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AbstratWe propose a model for phase transformations that are driven by hanges inthe temperature. We onsider the temperature as a presribed presribed quantitylike an applied load. The model is based on the energeti formulation for rate-independent systems and thus allows for �nite-strain elastiity. Time-dependentDirihlet boundary onditions an be treated by deomposing the deformation as aomposition of a given deformation satisfying the time-dependent boundary ondi-tions and a part oiniding with the identity on the Dirihlet boundary.1 IntrodutionThe mathematial modeling of shape-memory materials has attrated a lot of attentionwithin the last twenty-�ve years by quite di�erent series of work. One area was based onmore phenomenologial models in one or more spatial dimensions but inluded a thermo-dynamially onsistent oupling to the energy equation, see [Fal80, CFV90, HM93, SZ93,ACJ96, FM96, BS96, KMS99, RS99, AP04℄. The other area is treating a question ofpossible mirostrutures of equilibria by a areful analysis of the underlying mirosopirystallographi information about the di�erent phases, see [BJ87, Bha93, Mül99, Bha03℄.Only reently the latter theory was generalized to desribe also the evolution of suhmirostruture, yet it remained restrited to the rate-independent and isothermal ase,see [MT99, MTL02, MR03, Mie04a, KMR05℄. However, there is also some work on rate-dependent systems respeting the orret mirosopial data, see [AGR03, KO04℄ and thesurvey [Rou04℄.However, a systemati mathematial study of temperature-driven phase transformationdoes not exist yet. Here, we want to provide some �rst results in this diretion as thereare many engineering appliations using the temperature as the main ontrol mehanismfor the shape-memory e�et, see e.g. [HM93, KMS99, AP04, SZ06℄ and [BS96, Ch. 5℄.In order to be able to treat the ase of �nite-strain elastiity, whih is modeled by poly-onvex stored-energy density, we stay in the rate-independent setting, whih allows us touse minimization tehniques (diret method in the alulus of variations). However, thisapproah implies that we have to restrit the temperature �elds to stationary states ateah time instant t ∈ [0, T ], where t is a slow proess time that moves muh slower thanall relaxation proesses in the body. In partiular, we make the modeling assumptionthat the temperature θ is given a priori as an �applied load� and we write θ = θappl(t, x).Suh an assumption is often used in engineering, as it is aeptable if the body is smallin at least one diretion like wires or plates. Then, exessive or missing heat an be1



balaned through the environment. Nevertheless, θappl(t, ·) may be a non-onstant equi-librium of the heat equation, if the temperature is �xed by heating or ooling at parts ofthe boundary.Our model onsists of a material that an be desribed by a stored-energy density
W (x,∇ϕ, z, θ), where x ∈ Ω denotes the material point, F = ∇ϕ is the gradient ofthe deformation ϕ : Ω → R

d, and z : Ω → ZM = { (z1, . . . , zM) ∈ [0.1]M |
∑M

1 zj = M }is the phase indiator where zj ∈ [0, 1] gives the volume fration of the jth phase. Theenergy potential then takes the form
E(t, ϕ, z) =

∫

Ω

W (x,∇ϕ, z, θappl(t, x))dx+ G(z) − 〈ℓ(t), ϕ〉,where ℓ ∈ C1([0, T ],W1,p(Ω)∗) denotes an applied loading, see (2.3), and G is a regularizingterm suh that G(z) ∼ ‖z‖p

Wα,p(Ω) for some α ∈ (0, 1/p).In addition, we speify a dissipation distane D on Z = L1(Ω;ZM) in the form
D(zold, znew) =

∫

Ω

δ(x, zold(x), znew(x))dx,where δ(x, ·, ·) is a (possibly unsymmetri) metri on ZM , see (2.4). Speifying the set Fas those funtion ϕ ∈ W1,p(Ω; Rd) satisfying Dirihlet boundary data ϕDir at ΓDir ⊂ ∂Ω,we are able to pose our problem as the energeti formulation for rate-independent systemsas in [MTL02, MaM05, Mie05℄. For a given initial value (ϕ0, z0) ∈ F ×Z we have to �nda pair (ϕ, z) : [0, T ] → F ×Z with (ϕ(0), z(0)) = (ϕ0, z0) suh that for all t ∈ [0, T ] theglobal stability (S) and the energy balane (E) hold
(S) E(t, ϕ(t), z(t)) ≤ E(t, ϕ̂ẑ) + D(z(t), ẑ) for all (ϕ̂, ẑ) ∈ F ×Z,

(E) E(t, ϕ(t), z(t)) + DissD(z, [0, t]) = E(0, ϕ0, z0) +
∫ t

0
∂sE(s, ϕ(s), z(s))ds,where DissD(z, [s, t]) is de�ned as the supremum of ∑n

j=1 D(z(tj−1), z(tj)) over all �nitepartitions s ≤ t0 < t1 < · · · < tn ≤ t. For short, we all any suh (ϕ, z) : [0, T ] → F ×Zan energeti solution assoiated with E and D.This energeti formulation is a weak form for the more familiar di�erential inlusions forrate-independent systems (f. [MT04, Mie05℄). Its advantage arises from the fat that itis derivative free and thus allows for a wide range of appliations. In Setion 2 we providemore details on the model and in Setion 3 we speify the exat assumptions on theonstitutive funtions W and δ. The main point is that the partial derivative ∂tE(t, ϕ, z)has to be de�ned whenever E(t, ϕ, z) <∞. In �nite-strain elastiity we have to allow for
E(t, ϕ, z) = +∞, namely if det∇ϕ(x) ≤ 0 on a set of positive measure. Thus, we have
E(t, ϕ, z) = +∞ on a dense set in [0, T ] ×F × Z.In Proposition 4.1 we will derive an estimate of the form

|∂tE(t, ϕ, z)| ≤ cE1 (E(t, ϕ, z) + cE0 ) (1.1)under the assumption thatW satis�es |∂θW (x, F, z, θ)| ≤ cW1 (W (x, F, z, θ)+cW0 ) and that
∂tθappl ∈ L∞([0, T ]×Ω). Using the standard oerivity and polyonvexity assumptions we2



then show in Theorem 4.2 that for all stable initial data (ϕ0, z0) energeti solution exist.Here, we draw from the abstrat theory developed in [MaM05, Mie05, FM06℄.Finally, Setion 5 treats the ase of time-dependent Dirihlet boundary onditions. Forthis we assume that eah ϕDir(t, ·) an be extended to a di�eomorphism from R
d to R

dsuh that ϕDir ∈ C2([0, T ]×R
d; R) and ∇ϕDir, (∇ϕDir)

−1 ∈ BC1([0, T ]×R
d; Rd×d). Then,we seek ϕ(t, ·) in the form ϕ(t, x) = ϕDir(t, ψ(t, x)) with ψ(t, ·) ∈ F̃ , where

F̃ = {ψ ∈ W1,p(Ω; Rd) | ψ
∣∣
ΓDir

= id } and Ẽ(t, ψ, z) = E(t, ϕDir(t) ◦ ψ, z).The ruial observation in [FM06℄ was that ∂tẼ(t, ψ, z) again satis�es an estimate of theform (1.1), if W satis�es an estimate of the form
∣∣∂FW (x, F, z, θ)F T

∣∣ ≤ cK1 (W (x, F, z, θ) + cK0 ). (1.2)The tensor on the left-hand side is alled the Kirhho� stress tensor. Considering F as anelement of the Lie group GL+(Rd) we have to interpret ∂FW as an element of T∗
F GL+(Rd)and ∂FWF T lies in T∗

IGL+(Rd) = gl(Rd)∗. We address some of these Lie group issues,whih were initiated in [Mie02, Mie03℄, in the ontext of �nite-strain elastoplastiity.Using (1.2) and a similar estimate for the seond derivative we are then able to transferthe isothermal existene result of [FM06℄ into our temperature-driven model, see Theorem5.2.2 The mehanial modelWe onsider a body with referene on�guration Ω ⊂ R
d. The body may undergo defor-mations ϕ : Ω → R

d and phase transformations. The latter will be haraterized by theinternal variable z : Ω → ZM , where ZM is the Gibbs simplex
ZM =

{
Z = (z1, . . . , zM) ∈ R

M
∣∣∣ zj ≥ 0,

M∑

m=1

zm = 1
} (2.1)The material behavior also depends on the temperature θ, whih will be onsidered asa time dependent and possibly spae dependent given parameter. Thus, we will notsolve an assoiated heat equation, we rather treat θ as an �applied load� and hene write

θappl : [0, T ] × Ω → R for the given temperature pro�le.This approximation for the temperature is often used in engineering models and has itsjusti�ation in situations where the hanges of the loading are slow and the body is smallin at least one diretion suh that exess heat an be transported very fast to the surfaeand radiated into the environment. Moreover, heating at parts of the body (e.g. one endof a long wire) may give rise to a temperature pro�le that depends on the material points.In fat, the same arguments are used for the justi�ation of isothermal models; henethe present work is a seond step into the diretion of models taking into aount a fullthermo-mehanial oupling. 3



The stored-energy density W : Ω×R
d×d ×ZM × (0,∞) → R∞ := R∪ {∞} desribes thematerial behavior and we obtain the stored-energy funtional

E(t, ϕ, z) =

∫

Ω

W (x,∇ϕ(x), z(x), Qappl(t, x))dx+ G(z) − 〈ℓ(t), ϕ〉, (2.2)where ℓ(t) denotes the applied mehanial loading in the form
〈ℓ(t), ϕ〉 =

∫

Ω

fappl(t, x) · ϕ(x)dx+

∫

∂Ω

gappl(t, x) · ϕ(x)da. (2.3)The term G(z) denotes some regularizing ontribution whih introdues a length sale andthus suppresses very small osillations of the volume frations z. As for mirostrutures inshape-memory alloys we expet jumps in z (e.g. at habit planes where twins of martensitesmeet the austenite) we hoose either
G(z) =

∫

Ω

κ|||Dz||| = sup
{
κ

∫

Ω

z · divψdx
∣∣∣ ψ ∈ C1

c(Ω; RM×d), |||ψ(x)|||∗ ≤ 1 on Ω
}(where ||| · |||∗ denotes an arbitrary norm on R

M×d) or
G(z) = κ

∫

Ω×Ω

|z(x) − z(y)|p

|x− y|d+pα
dxdyfor some p ∈ (1,∞) and α ∈ (0, 1/p). These terms are suh that funtions z ∈ Z =

L1(Ω;ZM) with G(z) < ∞ lie in BV(Ω; RM ) or Wα,p(Ω; RM), respetively. These spaesembed ompatly into L1(Ω; RM ) but still allow for solutions with jumps along su�ientlyregular hypersurfaes in Ω. For simpliity we restrit to the ase Wα,p(Ω; RM) and referto [Mai06℄ for the ase using BV(Ω; RM).For desribing the hystereti behavior of the phase transformations we use a dissipationdistane D de�ned on Z. For this we introdue a onstitutive funtion δ : Ω×ZM ×ZM →
[0,∞), whih satis�es for all x ∈ Ω, z1, z2, z3 ∈ ZM the estimates

1
C
|z1 − z2| ≤ δ(x, z1, z2) ≤ C|z1 − z2|,

δ(x, z1, z3) ≤ δ(x, z1, z2) + δ(x, z2, z3).
(2.4)With this we de�ne the dissipation distane D : Z × Z → [0,∞) via

D(zold, znew) =

∫

Ω

δ(x, zold(x), znew(x))dx,whih then satis�es 1
C
‖zold − znew‖L1(Ω) ≤ D(zold, znew) ≤ C‖zold − znew‖L1(Ω) and thetriangle inequality. Note that we allow for unsymmetry, i.e. D(zold, znew) 6= D(znew, zold)may our.We speify the set of admissible deformations F by hoosing a suitable Sobolev spae

W1,p(Ω; Rd) and by desribing Dirihlet data at the part ΓDir of ∂Ω:
F = {ϕ ∈ W1,p(Ω; Rd) | (ϕ− ϕDir)

∣∣
ΓDir

= 0 },4



where ϕDir ∈ W1,p(Ω; Rd) is given. Throughout we assume that p ∈ (1,∞),Ω and ΓDirare suh that there exists CΩ,Dir > 0 so that
∀ϕ ∈ W1,p(Ω; Rd) with ϕ∣∣

ΓDir

= 0 : ‖∇ϕ‖Lp ≥ CΩ,Dir‖ϕ‖W1,p. (2.5)Finally the proess is assumed to be governed by the energeti formulation of rate-independent proesses as introdued in [MT99, MTL02℄, see also the survey in [Mie05℄.A funtion (ϕ, z) : [0, T ] → F ×Z is alled an energeti solution of the rate-independentsystem assoiated with E and D if ∂tE(·, ϕ(·), z(·)) ∈ L1([0, T ]) and if for all t ∈ [0, T ] wehave the global stability (S) and the energy balane (E):(S) ∀ (ϕ̃, z̃) ∈ F × Z : E(t, ϕ(t), z(t)) ≤ E(t, ϕ̃, z̃) + D(z(t), z̃),(E) E(t, ϕ(t), z(t)) + DissD(z, [0, t]) = E(0, ϕ(0), z(0)) +
∫ t

0
∂sE(s, ϕ(s), z(s))ds,where the dissipation DissD is de�ned via

DissD(z, [r, s]) = sup
{ N∑

j=1

D(z(tj−1), z(tj)
∣∣∣N ∈ N, r ≤ t0 < t1 < · · · < tN ≤ s

}
.We note that this energeti formulation redues to the lassial theory of generalizedstandard materials (see [Mie06℄), if we assume that the solutions are su�iently smoothand δ has the form δ(x, z1, z2) = ∆(x, z2 − z1). Then, (S) and (E) are equivalent to

{
− div ∂FW (x,∇ϕ, z, θappl) = fappl in Ω,

(ϕ− ϕDir)
∣∣
ΓDir

= 0, ∂FW (x,∇ϕ, z, θappl)n = gappl on ∂Ω\ΓDir

0 ∈ ∂ż∆(x, ż) + ∂zW (x,∇ϕ, z, θappl) + DG(z) in Ω,where ż = ∂
∂t
z.3 The mathematial assumptionsWe make the assumptions more preise now. For the stored-energy density W we let

D = Ω × R
d×d × ZM × [θmin, θmax] and assume

W : D → R∞ is a normal integrand, (3.1)i.e. for a.a. x ∈ Ω the funtion W (x, ·, ·, ·) is lower semiontinuous and for all (F, z, θ) thefuntion W (·, F, z, θ) is measurable. We assume oerivity as follows:
∃ p > d ∃C > 0 ∀ (x, F, z, θ) ∈ D : W (x, F, z, θ) ≥

1

C
|F |P − C. (3.2)Our onditions will be ompatible with the ondition W (x, F, z, θ) = +∞ for detF ≤ 0and W (x, Fk, z, θ) → +∞ if 0 < detFk → 0. Moreover, they are ompatible with frame5



indi�erene, namely W (x,RF, z, θ) = W (x, F, z, θ) for all R ∈ SO(Rd). Of ourse, we donot need to impose these onditions as they are not needed to prove the existene resultbelow. However, they are physially desirable and make the mathematis muh moredi�ult. The notion of polyonvexity was developed to handle exatly this ase, see e.g.[Mül99, Bal02℄.The stored-energy density W is alled polyonvex in F ∈ R
d×d, if W (x, ·, z, θ) an bewritten as a onvex funtion of M(F ) ∈ R

τ(d), the vetor of all minors (subdeterminants)of F ∈ R
d×d. For d = 2 we have M(F ) = (F, detF ) with τ(2) = 5 and for d = 3 we have

M(F ) = (F, cof F, detF ) with τ(3) = 19. More preisely, we assume
∃ a normal integrand G: Ω × R

τ(d) × ZM × [θmin, θmax] → R∞ :(i) ∀ (x, z, θ) : G(x, ·, z, θ): R
τ(d) → R∞ is onvex,(ii) ∀ (x, F, z, θ) ∈ D : W (x, F, z, θ) = G(x,M(F ), z, θ).

(3.3)The �nal onditions onern the temperature dependene ofW . The applied temperaturewill insert or extrat energy aording to ∂θW (x,∇ϕ, z, θappl)θ̇appl. To ontrol this termwe assume that θappl is smooth enough and that the derivatives ∂j
θW exist for j = 1 and

2 everywhere where W is �nite and that these derivatives are dominated by W itself:
∃ cW0 , c

W
1 > 0 ∀ (x, F, z, θ) ∈ D ∀ j ∈ {1, 2} :

|∂j
θW (x, F, z, θ)| ≤ cW1 (W (x, F, z, θ) + cW0 ).

(3.4)Lemma 3.1 If assumption (3.4) holds, then for all (x, F, z, θ) ∈ D and all θ1 ∈ [θmin, θmax]we have
W (x, F, z, θ1) + cW0 ≤ ecW

1
|θ1−θ|(W (x, F, z, θ) + cW0 ).Proof: We onsider (x, F, z) to be �xed and de�ne w(θ) = W (x, F, z, θ) + cW0 . Assump-tion (3.4) simply means |w′(θ)| ≤ cW1 w(θ). Thus, Gronwall's lemma yields the desiredresult w(θ1) ≤ ecW

1
|θ1−θ|w(θ) for all θ, θ1 ∈ [θmin, θmax]. In partiular, it is su�ient to have

w(θ) <∞ at one point to onlude that w is �nite on the whole interval.Before using this ondition for the estimate of the time derivative of the stored-energyfuntion we disuss possible onstitutive relations that satisfy all our assumptions. Forsimpliity we neglet any dependene on the material point x ∈ Ω. In shape-memorymodels it is usual to start from the stored-energy densities of the pure phases, i.e. with
z = ej ∈ R

M for the jth phase or variant of a phase. We assume that eah of these phasesis desribed by a polyonvex stored-energy density
Wj :

{
R

d×d × [θmin, θmax] → R∞

(F, θ) 7→ gj(M(F ), θ),where gj(·, θ) is assumed to be ontinuous and onvex while g(M(F ), ·) ∈ C2([θmin, θmax])or g(M(F ), ·) ≡ +∞. Typial examples are of the type Wj(F, θ) = +∞ for detF ≤ 0 and
Wj(F, θ) = aj(θ)|F |

p +
bj(θ)

(detF )r
+ W̃j(F, θ) for detF > 0, (3.5)6



where aj, bj ∈ C2([θmin, θmax]; (0,∞)) and the exponents satisfy r > 0 and p > d. Thefuntion W̃j : R
d×d×[θmin, θmax] → R is assumed to be polyonvex in F , twie di�erentiablein θ, and of lower order, i.e.

∀ i ∈ {0, 1, 2} ∀F ∈ R
d×d ∀ θ ∈ [θmin, θmax] : |∂i

θW̃j(F, θ)| ≤ C(1 + |F |)epfor some C > 0 and p̃ < p. In partiular, the funtions W̃j are supposed to ontainthe information about the anisotropies of the di�erent phases, see [SN03℄ for suitableanisotropi polyonvex funtions.The �nal stored-energy density is now obtained by interpolating between the extremalpure phases. We may either use a linear or an exponential interpolation and in additionwe may add a mixture term for penalizing phase mixtures:
W (F, z, θ) =

M∑

j=1

zjWj(F, θ) + wmix(z, θ), (3.6)or
W (F, z, θ) =

1

β
log

( M∑

j=1

zje
βWj(F,θ)

)
+ wmix(z, θ), (3.7)where, for instane, wmix(z, θ) =

∑M

j=1 γjz
rj

j (1−zj)
rj for γj = γj(θ) ≥ 0 and rj = rj(θ) > 0.In both ases, the funtion W (·, z, θ) inherits polyonvexity. For (3.7) we may even allowfor β = β(θ) if the leading oe�ients aj and bj for Wj in (3.5) are independent of j.Then, W in (3.7) takes the form

W (F, z, θ) = a(θ)|F |p +
b(θ)

(detF )r
+

1

β(θ)
log

( M∑

j=1

zje
β(θ)fWj(F,θ)

)
+ wmix(z, θ).In onlusion, this shows that based on standard polyonvex materials it is easily possibleto onstrut stored-energy densities satisfying the above assumptions.4 The main existene resultFor a given temperature pro�le θappl and a given external loading ℓ with

θappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax])) and
ℓ ∈ C1([0, T ]),W1,p(Ω; Rd)∗)

(4.1)we now study the stored-energy funtional E as de�ned in (2.2).Proposition 4.1 Under the above assumptions the following holds:(a) If for some (t∗, ϕ, z) ∈ [0, T ] × F × Z we have E(t∗, ϕ, z) < ∞, then E(·, ϕ, z) ∈

C1([0, T ]) and ∂tE(t, ϕ, z) =
∫
Ω
∂θW (∇ϕ, z, θappl(t))θ̇appl(t)dx− 〈ℓ̇(t), ϕ〉.7



(b) There exist onstants cE0 , cE1 > 0, suh that E(t, ϕ, z) < ∞ implies |∂tE(t, ϕ, z)| ≤
cE1 (E(t, ϕ, z) + cE0 ).() For eah E∗ ∈ R and ε > 0 there exists δ > 0 suh that E(t1, ϕ, z) ≤ E∗ and
|t1 − t2| < δ imply |∂tE(t1, ϕ, z) − ∂tE(t2, ϕ, z)| < ε.Proof: We �rst use the oerivity (3.2) to �nd

E(t∗, ϕ, z) ≥
1

C
‖∇ϕ‖p

Lp − C|Ω| − ‖ℓ(t∗)‖‖ϕ‖W1,p .Using (2.5) we obtain c0, C0 > 0 suh that
E(t∗, ϕ, z) ≥ c0‖ϕ‖

p

W1,p − C0. (4.2)To show di�erentiability with respet to t we use θappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax]))and ondition (3.4). For h 6= 0 and t∗ + h ∈ [0, T ] the mean-value theorem provides some
s ∈ [0, 1] suh that

1
h
(E(t∗+h, ϕ, z) − E(t∗, ϕ, z)) =

∫
Ω
∂θW (x,∇ϕ, z, θappl(t∗+sh, x))∂tθappl((t∗+sh, x)dx− 〈 1

h
(ℓ(t+h) − ℓ(t)), ϕ〉.Using E(t∗, ϕ, z) < ∞ and Lemma 3.1 we know that |∂θW (x,∇ϕ(x), z(x), θ̃(x))| ≤ g(x),a.e. on Ω for some g̃ ∈ L1(Ω), where θ̃ ∈ L∞(Ω); [θmin, θmax]) is arbitrary. Sine ∂tθ ∈

C0([0, T ]; L∞(Ω)) we may pass to the limit h→ ∞ by the Lebesgue theorem and part (a)is proved.For part (b) we use the representation of part (a) and estimate as follows
|∂tE(t, ϕ, z)| ≤

∫

Ω

|∂θW (x,∇ϕ, z)|dx ‖∂tθappl‖∞ + ‖ℓ̇(t)‖∗‖ϕ‖W1,p.Using (3.4) for j = 1 and (4.2) the desired result follows immediately.For part () we use (3.4) for j = 2 and (4.1), whih implies
‖ℓ̇(t1) − ℓ̇(t2)‖∗ + ‖∂tθ(t1·) − ∂tθ(t2, ·)‖L∞(Ω) ≤ ω(|t1 − t2|), (4.3)where ω: [0,∞) → [0,∞) is a ontinuous modulus of ontinuity with ω(0) = 0. We obtain

|∂tE(t1, ϕ, z) − ∂tE(t2, ϕ, z)|

≤
∫
Ω
|∂θW (x,∇ϕ, z, θ(t1)) − ∂θW (x,∇ϕ, z, θ(t2))| ‖∂tθ(t1)‖∞dx

+
∫
Ω
|∂θW (x,∇ϕ, z, θ(t2))| ‖∂tθ(t1)−∂tθ(t2)‖∞dx+ ‖ℓ̇(t1)−ℓ̇(t2)‖∗ ‖ϕ‖W1,p

≤
∫
Ω
cW1 [W (x,∇ϕ, z, θ(t1+s(t2−t1))) + c0] ‖θ(t1) − θ(t2)‖∞dx ‖∂tθ‖∞

+C̃(E(t, ϕ, z) + cE0 ) ω(t1 − t2)

≤ Ĉ(E∗ + cE0 )(|t1 − t2| + ω(t1 − t2)).8



Thus, the proposition is established.We now show that the energeti formulation (S) & (E) introdued in Setion 2 has at leastone solution q = (ϕ, z) : [0, T ] → Q = F × Z, for a given stable initial datum q0 ∈ Q.Here q0 is alled stable if it satis�es the (stati) ondition (S) at time t = 0. The existenetheory relies on the abstrat framework developed in [MaM05℄ with the reent re�nementsderived in [Mie05, FM06℄. These re�nements are based on the seletion tehnique and anapproximation result of Lebesgue integrals via Riemann sums developed in [DFT05℄.Here we do not go into the details of the proof of the abstrat result. We just mention thatthe theory is based on time-inremental minimization problems for sequenes of partitions
0 = tk0 < tk1 < · · · < tkNk−1 < tkNk

= T in the form:(IP)k { Given q0 ∈ Q, �nd iteratively qk
1 , . . . , q

k
Nk

∈ Q suh that
qk
j minimizes q̃ 7→ E(tkj , q̃) + D(qj−1, q̃).Thus, for eah k we may de�ne the pieewise onstant interpolant qk : [0, T ] → Q with

qk(t) = qk
j for t ∈ [tkj , t

k
j+1) for j = 0, . . . , Nk.Theorem 4.2 Let Q = F × Z be as spei�ed above and let E and D satisfy the as-sumptions from above. Then, for eah stable q0 ∈ Q there exists an energeti solution

q0 : [0, T ] → Q with q(0) = q0. This solution q = (ϕ, z) satis�es
ϕ ∈ L∞([0, T ],W1,p(Ω; Rd)) and
z ∈ L∞([0, T ],Wα,2(Ω; RM) ∩ BV([0, T ]; L1(Ω,Rm)),and it an be obtained as the limit of a subsequene (qkl)l∈N of the above interpolantsassoiated with (IP)k as follows:

(i) ∀ t ∈ [0, T ] : zkl(t) ⇀ z(t) in Wα,2(Ω; RM),

(ii) ∀ t ∈ [0, T ] : E(t, qkl(t)) → E(t, q(t))

(iii) ∀ t ∈ [0, T ] : DissD(qkl, [0, t]) → DissD(q, [0, t])

(iv) ∀ t ∈ [0, T ] ∃ subseq. (kt
n)n∈N of (kl)l∈N : ϕkt

n(t) ⇀ ϕ(t) in W1,p(Ω; Rd).The main point in passing to the limit is the use of the weak lower semiontinuity of
E(t, ·) on Q onsidered as a onvex subset of W1,p(Ω; Rd)×Wα,2(Ω; RM). The dissipationbehaves better as it is strongly ontinuous in L1(Ω) and hene weakly ontinuous in
Z = Wα,2(Ω;ZM). Together with the good dependene on the time t, whih was derivedin Proposition 4.1, we have ful�lled all assumptions of the abstrat theory in [FM06,Set.3℄. This proves our Theorem 4.2.
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5 Time-dependent Dirihlet onditions, ompositions,and Lie groupsSo far we have studied the situation that the boundary onditions ϕDir on ΓDir ⊂ ∂Ωare independent of time. Hene, the spae F of admissible deformations ould be hosenindependent of time as well. Of ourse, typial pratial situations lead to ases where
ϕDir depends on time.The usual treatments of time-dependent boundary data involve either the additive split
ϕ(t) = ϕDir(t) + u, where u an then be hosen in a �xed spae, or a replaement of the�hard onstraint� ϕ − ϕDir(t)

∣∣
ΓDir

≡ 0 by the penalization 1
δ

∫
ΓDir

|ϕ − ϕDir(t)|
2 da, whihis added to the energy funtional. The latter method would be appliable in our ase of�nite-strain elastiity. However, it has the disadvantage that the treatment of the limit

δ → 0 is not so easy and it is rather awkward to ontrol the work done by the hangingboundary ondition. The additive split ϕ = ϕDir+u does not work here, as in �nite-strainelastiity the additive split of the deformation gradient F = ∇ϕ = ∇ϕDir + ∇u is notompatible with the blow-up of the stored-energy density W near detF = 0.Instead we follow the approah in [FM06, Set.5℄ and use the omposition
ϕ(t, x) = ϕDir(t, ψ(t, x)) = (ϕDir(t, ·) ◦ ψ(t))(x) (5.1)that leads to a multipliative split of the deformation gradient
F = ∇ϕ(t, x) = ∇ϕDir(t, ψ(t, x))∇ψ(t, x). (5.2)To make the following analysis rigorous we assume that ϕDir(t, ·) an be smoothly extendedonto all of R

d suh that it is in fat a di�eomorphism. More preisely, we assume
ϕDir ∈ C1([0, T ]×R

d; Rd), ∇ϕDir ∈ BC1([0, T ]×R
d; Rd×d),

∇ϕDir(t, x) ∈ GL+(Rd) for all (t, x) and (∇ϕDir)
−1 ∈ BC0([0, T ]×R

d; Rd×d).
(5.3)Clearly, we have ϕ(t, x) = ϕDir(t, x) for x ∈ ΓDir if and only if ψ(t, x) = x for x ∈ ΓDir.Hene, we let

F̃ = {ψ ∈ W1,p(Ω; Rd) | (ψ − id)∣∣
ΓDir=0

}With the notations from the previous setions we then de�ne Q̃ = F̃ × Z and
Ẽ(t, ψ, z) = E(t, ϕDir(t) ◦ ψ, z)and keep D : Z × Z → [0,∞) as above.The ruial ondition that is needed for ontrolling the time derivative ∂tẼ involves theKirhho� stress tensor

K(x, F, z, θ) = ∂FW (x, F, z, θ)F T ∈ R
d×d.In �nite-strain elastiity it is advantageous and illuminating to onsider F = ∇ϕ as anelement of the Lie group

GL+(Rd) = {G ∈ R
d×d |G−1 exists and detG > 0 }.10



Then, the Kirhho� tensor turns out to be the left multipliative derivative, viz.,
K(x, F, z, θ)[H ] = lim

ε→0

d

dε
W (x, eεHF, z, θ) = ∂FW (x, F, z, θ)[HF ].In partiular, we see thatK(x, F, z, θ) is an element of gl(Rd)∗, where gl(Rd) = TIGL+(Rd)is the Lie algebra of GL+(Rd).Following [FM06℄ (see also [Bal02℄) we assume that in all points (x, F, z, θ) ∈ D with

W (x, F, z, θ) <∞ the funtion W is twie di�erentiable in F suh that
∃ cK0 , c

K
1 > 0 ∀ (x, F, z, θ) ∈ D ∀H ∈ R

d×d :

K(x, F, z, θ) ∗ ≤ cK1
(
W (x, F, z, θ)+cK0

)
, (5.4a)

∂FK(x, F, z, θ)[HF ] ∗ ≤ cK1
(
W (x, F, z, θ)+cK0

)
H , (5.4b)where · is an arbitrary norm on gl(Rd) and · ∗ is the dual norm on gl(Rd)∗.To illuminate the (multipliative) Lie group struture further, we omit temporarily thevariables x, z, and θ. The following Lemma 5.1 states that ondition (5.4a) is equivalentto global Lipshitz ontinuity of log(W+cK0 ): GL+(Rd) → [0,∞) with respet to theright-invariant distane

dGL(F0, F1)= inf
{ ∫ 1

0

Ġ(t)G(t)−1 dt
∣∣∣ G ∈ C1([0, 1]; GL+(Rd)),

G(0) = F0, G(1) = F1

}
.

(5.5)This de�nition easily gives the right-invariane dGL(F0F, F1F ) = dGL(F0, F1) for all
F0, F1, F ∈ GL+(Rd).Lemma 5.1 For W ∈ C1(GL+(Rd),R) the bound in (5.4a) is equivalent to
∀F0, F1 ∈ GL+(Rd) :

∣∣∣ log
(
W (F0) + cK0

)
− log

(
W (F1) + cK0

)∣∣∣ ≤ cK1 dGL(F0, F1). (5.6)Proof: Equation (5.6) follows from (5.4a) by di�erentiating of w(t) = log(W (F (t))+cK0 )with respet to time, where t 7→ F (t) is the geodesi onneting F0 and F1. Then,
ẇ(t) =

∂FW (F (t))[Ḟ (t)]

W (F (t)) + cK0
=
K(F (t)) : (Ḟ (t)F (t)−1)

W (F ) + cK0
≤ cK1 Ḟ (t)F (t)−1and integration yields (5.6). For the opposite onlusion we use that

1

ε
dGL(F, F+εF̂ ) → F̂F−1 for ε→ 0.With F̂ = HF and (5.6) for F0 = F1 and F1 = F + εF̂ we �nd, after division by ε andtaking the limit ε → 0,

∂FW (F )[HF ]

W (F ) + cK0
≤ cK1 H .11



As H ∈ TF GL+(Rd) is arbitrary, this implies (5.4a).The onditions (5.4) are in fat satis�ed by many polyonvex stored-energy densities, forinstane for Ogden materials. Consider
W (F ) = α|F |p +

β

(detF )r
with α, β, r > 0 and p ≥ 2.Then, the Kirhho� tensor takes the form

K(F ) = αp|F |p−2FFT −
βr

(detF )r
Iand it is easy to establish (5.4) with cK0 = 0 and cK1 = max{p, r}.Unfortunately, there is nothing known about the interplay of ondition (5.6) and polyon-vexity. In partiular, for appliations in �nite-strain elastoplastiity (f. [Mie02, Mie03,Mie04b, MiM06, GM*06℄) it would be interesting to know whether there exists cK1 > 0suh that the funtion

F 7→ ecK
1

dGL(I,F )is polyonvex on R
d×d, when extended by +∞ outside of GL+(Rd). This question alsoinvolves the hoie of the norm · on gl(Rd) used in (5.5). The only positive result isbased on the seminorm

ξ = ξ+ξ⊤ F with η 2
F = η:η,see [MiM06℄.It is easy to see that the de�nitions of Q̃ = F̃ × Z, Ẽ : [0, T ] × Q̃ → R∞, and D :

Z × Z → [0,∞) make Ẽ(t, ·) and D weakly lower semiontinuous with respet to thestrong topology of W1,p(Ω; Rd) × Wα,2(Ω;ZM). Moreover, D is even weakly ontinuous.Thus, the remaining properties to be established involve the time derivative of ∂tẼ , i.e. thepower of the external loading whih now inludes the fores fappl, gappl, the temperature
θappl, and the Dirihlet boundary data ϕDir.For the time derivative of W (x, (∇ϕDir)∇ψ, z, θappl(t)) we obtain the old term involving
θ̇appl(t) and a new term involving ∇ϕ̇Dir, namely

∂FW (x,∇ϕDir∇ψ, z, θappl(t)):
[
∇ϕ̇Dir∇ψ

]

=
[
∂FW (x,∇ϕDir∇ψ, z, θappl(t))

(
∇ϕDir∇ψ

)⊤]
:
[
∇ϕ̇Dir∇ψ

(
∇ϕDir∇ψ

)−1
]

= K(x,∇ϕDir∇ψ, z, θappl(t)):[∇ϕ̇Dir(∇ϕDir)
−1]where we have used the identity A:B = (AC⊤):(BC−1). Hene, in analogy to Proposition4.1 we obtain the following formula by the help of the assumption (5.4a):

∂tẼ(t, ψ, z) =

∫

Ω

K(x,∇ϕDir∇ψ, z, θappl(t)) :
[
∇ϕ̇Dir(∇ϕDir)

−1
]
dx

+

∫

Ω

∂θW (∇ϕDir∇ψ, z, θappl(t))θ̇appl(t)dx

− 〈ℓ̇(t), ϕDir〉 − 〈ℓ(t), ϕ̇Dir〉,12



where ϕDir,∇ϕDir and ϕ̇Dir = ∂tϕDir are evaluated at (t, ψ(x)). Using (5.3) we �nd
∇ϕ̇Dir(∇ϕDir)

−1 ∈ C0([0, T ] × Ω; Rd×d) and obtain the desired estimate
|∂tẼ(t, ψ, z)| ≤ c̃E1

(
Ẽ(t, ψ, z) + c̃E0

)
.Moreover, employing (5.4b) as in [FM06, Set.5℄ and the results of Proposition 4.1 we�nd for eah E∗ ∈ R and eah ε > 0 a δ > 0 suh that Ẽ(t1, ψ, z) ≤ E∗ and |t1 − t2| < δimplies |∂tẼ(t1, ψ, z) − ∂tẼ(t2, ψ, z)| < ε. Hene, the existene result of Setion 4 an begeneralized to the ase of time dependent boundary onditions as follows without anyhange in the proof.Theorem 5.2 Let Q̃ = F̃ × Z, Ẽ and D be as spei�ed above. Let all the assumptionsof Setion 3 hold and, additionally, (5.3) and (5.4). Then, for eah stable initial state

(ψ0, z0) ∈ Q̃ there exists an energeti solution (ψ, z) : [0, T ] → Q̃ assoiated with thefuntionals Ẽ and D satisfying (ψ(0), z(0)) = (ψ0, z0).Moreover, this solution satis�es all the properties stated in Theorem 4.2 analogously.6 DisussionWe have shown that the previously developed isothermal models for the hystereti behav-ior for phase transformations in shape-memory alloys an be transfered to the ase wherethe temperature is varying but given in advane. The aim was to show that the model isstill apable to handle �nite-strain elastiity.There are several reasons why a true thermodynamially onsistent oupling to the energyequations is still out of the reah of a rigorous mathematial treatment. One majorreason is that almost all theory of �nite-strain elastiity is related to the diret method ofalulus of variations. Thus, we do not know whether the onstruted global minimizersfor polyonvex materials laws satisfy the equilibrium equations (f. [Bal02℄) and whetherthey are unique. See [KS84, KTW03, Kno06℄ for a series of uniqueness results in thestati and dynamial ase.Using global minimization we have to expet that the energeti solutions as disussedabove have jumps as funtions of time. In a truely oupled thermo-mehanial modelthis would provide an instant release of energy whih ould not be ontrolled withoutknowing the �jump path�. If suitable uniqueness onditions, at least in ertain relevantregimes, would be available then it should be possible to show that no jumps our. Infat it is the purpose of the mesosopial models using the phase frations z(t, x) ∈ ZM todevise smoother models. In the ase of small strains, see e.g., [AP04, SZ06, AMS06℄, thereis muh more hope to treat suitable models with orret oupling between temperaturehanges and phase transformations.
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