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AbstratIn this paper, we study an optimal ontrol problem for a singular systemof partial di�erential equations that models a nonisothermal phase transitionwith a nononserved order parameter. The ontrol ats through a third bound-ary ondition for the absolute temperature and plays the role of the outsidetemperature. It is shown that the orresponding ontrol-to-state mapping iswell de�ned, and the existene of an optimal ontrol and the �rst-order opti-mality onditions for a quadrati ost funtional of Bolza type are established.1 IntrodutionLet Ω ⊂ IR3 be an open and bounded domain with smooth boundary Γ , and let
T > 0 be given. We denote Qt = Ω × (0, t) , Γt = ∂Ω × (0, T ) , for any t ∈ (0, T ] .We onsider the following phase �eld system:

µ(θ)χt = −F ′
1(χ) −

(

β1

θ
+ β2

)

F ′
2(χ) −

F ′
3(χ)

θ
, in QT , (1.1)

CV θt + (β1F
′
2(χ) + F ′

3(χ))χt − ∆θ = 0 , in QT , (1.2)
∂θ

∂n
+ kθ = u , on ΓT , (1.3)

χ(·, 0) = χ0, θ(·, 0) = θ0 , in Ω . (1.4)This system onstitutes a model for a nonisothermal phase transition ourring in theontainer Ω that is ontrolled by the outside temperature u . In this onnetion, θstands for the (positive) absolute temperature, χ is a nononserved order parameterthat haraterizes the phase transition, CV , β1, β2, k are positive physial onstants,and µ, F1, F2, F3 are given nonlinearities. Typially, χ must attain values in [0, 1] ;for instane, if χ represents the liquid fration in a melting-solidi�ation proess,then {χ = 0} haraterizes the solid phase, {χ = 1} the liquid phase, and {0 <

χ < 1} a mixture of both phases.The system (1.1)�(1.4), as well as nonloal versions thereof, has been extensivelystudied in reent years for the ase of thermal insulation, i.e., if the boundary on-dition (1.3) is replaed by
∂θ

∂n
= 0 , on ΓT . (1.3) ′1



In this onnetion, we refer to the papers [1, 2, 4, 6℄. A very general ase withboundary ondition of the form (1.3) was reently studied in [3℄. Notie, however,that the smoothness assumptions for the ontrol u in [3℄ are stronger than in thispaper, so that we have a weaker regularity of the temperature �eld θ . More preisely,we assume here that u ∈ L∞(ΓT ) so that (1.2), (1.3) has to be understood in theweak sense; in partiular, we only an expet that θt ∈ L2(0, T ; (H1(Ω))∗) , whileunder the assumptions of [3℄ one obtains that θt ∈ L2(QT ) . In this sense, also thewellposedness results stated below deserve some interest on their own right.However, we do not strive for the largest possible generality in this paper, sine wewant to stress the ontrol aspets. Notie also that (depending on the form of µ(θ))Eq. (1.1) may beome singular, so that the positivity of θ must be guaranteed. Inaddition, the typial form of the nonlinearity F2 is given by
F2(χ) = κ

(

χ log(χ) + (1 − χ) log(1 − χ)
)

, κ > 0 , (1.5)whih indues another singularity. In fat, it is then neessary to bound χ uniformlyaway from both 0 and 1 .We thus onsider the following optimal ontrol problem (whih will be denoted by(P) in the following):Minimize
J [u, (χ, θ)] :=

T
∫

0

∫

Γ

u2(x, t) dx dt + ‖θ(·, T ) − θT‖
2 + ‖χ(·, T ) − χT‖

2, (1.6)subjet to (1.1)�(1.4) (state equations) and to the pointwise ontrol onstraints
u ∈ U := {u ∈ L∞(ΓT ); 0 < u1 ≤ u(x, t) ≤ u2 a.e. } . (1.7)Here, u1 > 0, u2 > 0 are given onstants, (θT , ΓT ) ∈ L2(Ω)2 is the desired �nal stateat time T , and ‖ · ‖ denotes the L2(Ω) norm. Notie that the regularity resultsproved below will guarantee that χ, θ ∈ C([0, T ]; L2(Ω)) , whih implies that J iswell de�ned.It is the aim of this note to show that the optimal ontrol problem (P) admits asolution pair [u∗, (χ∗, θ∗)] and to derive the �rst-order optimality onditions. Tothis end, we �rst study in Setion 2 the state system (1.1)�(1.4) for �xed u ∈ U ,showing the wellposedness. The tehnique used di�ers from the one employed in[1, 4, 6℄ for similar problems; indeed, we will reverse the order of arguments usedthere. In addition, we obtain new results for the state system itself. The onludingSetion 3 is devoted to the existene of an optimal solution [u∗, (χ∗, θ∗)] and to thederivation of �rst-order neessary onditions.2 Wellposedness of the state systemThe proof of existene and uniqueness of the solution of the state system (1.1)�(1.4)follows the ideas developed in [1, 6] , but the order of arguments is reversed in the2



sense that we �rst derive a priori bounds for the solution and then treat a trunatedsystem that oinides with the initial system inside these bounds.We generally assume:(H1) χ0, χT , θ0, θT ∈ L∞(Ω) , and there is some 0 < δ < 1 suh that δ ≤ χ0(x) ≤
1 − δ , θ0(x) ≥ δ , for a.e. x ∈ Ω .(H2) F1, F3 ∈ C2[0, 1] , F2 ∈ C2(0, 1) , and it holds

lim
sց0

F ′
2(s) = −∞, lim

sր1
F ′

2(s) = +∞ . (2.1)(H3) µ ∈ C1(0,∞) , and there is some µ̂ > 0 suh that
µ(s) ≥ µ̂min

{

1,
1

s

}

∀ s > 0 . (2.2)(H4) u ∈ U := {u ∈ L∞(ΓT ); u1 ≤ u(x, t) ≤ u2 a.e. } ,with given onstants u1 > 0, u2 > 0 .Remark 2.1 Condition (2.1) is satis�ed if µ(s) = µ̂s−α with some µ̂ > 0 and
0 ≤ α ≤ 1 . Note that the ase α = 1 orresponds to the Caginalp phase �eldmodel, while α = 0 gives the analogue of the Penrose�Fife model. Notie also that(2.2) is more general than the ondition

µ(s) ≥ µ̂

(

1 +
1

s

)

, µ̂ > 0 , ∀ s > 0 , (2.2) ′whih was needed to derive the very general well-posedness results of [3℄.2.1 A priori boundsFor what follows, we introdue the funtion l ∈ C1(0,∞) ,
l(s) :=

1

sµ(s)
> 0 for s > 0 .To simplify notation, we assume without loss of generality that µ̂ = CV = 1 , andwe denote, for 0 < χ < 1 ,

h1(χ) := β1F
′
2(χ) + F ′

3(χ) , h2(χ) := β2F
′
2(χ) + F ′

1(χ) .Then, rearranging terms in (1.1) and substituting χt from (1.1) in (1.2), we mayrewrite (1.1), (1.2) in the form
χt = −l(θ)[h1(χ) + h2(χ)θ] , (2.3)

θt − ∆θ = l(θ)h1(χ)[h1(χ) + h2(χ)θ] . (2.4)We have the following result. 3



Proposition 2.2 Suppose that (H1)�(H3) are ful�lled. For any θ ∈ L∞(QT )satisfying θ(x, t) ≥ θ a.e. in QT for some θ > 0 , there is a unique solution χ ∈
L∞(QT ) to (2.3) suh that χt ∈ L∞(QT ) and χ(x, 0) = χ0(x) for a.e. x ∈ Ω.Moreover, there are onstants 0 < χ < χ < 1 , whih are independent of θ , suhthat

χ ≤ χ(x, t) ≤ χ a.e. in QT . (2.5)Proof: There is some set N ⊂ Ω of zero measure suh that θ(x, t) ≥ θ > 0 and
χ0(x) ∈ IR for every x ∈ Ω \ N , and for any suh x it follows that the initial valueproblem

χt(x, t) = l(θ(x, t)) [h1(χ(x, t)) + h2(χ(x, t))θ(x, t)] , for a.e. t ∈ (0, T ) ,

χ(x, 0) = χ0(x) , (2.6)has a unique loal Carathéodory solution. Now observe that, owing to the gen-eral hypotheses (H1)�(H3), there are onstants 0 < χ1 < χ2 < 1 suh that
h1 < 0 , h2 < 0 on (0, χ1] , and h1 > 0 , h2 > 0 on [χ2, 1) , respetively. Thus,
χt(x, t) > 0 whenever χ(x, t) ∈ (0, χ1] , and χt(x, t) < 0 whenever χ(x, t) ∈ [χ2, 1) .Consequently, we must have

χ := min{δ, χ1} ≤ χ(x, t) ≤ χ := max{1 − δ, χ2} , a.e. in QT .From this we an infer that the solution to (2.6) exists in fat on the entire timeinterval [0, T ] , and the assertion follows.In order to obtain a priori bounds for the energy balane equation (2.1) (respetively,(2.4)) under the boundary ondition (1.3), and in order to apply an iterative methodto onstrut the solution to the system, we now replae in Eq. (2.4) the possiblyunbounded term l(θ) by a trunation. To this end, let 0 < ε < 1 , and de�ne
ϕε(s) := max{ε, s} , lε(s) :=











1

ϕε(sµ(s))
, for s > 0 ,

ε−1 , for s ≤ 0 .

(2.7)Obviously, 0 < lε(s) ≤ ε−1 for all s ∈ IR , and thus lε ∈ L∞(IR) . We now onsiderthe trunated problem
θt − ∆θ = lε(θ)h1(χ)[h1(χ) + h2(χ)θ] , (2.8)together with the boundary ondition (1.3) and the initial ondition (1.4) for θ . Asusual, we all θ a (weak) variational solution to (2.8), (1.3), (1.4) if

θ ∈ W :=
{

η ∈ L2(0, T ; H1(Ω)) ; ηt ∈ L2(0, T ; (H1(Ω))∗)
}

, (2.9)and
〈θt(t), v〉 +

∫

Ω

∇θ(t) · ∇v dx +
∫

Γ

(k θ(t) − u(t)) v dσ

=
∫

Ω

lε(θ(t)) h1(χ(t)) [h1(χ(t)) + h2(χ(t)) θ(t)] v dx

∀ v ∈ H1(Ω) , a.e. t ∈ (0, T ) , (2.10)4



θ(0) = θ0 , (2.11)where 〈·, ·〉 denotes the dual pairing between (H1(Ω))∗ and H1(Ω) . We have thefollowing result.Proposition 2.3 There are onstants 0 < ε0 ≤ δ0 , δ1 > 0 , depending only on
χ, χ, u1, u2, δ, ‖θ0‖L∞(QT ) , suh that the following holds: whenever θ ∈ L2(QT ) is avariational solution to (2.8), (1.3), (1.4) for some 0 < ε ≤ ε0 and some χ ∈ L∞(QT )satisfying χ ≤ χ ≤ χ a.e. in QT , then

0 < δ0 ≤ θ ≤ δ1 a.e. in QT . (2.12)In partiular, θ ≥ ε a.e. in QT , that is, θ satis�es Eq. (2.4).Proof:Step 1: Let ε > 0 and χ ∈ L∞(QT ) with χ ≤ χ ≤ χ a.e. in QT be �xed, and let
θ ∈ W∩L∞(QT ) be an assoiated variational solution. Then θt−∆θ+cε(x, t) θ ≥ 0in QT in the weak sense, where cε = −lε(θ) h1(χ) h2(χ) ∈ L∞(QT ) . Thus, we aninfer from the maximum priniple for paraboli equations that θ ≥ θε

1 a.e. in QT ,where θε
1 is the strong solution to the problem

θε
1,t − ∆θε

1 + c(x, t)θε
1 = 0 in QT , (2.13)

∂θε
1

∂n
+ k θε

1 = u1 on ΓT , (2.14)
θε
1(x, 0) = θ0(x) for a.e. x ∈ Ω , (2.15)whih is positive a.e. in QT . Thus, θ > 0 a.e. in QT .Step 2: We now show that there is some c > 0 that does not depend on ε > 0 suhthat

1

ϕε(θµ(θ))
[h2

1(χ) + h1(χ)h2(χ)θ] ≥ −c ϕε(θ) a.e. in QT . (2.16)Indeed, if θ ≥ 1 then it follows from µ̂ = 1 that θ µ(θ) ≥ min{1, θ−1} θ ≥ 1 . Hene,
ϕε(θµ(θ)) ≥ 1 , so that the expression on the left-hand side of (2.16) is boundedfrom below by −c1 ϕε(θ) for c1 := max

χ≤χ≤χ
|h1(χ) h2(χ)| .On the other hand, if θ < 1 then θ ≤ θ µ(θ) , and thus θ ≤ ϕε(θ µ(θ)) . Therefore,

1

ϕε(θ µ(θ))
[h2

1(χ) + h1(χ) h2(χ) θ] ≥ −
h2

2(χ) θ2

4 ϕε(θ µ(θ))
≥ −c2 ϕε(θ) ,with c2 := 1

4
max

χ≤χ≤χ
h2

2(χ) . Hene, (2.16) holds with the hoie c = max{c1, c2} .
5



Step 3: Using the fat that ϕε(θ) ≤ θ + ε a.e., we onlude from (2.16) that θt −
∆θ + c θ ≥ −c ε in the weak sense. Hene, θ ≥ θε a.e. in QT , where θε solves

θε
t − ∆θε + c θε = −c ε in QT , (2.17)

∂θε

∂n
+ k θε = u1 on ΓT , (2.18)

θε(x, 0) = δ for a.e. x ∈ Ω . (2.19)From the general regularity theory of linear paraboli problems we infer that θε issmooth. Moreover, we have θε → θ0 uniformly on QT as ε ց 0 , where θ0 denotesthe solution to (2.17)�(2.19) for ε = 0 . Sine min
(x,t)∈QT

θ0(x, t) =: 2 δ0 > 0 , there issome ε̂ > 0 suh that θε ≥ δ0 whenever 0 < ε < ε̂ . Notie that δ0 , ε̂ only dependon u1, δ, χ, χ .Step 4: To establish the global upper bound for θ , notie that, by Step 3, θ ≥ θε ≥
δ0 > 0 whenever 0 < ε ≤ ε̂ . In partiular, if 0 < ε ≤ min{δ0, ε̂} , then θ ≥ ε > 0and thus ϕε(θ) = θ , so that, using (H3),

lε(θ) = (θ µ(θ))−1 ≤ (min{θ, 1})−1 ≤ (min{δ0, 1})
−1 =: κ̃ .It thus follows from the maximum priniple of paraboli equations that θ ≤ θ̃ a.e. in

QT , where θ̃ solves the problem
θ̃t − ∆θ̃ − κ̃ max

χ≤χ≤χ
|h1(χ) h2(χ)| θ̃ = κ̃ max

χ≤χ≤χ
h2

1(χ) in QT , (2.20)
∂θ̃

∂n
+ k θ̃ = u2 on ΓT , (2.21)

θ̃(x, 0) = θ0(x) for a.e. x ∈ Ω . (2.22)Putting δ1 := ‖θ̃‖L∞(QT ) , ε0 := min{δ0, ε̂} , we have proved the assertion.Remark 2.4 The trunation proedure was needed, sine l may be unbounded on
(0,∞) . This is not the ase if (H3) is replaed by the ondition µ(θ) ≥ θ−1 , sinethen l ∈ L∞(0,∞) .2.2 Wellposedness of the State SystemIn this setion, we are going to prove the following result.Theorem 2.5 Suppose that (H1)�(H4) are ful�lled. Then the system (1.1)�(1.4)admits for every u ∈ U a unique solution (χ, θ) suh that

χ, χt ∈ L∞(QT ) , χ ≤ χ ≤ χ a.e. in QT , (1.1) holds a.e. in QT , (2.23)6



θ ∈ W ∩ L∞(QT ) is a weak solution to (1.2)�(1.4) in the sense of (2.13), (2.14) ,(2.24)
0 < γ1 ≤ θ ≤ γ2 a.e. in QT , (2.25)with onstants γ1, γ2 that depend only on δ, u1, u2, ‖θ0‖L∞(Ω) . Moreover, (χ, θ) isthe only solution to (1.1)�(1.4) that satis�es (2.23), (2.24), and

ess inf
QT

θ(x, t) > 0 . (2.26)Proof: Let χ, χ and ε0, δ0, δ1 be the positive onstants introdued in Propositions2.2 and 2.3, respetively. We �x ε ∈ (0, ε0] , set ρ(θ) := min{θ, δ1} , and hoosesome α > 0 suh that
lε(θ) h1(χ) h2(χ) + α > 0 for θ ≥ 0 , χ ≤ χ ≤ χ . (2.27)Now let u ∈ U be arbitrary, but �xed. We then onsider the initial-boundary valueproblem

χt = lε(θ̃)[h1(χ) + h2(χ) θ̃] =: f(χ, θ̃) , in QT , (2.28)
θt − ∆θ + α θ = lε(θ̃) h2

1(χ̃) + [lε(θ̃) h1(χ̃) h2(χ̃) + α] ρ(θ̃)

=: g(χ̃, θ̃) , in QT , (2.29)
∂θ

∂n
+ k θ = u , on ΓT , (2.30)

χ(·, 0) = χ0 , θ(·, 0) = θ0 , in Ω , (2.31)where χ̃ ∈ L2(QT ) satis�es χ ≤ χ̃ ≤ χ a.e. in QT , and where θ̃ ∈ L2(QT ) ful�lls
γ1 ≤ θ̃ ≤ γ2 a.e. in QT , (2.32)with onstants 0 < γ1 < γ2 , whih will be de�ned below.Arguing as in the proof of Proposition 2.2, we an infer that (2.28), (2.31) admitsa unique solution χ ∈ L∞(QT ) suh that χt ∈ L∞(QT ) and χ ≤ χ ≤ χ a.e. in

QT . Moreover, it follows from the general theory of paraboli equations (f. [5℄)that the problem (2.29), (2.30), (2.31) has a weak solution θ ∈ W that dependsontinuously on the data θ0 ∈ L2(Ω) , u ∈ L2(0, T ; L2(Γ)) , and on the right-handside g (with respet to the topology of L2(0, T ; (H1(Ω))∗ )). Now, by onstrutionof α , the right-hand side of (2.29) is nonnegative. Hene, θ ≥ θ a.e. in QT , where
θ is the (smooth) solution to the problem

θt − ∆θ + α θ = 0 , in QT , (2.33)
∂θ

∂n
+ k θ = u1 , on ΓT , (2.34)
θ(·, 0) = δ , in Ω , (2.35)7



whih is positive. Consequently,
θ ≥ γ1 := min

(x,t)∈QT

θ(x, t) > 0 a.e. in QT .On the other hand, the right-hand side of (2.29) is bounded in the form
|g(χ̃, θ̃)| ≤ ε−1 max

χ≤χ≤χ
h2

1(χ) + ε−1 max
χ≤χ≤χ

|h1(χ) h2(χ)| δ1 + α δ1 =: σ .Using the maximum priniple one more, we �nd that θ ≤ θ , where θ solves
θt − ∆θ + α θ = σ , in QT , (2.36)

∂θ

∂n
+ k θ = u2 , on ΓT , (2.37)
θ(·, 0) = ‖θ0‖L∞(Ω) , in Ω . (2.38)In onlusion, we have γ1 ≤ θ ≤ γ2 a.e. in QT with γ2 := ‖θ‖L∞(QT ) .Now let

M :=
{

(χ̃, θ̃) ∈ C
(

[0, T ]; L2(Ω)
)2

; χ ≤ χ ≤ χ and
γ1 ≤ θ̃ ≤ γ2 a.e. in QT

}

. (2.39)Clearly, M is a nonempty and losed subset of C([0, T ]; L2(Ω))2 . Moreover, if Fdenotes the operator that assigns to eah (u, (χ̃, θ̃)) ∈ U×M the assoiated solutionto (2.29)�(2.31), then F(u, ·) maps M into M for any �xed u ∈ U . We now showthat F(u, ·) is a ontration on M with respet to a suitably weighted norm on
C([0, T ]; L2(Ω))2 . To this end, we show the following stability result.Lemma 2.6 Suppose that (ui, (χ̃i, θ̃i)) ∈ U × M, i = 1, 2 , are given, and let
(χi, θi) = F (ui, (χ̃i, θ̃i)), i = 1, 2 . Denote χ̃ := χ̃1 − χ̃2, θ̃ := θ̃1 − θ̃2, u :=
u1 − u2, χ := χ1 − χ2, θ := θ1 − θ2 . Then there is some onstant C > 0 , de-pending only on χ, χ, γ1, γ2, ε , suh that

‖χ(t)‖2 + ‖θ(t)‖2 +

t
∫

0

‖∇θ(s)‖2 ds +

t
∫

0

∫

Γ

θ2 dσ ds +

t
∫

0

‖θ(s)‖2 ds

≤ C





t
∫

0



‖χ(s)‖2 + ‖χ̃(s)‖2 + ‖θ(s)‖2 + ‖θ̃(s)‖2 +
∫

Γ

u2 dσ



 ds



 . (2.40)Proof: The pair (χ, θ) satis�es the initial-boundary value problem
χt = f(χ1, θ̃1) − f(χ2, θ̃2) , in QT , (2.41)
θt − ∆θ + α θ = g(χ̃1, θ̃1) − g(χ̃2, θ̃2) , in QT , (2.42)
∂θ

∂n
+ k θ = u , on ΓT , (2.43)

χ(·, 0) = 0 , θ(·, 0) = 0 , in Ω , (2.44)8



where Eq. (2.41) holds a.e. in QT , while the equations for θ have to be understoodin the weak sense (see (2.10), (2.12)).Now observe that f, g are globally Lipshitz ontinuous on [χ, χ]×[γ1, γ2] , i.e., thereis some Lε > 0 suh that
|f(χ1, θ1) − f(χ2, θ2)| + |g(χ1, θ1) − g(χ2, θ2)| ≤ Lε

(

|χ1 − χ2| + |θ1 − θ2|
)

∀ (χ1, θ1), (χ2, θ2) ∈ [χ, χ] × [γ1, γ2] . (2.45)Now multiply (2.41) by χ and integrate over Qt for t > 0 . Then it follows from(2.45), using Young's inequality, that
‖χ(t)‖2 ≤ Lε

t
∫

0

(

3‖χ(s)‖2 + ‖θ̃(s)‖2
)

ds . (2.46)Next, we test the variational form of (2.42)�(2.44) by θ . Using Young's inequal-ity and (2.45), we easily see that there is a onstant C̃ > 0 , depending only on
χ, χ, γ1, γ2, ε , suh that

‖θ(t)‖2 +

t
∫

0

‖∇θ(s)‖2 ds +

t
∫

0

‖θ(s)‖2 ds +

t
∫

0

∫

Γ

θ2 dσ ds

≤ C̃





t
∫

0

(

‖χ̃(s)‖2 + ‖θ̃(s)‖2
)

ds +

t
∫

0

∫

Γ

u2 dσ ds



 . (2.47)Combining (2.46) and (2.47), we obtain the assertion.Proof of Theorem 2.5 (ontinued) Consider for ω > 0 the norm
‖(χ, θ)‖ω := max

0≤t≤T
e−ω t (‖χ(t)‖ + ‖θ(t)‖) , (2.48)whih is equivalent to the standard norm of C

(

[0, T ]; L2(Ω)
)2 . Multiplying (2.40)by 2e−2ωt , we �nd that

e−2 ω t (‖χ(t)‖ + ‖θ(t)‖)2 ≤ 2 e−2ω t
(

‖χ(t)‖2 + ‖θ(t)‖2
)

≤
C

ω
(1 − e−2 ω T ) max

0≤s≤t
e−2 ω s

(

‖χ(s)‖2 + ‖χ̃(s)‖2 + ‖θ(s)‖2 + ‖θ̃(s)‖2
)

+2 C

t
∫

0

∫

Γ

u2 dσ ds ,whene
‖(χ, θ)‖2

ω ≤
C

ω
(1 − e−2ω T )

(

‖(χ, θ)‖2
ω + ‖(χ̃, θ̃)‖2

ω

)

+2 C

t
∫

0

∫

Γ

u2 dσ ds . (2.49)9



Choosing ω > 0 appropriately large, it follows that there are onstants Lω ∈
(0, 1), Cω > 0 , whih are independent of u , suh that

‖(χ, θ)‖2
ω ≤ Lω‖(χ̃, θ̃)‖2

ω + Cω

t
∫

0

∫

Γ

u2 dσ ds . (2.50)In partiular, the mapping F(u, ·) is a ontration on M (uniformly in u ∈ M )with respet to ‖ · ‖ω , and thus enjoys a unique �xed point (χ̂, θ̂) in M , whih inturn is the unique solution to the problem
χt = lε(θ)[h1(χ) + h2(χ) θ] , in QT , (2.51)

θt − ∆θ + α θ = lε(θ)h
2
1(χ) + [lε(θ)h1(χ) h2(χ) + α] ρ(θ) , (2.52)together with the initial and boundary onditions (1.3), (1.4). Clearly, χ̂, χ̂t ∈

L∞(QT ) , while θ̂ ∈ W . Moreover, Proposition 2.3 implies that θ̂ ≥ ε a.e. in QT ,that is, ϕε(θ̂) = θ̂ , whih implies that (χ̂, θ̂) solves in fat Eq. (2.3). Also, weobviously have that
θ̂t − ∆θ̂ + α θ̂ ≤ lε(θ̂) h1(χ̂) [h1(χ̂) + h2(χ̂) θ̂] + α θ̂in the weak sense, and the same omparison argument as in Step 4 in the proof ofProposition 2.3 yields that θ̂ ≤ δ1 a.e. in QT , and thus, ρ(θ̂) = θ̂ . Therefore, (χ̂, θ̂)solves also (2.4), and thus (1.1)�(1.4).Finally, if (χ, θ) is any solution to (1.1)�(1.4) that satis�es (2.23), (2.24), (2.26),then it follows from Proposition 2.2 that χ ≤ χ ≤ χ a.e. in QT , and Proposition2.3 implies that (2.12) holds. But then in fat (χ, θ) ∈ M and thus, χ = χ̂, θ = θ̂ .This ompletes the proof of the theorem.Remark 2.7 Observe that (2.50) implies the Lipshitz ontinuous dependene ofthe solution with respet to the ontrol u . Indeed, if u1, u2 ∈ U are given, then itholds for the orresponding solutions (χ1, θ1) , (χ2, θ2) the estimate

‖(χ1, θ1) − (χ2, θ2)‖2
ω ≤

Cω

1 − Lω

t
∫

0

∫

Γ

|u1 − u2|
2 dσ ds . (2.53)3 The Optimal Control Problem3.1 Existene of Optimal ControlsWe now study the optimal ontrol problem (P). We �rst show the existene ofoptimal ontrols. To this end, let {un} ⊂ U be a minimizing sequene, and let

(χn, θn) ∈ M denote the solution of (1.1)�(1.4) assoiated with un, n ∈ IN . Clearly,
{un} is bounded in L∞(QT ), {χn}, {χn,t} are bounded in L∞(QT ) , and {θn} is10



bounded in W ∩ L∞(QT ) . Hene, for a subsequene, whih is again indexed by n ,we have the onvergenes
un → u∗ weakly-star in L∞(QT ) ,

χn → χ∗ , χn,t → χ∗
t , weakly-star in L∞(QT ) ,

θn → θ∗ , weakly in W and weakly-star in L∞(QT ) . (3.1)Sine W is ontinuously embedded in C([0, T ; L2(Ω)) and ompatly embedded in
L2(QT ) , we also have

θn → θ∗ , weakly in C([0, T ]; L2(Ω)) and strongly in L2(QT ) . (3.2)In partiular, θn(T ) → θ∗(T ) weakly in L2(Ω) .Next, we subtrat Eq. (2.3) for (χ, θ) = (χn, θn) from the equation for (χ, θ) =
(χ∗, θ∗) and multiply the resulting equation by χn −χ∗ . Using the fat that lε(θ) =
l(θ) and ρ(θ) = θ for both θ = θn and θ = θ∗ , and invoking (2.45), we an argueas in the derivation of Eq. (2.46) to onlude that, for any t ≥ 0 ,

‖χn(t) − χ∗(t)‖2 ≤ Lε

t
∫

0

(

3‖χn(s) − χ∗(s)‖2 + ‖θn(s) − θ∗(s)‖2
)

ds ,and thus (3.2) implies that
χn → χ∗ strongly in C([0, T ]; L2(Ω)) . (3.3)In partiular, χn(T ) → χ∗(T ) weakly in L2(Ω) , and using the L∞ -bounds, we have

l(θn) → l(θ∗) , h1(χn) → h1(χ
∗) , h2(χn) → h2(χ

∗), all strongly in L2(QT ) .In onsequene, (χ∗, θ∗) satis�es (2.3) a.e. in QT and thus, also (1.1). Moreover, itis a standard argument to onlude that (χ∗, θ∗) is a weak solution to (1.2)�(1.4)assoiated with u = u∗ , i.e., we have
〈θ∗t (t), v〉 +

∫

Ω

∇θ∗(t) · ∇v dx +
∫

Γ

(k θ∗(t) − u∗(t)) v dσ

=
∫

Ω

(l(θ∗(t)) h1(χ
∗(t))) [h1(χ

∗(t)) + h2(χ
∗(t)) θ∗(t)] v dx

∀ v ∈ H1(Ω) , for a.e. t ∈ (0, T ) .Sine (χ∗, θ∗) is uniquely determined, we onlude that the onvergenes (3.1), (3.2)hold for the entire sequene {(χn, θn)} and not just for a subsequene. The weaklower semiontinuity of the ost funtional J then shows that
J [u∗, (χ∗, θ∗)] ≤ lim inf

n→∞
J [un, (χn, θn)] ,that is, u∗ ∈ U is an optimal ontrol with the assoiated state (χ∗, θ∗) ∈ M . Theexistene of an optimal ontrol is thus shown.11



3.2 Neessary Conditions of OptimalityIn this setion, we derive the �rst-order neessary onditions of optimality. To thisend, suppose that (u∗, (χ∗, θ∗)) ∈ U × M is optimal, and let v ∈ L∞(ΓT ) be anadmissible variation, i.e., ∃τ0 > 0 suh that uτ := u∗ + τ v ∈ U for 0 ≤ τ ≤ τ0 . Wedenote by (χτ , θτ ) ∈ M the unique solution to (1.1)�(1.4) assoiated with uτ .Now observe that the state system (2.3), (2.4), (1.3), (1.4) is, owing to the a prioriestimates shown in the previous setion and due to the di�erentiability assumptionsmade in (H2), in fat a nonsingular initial-boundary value problem with ontinu-ously di�erentiable right-hand side. It is then a standard argument (whih an beomitted here) to show that the solution operator S : u 7→ (χ, θ) admits a diretionalderivative DvS(u∗) = (ξ, η) at u∗ in the diretion v in the sense of L2 , that is, wehave
∥

∥

∥

∥

χτ − χ∗

τ
− ξ

∥

∥

∥

∥

L2(QT )
+

∥

∥

∥

∥

∥

θτ − θ∗

τ
− η

∥

∥

∥

∥

∥

L2(QT )

→ 0 as τ ց 0 . (3.4)The diretional derivative (ξ, η) is de�ned as follows: if we denote the right-handsides of (2.3) and (2.4) by f̃(χ, θ) and g̃(χ, θ) respetively, and extend them from
[χ, χ]× [γ1, γ2] onto IR2 as ontinuously di�erentiable and bounded funtions havingbounded �rst derivatives on IR2 , then (ξ, η) solves the linear initial-boundary valueproblem

ξt = f̃χ(χ∗, θ∗) ξ + f̃θ(χ
∗, θ∗) η in QT , (3.5)

ηt − ∆η = g̃χ(χ∗, θ∗) ξ + g̃θ(χ
∗, θ∗) η in QT , (3.6)

∂η

∂n
+ k η = v , on ΓT , (3.7)

η(x, 0) = ξ(x, 0) = 0 for a.e. x ∈ Ω . (3.8)Clearly, we have ξ, ξt ∈ L∞(QT ) , η ∈ W ∩ L∞(QT ) .We now introdue the adjoint system
q∗t = −f̃χ(χ∗, θ∗) q∗ − g̃χ(χ∗, θ∗) p∗ in QT , (3.9)
p∗t + ∆p∗ = −f̃θ(χ

∗, θ∗) q∗ − g̃θ(χ
∗, θ∗) p∗ in QT , (3.10)

∂p∗

∂n
+ k p∗ = 0 on ΓT , (3.11)

q∗(x, T ) = −(χ∗(x, T ) − χT (x)) , p∗(x, T ) = −(θ∗(x, T ) − θT (x)) ,for a.e. x ∈ Ω . (3.12)Again, (3.10)�(3.12) has to be understood in the weak sense.By virtue of the boundedness properties of the partial derivatives of f̃ and g̃ , weeasily onlude that the linear bakwards-in-time problem (3.9)�(3.12) admits aunique solution (p∗, q∗) suh that
q∗, q∗t ∈ L∞(QT ) , p∗ ∈ W ∩ L∞(QT ) . (3.13)12



Moreover, sine (u∗, (χ∗, θ∗)) ∈ U ×M is optimal for the ost funtional J , we musthave
lim
τց0

J(uτ , (χτ , θτ )) − J(u∗(χ∗, θ∗))

τ
≥ 0 ,whih, by de�nition of (ξ, η) , results in the inequality

T
∫

0

∫

Γ

u∗ v dσ dt +
∫

Ω

(θ∗(T ) − θT ) η(T ) dx +
∫

Ω

(χ∗(T ) − χT ) ξ(T ) dx ≥ 0 . (3.14)Finally, we eliminate the auxiliary variables (ξ, η) using the adjoint system. To thisend, we test (3.5) by q∗ , (3.6) by p∗ , (3.9) by ξ and (3.10) by η , and add the fourresulting equations. It then follows that
∫

Ω

(θ∗(T ) − θT ) η(T ) dx +
∫

Ω

(χ∗(T ) − χT ) ξ(T ) dx = −

T
∫

0

∫

Γ

p∗ v dσ dt .In onlusion, we have proved the following result.Theorem 3.1 Under the general hypotheses (H1)�(H4), the optimal ontrol prob-lem (P) admits a solution. Moreover, if (u∗, (χ∗, θ∗)) is an optimal pair, then thereexist funtions (p∗, q∗) suh that q∗, q∗t ∈ L∞(QT ) , p∗ ∈ W ∩ L∞(QT ) , suh thatthe following optimality system is satis�ed:Eqs. (1.1)�(1.4) for (u∗, (χ∗, θ∗)), Eqs. (3.9)�(3.12) for (p∗, q∗), as well as
T
∫

0

∫

Γ

(u∗ v − p∗ v) dσ dt ≥ 0 , for all admissible variations v ∈ L∞(ΓT ) . (3.15)Remark 3.2 Notie that the Hamiltonian of the system,
H(u; (q, p), (χ, θ)) :=

∫

Ω

q f̃(χ, θ) dx −
∫

Ω

∇p · ∇θ dx

+
∫

Ω

p g̃(χ, θ) dx −
∫

Γ

(k θ − u) p dσ −
1

2

∫

Γ

u2 dσ , (3.16)is onave with respet to the ontrol u . Thus, (3.15) is equivalent to saying that
H(u∗; (q∗, p∗), (χ∗, θ∗)) = max

u∈U
H(u; (q∗, p∗), (χ∗, θ∗)) . (3.17)Referenes[1℄ P. Krej£í, J. Sprekels: Phase-�eld models with hysteresis. J. Math. Anal.Appl. 252, 198�219 (2000) 13
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