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Abstra
tWe present a generi
 non-nested Monte Carlo pro
edure for 
omputing true upperbounds for Bermudan produ
ts, given an approximation of the Snell envelope. Thepleonasti
 \true" stresses that, by 
onstru
tion, the estimator is biased above theSnell envelope. The key idea is a regression estimator for the Doob martingale partof the approximative Snell envelope, whi
h preserves the martingale property. The so
onstru
ted martingale may be employed for 
omputing dual upper bounds withoutnested simulation. In general, this martingale 
an also be used as a 
ontrol variatefor simulation of 
onditional expe
tations. In this 
ontext, we develop a varian
eredu
ed version of the nested primal-dual estimator (Andersen and Broadie, 2004)and nested 
onsumption based methods (Belomestny and Milstein, 2006). Numeri
alexperiments indi
ate the eÆ
ien
y of the non-nested Monte Carlo algorithm and thevarian
e redu
ed nested one.1 Introdu
tionIn re
ent years, mu
h resear
h on pri
ing of high-dimensional Bermudan derivatives wasdevoted to the approximation of the optimal exer
ise poli
y. On
e a \good" but generallysub-optimal poli
y is known, a lower biased approximation of the Bermudan pri
e 
an befound by straightforward Monte Carlo simulation of the underlying traje
tories, stoppeda

ording to this poli
y. Most popular in this respe
t are the regression-based approa
hesof Carriere (1996), Longsta� and S
hwartz (2001), Tsistsiklis and Van Roy (1999) andClement et al. (2002). Another notable approa
h is ba
kward 
onstru
tion of the exer
iseboundary using its suitable parametrization. This method is utilized by Andersen (2000)in the 
ontext of Bermudan swaptions. An important feature of these methods is theireÆ
ien
y: by a relatively low 
omputational 
osts an approximative exer
ise poli
y 
anbe 
onstru
ted, a straightforward Monte Carlo simulation giving thereafter a lower pri
e.The goal of this paper is an eÆ
ient method for 
omputing an upper bound, given anapproximation of the Snell envelope, for example, in the form of a pre-
omputed exer
iseboundary. Rogers (2001) and independently Haugh and Kogan (2004) developed a dualmethod whi
h provides an upper bound for the Bermudan pri
e, given an approximationof the Snell envelope. A multipli
ative version of this method is studied by Jamshidian(2006). A 
omparative study of multipli
ative and additive duals is provided in Chenand Glasserman (2005). Via the Doob martingale part of a \good" approximation ofthe Snell envelope, the dual approa
h gives a tight upper bound for the Bermudan pri
e.The martingale part of the (generally unknown) Snell envelope would even result in theexa
t Bermudan pri
e. Due to this fa
t the martingale part M of any \reasonable" ap-proximation Y of the Snell envelope is a promising 
andidate for a \good" upper bound.Andersen and Broadie (2004) suggested to estimate this type of martingale upper boundby a simulation within a simulation approa
h. By the Doob de
omposition we haveMTj+1 �MTj = YTj+1 � ETj [YTj+1 ℄: (1.1)1



An inner Monte Carlo simulation is used to estimate the 
onditional expe
tation in (1.1),and an outer simulation is used to 
ompute an outer expe
tation that determines the 
or-responding upper bound. Although the demand for nested simulation makes the Andersenand Broadie algorithm 
omputationally extensive, it guarantees that the estimator forM ,whi
h fails to satisfy the martingale property in general, indu
es an upper bound estimatethat is biased high. This important \biased high"-property is not shared in general, iffaster estimation pro
edures su
h as regression methods are applied to estimate the 
on-ditional expe
tation in (1.1). The �rst attempt to over
ome this diÆ
ulty was made inGlasserman and Yu (2005), where a spe
ial regression algorithm preserving martingaleproperty of (1.1) is proposed. This algorithm, however, requires strong 
onditions onthe basis fun
tions, that may be hard to 
he
k in pra
ti
e. As an alternative, Kolodkoand S
hoenmakers (2004) propose a di�erent estimator whi
h allows for a substantiallyredu
ed amount of inner simulations. While their pro
edure may be e�e
tive, it has adrawba
k: Their alternative estimator may fail to give an upper bound when the numberof inner simulations used is too low.In this paper we avoid estimating the 
onditional expe
tation in (1.1). Instead we 
on-stru
t an estimator forM that is based on the martingale representation theorem (Se
tion2). The main advantage is that the thus 
onstru
ted estimators inherit the martingaleproperty from M , if 
onditional expe
tations are estimated in a non-anti
ipative way. Inparti
ular the 
onditional expe
tations 
an be estimated by the popular linear regressionmethod on basis fun
tions without any restri
tions on the basis (Se
tion 3). The 
orre-sponding estimator 
M for M is a martingale and 
onsequently indu
es an upper bound.Moreover, if Y is 
onstru
ted by linear regression, the same regression matri
es 
an beused to estimate 
M . Hen
e, the 
onstru
tion of 
M does require almost no 
omputational
osts in this situation (and of 
ourse, no time 
onsuming nested simulations). Some resultson the 
onvergen
e of 
M to M are presented in Theorem 2.1 and Remark 3.1.In Se
tion 4 we analyze how the estimator 
M 
an alternatively be applied as 
ontrolvariate for the primal-dual algorithm of Andersen and Broadie (2004) and for anotherapproa
h towards 
onstru
ting upper bounds whi
h was introdu
ed in Belomestny andMilstein (2006). Moreover, the martingale 
M 
an be used to derive estimates for the deltaof the Bermudan option in a 
omplete market, as is stressed in Se
tion 5.Finally we present numeri
al examples in Se
tion 6. In our simulation study for a maxi-mum 
all on several assets we �nd that the fast non-nested estimator introdu
ed in thispaper yields surprisingly good upper bounds. We also demonstrate a signi�
ant varian
eredu
tion e�e
t of 
M , if used as 
ontrol variate for the primal-dual algorithm. Se
tion 7
on
ludes.2 Constru
ting dual upper boundsWe 
onsider a Bermudan option that 
an be exer
ised at one date from the set E =fT0; : : : ; TJg. To simplify the notation we shall assume that T0 = 0 and de�ne T := TJ.Let us further assume that we have a given pri
ing measure Q 
onne
ted with a givendis
ounting numeraire N on some �ltered probability spa
e. A

ording to the Bermudan
ontra
t, when exer
ising at time Tj 2 E, the holder of the option re
eives a dis
ounted2



payment of the form HTj := h(Tj ; XTj);where h(Tj; �) is Lips
hitz 
ontinuous and Xt is the solution of the SDEdXt = a(t; Xt)dt+ b(t; Xt)dWt (2.1)X0 = x: (2.2)The 
oeÆ
ient fun
tions a : [0; T ℄�RD! RD and b : [0; T ℄�RD! RD�D are supposedto be Lips
hitz in spa
e and 1=2-H�older 
ontinuous in time, with D denoting the dimen-sion of the Brownian motion W = (W 1; : : : ;WD)> under the pri
ing measure Q. Fornow we do not assume additional regularity 
onditions on the di�usion 
oeÆ
ient b(�; �).Throughout (Ft; 0 � t � T ) is the augmented �ltration generated by this Brownian mo-tion. All expe
tations and 
onditional expe
tations are taken under the pri
ing measureQ. Conditional expe
tations under Q with respe
t to Ft will be denoted by Et[�℄. Thenumeraire N is positive, adapted, and N0 := 1:We think of X as a ve
tor of �nan
ial quantities whi
h is determined by some arbitragefree system of tradable quantities on the ba
kground. Of 
ourse all 
omponents of X maybe tradable themselves, but for example X may be also a set of (Libor) interest rateswhi
h are determined by a system of (tradable) bonds.Re
all that for any martingale MTj ; 0 � j � J with respe
t to the �ltration (FTj ; 0 � j �J) starting at M0 = 0 Y up(M) := E � max0�j�J(HTj �MTj)� (2.3)is an upper bound for the pri
e of the Bermudan option with 
ash-
ow HTj . Moreover,the Bermudan pri
e is attained at the martingale part of the Doob de
omposition of thedis
ounted pri
e pro
ess (Snell envelope). The latter pro
ess is denoted by Y �Tj .Suppose some approximation YTj of the Snell envelope is given. If Y is a good approxi-mation and it is de
omposed in its Doob de
ompositionYTj = Y0 +MTj + UTj (2.4)where the martingale M and the predi
table pro
ess U start at zero, then we expe
tY up(M) to be a 
lose upper bound of Y �0 . In prin
iple, U and M 
an be found from Yvia the relations UTj+1 � UTj = ETj [YTj+1 ℄� YTj ;MTj+1 �MTj = YTj+1 � ETj [YTj+1 ℄: (2.5)If one estimates the 
onditional expe
tations in the above expressions { say, by standardregression methods {, the estimated version of M will loose the martingale property ingeneral. In parti
ular, it is not guaranteed that it indu
es an upper bound. We will nowexploit the stru
ture of the Brownian �ltration to 
onstru
t an approximation of M ina way that all 
onditional expe
tations 
an be estimated without loosing the martingaleproperty.Indeed, under the assumption that MT is square integrable there is a square integrable(row ve
tor valued) pro
ess Zt = (Z1t ; : : : ; ZDt ) satisfyingMTj = Z Tj0 ZtdWt; j = 0; : : : ; J: (2.6)3



Hen
e, our aim is to approximate Z instead of M and then make use of relation (2.6).Of 
ourse, we 
an estimate Z only at a �nite number of time points. So we introdu
e apartition � = ft0; : : : ; tIg su
h that t0 = 0, tI = T , and E � �. We write formally, by (2.4)and (2.6), YTj+1 � YTj � Xtl2�;Tj�tl<Tj+1 Ztl(Wtl+1 �Wtl) + UTj+1 � UTj :Multiplying by the in
rement of the dth Brownian motion (W dti+1 �W dti) and taking 
on-ditional expe
tations we obtain, by the (FTj)j=1:::;J-predi
tability of UZdti � 1ti+1 � tiEti h(W dti+1 �W dti)YTj+1i ; Tj � ti < Tj+1:This formal argumentation motivates the de�nitionZ�ti := 1��i Eti h(��Wi)>YTj+1i ; Tj � ti < Tj+1 (2.7)with an obvious de�nition of the in
rements, e.g. ��W di :=W dti+1 �W dti . The 
orrespond-ing approximation of the martingale M isM�Tj := Xti2�;0�ti<Tj Z�ti(��Wi): (2.8)The following theorem shows that the martingaleM� based on the dis
retized Itô integral
onverges to the original one, M .Theorem 2.1. (i) We have,limj�j!0E �max0�j�J jM�Tj �MTj j2� = 0where j�j denotes the mesh of �.(ii) Suppose that either YTj = u(Tj ; XTj) or YTj = u(Tj ; X��Tj), j = 1; : : : ; J, where thefun
tions u(Tj ; �) are Lips
hitz 
ontinuous and X��ti is the Euler approximation of Xt 
or-responding to a partition �� � �. Then there exists a 
onstant C > 0 su
h thatE �max0�j�J jM�Tj �MTj j2� � Cj�jThe proof is postponed to the Appendix.Note that, for two martingales M (1) and M (2) starting in 0, one 
an obtain by straight-forward manipulationsjY up(M (1))� Y up(M (2))j2 � E �max0�j�J jM (1)Tj �M (2)Tj j2� (2.9)Hen
e, we obtain the following immediate 
orollary:4



Corollary 2.2. (i) It holds that limj�j!0 Y up(M�) = Y up(M)(ii) Under the assumption of Theorem 2.1, (ii), we havejY up(M�)� Y up(M)j2 � Cj�jThe above 
orollary states that the upper bounds due to M and M� do not di�er mu
h,when the mesh of the partition � is suÆ
iently small. The main advantage of M� is that(2.8) remains a martingale, even if the 
onditional expe
tations in (2.7) are estimated (of
ourse in a non-anti
ipative manner). Denoting su
h martingale (with the 
onditional ex-pe
tations in (2.7) estimated) by 
M� , Y up(
M�) therefore always de�nes an upper boundof the Bermudan pri
e Y �0 . This is in 
ontrast to the representation ofM in (2.5). Estimat-ing the 
onditional expe
tations in (2.5) 
an in general destroy the martingale propertyand so the estimated version may not indu
e an upper bound.3 Upper bounds without nested Monte CarloWe now des
ribe an algorithm based on the 
onstru
tion of the martingalesM� that allowsto 
al
ulate dual upper bounds without nested Monte Carlo. To this end we suppose thatthe approximative Snell envelope YTj is of the formYTj = u(Tj ; X��Tj):We emphasize that numeri
al methods to approximate the Snell envelope typi
ally yieldapproximations of this form. It is then straightforward that the 
onditional expe
tationsin the de�nition of Z are, in fa
t, regressions on X��ti . Pre
isely,Z�ti = 1��i EX��ti h(��Wi)>u(Tj+1; X��Tj+1)i ; Tj � ti < Tj+1:Next we approximate Z�ti by simulation based least squares regression on basis fun
tionsas was suggested by Longsta� and S
hwartz (2001) for lower bounds. To this end wesimulate eN independent samples of the Brownian in
rements ��Wi, i = 1; : : : ; I,��� fWi := (��nfWi)n=1;:::; eN := ( nfW dti+1 � nfW dti)n=1;:::; eN; d=1;:::;D(hen
e for a �xed time point ti+1, interpreted as eN � D matrix). Given a row ve
torof (possibly time dependent) basis fun
tions  (ti; �) = ( k(ti; �); k = 1; : : : ; K) and eNindependent samples (ti; n eX��ti); n = 1; : : : ; eN of the Euler s
heme X��ti 
onstru
ted fromthe above Brownian in
rements ��nfWi; n = 1; : : : ; eN; the 
orresponding regression matrixat time ti is de�ned as the pseudo-inverse A�ti of the matrixAti = � k(ti; n eX��ti)�n=1;:::; eN;k=1;:::;K(re
all that the pseudo inverse A�ti 
oin
ides with(A>tiAti)�1A>ti ;5



if the matrixAti has full rank). Then, the 
orresponding approximative regression mappingfor Z�ti is de�ned bybz�(ti; x) =  (ti; x)A�ti  ��� fWi��i �eYTj+1! ; Tj � ti < Tj+1=:  (ti; x)b�ti; (3.1)using the suggestive notations ��� fWi��i �eYTj+1! =  ��nfW di��i n eYTj+1!n=1;:::;N; d=1;:::;D ;n eYTj+1 := u(Tj+1; n eX��Tj+1); and with b�ti being the K �D matrix of estimated regression
oeÆ
ients.After having obtained the fun
tions bz�(ti; x) in (3.1) by the above des
ribed regressionpro
edure, we next 
onstru
t an approximation of M� by plugging in the system (2.1),whi
h we suppose to be independent of the Brownian in
rements simulated above:
M�Tj := bm�(Tj ; X��;��W ) := Xti2�;0�ti<Tj bz�(ti; X��ti)(��Wi):Clearly 
M�Tj is a martingale with respe
t to the enlarged �ltrationF eNTj := FTj _ G eN0 ; j = 0; :::; J;where G eN0 := �(��nfWi; i = 1; : : :I; n = 1; : : : ; eN): Obviously, the underlying stoppingproblem does not 
hange by this enlargement of �ltration and, 
onsequently, Y up(
M�)is an upper bound for the dis
ounted Bermudan option pri
e. By sampling a new setof N independent traje
tories (ti; nX��ti); n = 1; : : : ; N , of X�� an unbiased estimator forY up(
M�) is obtained bybY up(
M�) = 1N NXn=1 max0�j�J hh(Tj; nX��Tj)� bm�(Tj; nX��Tj ;��nW )i : (3.2)Remark 3.1. If the fun
tions u(Tj ; �) are Lips
hitz 
ontinuous, it 
an be dedu
ed from theresults on simulation of forward ba
kward SDE by Lemor et al. (2006) and Bender andDenk (2006) that the error jY up(
M�)� Y up(M�)jbe
omes arbitrarily small, provided the basis is appropriately 
hosen and the number Nof simulated traje
tories is suÆ
iently large. It is, however, well understood that thequality of this approximation heavily depends on the 
hoi
e of �. While Corollary 2.2suggests to 
hoose a very �ne partition �, su
h 
hoi
e may 
ause an instable estimate ofthe approximate regression fun
tions bz�(ti; x), unless the linear spa
e spanned by the basis and the number of simulated paths for the regression are \very large".6



4 Varian
e redu
ed upper bound estimatorsFrom Corollary 2.2 and Remark 3.1 we may dedu
e that Y up(
M�) is a 
lose approximationof Y up(M), provided the partition � is suÆ
iently �ne and the numeri
al regression isappropriately tailored (whi
h 
an still be
ome 
omputationally expensive, if a very �nepartition is required). From (2.5) and the fa
t that 
M� is a martingale we see that��j := ETj�1 �YTj�+ "�j := YTj � (
M�Tj � 
M�Tj�1) (4.1)is an unbiased estimator of ETj�1YTj . Thus, 
M�Tj � 
M�Tj�1 may be seen as a 
ontrolvariate (see, for example, Glasserman (2003) and Milstein and S
hoenmakers (2002)) forthe standard Monte Carlo estimator of ETj�1YTj . Note that by (4.1),"�j = (MTj � 
M�Tj)� (MTj�1 � 
M�Tj�1):Clearly, for any partition � we have ETj�1"�j = 0 and, loosely speaking, the varian
e of "�jis 
loser to zero the more e�ort one puts into the 
onstru
tion of 
M�: We may writeY up(
M�) = E 24max0�i�J0�HTi � iXj=1 �YTj � ��j �1A35 (4.2)= E 24max0�i�J0�HTi � iXj=1 �YTj � ETj�1YTj�+ iXj=1 "�j1A35� Y up(M) +E 24 JXj=1 �"�j �+35 =: Y up(M) + E ["�sum℄ :Obviously, also E ["�sum℄ will be 
loser to zero the �ner the grid mesh j�j and the largerthe set of basis fun
tions.Instead of making partitions �ner and �ner while in
reasing the set of basis fun
tions, one
an alternatively take a 
omparably rough version of 
M�, (i.e. with a rougher partition� and a small basis) and employ it as a 
ontrol variate. This leads to varian
e redu
edestimators as outlined below.Varian
e redu
ed primal-dual algorithmLet M be a martingale su
h thatETj�1 �MTj� = EXTj�1 �MTj� =MTj�1 ;and let �j := ETj�1 �YTj�+ "j := YTj � �MTj �MTj�1� ; j = 1; :::; J: (4.3)On a given traje
tory X we 
onsider for ea
h j; j = 1; :::; J; independent 
opies l�j =ETj�1 �YTj� + l"j ; l = 1; :::; L; of (4.3) under the (regular) 
onditional measure PXTj�1 ;and de�ne the (pathwise) unbiased estimators(L)j := 1L LXl=1 l�j (4.4)7



for ETj�1 �YTj� : It thus holds,ETJ hs(L)j i = ETj�1 �YTj� ; V arTJ hs(L)j i = 1LV arTj�1 ["j ℄ ; ETj�1 ["j ℄ = 0:Naturally we next 
onsider the (pathwise) estimatorU(L) := max0�i�J0�HTi � iXj=1 �YTj � s(L)j �1A ;and, based on N independent 
opies nU(L); 1 � n � N; the estimatorbY upN;L(M) := 1N NXn=1 nU(L): (4.5)Note that bY upN;L(0) is the estimator introdu
ed in the primal-dual algorithm of Andersenand Broadie (2004). So bY upN;L(M) may be 
onsidered a varian
e redu
ed version of thisalgorithm with 
ontrol variate M .Theorem 4.1. It holds thatY up(M) � E hbY upN;L(M)i � Y up(M) + min0�E ["sum℄ ;vuut JL JXj=1E h "2ji1A= Y up(M) + min E ["sum ℄ ;r JLE h�MTJ �MTJ�2i! ;where "sum := PJj=1 ("j)+.In parti
ular, the estimator bY upN;L(M) is biased up.Proof. To prove the �rst inequality we note thatE hbY upN;L(M)i = E hETJ hU(L)ii � E 24max0�i�JETJ 24HTi � iXj=1 �YTj � s(L)j �3535= E 24max0�i�J0�HTi � iXj=1 �YTj � ETj�1Yj�1A35 = Y up(M):For the se
ond inequality, let us write using (4.3) and (4.4),ETJ hU(L)i = ETJ 24max0�i�J0�HTi � iXj=1 �YTj � s(L)j �1A35� max0�i�J0�HTi � iXj=1 �YTj �ETj�1 [Yj ℄�1A+ JXj=1ETj�1 �s(L)j � ETj�1 [Yj ℄�+= max0�i�J0�HTi � iXj=1 �YTj �ETj�1 [Yj ℄�1A+ JXj=1ETj�1 24 1L LXl=1 l"j!+35 :8



It then follows thatE hbY upN;L(M)i � Y up(M) + JXj=1E 24 1L LXl=1 l"j!+35=: Y up(M) + (�):So we have on the one hand, by 
onvexity of the ()+ operator,(�) � JXj=1E �("j)+� = E ["sum℄ :On the other hand, by respe
tively Cau
hy-S
hwartz and Jensen's inequality, we have(�)2 � J JXj=18<:E24 1L LXl=1 l"j!+359=;2 � J JXj=1E24 1L LXl=1 l"j!235= JL JXj=1E h("j)2i :The last equality follows by a teles
oping sum using E h"2ji =E �(MTj �MTj)2 � (MTj�1 �MTj�1)2� :A

ording to Theorem 4.1 the bias of the estimators (4.5) and (4.2) are 
ommonly boundedby E ["sum℄ when we take M = 
M�. Furthermore,E bY upN;L(M) # Y up(M); if �L!1 or MTJ L2!MTJ� :Varian
e redu
ed 
onsumption based estimatorWhen Y is a lower approximation for the Snell envelope Belomestny and Milstein (2006)derived the following alternative upper bound estimator via the notion of 
onsumptionpro
esses Y up;BM := Y0 + J�1Xj=0 �maxfHTj ; ETjYTj+1g � YTj�= E �HTJ�+ J�1Xj=0E h�HTj �ETjYTj+1�+i=: CE + Cup;where CE is the value of a European 
laim and Cup is 
alled a 
onsumption term. Theestimation of 
onditional expe
tations 
an be done by standard Monte Carlo. In the sameway as above for the primal-dual estimator, we obtain a varian
e redu
ed estimator for9



the 
onsumption term, bCupN;L := 1N NXn=1 J�1Xj=0 �nHTj � ns(L)j �+= 1N NXn=1 J�1Xj=0 nHTj � 1L LXl=1 n�(l)j !+based on a sample of independent outer traje
tories nX; n = 1; :::; N; and L independentrealizations n�(l)j ; l = 1; :::; L; of �j given by (4.3) on ea
h traje
tory nX: Obviously wehave E h bCup;BMN;L i = E 24J�1Xj=0ETJ 24 1HTj � 1L LXl=1 1�(l)j !+3535 (4.6)= E 24J�1Xj=0ETj 24 1HTj � 1L LXl=1 1�(l)j !+3535� E 24J�1Xj=0 �HTj �ETj �YTj+1��+35by the 
onvexity of the ()+ operator. Hen
e the (varian
e redu
ed) estimator (4.6) isbiased up. In the spirit of Theorem 4.1 one 
an show for this kind of upper bound alsothatCE + E h bCupN;Li # Y up;BM ; L!1 or �MTj L2!MTj ; j = 1; :::; J� :Remark 4.2. The martingale estimator 
an also be applied to redu
e the varian
e whenestimating inner 
onditional expe
tations in the poli
y improvement pro
edure of Kolodkoand S
hoenmakers (2006). This looks promising in parti
ular in 
ombination with thevarian
e redu
tion for the outer simulation suggested in Bender et al. (2006).5 Conne
tion with hedge 
ontrols (deltas)Let us now suppose that X in (2.1) is a system of tradable se
urities with D � D (notmore Brownian motions than se
urities) and that the numeraire N is tradable also. As Nshould be positive, we additionaly assume that its dynami
s are given bydNtNt = �N(t; Xt)dt+ �N(t; Xt)dWt; N0 = 1;for some smooth and bounded s
alar fun
tion �N(�; �) and row ve
tor fun
tion �N(�; �):Thus, by assumption, X=N is a martingale under Q: We moreover assume some extrastru
tural assumptions on the 
oeÆ
ient fun
tions a; b; �N; and �N, su
h that the system(X;N) 
onstitutes a 
omplete market (see, S
hoenmakers (2005)).In the 
ase of a 
omplete market there is a dire
t 
onne
tion between the pro
ess Z in(2.6) and the hedge 
oeÆ
ients for repli
ation of the European 
laim with dis
ounted pay-o� YTj in the interval [Tj�1; Tj℄: Let us assume that YTj is a fun
tion of XTj : Then, by10




ompleteness, the 
laim with pay-o� NTjYTj 
an be perfe
tly hedged by a self-�nan
ingportfolio (#; �;X;N) with 
oeÆ
ients #; � being fun
tions (t; X;N): The i-th 
omponentof the D-dimensional row ve
tor fun
tion #(t; X;N) denotes the number of shares to holdin X i and �(t; X;N) the amount of units to 
arry in N; for realizing a perfe
t dynami
hedge in a self-�nan
ing way. We thus haveNTjYTj = NTj�1ETj�1YTj + Z TjTj�1 #(t; Xt;N)dXt+ Z TjTj�1 �(t; Xt;N)dNt:By a standard lemma 
onne
ted with Itô's formula (see S
hoenmakers (2005)), it thenfollows that YTj = ETj�1YTj + R TjTj�1 #(t; X;N)d(N�1t Xt) (5.1)= ETj�1YTj + R TjTj�1 N�1t #(t; Xt;N)(b(t; Xt)�Xt�N(t; Xt))dWt:We note that the latter equation follows easily from Itô's lemma using the fa
t that N�1Xis a martingale. From (2.6) and (5.1) we 
on
lude thatN�1t #(t; Xt;N)(b(t; Xt)�Xt�N(t; Xt)) = Zt =: z(t; Xt): (5.2)So, after estimating the fun
tion z(�; �) by an independent regression pro
edure we maydetermine the hedge 
oeÆ
ients #(�; �; �) (usually 
alled \deltas") from (5.2). For example,if D = D and the matrix b is invertible, 
ompleteness implies that also b�x�N is invertible,so then the hedge 
oeÆ
ients are unique and follow from#(t; x; n) = n ��xEt;xYTj = nz(t; x)(b(t; x)� x�N(t; x))�1:Remark 5.1. The setup in this se
tion 
overs the situation of a standard Libor (market)model, where X is a system of zero bonds de�ning the Libor rates, and the numeraire istaken to be the spot Libor measure or the terminal bond measure for instan
e. For detailssee Glasserman (2003) and S
hoenmakers (2005).6 Numeri
al exampleIn our implementation study we �rst 
onstru
t a family of stopping rules �j : 
 !fTj ; : : : ; TJg by the Longsta�-S
hwartz method. This basi
ally boils down to 
hoosinga basis (�k(t; x); k = 1; : : : ; K) and estimating ve
tors of regression 
oeÆ
ients (�l 2RK; l = 0; : : : ; J). On
e f�lg are estimated, we 
an de�ne�j := minfj � l � J : �>l �(Tl; XTl) � HTlgand YTj := ETjH�j ; j = 1; : : : ; J:We stress that stopping rules f�jg are estimated only on
e and remain �xed thereafter.Having fYTjg at hand we pro
eed generally as des
ribed in Se
tion 3. Sin
e estimatesbCi for 
ontinuation values Ci := EtiYTj+1 
an be easily obtained by regression, we, while11



estimating Z�ti , subtra
t bCi from YTj+1 . This leads to the following equivalent de�nitionof Z�ti Z�ti := 1��i Eti h(��Wi)>(YTj+1 � bCi)i ; Tj � ti < Tj+1 (6.1)The subtra
tion of bCi diminishes the varian
e and improves the quality of 
M�. Anotherimportant issue is the 
hoi
e of partition �. Theoreti
ally, a �ner partition implies betterquality of 
M�. However, in pra
ti
e, the partition � should not be too �ne in order toavoid a varian
e explosion. In our numeri
al study we have a
hieved quite good resultsby using two di�erent partitions � and ~� su
h that � � ~�. The �rst rougher partition isused to estimate regression 
oeÆ
ients �tib�ti = A�ti  ��� fWi��i � eYTj+1! ; ti 2 �; Tj � ti � Tj+1:Thereafter b�ti are interpolated by a 
onstant for points in [ti; ti+1℄, that is b�t = b�ti forall t 2 [ti; ti+1℄: In su
h a way one 
an de�ne bz�(t; x) =  (t; x)b�t for all points t 2 ~� and
onstru
t, with a slight abuse of notation in the 
ase � 6= ~�,
M�Tj = Xt2~�;0�t<Tj ẑ�(t; X��t )(�~�Wt):In all examples below we take as the �ner partition, ~� = ��, i.e. the partition on whi
h theEuler s
heme is performed.Bermudan max 
alls on D assetsThis is a ben
hmark example studied in Glasserman (2003), Haugh and Kogan (2004) andRogers (2001) among others. Spe
i�
ally, the model with D identi
al assets is 
onsideredwhere ea
h underlying has dividend yield Æ. The risk-neutral dynami
 of assets is givenby dXdt = (r� Æ)Xdt dt+ �Xdt dW dt ; d = 1; :::; D;where W dt ; k = 1; :::; D, are independent one dimensional Brownian motions and r; Æ; �are 
onstants. At any time t 2 fT0; :::; TJg the holder of the option may exer
ise it andre
eive the payo� h(Xt) = (max(X1t ; :::; XDt )� �)+:We 
onsider an example when Tj = jT=J; j = 0; :::; J, with T = 3 and J = 9. Forestimating stopping rules f�jg we use 5 � 104 paths and take as a regression basis allpolynomials of order less than or equal to 3 plus the payo� fun
tion h. The Euler s
hemewas performed on equidistant partition �� with j��j = 0:01. The same number of paths andthe same basis fun
tions have been used to estimate b�ti ; ti 2 �, where � = fT0; : : : ; TJg.Now, lo
al 
onstant interpolation allows us to de�ne b�t and hen
e bz�(t; x) for all t 2 ��.Let us note that the 
omplexity of the algorithm with interpolated b�t 
orresponds in this
ase to the 
omplexity of the usual Longsta�-S
hwartz method be
ause regression is onlyperformed on the exer
ise grid. Moreover, matri
es A�ti 
omputed during 
onstru
ting theapproximation Y 
an, in prin
iple, be used here again provided that the same paths areused to estimate bz�(t; x). 12



The results for D = 2 and D = 5 are presented in Table 1 in dependen
e on x0 withX0 = (X10 ; : : : ; XD0 )T , X10 = ::: = XD0 = x0. Upper bounds bY upN;L(0) are 
omputed byprimal-dual algorithm, hen
e by nested Monte Carlo, with N outer and L inner simu-lations without varian
e redu
tion (see for 
omparison Glasserman (2003)). As we seethe standard primal-dual method requires in some 
ases more than 40 inner simulationsto a
hieve the a

ura
y of the non-nested estimator. In fa
t, the latter one is regarding
omputation time 
omparable with the primal-dual using one inner simulation.It is interesting to look at the dependen
e of the di�eren
e � := bY up(
M�) � Y0 on thenumber of Monte Carlo paths N and the maximal order of regression polynomials p usedfor estimating 
oeÆ
ients �. In Fig.1 the 
orresponding 
urves for the two dimensionalout of the money (x0 = 90) Bermudan max 
all with the same parameters as before arepresented. Note that the set of polynomial basis fun
tion is always extended by adding thepay-o� fun
tion h. Fig. 1 indi
ates that the less N is the less improvement is observablewith in
reasing p.Let us turn now to the performan
e of our method in the setup of varian
e redu
tion.We 
ompare upper bounds of the nested Monte Carlo estimator (primal-dual) with andwithout using 
ontrol variates. In Fig. 2 the upper bound bY upN;L(M) is shown as a fun
tionof L for the 
ases of the zero martingaleM = 0 (original primal-dual method) andM = 
M�as estimated before. Again the example of 2-dimensional Bermudan max 
all with x0 = 90is 
onsidered and 
oeÆ
ients f�tig are estimated using 5 � 104 Monte Carlo simulationsand all polynomials of order less than or equal to 3. Comparing Fig. 2 with Table 1 we
on
lude that the a

ura
y of Y up(M) � bY up104;200(0) is a
hieved by the varian
e redu
edprimal-dual estimator bY up104;L(
M�) already with L = 90.7 Con
lusionNowadays the primal-dual algorithm is likely to be the most popular algorithm to 
omputeBermudan upper bounds, although its requirement for nested simulations does make it
omputationally extensive. In this paper we presented two alternatives to this algorithm.The �rst algorithm is fast, as it requires linear simulation 
ost only, and turns out to delivergood upper bounds. If nonetheless a higher a

ura
y is required, we suggest a varian
eredu
ed version of the primal-dual algorithm whi
h allows to 
ompute upper bounds withthe same a

ura
y (as with the latter one) at lower 
osts.
13



A Proof of Theorem 2.1Fix some Tj < T and 
onsider ti; Tj � ti < Tj+1. Then, by (2.6) and Itô's isometry, weget for the dth 
omponent of Z�tiZ�;dti = 1��i Eti h(��W di ) �YTj+1 � ETj [YTj+1 ℄�i= 1��i Eti "�Z ti+1ti dW ds � Z Tj+1Tj ZsdWs!#= 1��i Eti �Z ti+1ti Zds ds� (1.2)It follows from (1.2) that without any further assumptions,limj�j!0E 24 Xti2�;Tj�ti<Tj Z ti+1ti jZs � Z�ti j2ds35 = 0 (1.3)as noted e.g. in Lemor et al. (2006). Sin
e, by Doob's inequality and Itô's isometry,E �max0�j�J jM�Tj �MTj j2� � 4E �jM�T �MT j2�= 4E 24J�1Xj=0 Xti2�;Tj�ti<Tj Z ti+1ti jZs � Z�ti j2ds35 ; (1.4)assertion (i) immediately follows.We now prove (ii) and �rst 
onsider the 
ase YTj = u(Tj; XTj). Note that, on [Tj ; Tj+1℄,Z is the 
ontrol part of the simple forward-ba
kward SDE (FBSDE)Xt = XTj + Z tTj b(s;Xs)ds+ Z tTj b(s;Xs)dWs�Yt = u(Tj+1; XTj+1)� Z Tj+1t ZtdWt:Due to the Lips
hitz 
ontinuity of u(Tj+1; �) results on L2-regularity obtained for the
ontrol part of FBSDEs in more general situations by Zhang (2004) and Bender andZhang (2006) 
an be applied. In 
ombination with (1.2) these results imply that (1.3) 
anbe strengthened to E 24 Xti2�;Tj�ti<Tj Z ti+1ti jZs � Z�ti j2ds35 � Cj j�jfor some 
onstant Cj . Hen
e, (ii) follows in the 
ase YTj = u(Tj ; XTj) with 
onstantC =Pj Cj thanks to (1.4). 14



To prove (ii) in the 
ase YTj = u(Tj; X��Tj), denote the martingale part in the Doob de
om-position of �YTj = u(Tj ; XTj) by �M . Moreover, de�ne�Z�ti := 1��i Eti h(��Wi)>u(Tj ; XTj)i ; Tj � ti < Tj+1�M�Tj := Xti2�;0�ti<Tj �Z�ti(��Wi):Then,E � max0�j�J jM�Tj �MTj j2� � 12E �jM�T � �M�T j2 + j �MT � �M�T j2 + jMT � �MT j2�= 12[(I) + (II) + (III)℄From the previous 
ase, the se
ond term is of order j�j. From the Lips
hitz 
ontinuity ofu(Tj ; �) we get(III) = E 24j JXj=1 u(Tj ; X��Tj)� u(Tj; XTj)�ETj�1[u(Tj; X��Tj)� u(Tj ; XTj)℄j235� K JXj=1E hjX��Tj �XTj j2i � Kj��j � Kj�jwhere the generi
 
onstant K may di�er from appli
ation to appli
ation. To estimate (I),note that, for Tj � ti < Tj+1,Eti h(��Wi)>(u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1))i2 (��i )�1= Etih(��Wi)>(Eti+1[u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1)℄�Eti[u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1)℄)i2(��i )�1� EtihEti+1 [u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1)℄2�Eti[u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1)℄2i:Thus,(I) = J�1Xj=0 XTj�ti<Tj+1E h(��Wi)>(u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1))i2 (��i )�1� J�1Xj=0E hju(Tj+1; X��Tj+1)� u(Tj+1; XTj+1)j2i� KE[jX��Tj+1 �XTj+1 j2℄ � Kj��j � Kj�j:Referen
esL. Andersen (2000). A simple approa
h to the pri
ing of Bermudan swaptions in themulti-fa
tor Libor Market Model. Journal of Computational Finan
e, 3, 5-32.15
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Table 1: Bounds (with 95% 
on�den
e intervals) for Bermudan max 
all with parameters� = 100; r = 0:05, � = 0:2, Æ = 0:1 and di�erent D and x0D x0 Lower Bound Upper Bound Upper Bound Upper BoundY0 bY up(
M�) bY up104;200(0) bY up104;40(0)90 7.9751�0.139 8.6963�0.052 8.2311�0.091 8.621�0.0922 100 13.883�0.177 14.515�0.073 14.182�0.011 15.23�0.013110 21.291�0.205 21.972�0.095 21.681�0.015 23.67�0.01790 16.523�0.194 18.134�0.069 17.163�0.012 17.53�0.0145 100 26.042�0.232 27.976�0.085 27.216�0.016 27.87�0.016110 36.526�0.263 38.882�0.098 38.577�0.020 39.70�0.023
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p=3Figure 1: Di�eren
e � = bY up(
M�) � Y0 in dependen
e on the number of Monte Carlopaths N and the maximal order p of polynomials used for regression.
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Figure 2: Upper bounds bY upN;L(0) (solid line) and bY upN;L(
M�) (dash line) in dependen
e onthe number of inner Monte Carlo paths L, the number of outer paths N being equal to5� 104.
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