) from the equation for (χ, θ) =
(χ∗, θ∗) and multiply the resulting equation by χn −χ∗ . Using the fa
t that lε(θ) =
l(θ) and ρ(θ) = θ for both θ = θn and θ = θ∗ , and invoking (2.45), we 
an argueas in the derivation of Eq. (2.46) to 
on
lude that, for any t ≥ 0 ,

‖χn(t) − χ∗(t)‖2 ≤ Lε

t
∫

0

(

3‖χn(s) − χ∗(s)‖2 + ‖θn(s) − θ∗(s)‖2
)

ds ,and thus (3.2) implies that
χn → χ∗ strongly in C([0, T ]; L2(Ω)) . (3.3)In parti
ular, χn(T ) → χ∗(T ) weakly in L2(Ω) , and using the L∞ -bounds, we have

l(θn) → l(θ∗) , h1(χn) → h1(χ
∗) , h2(χn) → h2(χ

∗), all strongly in L2(QT ) .In 
onsequen
e, (χ∗, θ∗) satis�es (2.3) a.e. in QT and thus, also (1.1). Moreover, itis a standard argument to 
on
lude that (χ∗, θ∗) is a weak solution to (1.2)�(1.4)asso
iated with u = u∗ , i.e., we have
〈θ∗t (t), v〉 +

∫

Ω

∇θ∗(t) · ∇v dx +
∫

Γ

(k θ∗(t) − u∗(t)) v dσ

=
∫

Ω

(l(θ∗(t)) h1(χ
∗(t))) [h1(χ

∗(t)) + h2(χ
∗(t)) θ∗(t)] v dx

∀ v ∈ H1(Ω) , for a.e. t ∈ (0, T ) .Sin
e (χ∗, θ∗) is uniquely determined, we 
on
lude that the 
onvergen
es (3.1), (3.2)hold for the entire sequen
e {(χn, θn)} and not just for a subsequen
e. The weaklower semi
ontinuity of the 
ost fun
tional J then shows that
J [u∗, (χ∗, θ∗)] ≤ lim inf

n→∞
J [un, (χn, θn)] ,that is, u∗ ∈ U is an optimal 
ontrol with the asso
iated state (χ∗, θ∗) ∈ M . Theexisten
e of an optimal 
ontrol is thus shown.11



3.2 Ne
essary Conditions of OptimalityIn this se
tion, we derive the �rst-order ne
essary 
onditions of optimality. To thisend, suppose that (u∗, (χ∗, θ∗)) ∈ U × M is optimal, and let v ∈ L∞(ΓT ) be anadmissible variation, i.e., ∃τ0 > 0 su
h that uτ := u∗ + τ v ∈ U for 0 ≤ τ ≤ τ0 . Wedenote by (χτ , θτ ) ∈ M the unique solution to (1.1)�(1.4) asso
iated with uτ .Now observe that the state system (2.3), (2.4), (1.3), (1.4) is, owing to the a prioriestimates shown in the previous se
tion and due to the di�erentiability assumptionsmade in (H2), in fa
t a nonsingular initial-boundary value problem with 
ontinu-ously di�erentiable right-hand side. It is then a standard argument (whi
h 
an beomitted here) to show that the solution operator S : u 7→ (χ, θ) admits a dire
tionalderivative DvS(u∗) = (ξ, η) at u∗ in the dire
tion v in the sense of L2 , that is, wehave
∥

∥

∥

∥

χτ − χ∗

τ
− ξ

∥

∥

∥

∥

L2(QT )
+

∥

∥

∥

∥

∥

θτ − θ∗

τ
− η

∥

∥

∥

∥

∥

L2(QT )

→ 0 as τ ց 0 . (3.4)The dire
tional derivative (ξ, η) is de�ned as follows: if we denote the right-handsides of (2.3) and (2.4) by f̃(χ, θ) and g̃(χ, θ) respe
tively, and extend them from
[χ, χ]× [γ1, γ2] onto IR2 as 
ontinuously di�erentiable and bounded fun
tions havingbounded �rst derivatives on IR2 , then (ξ, η) solves the linear initial-boundary valueproblem

ξt = f̃χ(χ∗, θ∗) ξ + f̃θ(χ
∗, θ∗) η in QT , (3.5)

ηt − ∆η = g̃χ(χ∗, θ∗) ξ + g̃θ(χ
∗, θ∗) η in QT , (3.6)

∂η

∂n
+ k η = v , on ΓT , (3.7)

η(x, 0) = ξ(x, 0) = 0 for a.e. x ∈ Ω . (3.8)Clearly, we have ξ, ξt ∈ L∞(QT ) , η ∈ W ∩ L∞(QT ) .We now introdu
e the adjoint system
q∗t = −f̃χ(χ∗, θ∗) q∗ − g̃χ(χ∗, θ∗) p∗ in QT , (3.9)
p∗t + ∆p∗ = −f̃θ(χ

∗, θ∗) q∗ − g̃θ(χ
∗, θ∗) p∗ in QT , (3.10)

∂p∗

∂n
+ k p∗ = 0 on ΓT , (3.11)

q∗(x, T ) = −(χ∗(x, T ) − χT (x)) , p∗(x, T ) = −(θ∗(x, T ) − θT (x)) ,for a.e. x ∈ Ω . (3.12)Again, (3.10)�(3.12) has to be understood in the weak sense.By virtue of the boundedness properties of the partial derivatives of f̃ and g̃ , weeasily 
on
lude that the linear ba
kwards-in-time problem (3.9)�(3.12) admits aunique solution (p∗, q∗) su
h that
q∗, q∗t ∈ L∞(QT ) , p∗ ∈ W ∩ L∞(QT ) . (3.13)12



Moreover, sin
e (u∗, (χ∗, θ∗)) ∈ U ×M is optimal for the 
ost fun
tional J , we musthave
lim
τց0

J(uτ , (χτ , θτ )) − J(u∗(χ∗, θ∗))

τ
≥ 0 ,whi
h, by de�nition of (ξ, η) , results in the inequality

T
∫

0

∫

Γ

u∗ v dσ dt +
∫

Ω

(θ∗(T ) − θT ) η(T ) dx +
∫

Ω

(χ∗(T ) − χT ) ξ(T ) dx ≥ 0 . (3.14)Finally, we eliminate the auxiliary variables (ξ, η) using the adjoint system. To thisend, we test (3.5) by q∗ , (3.6) by p∗ , (3.9) by ξ and (3.10) by η , and add the fourresulting equations. It then follows that
∫

Ω

(θ∗(T ) − θT ) η(T ) dx +
∫

Ω

(χ∗(T ) − χT ) ξ(T ) dx = −

T
∫

0

∫

Γ

p∗ v dσ dt .In 
on
lusion, we have proved the following result.Theorem 3.1 Under the general hypotheses (H1)�(H4), the optimal 
ontrol prob-lem (P) admits a solution. Moreover, if (u∗, (χ∗, θ∗)) is an optimal pair, then thereexist fun
tions (p∗, q∗) su
h that q∗, q∗t ∈ L∞(QT ) , p∗ ∈ W ∩ L∞(QT ) , su
h thatthe following optimality system is satis�ed:Eqs. (1.1)�(1.4) for (u∗, (χ∗, θ∗)), Eqs. (3.9)�(3.12) for (p∗, q∗), as well as
T
∫

0

∫

Γ

(u∗ v − p∗ v) dσ dt ≥ 0 , for all admissible variations v ∈ L∞(ΓT ) . (3.15)Remark 3.2 Noti
e that the Hamiltonian of the system,
H(u; (q, p), (χ, θ)) :=

∫

Ω

q f̃(χ, θ) dx −
∫

Ω

∇p · ∇θ dx

+
∫

Ω

p g̃(χ, θ) dx −
∫

Γ

(k θ − u) p dσ −
1

2

∫

Γ

u2 dσ , (3.16)is 
on
ave with respe
t to the 
ontrol u . Thus, (3.15) is equivalent to saying that
H(u∗; (q∗, p∗), (χ∗, θ∗)) = max

u∈U
H(u; (q∗, p∗), (χ∗, θ∗)) . (3.17)Referen
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