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AbstratWe present a generi non-nested Monte Carlo proedure for omputing true upperbounds for Bermudan produts, given an approximation of the Snell envelope. Thepleonasti \true" stresses that, by onstrution, the estimator is biased above theSnell envelope. The key idea is a regression estimator for the Doob martingale partof the approximative Snell envelope, whih preserves the martingale property. The soonstruted martingale may be employed for omputing dual upper bounds withoutnested simulation. In general, this martingale an also be used as a ontrol variatefor simulation of onditional expetations. In this ontext, we develop a varianeredued version of the nested primal-dual estimator (Andersen and Broadie, 2004)and nested onsumption based methods (Belomestny and Milstein, 2006). Numerialexperiments indiate the eÆieny of the non-nested Monte Carlo algorithm and thevariane redued nested one.1 IntrodutionIn reent years, muh researh on priing of high-dimensional Bermudan derivatives wasdevoted to the approximation of the optimal exerise poliy. One a \good" but generallysub-optimal poliy is known, a lower biased approximation of the Bermudan prie an befound by straightforward Monte Carlo simulation of the underlying trajetories, stoppedaording to this poliy. Most popular in this respet are the regression-based approahesof Carriere (1996), Longsta� and Shwartz (2001), Tsistsiklis and Van Roy (1999) andClement et al. (2002). Another notable approah is bakward onstrution of the exeriseboundary using its suitable parametrization. This method is utilized by Andersen (2000)in the ontext of Bermudan swaptions. An important feature of these methods is theireÆieny: by a relatively low omputational osts an approximative exerise poliy anbe onstruted, a straightforward Monte Carlo simulation giving thereafter a lower prie.The goal of this paper is an eÆient method for omputing an upper bound, given anapproximation of the Snell envelope, for example, in the form of a pre-omputed exeriseboundary. Rogers (2001) and independently Haugh and Kogan (2004) developed a dualmethod whih provides an upper bound for the Bermudan prie, given an approximationof the Snell envelope. A multipliative version of this method is studied by Jamshidian(2006). A omparative study of multipliative and additive duals is provided in Chenand Glasserman (2005). Via the Doob martingale part of a \good" approximation ofthe Snell envelope, the dual approah gives a tight upper bound for the Bermudan prie.The martingale part of the (generally unknown) Snell envelope would even result in theexat Bermudan prie. Due to this fat the martingale part M of any \reasonable" ap-proximation Y of the Snell envelope is a promising andidate for a \good" upper bound.Andersen and Broadie (2004) suggested to estimate this type of martingale upper boundby a simulation within a simulation approah. By the Doob deomposition we haveMTj+1 �MTj = YTj+1 � ETj [YTj+1 ℄: (1.1)1



An inner Monte Carlo simulation is used to estimate the onditional expetation in (1.1),and an outer simulation is used to ompute an outer expetation that determines the or-responding upper bound. Although the demand for nested simulation makes the Andersenand Broadie algorithm omputationally extensive, it guarantees that the estimator forM ,whih fails to satisfy the martingale property in general, indues an upper bound estimatethat is biased high. This important \biased high"-property is not shared in general, iffaster estimation proedures suh as regression methods are applied to estimate the on-ditional expetation in (1.1). The �rst attempt to overome this diÆulty was made inGlasserman and Yu (2005), where a speial regression algorithm preserving martingaleproperty of (1.1) is proposed. This algorithm, however, requires strong onditions onthe basis funtions, that may be hard to hek in pratie. As an alternative, Kolodkoand Shoenmakers (2004) propose a di�erent estimator whih allows for a substantiallyredued amount of inner simulations. While their proedure may be e�etive, it has adrawbak: Their alternative estimator may fail to give an upper bound when the numberof inner simulations used is too low.In this paper we avoid estimating the onditional expetation in (1.1). Instead we on-strut an estimator forM that is based on the martingale representation theorem (Setion2). The main advantage is that the thus onstruted estimators inherit the martingaleproperty from M , if onditional expetations are estimated in a non-antiipative way. Inpartiular the onditional expetations an be estimated by the popular linear regressionmethod on basis funtions without any restritions on the basis (Setion 3). The orre-sponding estimator M for M is a martingale and onsequently indues an upper bound.Moreover, if Y is onstruted by linear regression, the same regression matries an beused to estimate M . Hene, the onstrution of M does require almost no omputationalosts in this situation (and of ourse, no time onsuming nested simulations). Some resultson the onvergene of M to M are presented in Theorem 2.1 and Remark 3.1.In Setion 4 we analyze how the estimator M an alternatively be applied as ontrolvariate for the primal-dual algorithm of Andersen and Broadie (2004) and for anotherapproah towards onstruting upper bounds whih was introdued in Belomestny andMilstein (2006). Moreover, the martingale M an be used to derive estimates for the deltaof the Bermudan option in a omplete market, as is stressed in Setion 5.Finally we present numerial examples in Setion 6. In our simulation study for a maxi-mum all on several assets we �nd that the fast non-nested estimator introdued in thispaper yields surprisingly good upper bounds. We also demonstrate a signi�ant varianeredution e�et of M , if used as ontrol variate for the primal-dual algorithm. Setion 7onludes.2 Construting dual upper boundsWe onsider a Bermudan option that an be exerised at one date from the set E =fT0; : : : ; TJg. To simplify the notation we shall assume that T0 = 0 and de�ne T := TJ.Let us further assume that we have a given priing measure Q onneted with a givendisounting numeraire N on some �ltered probability spae. Aording to the Bermudanontrat, when exerising at time Tj 2 E, the holder of the option reeives a disounted2



payment of the form HTj := h(Tj ; XTj);where h(Tj; �) is Lipshitz ontinuous and Xt is the solution of the SDEdXt = a(t; Xt)dt+ b(t; Xt)dWt (2.1)X0 = x: (2.2)The oeÆient funtions a : [0; T ℄�RD! RD and b : [0; T ℄�RD! RD�D are supposedto be Lipshitz in spae and 1=2-H�older ontinuous in time, with D denoting the dimen-sion of the Brownian motion W = (W 1; : : : ;WD)> under the priing measure Q. Fornow we do not assume additional regularity onditions on the di�usion oeÆient b(�; �).Throughout (Ft; 0 � t � T ) is the augmented �ltration generated by this Brownian mo-tion. All expetations and onditional expetations are taken under the priing measureQ. Conditional expetations under Q with respet to Ft will be denoted by Et[�℄. Thenumeraire N is positive, adapted, and N0 := 1:We think of X as a vetor of �nanial quantities whih is determined by some arbitragefree system of tradable quantities on the bakground. Of ourse all omponents of X maybe tradable themselves, but for example X may be also a set of (Libor) interest rateswhih are determined by a system of (tradable) bonds.Reall that for any martingale MTj ; 0 � j � J with respet to the �ltration (FTj ; 0 � j �J) starting at M0 = 0 Y up(M) := E � max0�j�J(HTj �MTj)� (2.3)is an upper bound for the prie of the Bermudan option with ash-ow HTj . Moreover,the Bermudan prie is attained at the martingale part of the Doob deomposition of thedisounted prie proess (Snell envelope). The latter proess is denoted by Y �Tj .Suppose some approximation YTj of the Snell envelope is given. If Y is a good approxi-mation and it is deomposed in its Doob deompositionYTj = Y0 +MTj + UTj (2.4)where the martingale M and the preditable proess U start at zero, then we expetY up(M) to be a lose upper bound of Y �0 . In priniple, U and M an be found from Yvia the relations UTj+1 � UTj = ETj [YTj+1 ℄� YTj ;MTj+1 �MTj = YTj+1 � ETj [YTj+1 ℄: (2.5)If one estimates the onditional expetations in the above expressions { say, by standardregression methods {, the estimated version of M will loose the martingale property ingeneral. In partiular, it is not guaranteed that it indues an upper bound. We will nowexploit the struture of the Brownian �ltration to onstrut an approximation of M ina way that all onditional expetations an be estimated without loosing the martingaleproperty.Indeed, under the assumption that MT is square integrable there is a square integrable(row vetor valued) proess Zt = (Z1t ; : : : ; ZDt ) satisfyingMTj = Z Tj0 ZtdWt; j = 0; : : : ; J: (2.6)3



Hene, our aim is to approximate Z instead of M and then make use of relation (2.6).Of ourse, we an estimate Z only at a �nite number of time points. So we introdue apartition � = ft0; : : : ; tIg suh that t0 = 0, tI = T , and E � �. We write formally, by (2.4)and (2.6), YTj+1 � YTj � Xtl2�;Tj�tl<Tj+1 Ztl(Wtl+1 �Wtl) + UTj+1 � UTj :Multiplying by the inrement of the dth Brownian motion (W dti+1 �W dti) and taking on-ditional expetations we obtain, by the (FTj)j=1:::;J-preditability of UZdti � 1ti+1 � tiEti h(W dti+1 �W dti)YTj+1i ; Tj � ti < Tj+1:This formal argumentation motivates the de�nitionZ�ti := 1��i Eti h(��Wi)>YTj+1i ; Tj � ti < Tj+1 (2.7)with an obvious de�nition of the inrements, e.g. ��W di :=W dti+1 �W dti . The orrespond-ing approximation of the martingale M isM�Tj := Xti2�;0�ti<Tj Z�ti(��Wi): (2.8)The following theorem shows that the martingaleM� based on the disretized Itô integralonverges to the original one, M .Theorem 2.1. (i) We have,limj�j!0E �max0�j�J jM�Tj �MTj j2� = 0where j�j denotes the mesh of �.(ii) Suppose that either YTj = u(Tj ; XTj) or YTj = u(Tj ; X��Tj), j = 1; : : : ; J, where thefuntions u(Tj ; �) are Lipshitz ontinuous and X��ti is the Euler approximation of Xt or-responding to a partition �� � �. Then there exists a onstant C > 0 suh thatE �max0�j�J jM�Tj �MTj j2� � Cj�jThe proof is postponed to the Appendix.Note that, for two martingales M (1) and M (2) starting in 0, one an obtain by straight-forward manipulationsjY up(M (1))� Y up(M (2))j2 � E �max0�j�J jM (1)Tj �M (2)Tj j2� (2.9)Hene, we obtain the following immediate orollary:4



Corollary 2.2. (i) It holds that limj�j!0 Y up(M�) = Y up(M)(ii) Under the assumption of Theorem 2.1, (ii), we havejY up(M�)� Y up(M)j2 � Cj�jThe above orollary states that the upper bounds due to M and M� do not di�er muh,when the mesh of the partition � is suÆiently small. The main advantage of M� is that(2.8) remains a martingale, even if the onditional expetations in (2.7) are estimated (ofourse in a non-antiipative manner). Denoting suh martingale (with the onditional ex-petations in (2.7) estimated) by M� , Y up(M�) therefore always de�nes an upper boundof the Bermudan prie Y �0 . This is in ontrast to the representation ofM in (2.5). Estimat-ing the onditional expetations in (2.5) an in general destroy the martingale propertyand so the estimated version may not indue an upper bound.3 Upper bounds without nested Monte CarloWe now desribe an algorithm based on the onstrution of the martingalesM� that allowsto alulate dual upper bounds without nested Monte Carlo. To this end we suppose thatthe approximative Snell envelope YTj is of the formYTj = u(Tj ; X��Tj):We emphasize that numerial methods to approximate the Snell envelope typially yieldapproximations of this form. It is then straightforward that the onditional expetationsin the de�nition of Z are, in fat, regressions on X��ti . Preisely,Z�ti = 1��i EX��ti h(��Wi)>u(Tj+1; X��Tj+1)i ; Tj � ti < Tj+1:Next we approximate Z�ti by simulation based least squares regression on basis funtionsas was suggested by Longsta� and Shwartz (2001) for lower bounds. To this end wesimulate eN independent samples of the Brownian inrements ��Wi, i = 1; : : : ; I,��� fWi := (��nfWi)n=1;:::; eN := ( nfW dti+1 � nfW dti)n=1;:::; eN; d=1;:::;D(hene for a �xed time point ti+1, interpreted as eN � D matrix). Given a row vetorof (possibly time dependent) basis funtions  (ti; �) = ( k(ti; �); k = 1; : : : ; K) and eNindependent samples (ti; n eX��ti); n = 1; : : : ; eN of the Euler sheme X��ti onstruted fromthe above Brownian inrements ��nfWi; n = 1; : : : ; eN; the orresponding regression matrixat time ti is de�ned as the pseudo-inverse A�ti of the matrixAti = � k(ti; n eX��ti)�n=1;:::; eN;k=1;:::;K(reall that the pseudo inverse A�ti oinides with(A>tiAti)�1A>ti ;5



if the matrixAti has full rank). Then, the orresponding approximative regression mappingfor Z�ti is de�ned bybz�(ti; x) =  (ti; x)A�ti  ��� fWi��i �eYTj+1! ; Tj � ti < Tj+1=:  (ti; x)b�ti; (3.1)using the suggestive notations ��� fWi��i �eYTj+1! =  ��nfW di��i n eYTj+1!n=1;:::;N; d=1;:::;D ;n eYTj+1 := u(Tj+1; n eX��Tj+1); and with b�ti being the K �D matrix of estimated regressionoeÆients.After having obtained the funtions bz�(ti; x) in (3.1) by the above desribed regressionproedure, we next onstrut an approximation of M� by plugging in the system (2.1),whih we suppose to be independent of the Brownian inrements simulated above:M�Tj := bm�(Tj ; X��;��W ) := Xti2�;0�ti<Tj bz�(ti; X��ti)(��Wi):Clearly M�Tj is a martingale with respet to the enlarged �ltrationF eNTj := FTj _ G eN0 ; j = 0; :::; J;where G eN0 := �(��nfWi; i = 1; : : :I; n = 1; : : : ; eN): Obviously, the underlying stoppingproblem does not hange by this enlargement of �ltration and, onsequently, Y up(M�)is an upper bound for the disounted Bermudan option prie. By sampling a new setof N independent trajetories (ti; nX��ti); n = 1; : : : ; N , of X�� an unbiased estimator forY up(M�) is obtained bybY up(M�) = 1N NXn=1 max0�j�J hh(Tj; nX��Tj)� bm�(Tj; nX��Tj ;��nW )i : (3.2)Remark 3.1. If the funtions u(Tj ; �) are Lipshitz ontinuous, it an be dedued from theresults on simulation of forward bakward SDE by Lemor et al. (2006) and Bender andDenk (2006) that the error jY up(M�)� Y up(M�)jbeomes arbitrarily small, provided the basis is appropriately hosen and the number Nof simulated trajetories is suÆiently large. It is, however, well understood that thequality of this approximation heavily depends on the hoie of �. While Corollary 2.2suggests to hoose a very �ne partition �, suh hoie may ause an instable estimate ofthe approximate regression funtions bz�(ti; x), unless the linear spae spanned by the basis and the number of simulated paths for the regression are \very large".6



4 Variane redued upper bound estimatorsFrom Corollary 2.2 and Remark 3.1 we may dedue that Y up(M�) is a lose approximationof Y up(M), provided the partition � is suÆiently �ne and the numerial regression isappropriately tailored (whih an still beome omputationally expensive, if a very �nepartition is required). From (2.5) and the fat that M� is a martingale we see that��j := ETj�1 �YTj�+ "�j := YTj � (M�Tj � M�Tj�1) (4.1)is an unbiased estimator of ETj�1YTj . Thus, M�Tj � M�Tj�1 may be seen as a ontrolvariate (see, for example, Glasserman (2003) and Milstein and Shoenmakers (2002)) forthe standard Monte Carlo estimator of ETj�1YTj . Note that by (4.1),"�j = (MTj � M�Tj)� (MTj�1 � M�Tj�1):Clearly, for any partition � we have ETj�1"�j = 0 and, loosely speaking, the variane of "�jis loser to zero the more e�ort one puts into the onstrution of M�: We may writeY up(M�) = E 24max0�i�J0�HTi � iXj=1 �YTj � ��j �1A35 (4.2)= E 24max0�i�J0�HTi � iXj=1 �YTj � ETj�1YTj�+ iXj=1 "�j1A35� Y up(M) +E 24 JXj=1 �"�j �+35 =: Y up(M) + E ["�sum℄ :Obviously, also E ["�sum℄ will be loser to zero the �ner the grid mesh j�j and the largerthe set of basis funtions.Instead of making partitions �ner and �ner while inreasing the set of basis funtions, onean alternatively take a omparably rough version of M�, (i.e. with a rougher partition� and a small basis) and employ it as a ontrol variate. This leads to variane reduedestimators as outlined below.Variane redued primal-dual algorithmLet M be a martingale suh thatETj�1 �MTj� = EXTj�1 �MTj� =MTj�1 ;and let �j := ETj�1 �YTj�+ "j := YTj � �MTj �MTj�1� ; j = 1; :::; J: (4.3)On a given trajetory X we onsider for eah j; j = 1; :::; J; independent opies l�j =ETj�1 �YTj� + l"j ; l = 1; :::; L; of (4.3) under the (regular) onditional measure PXTj�1 ;and de�ne the (pathwise) unbiased estimators(L)j := 1L LXl=1 l�j (4.4)7



for ETj�1 �YTj� : It thus holds,ETJ hs(L)j i = ETj�1 �YTj� ; V arTJ hs(L)j i = 1LV arTj�1 ["j ℄ ; ETj�1 ["j ℄ = 0:Naturally we next onsider the (pathwise) estimatorU(L) := max0�i�J0�HTi � iXj=1 �YTj � s(L)j �1A ;and, based on N independent opies nU(L); 1 � n � N; the estimatorbY upN;L(M) := 1N NXn=1 nU(L): (4.5)Note that bY upN;L(0) is the estimator introdued in the primal-dual algorithm of Andersenand Broadie (2004). So bY upN;L(M) may be onsidered a variane redued version of thisalgorithm with ontrol variate M .Theorem 4.1. It holds thatY up(M) � E hbY upN;L(M)i � Y up(M) + min0�E ["sum℄ ;vuut JL JXj=1E h "2ji1A= Y up(M) + min E ["sum ℄ ;r JLE h�MTJ �MTJ�2i! ;where "sum := PJj=1 ("j)+.In partiular, the estimator bY upN;L(M) is biased up.Proof. To prove the �rst inequality we note thatE hbY upN;L(M)i = E hETJ hU(L)ii � E 24max0�i�JETJ 24HTi � iXj=1 �YTj � s(L)j �3535= E 24max0�i�J0�HTi � iXj=1 �YTj � ETj�1Yj�1A35 = Y up(M):For the seond inequality, let us write using (4.3) and (4.4),ETJ hU(L)i = ETJ 24max0�i�J0�HTi � iXj=1 �YTj � s(L)j �1A35� max0�i�J0�HTi � iXj=1 �YTj �ETj�1 [Yj ℄�1A+ JXj=1ETj�1 �s(L)j � ETj�1 [Yj ℄�+= max0�i�J0�HTi � iXj=1 �YTj �ETj�1 [Yj ℄�1A+ JXj=1ETj�1 24 1L LXl=1 l"j!+35 :8



It then follows thatE hbY upN;L(M)i � Y up(M) + JXj=1E 24 1L LXl=1 l"j!+35=: Y up(M) + (�):So we have on the one hand, by onvexity of the ()+ operator,(�) � JXj=1E �("j)+� = E ["sum℄ :On the other hand, by respetively Cauhy-Shwartz and Jensen's inequality, we have(�)2 � J JXj=18<:E24 1L LXl=1 l"j!+359=;2 � J JXj=1E24 1L LXl=1 l"j!235= JL JXj=1E h("j)2i :The last equality follows by a telesoping sum using E h"2ji =E �(MTj �MTj)2 � (MTj�1 �MTj�1)2� :Aording to Theorem 4.1 the bias of the estimators (4.5) and (4.2) are ommonly boundedby E ["sum℄ when we take M = M�. Furthermore,E bY upN;L(M) # Y up(M); if �L!1 or MTJ L2!MTJ� :Variane redued onsumption based estimatorWhen Y is a lower approximation for the Snell envelope Belomestny and Milstein (2006)derived the following alternative upper bound estimator via the notion of onsumptionproesses Y up;BM := Y0 + J�1Xj=0 �maxfHTj ; ETjYTj+1g � YTj�= E �HTJ�+ J�1Xj=0E h�HTj �ETjYTj+1�+i=: CE + Cup;where CE is the value of a European laim and Cup is alled a onsumption term. Theestimation of onditional expetations an be done by standard Monte Carlo. In the sameway as above for the primal-dual estimator, we obtain a variane redued estimator for9



the onsumption term, bCupN;L := 1N NXn=1 J�1Xj=0 �nHTj � ns(L)j �+= 1N NXn=1 J�1Xj=0 nHTj � 1L LXl=1 n�(l)j !+based on a sample of independent outer trajetories nX; n = 1; :::; N; and L independentrealizations n�(l)j ; l = 1; :::; L; of �j given by (4.3) on eah trajetory nX: Obviously wehave E h bCup;BMN;L i = E 24J�1Xj=0ETJ 24 1HTj � 1L LXl=1 1�(l)j !+3535 (4.6)= E 24J�1Xj=0ETj 24 1HTj � 1L LXl=1 1�(l)j !+3535� E 24J�1Xj=0 �HTj �ETj �YTj+1��+35by the onvexity of the ()+ operator. Hene the (variane redued) estimator (4.6) isbiased up. In the spirit of Theorem 4.1 one an show for this kind of upper bound alsothatCE + E h bCupN;Li # Y up;BM ; L!1 or �MTj L2!MTj ; j = 1; :::; J� :Remark 4.2. The martingale estimator an also be applied to redue the variane whenestimating inner onditional expetations in the poliy improvement proedure of Kolodkoand Shoenmakers (2006). This looks promising in partiular in ombination with thevariane redution for the outer simulation suggested in Bender et al. (2006).5 Connetion with hedge ontrols (deltas)Let us now suppose that X in (2.1) is a system of tradable seurities with D � D (notmore Brownian motions than seurities) and that the numeraire N is tradable also. As Nshould be positive, we additionaly assume that its dynamis are given bydNtNt = �N(t; Xt)dt+ �N(t; Xt)dWt; N0 = 1;for some smooth and bounded salar funtion �N(�; �) and row vetor funtion �N(�; �):Thus, by assumption, X=N is a martingale under Q: We moreover assume some extrastrutural assumptions on the oeÆient funtions a; b; �N; and �N, suh that the system(X;N) onstitutes a omplete market (see, Shoenmakers (2005)).In the ase of a omplete market there is a diret onnetion between the proess Z in(2.6) and the hedge oeÆients for repliation of the European laim with disounted pay-o� YTj in the interval [Tj�1; Tj℄: Let us assume that YTj is a funtion of XTj : Then, by10



ompleteness, the laim with pay-o� NTjYTj an be perfetly hedged by a self-�naningportfolio (#; �;X;N) with oeÆients #; � being funtions (t; X;N): The i-th omponentof the D-dimensional row vetor funtion #(t; X;N) denotes the number of shares to holdin X i and �(t; X;N) the amount of units to arry in N; for realizing a perfet dynamihedge in a self-�naning way. We thus haveNTjYTj = NTj�1ETj�1YTj + Z TjTj�1 #(t; Xt;N)dXt+ Z TjTj�1 �(t; Xt;N)dNt:By a standard lemma onneted with Itô's formula (see Shoenmakers (2005)), it thenfollows that YTj = ETj�1YTj + R TjTj�1 #(t; X;N)d(N�1t Xt) (5.1)= ETj�1YTj + R TjTj�1 N�1t #(t; Xt;N)(b(t; Xt)�Xt�N(t; Xt))dWt:We note that the latter equation follows easily from Itô's lemma using the fat that N�1Xis a martingale. From (2.6) and (5.1) we onlude thatN�1t #(t; Xt;N)(b(t; Xt)�Xt�N(t; Xt)) = Zt =: z(t; Xt): (5.2)So, after estimating the funtion z(�; �) by an independent regression proedure we maydetermine the hedge oeÆients #(�; �; �) (usually alled \deltas") from (5.2). For example,if D = D and the matrix b is invertible, ompleteness implies that also b�x�N is invertible,so then the hedge oeÆients are unique and follow from#(t; x; n) = n ��xEt;xYTj = nz(t; x)(b(t; x)� x�N(t; x))�1:Remark 5.1. The setup in this setion overs the situation of a standard Libor (market)model, where X is a system of zero bonds de�ning the Libor rates, and the numeraire istaken to be the spot Libor measure or the terminal bond measure for instane. For detailssee Glasserman (2003) and Shoenmakers (2005).6 Numerial exampleIn our implementation study we �rst onstrut a family of stopping rules �j : 
 !fTj ; : : : ; TJg by the Longsta�-Shwartz method. This basially boils down to hoosinga basis (�k(t; x); k = 1; : : : ; K) and estimating vetors of regression oeÆients (�l 2RK; l = 0; : : : ; J). One f�lg are estimated, we an de�ne�j := minfj � l � J : �>l �(Tl; XTl) � HTlgand YTj := ETjH�j ; j = 1; : : : ; J:We stress that stopping rules f�jg are estimated only one and remain �xed thereafter.Having fYTjg at hand we proeed generally as desribed in Setion 3. Sine estimatesbCi for ontinuation values Ci := EtiYTj+1 an be easily obtained by regression, we, while11



estimating Z�ti , subtrat bCi from YTj+1 . This leads to the following equivalent de�nitionof Z�ti Z�ti := 1��i Eti h(��Wi)>(YTj+1 � bCi)i ; Tj � ti < Tj+1 (6.1)The subtration of bCi diminishes the variane and improves the quality of M�. Anotherimportant issue is the hoie of partition �. Theoretially, a �ner partition implies betterquality of M�. However, in pratie, the partition � should not be too �ne in order toavoid a variane explosion. In our numerial study we have ahieved quite good resultsby using two di�erent partitions � and ~� suh that � � ~�. The �rst rougher partition isused to estimate regression oeÆients �tib�ti = A�ti  ��� fWi��i � eYTj+1! ; ti 2 �; Tj � ti � Tj+1:Thereafter b�ti are interpolated by a onstant for points in [ti; ti+1℄, that is b�t = b�ti forall t 2 [ti; ti+1℄: In suh a way one an de�ne bz�(t; x) =  (t; x)b�t for all points t 2 ~� andonstrut, with a slight abuse of notation in the ase � 6= ~�,M�Tj = Xt2~�;0�t<Tj ẑ�(t; X��t )(�~�Wt):In all examples below we take as the �ner partition, ~� = ��, i.e. the partition on whih theEuler sheme is performed.Bermudan max alls on D assetsThis is a benhmark example studied in Glasserman (2003), Haugh and Kogan (2004) andRogers (2001) among others. Spei�ally, the model with D idential assets is onsideredwhere eah underlying has dividend yield Æ. The risk-neutral dynami of assets is givenby dXdt = (r� Æ)Xdt dt+ �Xdt dW dt ; d = 1; :::; D;where W dt ; k = 1; :::; D, are independent one dimensional Brownian motions and r; Æ; �are onstants. At any time t 2 fT0; :::; TJg the holder of the option may exerise it andreeive the payo� h(Xt) = (max(X1t ; :::; XDt )� �)+:We onsider an example when Tj = jT=J; j = 0; :::; J, with T = 3 and J = 9. Forestimating stopping rules f�jg we use 5 � 104 paths and take as a regression basis allpolynomials of order less than or equal to 3 plus the payo� funtion h. The Euler shemewas performed on equidistant partition �� with j��j = 0:01. The same number of paths andthe same basis funtions have been used to estimate b�ti ; ti 2 �, where � = fT0; : : : ; TJg.Now, loal onstant interpolation allows us to de�ne b�t and hene bz�(t; x) for all t 2 ��.Let us note that the omplexity of the algorithm with interpolated b�t orresponds in thisase to the omplexity of the usual Longsta�-Shwartz method beause regression is onlyperformed on the exerise grid. Moreover, matries A�ti omputed during onstruting theapproximation Y an, in priniple, be used here again provided that the same paths areused to estimate bz�(t; x). 12



The results for D = 2 and D = 5 are presented in Table 1 in dependene on x0 withX0 = (X10 ; : : : ; XD0 )T , X10 = ::: = XD0 = x0. Upper bounds bY upN;L(0) are omputed byprimal-dual algorithm, hene by nested Monte Carlo, with N outer and L inner simu-lations without variane redution (see for omparison Glasserman (2003)). As we seethe standard primal-dual method requires in some ases more than 40 inner simulationsto ahieve the auray of the non-nested estimator. In fat, the latter one is regardingomputation time omparable with the primal-dual using one inner simulation.It is interesting to look at the dependene of the di�erene � := bY up(M�) � Y0 on thenumber of Monte Carlo paths N and the maximal order of regression polynomials p usedfor estimating oeÆients �. In Fig.1 the orresponding urves for the two dimensionalout of the money (x0 = 90) Bermudan max all with the same parameters as before arepresented. Note that the set of polynomial basis funtion is always extended by adding thepay-o� funtion h. Fig. 1 indiates that the less N is the less improvement is observablewith inreasing p.Let us turn now to the performane of our method in the setup of variane redution.We ompare upper bounds of the nested Monte Carlo estimator (primal-dual) with andwithout using ontrol variates. In Fig. 2 the upper bound bY upN;L(M) is shown as a funtionof L for the ases of the zero martingaleM = 0 (original primal-dual method) andM = M�as estimated before. Again the example of 2-dimensional Bermudan max all with x0 = 90is onsidered and oeÆients f�tig are estimated using 5 � 104 Monte Carlo simulationsand all polynomials of order less than or equal to 3. Comparing Fig. 2 with Table 1 weonlude that the auray of Y up(M) � bY up104;200(0) is ahieved by the variane reduedprimal-dual estimator bY up104;L(M�) already with L = 90.7 ConlusionNowadays the primal-dual algorithm is likely to be the most popular algorithm to omputeBermudan upper bounds, although its requirement for nested simulations does make itomputationally extensive. In this paper we presented two alternatives to this algorithm.The �rst algorithm is fast, as it requires linear simulation ost only, and turns out to delivergood upper bounds. If nonetheless a higher auray is required, we suggest a varianeredued version of the primal-dual algorithm whih allows to ompute upper bounds withthe same auray (as with the latter one) at lower osts.
13



A Proof of Theorem 2.1Fix some Tj < T and onsider ti; Tj � ti < Tj+1. Then, by (2.6) and Itô's isometry, weget for the dth omponent of Z�tiZ�;dti = 1��i Eti h(��W di ) �YTj+1 � ETj [YTj+1 ℄�i= 1��i Eti "�Z ti+1ti dW ds � Z Tj+1Tj ZsdWs!#= 1��i Eti �Z ti+1ti Zds ds� (1.2)It follows from (1.2) that without any further assumptions,limj�j!0E 24 Xti2�;Tj�ti<Tj Z ti+1ti jZs � Z�ti j2ds35 = 0 (1.3)as noted e.g. in Lemor et al. (2006). Sine, by Doob's inequality and Itô's isometry,E �max0�j�J jM�Tj �MTj j2� � 4E �jM�T �MT j2�= 4E 24J�1Xj=0 Xti2�;Tj�ti<Tj Z ti+1ti jZs � Z�ti j2ds35 ; (1.4)assertion (i) immediately follows.We now prove (ii) and �rst onsider the ase YTj = u(Tj; XTj). Note that, on [Tj ; Tj+1℄,Z is the ontrol part of the simple forward-bakward SDE (FBSDE)Xt = XTj + Z tTj b(s;Xs)ds+ Z tTj b(s;Xs)dWs�Yt = u(Tj+1; XTj+1)� Z Tj+1t ZtdWt:Due to the Lipshitz ontinuity of u(Tj+1; �) results on L2-regularity obtained for theontrol part of FBSDEs in more general situations by Zhang (2004) and Bender andZhang (2006) an be applied. In ombination with (1.2) these results imply that (1.3) anbe strengthened to E 24 Xti2�;Tj�ti<Tj Z ti+1ti jZs � Z�ti j2ds35 � Cj j�jfor some onstant Cj . Hene, (ii) follows in the ase YTj = u(Tj ; XTj) with onstantC =Pj Cj thanks to (1.4). 14



To prove (ii) in the ase YTj = u(Tj; X��Tj), denote the martingale part in the Doob deom-position of �YTj = u(Tj ; XTj) by �M . Moreover, de�ne�Z�ti := 1��i Eti h(��Wi)>u(Tj ; XTj)i ; Tj � ti < Tj+1�M�Tj := Xti2�;0�ti<Tj �Z�ti(��Wi):Then,E � max0�j�J jM�Tj �MTj j2� � 12E �jM�T � �M�T j2 + j �MT � �M�T j2 + jMT � �MT j2�= 12[(I) + (II) + (III)℄From the previous ase, the seond term is of order j�j. From the Lipshitz ontinuity ofu(Tj ; �) we get(III) = E 24j JXj=1 u(Tj ; X��Tj)� u(Tj; XTj)�ETj�1[u(Tj; X��Tj)� u(Tj ; XTj)℄j235� K JXj=1E hjX��Tj �XTj j2i � Kj��j � Kj�jwhere the generi onstant K may di�er from appliation to appliation. To estimate (I),note that, for Tj � ti < Tj+1,Eti h(��Wi)>(u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1))i2 (��i )�1= Etih(��Wi)>(Eti+1[u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1)℄�Eti[u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1)℄)i2(��i )�1� EtihEti+1 [u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1)℄2�Eti[u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1)℄2i:Thus,(I) = J�1Xj=0 XTj�ti<Tj+1E h(��Wi)>(u(Tj+1; X��Tj+1)� u(Tj+1; XTj+1))i2 (��i )�1� J�1Xj=0E hju(Tj+1; X��Tj+1)� u(Tj+1; XTj+1)j2i� KE[jX��Tj+1 �XTj+1 j2℄ � Kj��j � Kj�j:ReferenesL. Andersen (2000). A simple approah to the priing of Bermudan swaptions in themulti-fator Libor Market Model. Journal of Computational Finane, 3, 5-32.15
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Table 1: Bounds (with 95% on�dene intervals) for Bermudan max all with parameters� = 100; r = 0:05, � = 0:2, Æ = 0:1 and di�erent D and x0D x0 Lower Bound Upper Bound Upper Bound Upper BoundY0 bY up(M�) bY up104;200(0) bY up104;40(0)90 7.9751�0.139 8.6963�0.052 8.2311�0.091 8.621�0.0922 100 13.883�0.177 14.515�0.073 14.182�0.011 15.23�0.013110 21.291�0.205 21.972�0.095 21.681�0.015 23.67�0.01790 16.523�0.194 18.134�0.069 17.163�0.012 17.53�0.0145 100 26.042�0.232 27.976�0.085 27.216�0.016 27.87�0.016110 36.526�0.263 38.882�0.098 38.577�0.020 39.70�0.023
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p=3Figure 1: Di�erene � = bY up(M�) � Y0 in dependene on the number of Monte Carlopaths N and the maximal order p of polynomials used for regression.
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Figure 2: Upper bounds bY upN;L(0) (solid line) and bY upN;L(M�) (dash line) in dependene onthe number of inner Monte Carlo paths L, the number of outer paths N being equal to5� 104.
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