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Abstract

We present a generic non-nested Monte Carlo procedure for computing true upper
bounds for Bermudan products, given an approximation of the Snell envelope. The
pleonastic “true” stresses that, by construction, the estimator is biased above the
Snell envelope. The key idea is a regression estimator for the Doob martingale part
of the approximative Snell envelope, which preserves the martingale property. The so
constructed martingale may be employed for computing dual upper bounds without
nested simulation. Tn general, this martingale can also be used as a control variate
for simulation of conditional expectations. Tn this context, we develop a variance
reduced version of the nested primal-dual estimator (Andersen and Broadie, 2004)
and nested consumption based methods (Belomestny and Milstein, 2006). Numerical
experiments indicate the efficiency of the non-nested Monte Carlo algorithm and the
variance reduced nested one.

1 Introduction

In recent years, much research on pricing of high-dimensional Bermudan derivatives was
devoted to the approximation of the optimal exercise policy. Once a “good” but generally
sub-optimal policy is known, a lower biased approximation of the Bermudan price can be
found by straightforward Monte Carlo simulation of the underlying trajectories, stopped
according to this policy. Most popular in this respect are the regression-based approaches
of Carriere (1996), Longstaff and Schwartz (2001), Tsistsiklis and Van Roy (1999) and
Clement et al. (2002). Another notable approach is backward construction of the exercise
boundary using its suitable parametrization. This method is utilized by Andersen (2000)
in the context of Bermudan swaptions. An important feature of these methods is their
efficiency: by a relatively low computational costs an approximative exercise policy can
be constructed, a straightforward Monte Carlo simulation giving thereafter a lower price.

The goal of this paper is an efficient method for computing an upper bound, given an
approximation of the Snell envelope, for example, in the form of a pre-computed exercise
boundary. Rogers (2001) and independently Haugh and Kogan (2004) developed a dual
method which provides an upper bound for the Bermudan price, given an approximation
of the Snell envelope. A multiplicative version of this method is studied by Jamshidian
(2006). A comparative study of multiplicative and additive duals is provided in Chen
and Glasserman (2005). Via the Doob martingale part of a “good” approximation of
the Snell envelope, the dual approach gives a tight upper bound for the Bermudan price.
The martingale part of the (generally unknown) Snell envelope would even result in the
exact Bermudan price. Due to this fact the martingale part M of any “reasonable” ap-
proximation Y of the Snell envelope is a promising candidate for a “good” upper bound.
Andersen and Broadie (2004) suggested to estimate this type of martingale upper bound
by a simulation within a simulation approach. By the Doob decomposition we have

Mr,,, — My, =Yr,,, — E"[Y7,,,]. (1.1)



An inner Monte Carlo simulation is used to estimate the conditional expectation in (1.1),
and an outer simulation is used to compute an outer expectation that determines the cor-
responding upper bound. Although the demand for nested simulation makes the Andersen
and Broadie algorithm computationally extensive, it guarantees that the estimator for M,
which fails to satisfy the martingale property in general, induces an upper bound estimate
that is biased high. This important “biased high”-property is not shared in general, if
faster estimation procedures such as regression methods are applied to estimate the con-
ditional expectation in (1.1). The first attempt to overcome this difficulty was made in
Glasserman and Yu (2005), where a special regression algorithm preserving martingale
property of (1.1) is proposed. This algorithm, however, requires strong conditions on
the basis functions, that may be hard to check in practice. As an alternative, Kolodko
and Schoenmakers (2004) propose a different estimator which allows for a substantially
reduced amount of inner simulations. While their procedure may be effective, it has a
drawback: Their alternative estimator may fail to give an upper bound when the number
of inner simulations used is too low.

In this paper we avoid estimating the conditional expectation in (1.1). Instead we con-
struct an estimator for M that is based on the martingale representation theorem (Section
2). The main advantage is that the thus constructed estimators inherit the martingale
property from M, if conditional expectations are estimated in a non-anticipative way. In
particular the conditional expectations can be estimated by the popular linear regression
method on basis functions without any restrictions on the basis (Section 3). The corre-
sponding estimator M for M is a martingale and consequently induces an upper bound.
Moreover, if Y is constructed by linear regression, the same regression matrices can be
used to estimate M. Hence, the construction of M does require almost no computational
costs in this situation (and of course, no time consuming nested simulations). Some results

on the convergence of M to M are presented in Theorem 2.1 and Remark 3.1.

In Section 4 we analyze how the estimator M can alternatively be applied as control
variate for the primal-dual algorithm of Andersen and Broadie (2004) and for another
approach towards constructing upper bounds which was introduced in Belomestny and
Milstein (2006). Moreover, the martingale M can be used to derive estimates for the delta
of the Bermudan option in a complete market, as is stressed in Section 5.

Finally we present numerical examples in Section 6. In our simulation study for a maxi-
mum call on several assets we find that the fast non-nested estimator introduced in this
paper yields surprisingly good upper bounds. We also demonstrate a significant variance
reduction effect of ZTJ\, if used as control variate for the primal-dual algorithm. Section 7
concludes.

2 Constructing dual upper bounds

We consider a Bermudan option that can be exercised at one date from the set & =
{To,...,Ty}. To simplify the notation we shall assume that Ty = 0 and define T := Ty.
Let us further assume that we have a given pricing measure Q@ connected with a given
discounting numeraire N on some filtered probability space. According to the Bermudan
contract, when exercising at time 7T, € &, the holder of the option receives a discounted



payment of the form

HTj = h’(TJ: XTj);
where h(T}, -) is Lipschitz continuous and X, is the solution of the SDE

dXt == (L(t,Xt)dt—I— b(t,Xt)th (21)

The coefficient functions a : [0,7] x R? — R® and b : [0, T] x R® — R?*P are supposed
to be Lipschitz in space and 1/2-Hdlder continuous in time, with D denoting the dimen-
sion of the Brownian motion W = (W1, .. .,WD)T under the pricing measure ). For
now we do not assume additional regularity conditions on the diffusion coefficient b(-, ).
Throughout (F4; 0 <t < T) is the augmented filtration generated by this Brownian mo-
tion. All expectations and conditional expectations are taken under the pricing measure
Q. Conditional expectations under Q with respect to J; will be denoted by E*[-]. The
numeraire N is positive, adapted, and Ng := 1.

We think of X as a vector of financial quantities which is determined by some arbitrage
free system of tradable quantities on the background. Of course all components of X may
be tradable themselves, but for example X may be also a set of (Libor) interest rates
which are determined by a system of (tradable) bonds.

Recall that for any martingale Mr,, 0 < 7 < J with respect to the filtration (JFr,; 0 < j <
J) starting at My =0

Y“P(M) = F Olélfl,SXH(HTj — MTJ-) (23)
is an upper bound for the price of the Bermudan option with cash-flow Hr,. Moreover,
the Bermudan price is attained at the martingale part of the Doob decomposition of the
discounted price process (Snell envelope). The latter process is denoted by ijj.

Suppose some approximation Y7, of the Snell envelope is given. If Y is a good approxi-
mation and it is decomposed in its Doob decomposition

YTJ- =Y+ MTJ- + UTJ- (2.4)

where the martingale M and the predictable process U start at zero, then we expect
Y“P(M) to be a close upper bound of Y. In principle, U and M can be found from Y
via the relations

UTj+1 — Uy

2

Mry,,, — Mr,

2

ETi [YTj+1] — Y,
Yr,,, — ET[Yr,,,]. (2.5)

If one estimates the conditional expectations in the above expressions — say, by standard
regression methods —, the estimated version of M will loose the martingale property in
general. In particular, it is not guaranteed that it induces an upper bound. We will now
exploit the structure of the Brownian filtration to construct an approximation of M in
a way that all conditional expectations can be estimated without loosing the martingale
property.

Indeed, under the assumption that Mr is square integrable there is a square integrable
(row vector valued) process Z; = (Z}, ..., ZP) satisfying

T;
MTJ. — / thWt; j — 0, - .,H. (26)
0



Hence, our aim is to approximate Z instead of M and then make use of relation (2.6).
Of course, we can estimate Z only at a finite number of time points. So we introduce a
partition m = {to,...,¢s} such that ¢, = 0, ¢ty = T, and & C m. We write formally, by (2.4)
and (2.6),
YTj+1 - YTj ~ Z th(Wtz+1 - Wtz) + UTj+1 - UTj‘
temT;<t;<Tjq1

Multiplying by the increment of the dth Brownian motion (I/Vt‘ir1 — Wt‘f) and taking con-

ditional expectations we obtain, by the (J7r;);-1... s-predictability of U

dN 1

4 i {(Wd Wtd)YTm} LT < ti < Th.

tig1 i
tiy1 — t; *

This formal argumentation motivates the definition

1 .
ZZ: = EEtl {(AWWi)TYTjH} , T <t < Thpq (2.7)

with an obvious definition of the increments, e.g. A”Wid =we - Wt‘f. The correspond-

ti11
ing approximation of the martingale M is

MF = Y ZL(ATW). (2.8)

t; Gﬂ';OSti(Tj

The following theorem shows that the martingale M™ based on the discretized 1t6 integral
converges to the original one, M.

Theorem 2.1. (i) We have,

lim E | max |[MF. — Mr.|?| =0
l7|l»0  [0<s<g I !

where |w| denotes the mesh of .

(11) Suppose that either Y, = u(T;, X1,) or Y, = u(Tj,X%), 7 =1,...,9, where the

functions u(T}y,-) are Lipschitz continuous and XZ is the Fuler approzimation of X; cor-

responding to a partition T D w. Then there erists a constant C > 0 such that

E | max |[MF — Mr.|*| < Clm
05j§?1| ! TJ|] I
The proof is postponed to the Appendix.

Note that, for two martingales M) and M(?) starting in 0, one can obtain by straight-
forward manipulations

|Yup(M(1)) o Yup(M(2))|2 <E [T?LXA |M7(11) B M7(~2_)|2 (2.9)
07-77" 7 7

Hence, we obtain the following immediate corollary:



Corollary 2.2. (i) It holds that

lim Y"P(M™) = Y"P(M)

|| —0
(i1) Under the assumption of Theorem 2.1, (i1), we have

[Y*P(M™) — Y*(M)|* < Clx|

The above corollary states that the upper bounds due to M and M™ do not differ much,
when the mesh of the partition 7 is sufficiently small. The main advantage of M™ is that
(2.8) remains a martingale, even if the conditional expectations in (2.7) are estimated (of
course in a non-anticipative manner). Denoting such martingale (with the conditional ex-
pectations in (2.7) estimated) by M\’T, Y“p(ZTJ\’T) therefore always defines an upper bound
of the Bermudan price Y. This is in contrast to the representation of M in (2.5). Estimat-
ing the conditional expectations in (2.5) can in general destroy the martingale property
and so the estimated version may not induce an upper bound.

3 Upper bounds without nested Monte Carlo

We now describe an algorithm based on the construction of the martingales M™ that allows
to calculate dual upper bounds without nested Monte Carlo. To this end we suppose that
the approximative Snell envelope Y7, is of the form

YTJ- — ’U,(Tj, X%)

We emphasize that numerical methods to approximate the Snell envelope typically yield
approximations of this form. It is then straightforward that the conditional expectations
in the definition of Z are, in fact, regressions on XZ. Precisely,

T 1 Xr ™ ™
7z = 2B |(A W) T u(Tyin, XT,,,) |5 Tj <t < T
Next we approximate Z] by simulation based least squares regression on basis functions
as was suggested by Longstaff and Schwartz (2001) for lower bounds. To this end we
simulate N independent samples of the Brownian increments AW, 1 =1,...,7,
ATW; == (ATW;) o+

d
n=1,...,.N it1 "Wti)n:L...N d=1,....D

(hence for a fixed time point ;;1, interpreted as N xD matrix). Given a row vector
of (possibly time dependent) basis functions ¥ (t;,-) = (Ye(ti,-), £ = 1,...,K) and N
independent samples (¢;, HXZ), n = 1,...,N of the Euler scheme XZ constructed from

the above Brownian increments AgWi, n=1,.. .,ﬁ, the corresponding regression matrix
at time £; is defined as the pseudo-inverse Af? of the matrix

Ati = (Tl}k(ti: ngz))

n:l,...,ﬁ,k:l,...,K

(recall that the pseudo inverse Af? coincides with

(A;CAti)ilA;E’



if the matrix A, has full rank). Then, the corresponding approximative regression mapping
for Z{ is defined by

N
?T(ti,m) = 'l[}(ti,m) Af? (—.YTJ.+1) , T <t < Thpq

= (L, z)Be., (3.1)

using the suggestive notations

ATW; - ATWE
(T'YTH) - (T"YTJ'H) ’
o o n—1,..,N,d=1,...,D

n?Tj+1 = u(Tjt1, ")?;Hl)’ and with B\ti being the K X D matrix of estimated regression

coeflicients.

After having obtained the functions z7(¢;,z) in (3.1) by the above described regression
procedure, we next construct an approximation of M™ by plugging in the system (2.1),
which we suppose to be independent of the Brownian increments simulated above:

Mf, = @™ (T, X", A"W) == Y Z7(t;, X[)(A™WS).
tiGﬂ';OSti<Tj

Clearly Mi is a martingale with respect to the enlarged filtration
i ﬁ i ﬁ -
ij = LTTJ\/QO y j :0,...,3,

where G := U(AZWZ'; i=1,...0,n = 1,.. ,K/’) Obviously, the underlying stopping
problem does not change by this enlargement of filtration and, consequently, Y“p(ZTJ\’T)
is an upper bound for the discounted Bermudan option price. By sampling a new set
of N independent trajectories (;, HXZ), n=1,...,N, of X™ an unbiased estimator for

Y“p(ZTJ\’T) is obtained by
N
V(i) = — Y max {h(Tj, WXE) — AT (Ty, X5, ATW)| . (3.2)

Remark 3.1. If the functions u(T}, -) are Lipschitz continuous, it can be deduced from the
results on simulation of forward backward SDE by Lemor et al. (2006) and Bender and
Denk (2006) that the error

YU (M™) — VP (M)

becomes arbitrarily small, provided the basis is appropriately chosen and the number N
of simulated trajectories is sufficiently large. It is, however, well understood that the
quality of this approximation heavily depends on the choice of m. While Corollary 2.2
suggests to choose a very fine partition 7, such choice may cause an instable estimate of
the approximate regression functions 2™ (¢;, z), unless the linear space spanned by the basis
1 and the number of simulated paths for the regression are “very large”.



4 Variance reduced upper bound estimators

From Corollary 2.2 and Remark 3.1 we may deduce that Y“p(ZTJ\’T) is a close approximation
of Y*P(M), provided the partition 7 is sufficiently fine and the numerical regression is
appropriately tailored (which can still become computationally expensive, if a very fine

partition is required). From (2.5) and the fact that M~isa martingale we see that
T T; T T T

is an unbiased estimator of ETileTj. Thus, M7 — M7 | may be seen as a control
7 -

variate (see, for example, Glasserman (2003) and Milstein and Schoenmakers (2002)) for
the standard Monte Carlo estimator of ETJ'*YTJ.. Note that by (4.1),

E;T = (MTj o M';;J) o (Mijl o M';;jfl)‘

Clearly, for any partition m we have ETJ'*HE;-T = 0 and, loosely speaking, the variance of £7

is closer to zero the more effort one puts into the construction of M™. We may write
i i
Y"(M™) = FE | max | Hg, — Yr. — 7 4.2
(1) =B | mas. | = 3 (v, ) (42)
J:

0<2<]
717(} 7=1 7=1

E | max | Hr, — 21: (YTJ. — ETFlYTj) + 21:5; }
<Y"(M)+E sz: (g§)+} =YY" (M) + E[e},,] -

Obviously, also E[e7, ] will be closer to zero the finer the grid mesh || and the larger
the set of basis functions.

Instead of making partitions finer and finer while increasing the set of basis functions, one
can alternatively take a comparably rough version of Z/\J\’T, (i.e. with a rougher partition
m and a small basis) and employ it as a control variate. This leads to variance reduced
estimators as outlined below.

Variance reduced primal-dual algorithm

Let M be a martingale such that
BT (M| = BT [M7;] = Mr,_,,
and let
ni == ETia [YTJ-] + ;= YTJ- — (MTJ- — Mijl) , 7=1,...,d. (43)
On a given trajectory X we consider for each 3, 7 = 1,...,J, independent copies 7, =
ETi— [YTJ.] + g4, 1 = 1,..., L, of (4.3) under the (regular) conditional measure PXTifl,
and define the (pathwise) unbiased estimator

L
I 1
sg- ) .- T Z m; (4.4)
=1

7



for ETi—1 [YTJ.] . It thus holds,

ETs {S;-L)} = gTiz Yz, ], Var®s {S;L)} = %VarTFl [e;], ETi[g;]=0.

Naturally we next consider the (pathwise) estimator
UP = max | Hr -3 (Ve — () |

0<i< . !
7=1

and, based on N independent copies ,U("), 1 < n < N, the estimator

=

N

J— 1

o (M) = v 3 aut, (4.5)
n=1

Note that }/}ﬁPL(O) is the estimator introduced in the primal-dual algorithm of Andersen
and Broadie (2004). So ?ﬁPL(M) may be considered a variance reduced version of this

algorithm with control variate M.

Theorem 4.1. It holds that

YU (M) < E{?ﬁf’L(M)} < Y*(M) + min | E[€sum] ,

= Y“P(M) + min (E [€ sum ] » \/%E [(ZWTq - MTﬂ)Q}) ,

where € gum = Ejzl (e5),-
In particular, the estimator Y&, (M) is biased up.

Proof. To prove the first inequality we note that

P[] < [ ) g | 1 )

=FE |Vmax Hr, — 21: (Yr, — ETJ'lej) } =Y"P(M).

0<z2<
[t =

For the second inequality, let us write using (4.3) and (4.4),

ET {u(L)} — ET {012% Hr, — ; (YTJ_ . SE'L)))
< g2 HTiJZ_;(YTJ- - E" [Yj]))
- s 3 (- 5 [Yj]))

0<2<)
i<y e



It then follows that

7=1

=:Y"P(M) + (%).
So we have on the one hand, by convexity of the (); operator,

J

()< S E[(5),] = Bleml

=1

On the other hand, by respectively Cauchy-Schwartz and Jensen’s inequality, we have

g | 2 g | 2
(%)% < HZ E (ZZ lEj) < HZE (ZZ lEj)
+

The last equality follows by a telescoping sum using F [5?] =
E [(Mr; — Mr;)* — (Mrz;_, — M7, ,)?]. O

According to Theorem 4.1 the bias of the estimators (4.5) and (4.2) are commonly bounded
by E [€4um] when we take M = M™. Furthermore,

E ?NUPL(M) LY¥P(M), if (L — 00 or HTﬂ £y MTﬂ) .

Variance reduced consumption based estimator

When Y is a lower approximation for the Snell envelope Belomestny and Milstein (2006)
derived the following alternative upper bound estimator via the notion of consumption

processes
J-1
yup,BM . _ Yo + Z (ma,X{HTJ-, ETjYTJ‘+1} - YTj)
J-1
= E[Hr] + Y B |(Hr, - B™vi,,),
— CE + Cup;

where Cg is the value of a European claim and C"P is called a consumption term. The
estimation of conditional expectations can be done by standard Monte Carlo. In the same
way as above for the primal-dual estimator, we obtain a variance reduced estimator for



the consumption term,

1 N J-1 )
up _ - - L
Cnr = N Z : ("HTJ nS )+
n=1 7=0
1 N J-1 1 L 0
1
(vt 33 l)
n—=1 5=0 =1 +
based on a sample of independent outer trajectories , X, n — 1, ..., N, and L independent

realizations nnj(-l), [ =1,..,L, of n; given by (4.3) on each trajectory ,X. Obviously we
have

E|CwPM| = B {i BT {(JITJ. - %XL: m](-l)) +H (4.6)

B _HXEETJ- {(JJTJ - li mj(-l)) H
L7=0 L = +JJ
s 8|S, 7 (11, ),
=0

by the convexity of the (); operator. Hence the (variance reduced) estimator (4.6) is
biased up. In the spirit of Theorem 4.1 one can show for this kind of upper bound also
that

Cp+E [C*;gjL] LYwBM L o op (MTJ. 8 My, =1, ...,3).

Remark 4.2. The martingale estimator can also be applied to reduce the variance when
estimating inner conditional expectations in the policy improvement procedure of Kolodko
and Schoenmakers (2006). This looks promising in particular in combination with the
variance reduction for the outer simulation suggested in Bender et al. (2006).

5 Connection with hedge controls (deltas)

Let us now suppose that X in (2.1) is a system of tradable securities with D < D (not
more Brownian motions than securities) and that the numeraire N is tradable also. As N
should be positive, we additionaly assume that its dynamics are given by

dN;

W = ,lLN(t,Xt)dt—l—O'N(t,Xt)th, NO == 1,

t

for some smooth and bounded scalar function p(-,-) and row vector function on(-,-).
Thus, by assumption, X/N is a martingale under Q. We moreover assume some extra
structural assumptions on the coefficient functions a, b, p, and o, such that the system
(X,N) constitutes a complete market (see, Schoenmakers (2005)).

In the case of a complete market there is a direct connection between the process 7 in
(2.6) and the hedge coefficients for replication of the European claim with discounted pay-
off Y7, in the interval [T;_1,T};]. Let us assume that Y7, is a function of X Then, by

10



completeness, the claim with pay-off N1, Y7, can be perfectly hedged by a self-financing
portfolio (4, 8; X, N) with coefficients ¥, 8 being functions (¢, X, N). The i-th component
of the D-dimensional row vector function #(¢, X, N) denotes the number of shares to hold
in X* and 6(t, X,N) the amount of units to carry in N, for realizing a perfect dynamic
hedge in a self-financing way. We thus have

T.

i T;

ﬁ(t,Xt,N)dXt—l-/ 0(t, Xy, N)dN.

Nz, Yr, = Nr,_, BT Yy, +/
Tj*l

ijl

By a standard lemma connected with Ité’s formula (see Schoenmakers (2005)), it then
follows that

Y, = BT Y, + [n) | 9(t, X, N)d(N; ' X)) (5.1)
. T, _
— ETJ*IYTJ. —I— ijJ,1 Nt 1’[9(t, Xt; N)(b(t, Xt) - XtO'N(t, Xt))th

We note that the latter equation follows easily from It6’s lemma using the fact that N~ 1X
is a martingale. From (2.6) and (5.1) we conclude that

N, 19t Xg, NY(B(E, X)) — Xeon(t, Xi)) = Z =: 2(t, Xy). (5.2)

So, after estimating the function z(-,-) by an independent regression procedure we may
determine the hedge coefficients #(-, -, -) (usually called “deltas”) from (5.2). For example,
if D = D and the matrix b is invertible, completeness implies that also b—xz oy is invertible,
so then the hedge coefficients are unique and follow from

?(t, z,n) = naiEt’zYTj = nz(t,z)(b(t, z) — zox(t,z)) L.
T

Remark 5.1. The setup in this section covers the situation of a standard Libor (market)
model, where X is a system of zero bonds defining the Libor rates, and the numeraire is
taken to be the spot Libor measure or the terminal bond measure for instance. For details
see Glasserman (2003) and Schoenmakers (2005).

6 Numerical example

In our implementation study we first construct a family of stopping rules 7; : Q —
{T}j,...,Ty} by the Longstaff-Schwartz method. This basically boils down to choosing
a basis (¢r(t,z), k = 1,...,K) and estimating vectors of regression coefficients (a; €
RE 1=0,...,9). Once {o;} are estimated, we can define

;= min{j <I1<]J: angb(Tl,XTl) < Hp}

and
Yr, = ETH., j=1,...,3.

We stress that stopping rules {r;} are estimated only once and remain fixed thereafter.
Having {Y7,} at hand we proceed generally as described in Section 3. Since estimates

C; for continuation values C; := EtiYTjJr1 can be easily obtained by regression, we, while

11



estimating Z7, subtract C; from Y7,,,- This leads to the following equivalent definition
of Z7

1 . ~

7 = EE“ (A™Wi)T (Y, — Ci)|, Tj <t < T (6.1)

2
The subtraction of 6’1 diminishes the variance and improves the quality of M™. Another
important issue is the choice of partition m. Theoretically, a finer partition implies better
quality of M™. However, in practice, the partition m should not be too fine in order to
avoid a variance explosion. In our numerical study we have achieved quite good results
by using two different partitions m and 7 such that # C 7. The first rougher partition is
used to estimate regression coeflicients Gy,

. AW: ~
,Bti:AE? ( AT 'YT'+1)’ t, €Em, TjgtiSTj_l_l.

2

Thereafter B\ti are interpolated by a constant for points in [¢;,%;11], that is ,B\t = ,B\ti for
all t € [t;,t;11]. In such a way one can define 27(¢, z) = (¢, z)f; for all points t € © and
construct, with a slight abuse of notation in the case ™ # T,

My = Y (L X)(ATW).

tGﬁ’;OSt(Tj

In all examples below we take as the finer partition, # — 7, i.e. the partition on which the
Euler scheme is performed.

Bermudan max calls on DD assets

This is a benchmark example studied in Glasserman (2003), Haugh and Kogan (2004) and
Rogers (2001) among others. Specifically, the model with D identical assets is considered
where each underlying has dividend yield §. The risk-neutral dynamic of assets is given
by

dXg = (r — §)X2dt + o X2dWZ, d=1,..,D,

where W@, k = 1, ..., D, are independent one dimensional Brownian motions and r,§, o
are constants. At any time ¢ € {Tp, ..., Ty} the holder of the option may exercise it and
receive the payoff

h(X:) = (max(X], ..., XP) — x)*.

We consider an example when T; = 57/3,7 = 0,...,d, with T = 3 and § = 9. For
estimating stopping rules {r;} we use 5 x 10* paths and take as a regression basis all
polynomials of order less than or equal to 3 plus the payoff function A. The Euler scheme
was performed on equidistant partition 7 with |7| = 0.01. The same number of paths and
the same basis functions have been used to estimate ,B\ti; t; € m, where m = {7y, ..., Ty}
Now, local constant interpolation allows us to define ,B\t and hence 2™ (¢, z) for all t € .
Let us note that the complexity of the algorithm with interpolated ,B\t corresponds in this
case to the complexity of the usual Longstaff-Schwartz method because regression is only
performed on the exercise grid. Moreover, matrices Af? computed during constructing the
approximation Y can, in principle, be used here again provided that the same paths are
used to estimate 2™ (¢, z).
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The results for D = 2 and D = 5 are presented in Table 1 in dependence on zg with
Xo = (X3,...,XP)T, xt = ... = XP = z,. Upper bounds }/}Nuf’L(O) are computed by
primal-dual algorithm, hence by nested Monte Carlo, with N outer and L inner simu-
lations without variance reduction (see for comparison Glasserman (2003)). As we see
the standard primal-dual method requires in some cases more than 40 inner simulations
to achieve the accuracy of the non-nested estimator. In fact, the latter one is regarding
computation time comparable with the primal-dual using one inner simulation.

It is interesting to look at the dependence of the difference A := }/}“”(ZTJ\’T) — Y5 on the
number of Monte Carlo paths N and the maximal order of regression polynomials p used
for estimating coefficients #. In Fig.1 the corresponding curves for the two dimensional
out of the money (zg = 90) Bermudan max call with the same parameters as before are
presented. Note that the set of polynomial basis function is always extended by adding the
pay-off function A. Fig. 1 indicates that the less N is the less improvement is observable
with increasing p.

Let us turn now to the performance of our method in the setup of variance reduction.
We compare upper bounds of the nested Monte Carlo estimator (primal-dual) with and
without using control variates. In Fig. 2 the upper bound Y;\;pL(M) is shown as a function

of L for the cases of the zero martingale M = 0 (original primal-dual method) and M — M~
as estimated before. Again the example of 2-dimensional Bermudan max call with zg = 90
is considered and coefficients {8;,} are estimated using 5 x 10* Monte Carlo simulations
and all polynomials of order less than or equal to 3. Comparing Fig. 2 with Table 1 we

~

conclude that the accuracy of Y*P(M) = Y, (i ,,,(0) is achieved by the variance reduced

primal-dual estimator yue (ZTJ\’T) already with L = 90.

1041

7 Conclusion

Nowadays the primal-dual algorithm is likely to be the most popular algorithm to compute
Bermudan upper bounds, although its requirement for nested simulations does make it
computationally extensive. In this paper we presented two alternatives to this algorithm.
The first algorithm is fast, as it requires linear simulation cost only, and turns out to deliver
good upper bounds. If nonetheless a higher accuracy is required, we suggest a variance
reduced version of the primal-dual algorithm which allows to compute upper bounds with
the same accuracy (as with the latter one) at lower costs.
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A Proof of Theorem 2.1

Fix some T; < T and consider ¢;, T; < t; < Tj41. Then, by (2.6) and It6’s isometry, we
get for the dth component of Z]

,d 1 ;[ T j
7t = EEtl 7(A Wz-d) (YTj+1 _ ETi [YTHJ)}
1 i ti11 Tj+1
- —E% ( / de) / ZdW,
A; | \Jt; T;
1 [ ptiye
- __FEt / ngs] (1.2)
AZT L/ £;

It follows from (1.2) that without any further assumptions,

ti11
lim E Z,— Z™%ds| =0 1.3
Jim, 3y / | T I%ds (1.3)

t; Eﬂ',Tj <t; <Tj t;

as noted e.g. in Lemor et al. (2006). Since, by Doob’s inequality and Ité’s isometry,

E MZE — Mr.|?| < 4AE [|MF — Mqg|?
| max [MF, — M| <45 (1045 — M

vy v

ti11 -|
| Zs — Z7|?ds (1.4)

i

7=0 t;em,T; <t;<T; ti

assertion (i) immediately follows.

We now prove (ii) and first consider the case Y7, = u(T}, X1,). Note that, on [T}, Tj4],
Z is the control part of the simple forward-backward SDE (FBSDE)

t

£
X; = XTJ.—I—/ b(s,Xs)ds—I—/ b(s, Xs)dW,

i T;

J+1

_ Tjt1
}/t = ’lL(Tj+1,XT. ) — / thWt-
t

Due to the Lipschitz continuity of u(T;i1,-) results on L2-regularity obtained for the
control part of FBSDEs in more general situations by Zhang (2004) and Bender and
Zhang (2006) can be applied. In combination with (1.2) these results imply that (1.3) can
be strengthened to

ti11
E 3y / Z, — ZT|*ds| < Cj|n|

t; Eﬂ',Tj <t; <Tj t;

for some constant C;. Hence, (ii) follows in the case Y7, = (T}, X7,) with constant

C = >, Cj thanks to (1.4).
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To prove (ii) in the case Y7, = u(T}, X;Tj), denote the martingale part in the Doob decom-
position of YTJ. = u(Tj, XT;) by M. Moreover, define

_ 1,

Ty = B (AW Tu(Ty, Xmy)|, Ty <t < Ty

Mg o= Y Z(aTw).
tiGﬂ';OSti<Tj
Then,
B | max 107, ~ M| < 128 (|MF - M + |1k — MFP + M — Mrl
SIS
— 191 + (IT) + (111)]

From the previous case, the second term is of order |r|. From the Lipschitz continuity of
u(Ty,-) we get

[y 1
(I11) = EL| u(Tj,Xi-)u(Tj,XTJ-)ET“[U(TJ',X?J-)u(Tj,XTJ-)]IQJ
7=1
H —
< K E[IXF, - Xn,?| < Kl7| < K|n|
7=1

where the generic constant K may differ from application to application. To estimate (),
note that, for T; < ¢, < Tj4q,

_ 2
B (AW (u(Th4, XF,,,) — ulTyen, Xy )| (AD)
= BR|(ATW)T (B [Ty, XF,,, ) — w(Tjn, Xry,,)]

_ 2
~BN[u(Tj, XF,,) — u(Typn, Xry,)D)| (AT)

< BR| B u(Tjan, X7,,) — 6(Ti, Xay,, )P
BT, X7, - ulTy, X, ).
Thus,
J—1
T T T 2 ay—1
(N = S B [(ATW) T (wlTi, XF,,) — w(Tyn, Xry,0))| (A7)
7=0 T;<t;<T; 11
J—1
< Y B|u(Ti, X7, - w(Tyin, Xry,)1?
7=0
< KE[XF,, — Xr;,,[2) < K|7| < K|n.
References

L. Andersen (2000). A simple approach to the pricing of Bermudan swaptions in the
multi-factor Libor Market Model. Journal of Computational Finance, 3, 5-32.

15



L. Andersen, M. Broadie (2004). A primal-dual simulation algorithm for pricing multidi-
mensional American options. Management Sciences, 50, No. 9, 1222-1234.

D. Belomestny, G.N. Milstein (2006). Monte Carlo evaluation of American options using
consumption processes. International Journal of Theoretical and Applied Finance, 9,
No. 4, 1-27.

C. Bender, R. Denk (2006). A Forward Scheme for Backward SDEs. Stoch. Process. Appl.,
under revision.

C. Bender, A. Kolodko, J. Schoenmakers (2006). Iterating cancellable snowballs and re-
lated exotics. RISK, September 2006 pp. 126—130.

C. Bender, J. Zhang (2006). Time discretization and Markovian iteration for coupled
BSDEs. WIAS Preprint No. 1160, Berlin.

J. Carriere (1996). Valuation of early-exercise price of options using simulations and non-
parametric regression. Insuarance: Mathematics and Economics, 19, 19-30.

N. Chen and P. Glasserman (2005). Additive and Multiplicative Duals for American Op-
tion Pricing. Working paper, Finance and Stochastics, to appear.

E. Clément, D. Lamberton, P. Protter (2002). An analysis of a least squares regression
algorithm for American option pricing. Finance and Stochastics, 6, 449-471.

P. Glasserman (2003). Monte Carlo Methods in Financial Engineering. Springer.

P. Glasserman and B. Yu (2005). Pricing American Options by Simulation: Regression
Now or Regression Later?, Monte Carlo and Quasi-Monte Carlo Methods, (H. Nieder-
reiter, ed.), Springer, Berlin.

M. Haugh, L. Kogan (2004). Pricing American options: a duality approach. Opeations
Research, 52, No. 2, 258—-270.

F. Jamshidian (2006). The duality of optimal exercise and domineering claims:
A Doob-Meyer decomposition approach to the Snell envelope. Working paper,
http://wwwhome.math.utwente.nl/ jamshidianf/.

A. Kolodko, J. Schoenmakers (2004). Upper bounds for Bermudan style derivatives. Monte
Carlo Methods and Appl., 10, No. 3-4, 331-343.

A. Kolodko, J. Schoenmakers (2006). Iterative construction of the optimal Bermudan
stopping time. Finance and Stochastics, 10, No. 1, 27-49.

J. Lemor, E. Gobet, X. Warin (2006). Rate of convergence of an empirical regression
method for solving generalized backward stochastic differential equations. Bernoulli,
12, 889-916.

F.A. Longstaff, E.S. Schwartz (2001). Valuing American options by simulation: a simple
least-squares approach. Review of Financial Studies, 14, 113-147.

G.N. Milstein, J. Schoenmakers (2002). Monte Carlo construction of hedging strategies
against multi-asset European claims. Stoch. Stoch. Rep., 73, 125-157.

16



L.C.G. Rogers (2001). Monte Carlo valuation of American options. Mathematical Finance,
12, 271-286.

J. Schoenmakers (2005). Robust Libor Modelling and Pricing of Derivative Products.
Chapman & Hall/CRC.

J. Tsitsiklis, B. Van Roy (1999). Regression methods for pricing complex American style
options. IEEE Trans. Neural. Net., 12, 694-703.

J. Zhang (2004). A numerical scheme for BSDEs. Ann. Appl. Probab., 14, 459-488.

17



Table 1: Bounds (with 95% confidence intervals) for Bermudan max call with parameters

k — 100, » = 0.05, 0 = 0.2, § — 0.1 and different D and zq

D I

Lower Bound
Yo

Upper Bound
i}up (Mﬂ')

Upper Bound

o~

Y116€,200(0)

Upper Bound

o~

Y116€,40(0)

90
2 | 100
110

7.975140.139
13.883+0.177
21.29140.205

8.696310.052
14.5154+0.073
21.97240.095

8.231140.091
14.18240.011
21.68140.015

8.621+0.092
15.2340.013
23.67+0.017

90
5 | 100
110

16.523+0.194
26.04240.232
36.5261+0.263

18.13440.069
27.9761+0.085
38.88240.098

17.1634+0.012
27.2161+0.016
38.57740.020

17.534+0.014
27.87+0.016
39.70+0.023

Figure 1: Difference A = }/}“”(M\’T) — Yp in dependence on the number of Monte Carlo

p=1

p=2

p=3

5000

10000

15000

paths N and the maximal order p of polynomials used for regression.
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Figure 2: Upper bounds }/}NUPL(O) (solid line) and }/}ﬁpL(M\’T) (dash line) in dependence on
the number of inner Monte Carlo paths L, the number of outer paths N being equal to
5 x 10%.
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