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AbstratWe study nonadditive Bayesian problems of deteting a hange in drift ofan observed di�usion proess where the ost funtion of the detetion delay hasthe same struture as in [27℄ and onstrut a �nite-dimensional Markovian suf-�ient statisti for that ase. We show that when the ost funtion is linear theoptimal stopping time is found as the �rst time when the a posteriori probabil-ity proess hits a stohasti boundary depending on the observation proess.It is shown that under some nontrivial relationships on the oe�ients of theobserved di�usion the problem admits a losed form solution. The method ofproof is based on embedding the initial problem into a two-dimensional op-timal stopping problem and solving the equivalent free-boundary problem bymeans of the smooth-�t onditions.1. IntrodutionThe problem of quikest disorder detetion for an observed di�usion proess seeksto determine a stopping time whih is as lose as possible to the (unknown) timeof 'disorder' (hange-point) when the drift oe�ient µ(x) of the observed proesshanges from µ0(x) to µ1(x). This problem admits at least two di�erent Bayesianformulations. In the 'free' formulation (below referred to as the 'Bayesian problem')one looks for a time of 'alarm' minimizing a linear ombination of the probabilityof a 'false alarm' and the expetation of a 'delay' in deteting the time of disorderorretly with no onstraint on the former. In the '�xed false-alarm' formulation(sometimes referred to as the 'variational problem') one looks for a time of 'alarm'minimizing the same linear ombination under the onstraint that the probabilityof a 'false alarm' annot exeed a given value. In this paper we only study the'Bayesian problem' where we also use the ustomary assumption that the time ofdisorder is exponentially distributed.Shiryaev [25℄-[26℄ and [28℄-[29℄ (see also [30; Chapter IV℄) derived an expliit solu-tion of the Bayesian and variational problem of deteting a hange in drift of anobserved Wiener proess by reduing the initial optimal stopping problem to a free-boundary problem for an ordinary seond order operator. Some partiular ases ofthe Bayesian problem of deteting a hange in the intensity of an observed Poissonproess were onsidered by Gal'huk and Rozovskii [10℄ and Davis [6℄. Peskir andShiryaev [20℄ obtained a omplete solution of the latter problem by reduing theinitial optimal stopping problem for a di�erential-di�erene operator. The Bayesianand variational disorder problems for a ompound Poisson proess with exponen-tially distributed jumps were expliitly solved in [11℄. Reently, Dayanik and Sezer1



[7℄ obtained a solution of the Bayesian disorder problem for a general ompoundPoisson proess. In all these problems the optimal stopping time was the �rst timewhen the a posteriori probability proess hits a onstant boundary. A �nite horizonversion of the Bayesian and variational Wiener disorder problem was solved in [12℄by reduing a paraboli free-boundary problem to an equivalent a nonlinear integralequation for the urved optimal stopping boundary depending on time. The mainpurpose of this paper is to study the Bayesian problem of deteting a hange in loaldrift of an observed di�usion proess and present a losed form solution of the prob-lem under some nontrivial relationships on oe�ients of the observed di�usion. Inthis ase the optimal stopping time is the �rst time when the a posteriori probabilityproess hits a stohasti boundary depending on the observation proess.Shiryaev [27℄ studied the problem of �nding �nite-dimensional Markovian su�ientstatistis in the disorder problem with nonadditive minimizing funtionals. Morereently, it was shown by Poor [22℄ for the ase of observed sequenes of random vari-ables, by Beibel [4℄ for the ase of observed Wiener proess, and then by Bayraktarand Dayanik [1℄ for the ase of observed Poisson proess, that when the ost fun-tion of the detetion delay has an exponential form the Markovian su�ient statistiturns out to be one-dimensional that essentially simpli�es the solution of the relatedoptimal stopping problem. Some other formulations of the Poisson disorder prob-lem were onsidered by Bayraktar, Dayanik and Karatzas [2℄. Another 'adaptive'formulation of the Poisson disorder problem where the arrival rate of the observedproess hanges to an unobservable value and the related problem of �nding �nite-dimensional Markovian su�ient statistis were studied by Bayraktar, Dayanik andKaratzas [3℄. It was shown that when the new arrival rate has Bernoulli distributionthe Markovian su�ient statisti turns out to be two-dimensional that makes pos-sible to observe interesting analyti properties of the solution of the orrespondingoptimal stopping problem.The paper is organized as follows. In Setion 2, after formulating the Bayesian dis-order problem for an observed di�usion proesses we study the problem of �ndingMarkovian su�ient statistis for the ase where the minimizing nonadditive fun-tional has the same form as in [27℄. In Setion 3, we onsider the ase where theost funtion of the detetion delay is linear and make an embedding of the initialBayesian problem into an extended optimal stopping problem for a two-dimensional(time-homogeneous strong) Markov proess (onsisting of the a posteriori probabil-ity proess and the observation proess). We show that the ontinuation region (forthe a posteriori probability proess) is determined by a stohasti boundary depend-ing on the observation proess where the behavior of the boundary is haraterizedby the signal/noise ratio. In order to �nd analyti expressions for the value funtionand the stopping boundary under some speial nontrivial relationships on oe�-ients of the observed di�usion, we formulate an equivalent free-boundary problem.By applying smooth-�t ondition we show that the free-boundary problem admitsan expliit solution and the boundary is uniquely determined from a transendentalequation. Then we verify that the solution of the free-boundary problem turns outto be a solution of the initial extended optimal stopping problem. The main results2



of the paper are stated in Theorems 2.1 and 3.1.2. Formulation of the problemIn the Bayesian formulation of the problem (see [30; Chapter IV, Setion 4℄ forthe ase of Wiener proess) it is assumed that we observe a trajetory of the dif-fusion proess X = (Xt)t≥0 with drift oe�ient hanging from µ0(x) to µ1(x) atsome random time θ taking the value 0 with probability π and being exponentiallydistributed with parameter λ > 0 under θ > 0 .2.1. For a preise probabilisti formulation of the Bayesian problem it is onvenientto assume that all our onsiderations take plae on a probability spae (Ω,F , Pπ)where the probability measure Pπ has the following struture:
Pπ = πP 0 + (1 − π)

∫ ∞

0

λe−λsP s ds (2.1)for any π ∈ [0, 1] and the measures P s for s ∈ [0,∞] are spei�ed below. Let θ bea nonnegative random variable satisfying Pπ[θ = 0] = π and Pπ[θ > t | θ > 0] = e−λtfor all t ≥ 0 and some λ > 0 , and let W = (Wt)t≥0 be a standard Wiener proessstarted at zero under Pπ . It is assumed that θ and W are independent.It is further assumed that we observe a ontinuous proess X = (Xt)t≥0 with the(open) state spae E ⊆ R and solving the stohasti di�erential equation:
dXt = [µ0(Xt) + I(t ≥ θ)(µ1(Xt) − µ0(Xt))] dt+ σ(Xt) dWt (X0 = x) (2.2)where the funtions µi(x) and σ(x) are Lipshitz ontinuous on E , that is, thereexists a onstant C > 0 suh that:

[µi(x) − µi(x
′)]2 + [σ(x) − σ(x′)]2 ≤ C[x− x′]2 (2.3)for all x, x′ ∈ E and i = 0, 1 . Thus, from [17; Chapter IV, Theorem 4.6℄ it followsthat under �xed θ = s equation (2.2) has a unique strong solution, and hene,

Pπ[X ∈ · | θ = s ] = P s[X ∈ · ] is the distribution law of a homogeneous di�usionproess (starting at some �xed point x ∈ E ) with di�usion oe�ient σ2(x) andloal drift hanging from µ0(x) to µ1(x) at time s ∈ [0,∞]. We will also assumethat either µ0(x) < µ1(x) or µ0(x) > µ1(x) holds and σ2(x) > 0 for all x ∈ E . It isassumed that the time of 'disorder' is unknown (i.e., it annot be observed diretly).Being based upon the ontinuous observation of X our task is to �nd among thestopping times τ of X (i.e., stopping times with respet to the natural �ltration
FX

t = σ{Xs | 0 ≤ s ≤ t} generated by the proess X for t ≥ 0) an optimal stoppingtime (a time of 'alarm') being 'as lose as possible' to the unknown time θ . Morepreisely, the problem onsists of omputing the risk funtion:
V (π) = inf

τ

(
Pπ[τ < θ] + Eπ[f(τ − θ)I(τ ≥ θ)]

)
, (2.4)3



and �nding the optimal stopping time τ∗ , alled the π -Bayes time, at whih thein�mum in (2.4) is attained. Here Pπ[τ < θ] is the probability of a 'false alarm',
Eπ[f(τ − θ)I(τ ≥ θ)] is the 'average ost of delay' in deteting disorder orretly(i.e., when τ ≥ θ), so that the ost funtion f(t) of the detetion delay satis�es
f(t) ≥ 0 for t ≥ 0 and f(t) = 0 for t ≤ 0 .2.2. Following the shema of arguments in [27℄, one an easily show that the Bayesianproblem (2.4) is redued to the optimal stopping problem:

V (π) = inf
τ
Eπ

[
1 − πτ,τ + f(τ)π0,τ +

∫ τ

0

f(τ − u) duπu,τ

] (2.5)for the onditional probability πu,t = Pπ[θ ≤ u | FX
t ] for eah 0 ≤ u ≤ t and all

t ≥ 0 with π0,0 = π (Pπ -a.s.).It follows by de�nition of the measures P s above that:
d(P s|FX

t )

d(P∞|FX
t )

= I(s ≤ t) +
Lt

Ls

I(s > t) (2.6)for eah s ∈ [0,∞], where by applying Girsanov's theorem for di�usion-type pro-esses [17; Chapter VII, Theorem 7.19℄, we have:
Lt = exp

(∫ t

0

µ1(Xu) − µ0(Xu)

σ2(Xu)
dXu −

1

2

∫ t

0

µ2
1(Xu) − µ2

0(Xu)

σ2(Xu)
du

) (2.7)for all t ≥ 0 . Then, by means of generalized Bayes' formula [17; Chapter VII,Lemma 7.4℄, for the onditional probability πu,t = Pπ[θ ≤ u | FX
t ] we get:

πu,t =
πLt + (1 − π)

∫ u

0
(Lt/Ls)λe

−λs ds

πLt + (1 − π)
∫ t

0
(Lt/Ls)λe−λs ds+ (1 − π)e−λt

(2.8)for eah 0 ≤ u ≤ t and all t ≥ 0 . Hene, after setting πt = πt,t , we obtain:
πu,t

1 − πt

=
Lt

e−λt

(
π

1 − π
+

∫ u

0

λe−λs

Ls

ds

) (2.9)for eah 0 ≤ u ≤ t and all t ≥ 0 . Thus, by means of standard arguments it followsthat the value funtion (2.5) takes the form:
V (π) = inf

τ
Eπ

[
(1 − πτ )

(
1 +

Lτ

e−λτ

(
f(τ)

π

1 − π
+

∫ τ

0

f(τ − u)
λe−λu

Lu

du

))]
.(2.10)2.3. Following the shema of arguments from [27℄, from now on we assume that theLaplae transform f̂(z) of the funtion f(t) is a rational funtion of the form:

f̂(z) =

∫ ∞

0

f(u)e−zu du =

n∑

k=1

m(k)∑

l=1

ckl

(z − λk)l
(2.11)4



for all z > 0 , z 6= λ1, . . . , z 6= λn , where ckl , l = 1, . . . , m(k), k = 1, . . . , n, aresome real onstants. Let us denote by e−Su the shift operator ating on an arbitraryfuntion a(t) like e−Su [a(t)] = a(t− u) for all t ≥ 0 and some u ≥ 0 �xed. In thisase, by virtue of the assumption (2.11) we may set:
f̂(S) [ · ] =

∫ ∞

0

f(u)e−Su [ · ] du =

n∑

k=1

m(k)∑

l=1

ckl

(S − λk)l
[ · ] (2.12)and thus, we have:

f̂(S)

[
λe−λt

Lt

]
=

∫ ∞

0

f(u)
λe−λ(t−u)

Lt−u

du =

n∑

k=1

m(k)∑

l=1

ckl

(S − λk)l

[
λe−λt

Lt

] (2.13)for all t ≥ 0 . By means of standard arguments from [8℄, we get:
1

(S − λk)l

[
λe−λt

Lt

]
= ψkl

t

e−λt

Lt

≡

∫ ∞

0

eλku ul−1

(l − 1)!

λe−λ(t−u)

Lt−u

du (2.14)for eah 0 ≤ u ≤ t and all t ≥ 0 , where the proess (ψkl
t )t≥0 is de�ned by:

ψkl
t =

Lt

e−λt

∫ t

0

eλk(t−u) (t− u)l−1

(l − 1)!

λe−λu

Lu

du (2.15)for every l = 1, . . . , m(k) and k = 1, . . . , n. By using the fat that:
∫ t

0

f(t− u)
λe−λu

Lu

du =

∫ ∞

0

f(u)
λe−λ(t−u)

Lt−u

du (2.16)for eah 0 ≤ u ≤ t and all t ≥ 0 , we therefore onlude that the value funtion(2.10) admits the representation:
V (π) = inf

τ
Eπ


(1 − πτ )


1 +

Lτf(τ)

e−λτ

π

1 − π
+

n∑

k=1

m(k)∑

l=1

cklψ
kl
τ




 . (2.17)2.4. Let us now introdue the likelihood ratio proess (ϕt)t≥0 de�ned by ϕt =

πt/(1 − πt), and thus, by virtue of (2.9), taking the expression:
ϕt =

Lt

e−λt

(
π

1 − π
+

∫ t

0

λe−λs

Ls

ds

) (2.18)for all t ≥ 0 . Then, by applying It�'s formula [17; Chapter IV, Theorem 4.4℄ to theexpressions (2.18), (2.7) and (2.15), and by using the fat that:
πt =

ϕt

1 + ϕt

(2.19)5



we obtain the following representations:
dπt = λ(1 − πt) dt+

µ1(Xt) − µ0(Xt)

σ(Xt)
πt(1 − πt) dW t (π0 = π) (2.20)

dLt =
µ1(Xt) − µ0(Xt)

σ(Xt)
Lt dW t (L0 = 1) (2.21)

dψk1
t =

[
λ+ (λ+ λk)ψ

k1
t

]
dt+

µ1(Xt) − µ0(Xt)

σ(Xt)
ψk1

t dW t (ψk1
0 = 0) (2.22)

dψkl
t =

[
ψ

k(l−1)
t + (λ+ λk)ψ

kl
t

]
dt+

µ1(Xt) − µ0(Xt)

σ(Xt)
ψkl

t dW t (ψkl
0 = 0) (2.23)for every l = 2, . . . , m(k) and k = 1, . . . , n, where, by means of P. Lévy's theorem[24; Chapter IV, Theorem 3.6℄, the innovation proess W = (W t)t≥0 de�ned by:

W t =

∫ t

0

dXs

σ(Xs)
−

∫ t

0

(
µ0(Xs)

σ(Xs)
+ πs

µ1(Xs) − µ0(Xs)

σ(Xs)

)
ds (2.24)is a standard Wiener proess under the measure Pπ with respet to the �ltration

(FX
t )t≥0 . Therefore, from (2.24) it follows that the proess X = (Xt)t≥0 admits therepresentation:

dXt = [µ0(Xt) + πt(µ1(Xt) − µ0(Xt))] dt+ σ(Xt) dW t (X0 = x). (2.25)Let us suppose that the signal/noise ratio funtion de�ned by:
r(x) =

µ1(x) − µ0(x)

σ(x)
(2.26)is also Lipshitz ontinuous, that is, there exists a onstant C ′ > 0 suh that ondi-tion:

[r(x) − r(x′)]2 ≤ C ′[x− x′]2 (2.27)holds for all x, x′ ∈ E , and there are onstants r∗ and r∗ suh that the inequalities:
0 < r∗ ≤ r(x) ≤ r∗ <∞ (2.28)are satis�ed for all x ∈ E . Hene, by means of Remark to [17; Chapter IV, The-orem 4.6℄ (see also [18; Chapter V, Theorem 5.2.1℄) we onlude that the proess

(πt, Lt, ψt, Xt)t≥0 where we denote ψt = (ψkl
t , l = 1, . . . , m(k), k = 1, . . . , n) turnsout to be a unique strong solution of the multi-dimensional stohasti di�eren-tial equation (2.20)-(2.23)+(2.25), and thus, by virtue of [18; Chapter VII, Theo-rem 7.2.4℄, it is a (time-homogeneous strong) Markov proess with respet to itsnatural �ltration, whih obviously oinides with (FX

t )t≥0 . Therefore, the in�mumin (3.2) is taken over all stopping times of (πt, Lt, ψt, Xt)t≥0 playing the role of aMarkovian su�ient statisti in the problem.2.5. Summarizing the fats proved above we now formulate the following assertion.6



Theorem 2.1. Suppose that ondition (2.3) holds and the Laplae transform f̂(z)of the ost of delay f(t) takes the form (2.11). Then in the Bayesian problem(2.4)-(2.5) the value funtion admits the representation (2.17), where the proesses
(πt)t≥0 , (Lt)t≥0 and (ψkl

t )t≥0 , l = 1, . . . , m(k), k = 1, . . . , n, de�ned in (2.19),(2.7) and (2.15) solve the stohasti di�erential equations (2.20)-(2.23). Moreover,if the onditions (2.27)-(2.28) are satis�ed, then (πt, Lt, ψt, Xt)t≥0 turns out to be aMarkovian su�ient statisti in the problem (2.4)-(2.5).Remark 2.2. The Laplae transform f̂(z) has the form (2.11) if, for example,the funtion f(t) satis�es a homogeneous ordinary di�erential equation of the or-der q =
∑n

k=1m(k) : f (q)(t) + a1f
(q−1)(t) + . . . + aq−1f

′(t) + aqf(t) = 0 with theinitial onditions f(0) = c0, f
′(0) = c1, . . . , f

(q−1)(0) = cq−1 , where a1, . . . , aq and
c0, c1, . . . , cq−1 are some real onstants (see, e.g., [8℄).Example 2.3. Assume that f(t) = ct for all t ≥ 0 and some c > 0 given and �xed.Then it is easily shown (see, e.g., [30; Chapter IV℄) that the value funtion (2.4)takes the form (3.1)-(3.2) below, so that (πt)t≥0 turns out to be a one-dimensionalsu�ient statisti.Example 2.4. Assume that f(t) = ctα for all t ≥ 0 and some α > 0 and
c > 0 given and �xed. In this ase, the Laplae transform takes the form f̂(z) =
cΓ(α + 1)/zα+1 for z > 0 , where Γ is the Euler Gamma funtion. If α ∈ N then
f̂(z) is of the type (2.11), from where, by means of the arguments above we obtainthat the value funtion (2.10) admits the representation:

Lπ(τ) = Eπ

[
(1 − πτ )

(
1 +

Lτcτ
α

e−λτ

π

1 − π
+ cΓ(α + 1)

α+1∑

l=1

ψl
τ

)]
. (2.29)Otherwise, if α > 0 but α /∈ N then the funtion f̂(z) annot be expressed in theform (2.11) with �nite number of summands.3. The ase of linear ost of delayIn this setion we study the ase onsidered in Example 2.3 above where the ost ofdelay is a linear funtion.3.1. Assume that in (2.4) we have f(t) = ct for all t ≥ 0 and some c > 0 �xed. Inthis ase the value funtion admits the representation:

V (π) = inf
τ

(
Pπ[τ < θ] + cEπ[τ − θ]+

) (3.1)where the in�mum is taken over all stopping time of the proess X . By means ofstandard arguments (see [30; pages 195-197℄) one an easily show that the Bayesian7



problem (3.1) is redued to the optimal stopping problem:
V (π) = inf

τ
Eπ

[
1 − πτ + c

∫ τ

0

πt dt

] (3.2)for the a posteriori probability proess πt = Pπ[θ ≤ t | FX
t ] for t ≥ 0 with π0 = π(Pπ -a.s.).3.2. For the problem (3.2) let us onsider the following extended optimal stoppingproblem for the Markov proess (πt, Xt)t≥0 :

V (π, x) = inf
τ
Eπ,x

[
1 − πτ + c

∫ τ

0

πt dt

] (3.3)where Pπ,x is a measure of the di�usion proess (πt, Xt)t≥0 starting at the point
(π, x) and solving the (two-dimensional) equation (2.20)+(2.25), and the in�mumin (3.3) is taken over all stopping times τ of the proess (πt, Xt)t≥0 suh that
Eπ,x[τ ] <∞ for all (π, x) ∈ [0, 1] ×E .3.3. Let us now determine the struture of the optimal stopping time in the problem(3.3).(i) First, by applying It�'s formula we get:

1 − πt = 1 − π − λ

∫ t

0

(1 − πs) ds+Nt (3.4)where for any (FX
t )t≥0 -stopping time τ satisfying Eπ,x[τ ] <∞ the proess (Nτ∧t)t≥0de�ned by Nτ∧t = −

∫ τ∧t

0
r(Xs)πs(1−πs)dW s is a ontinuous (uniformly integrable)martingale under Pπ,x . It follows from (3.4) using the optional sampling theorem(see, e.g., [24; Chapter II, Theorem 3.2℄) that:

Eπ,x

[
1 − πσ + c

∫ σ

0

πu du

]
= 1 − π + Eπ,x

[∫ σ

0

(c πt − λ(1 − πt)) du

] (3.5)for eah (FX
t )t≥0 -stopping time σ . Choosing σ to be the exit time from a smallball, we see from (3.5) that it is never optimal to stop when πt < λ/(λ+c) for t ≥ 0 .In other words, this shows that all points (π, x) for x ∈ E with 0 ≤ π < λ/(λ+ c)belong to the ontinuation region:

C = {(π, x) ∈ [0, 1] ×E | V (π, x) < 1 − π}. (3.6)Sine π 7→ V (π, x) with x ∈ E given and �xed is onave on [0, 1] (this is easilydedued using the same arguments as in [30; pages 197-198℄), it follows that thereexists a funtion g(x) satisfying 0 < λ/(λ + c) ≤ g(x) < 1 for all t ≥ 0 suh thatthe ontinuation region is an open set of the form:
C = {(π, x) ∈ [0, 1] ×E | π < g(x)} (3.7)8



and the stopping region is the losure of the set:
D = {(π, x) ∈ [0, 1] ×E | π > g(x)}. (3.8)(ii) Now for given (π, x) ∈ C let us take x′ ∈ E suh that x′ < x or x > x′ .Then using the fats that (πt, Xt)t≥0 is a time-homogeneous Markov proess and

τ∗ = τ∗(π, x) does not depend on x′ , from (3.4) we obtain:
V (π, x′) − (1 − π) ≤ Eπ,x′

[∫ τ∗

0

(c πt − λ(1 − πt))dt

] (3.9)
≤ Eπ,x

[∫ τ∗

0

(c πt − λ(1 − πt))dt

]
= V (π, x) − (1 − π)and hene, by means of (3.6), we see that (π, x) ∈ C . Therefore, we may onludethat in (3.7)-(3.8) and the boundary x 7→ g(x) is dereasing (inreasing) on E whenthe funtion r(x) is inreasing (dereasing), respetively.(iii) Next, let us observe that the value funtion V (π, x) from (3.3) and the boundary

g(x) from (3.7)-(3.8) also depend on r(x) de�ned in (2.26) and denote them here by
V∗(π, x) and V ∗(π, x) as well as A∗ and A∗ when r(x) = r∗ and r(x) = r∗ for all
x ∈ E , respetively. Using the fat that x 7→ V (π, x) is an inreasing (dereasing)funtion when r(x) is inreasing (dereasing) on E , and V (π, x) = 1 − π for all
g(x) ≤ π ≤ 1 , we onlude that 0 < A∗ ≤ g(x) ≤ A∗ < 1 for all x ∈ E . Here wenote that if r∗ = r∗ then A∗ = g(x) = A∗ for all x ∈ E , where 0 < λ/(c + λ) <
A∗ < A∗ < 1 are uniquely determined from the system (4.147) in [30; Chapter IV℄.3.4. Summarizing the fats proved in Subsetion 3.3 above we may onlude thatthe following optimal deision rule is optimal in the extended problem (3.3):

τ∗ = inf{t ≥ 0 | πt ≥ g(Xt)} (3.10)(whenever Eπ,x[τ∗] < ∞) where the boundary g(x), x ∈ E , satis�es the followingproperties:
g(x) : E → [0, 1] is ontinuous and dereasing (inreasing) (3.11)
A∗ ≤ g(x) ≤ A∗ for all x ∈ E (3.12)whenever r(x) is an inreasing (dereasing) funtion on E , respetively. Here A∗and A∗ satisfying 0 < λ/(c + λ) < A∗ < A∗ < 1 are the optimal stopping pointsfor the orresponding in�nite horizon problem with r(x) = r∗ and r(x) = r∗ forall x ∈ E , respetively, uniquely determined from the system of transendentalequations (4.147) in [30; Chapter IV℄.3.5. Let us further assume that the state spae of the proess X = (Xt)t≥0 under

θ = s for all s ∈ [0,∞] is E = 〈−ζ,∞〉 for some ζ ∈ R �xed, and under onditionsof Subsetions 2.1 and 2.4 as well as of the Example 2.3 the relationship:
µi(x) =

ηiσ
2(x)

x+ ζ
(3.13)9



holds for all x ∈ E and some onstants ηi ∈ R, i = 0, 1 , suh that η0 6= η1 and
η0 + η1 = 1 . Let us de�ne the proess Y = (Yt)t≥0 by:

Yt = log
πt

1 − πt

−
1

η
log

x+ ζ

Xt + ζ
(3.14)with η = 1/(η1 − η0). From the struture of (3.14) it is easily seen that there isa one-to-one orrespondene between the proesses (πt, Xt)t≥0 and (πt, Yt)t≥0 , andthus, the latter is also a (time-homogeneous strong) Markov proess with respet toits natural �ltration, whih oinides with (FX

t )t≥0 . By deriving the expression for
Xt from (3.14) and by substituting it into (2.20), we obtain:
dπt = λ(1 − πt) dt+

σ
(
(x+ ζ)e−ηYt [πt/(1 − πt)]

η − ζ
)

η(x+ ζ)e−ηYt [πt/(1 − πt)]η
πt(1 − πt) dW t (π0 = π).(3.15)By applying It�'s formula to the expression (3.14) and by using the representations(2.20) and (2.25) as well as the assumption (3.13) with η0 6= η1 and η0 + η1 = 1 , weget dYt = 0 and thus:

Yt = log
π

1 − π
(3.16)for all t ≥ 0 .3.6. By means of standard arguments it is shown that under the assumptions ofSubsetion 3.5 the optimal stopping problems (3.2) and (3.3) are equivalent to:

Ṽ (π, y) = inf
τ
Eπ

[
1 − πτ + c

∫ τ

0

πt dt

] (3.17)where the in�mum is taken over all stopping times τ of the proess (πt, Yt)t≥0 suhthat Eπ[τ ] <∞ for all (π, y) ∈ [0, 1]×R and y = log[π/(1− π)] for eah π ∈ 〈0, 1〉and x ∈ E = 〈−ζ,∞〉 �xed. It also follows that there exists a funtion h(y), y ∈ R,suh that the ontinuation region C from (3.7) is equivalent to:
C̃ = {(π, y) ∈ [0, 1] × R | π < h(y)} (3.18)and the set D from (3.8) is equivalent to:
D̃ = {(π, y) ∈ [0, 1] × R | π > h(y)} (3.19)for eah y ∈ R and x ∈ E �xed.3.7. If the assumption (3.13) with η0 6= η1 and η0 + η1 = 1 holds, then by meansof standard arguments it is shown that the in�nitesimal operator L̃ of the proess

(πt, Yt)t≥0 from (3.15)-(3.16) ats on a funtion F ∈ C2,0(〈0, 1〉 × R) like:
(L̃F )(π, y) =

(
λ(1 − π)

∂F

∂π
+
r2(x; π, y)

2
π2(1 − π)2∂

2F

∂π2

)
(π, y) (3.20)10



with
r(x; π, y) =

σ ((x+ ζ)e−ηy[π/(1 − π)]η − ζ)

η(x+ ζ)e−ηy[π/(1 − π)]η
(3.21)for all (π, y) ∈ 〈0, 1〉 × R and eah x ∈ E = 〈−ζ,∞〉 �xed.Now let us use the results of general theory of optimal stopping problems for ontin-uous time Markov proesses (see, e.g., [13℄, [30; Chapter III, Setion 8℄ and [21℄) toformulate the orresponding free-boundary problem for the unknown value funtion

(π, y) 7→ Ṽ (π, y) from (3.3) and the boundary h(y), y ∈ R, from (3.18)-(3.19):
(L̃Ṽ )(π, y) = −c π for (π, y) ∈ C̃ (3.22)
Ṽ (π, y)

∣∣
π=h(x)−

= 1 − h(x) (3.23)
∂Ṽ

∂π
(π, y)

∣∣
π=h(x)−

= −1 (3.24)
∂Ṽ

∂π
(π, y)

∣∣
π=0+

= 0 (3.25)
Ṽ (π, y) = 1 − π for (π, y) ∈ D̃ (3.26)
Ṽ (π, y) < 1 − π for (π, y) ∈ C̃ (3.27)where C̃ and D̃ are given by (3.18) and (3.19), and the instantaneous-stoppingondition (3.23) and the smooth-�t ondition (3.24) as well as the normal-entraneondition (3.25) are assumed to be satis�ed for all y ∈ R and eah x ∈ E �xed.Note that by Dynkin's superharmoni haraterization of the value funtion (see[9℄ and [30℄) it follows that Ṽ (π, y) from (3.17) is the largest funtion satisfying(3.22)-(3.23) and (3.26)-(3.27) for eah y ∈ R and x ∈ E �xed.3.8. By integrating the equation (3.22) and by using the boundary onditions (3.23)-(3.25), we obtain:

Ṽ (π, y;h(y)) = 1 − h(y) (3.28)
−

∫ h(y)

π

∫ z

0
exp

(
−

∫ h(y)

u

2λ

r2(x; v, y)v2(1 − v)
dv

)
2c

r2(x;u, y)u(1 − u)2
dudzwith r(x;π, y) given by (3.21) for all π ∈ 〈0, h(y)] and eah y ∈ R and x ∈ E = 〈−ζ,∞〉�xed. By means of the arguments similar to [30; pages 203-204℄ it follows that the boundary

h(y) is uniquely determined from the equation:
∫ h(y)

0
exp

(
−

∫ h(y)

u

2λ

r2(x; v, y)v2(1 − v)
dv

)
2c

r2(x;u, y)u(1 − u)2
dudz = 1 (3.29)for eah y ∈ R and x ∈ E = 〈−ζ,∞〉 �xed.3.9. Making use of the fats proved above we are now ready to formulate the main resultof the paper. 11



Theorem 3.1. Suppose that onditions (2.3) and (2.27)-(2.28) hold for all x ∈ E =
〈−ζ,∞〉 and some ζ ∈ R �xed, and assumption (3.13) is satis�ed with η0 6= η1 and η0 +
η1 = 1. Then in the Bayesian problem (3.2)+(3.3)+(3.17) of quikest disorder detetionfor the proess (2.2) the value funtion has the expression:

V (π) = V (π, x) = Ṽ (π, y) =

{
Ṽ (π, y;h(y)), if π ∈ [0, h(y)〉

1 − π, if π ∈ [h(y), 1]
(3.30)and the optimal π -Bayes stopping time is expliitly given by:

τ∗ = inf{t ≥ 0 | πt ≥ h(y)} (3.31)where the boundary h(y) is haraterized as a unique solution of the equation (3.29) for
y = log[π/(1 − π)] and eah π ∈ 〈0, 1〉 and x ∈ E �xed.Proof. It remains to show that the funtion (3.30) oinides with the value funtion(3.17) and that the stopping time τ∗ from (3.31) with the boundary h(y) , y ∈ R , spei�edabove is optimal. Let us denote by Ṽ (π, y) the right-hand side of the expression (3.30).It follows by onstrution from the previous setion that the funtion Ṽ (π, y) solves thesystem (3.22)-(3.26). Thus, applying It�'s formula to Ṽ (πt, y) , we obtain:

Ṽ (πt, y) = Ṽ (π, y) +

∫ t

0
(L̃Ṽ )(πs, y)I(πs 6= h(y)) ds + M̃t (3.32)where the proess (M̃t)t≥0 de�ned by:

M̃t =

∫ t

0

∂Ṽ

∂π
(πs, y)I(πs 6= h(y))

µ1(Xt) − µ0(Xt)

σ(Xt)
πs(1 − πs) dW s (3.33)is a ontinuous loal martingale under Pπ with respet to (FX
t )t≥0 .By using the arguments above it an be veri�ed that (L̃Ṽ )(π, y) ≥ −cπ for all (π, y) ∈

〈0, 1〉 × R suh that π 6= h(y) . Moreover, by means of standard arguments and usingthe onstrution of Ṽ (π, y) above it an be heked that the property (3.27) also holdsthat together with (3.22)-(3.23)+(3.26) yields Ṽ (π, y) ≤ 1 − π for all (π, y) ∈ [0, 1] × R .Observe that the time spent by the proess π at the boundary h(y) , y ∈ R , is of Lebesguemeasure zero, that allows to extend (L̃Ṽ )(π, y) arbitrarily to π = h(y) and thus to ignorethe indiators in (3.32)-(3.33). Hene, from the expressions (3.32) and the struture of thestopping time in (3.31) it follows that the inequalities:
1 − πτ + c

∫ τ

0
πs ds ≥ Ṽ (πτ , y) + c

∫ τ

0
πs ds ≥ Ṽ (π, y) + M̃τ (3.34)hold for any stopping times τ of the proess (πt)t≥0 started at π ∈ [0, 1] and for eah

y ∈ R .Let (τn)n∈N be an arbitrary loalizing sequenes of stopping times for the proesses
(M̃t)t≥0 . Taking in (3.34) the expetation with respet to the measure Pπ , by meansof the optional sampling theorem (see, e.g., [15; Chapter I, Theorem 1.39℄ or [24; Chap-ter II, Theorem 3.1℄), we get:

Eπ

[
1 − πτ∧τn

+ c

∫ τ∧τn

0
πs ds

]
≥ Eπ

[
Ṽ (πτ∧τn

, y) + c

∫ τ∧τn

0
πs ds

] (3.35)
≥ Ṽ (π, y) + Eπ

[
M̃τ∧τn

]
= Ṽ (π, y)12



for all (π, y) ∈ [0, 1]×R . Hene, letting n go to in�nity and using Fatou's lemma, for anystopping times τ suh that Eπ[τ ] < ∞ we obtain that the inequalities:
Eπ

[
1 − πτ + c

∫ τ

0
πs ds

]
≥ Eπ

[
Ṽ (πτ , y) + c

∫ τ

0
πs ds

]
≥ Ṽ (π, y) (3.36)are satis�ed for all (π, y) ∈ [0, 1] × R .By virtue of the fat that the funtion Ṽ (π, y) together with the boundary h(y) satisfy thesystem (3.22)-(3.27), by the struture of the stopping time τ∗ in (3.31) and the expressions(3.32) it follows that the equalities:

1 − πτ∗∧τn
+ c

∫ τ∗∧τn

0
πs ds = Ṽ (πτ∗∧τn

, y) + c

∫ τ∗∧τn

0
πs ds = Ṽ (π, y) + M̃τ∗∧τn

(3.37)hold for all (π, y) ∈ [0, 1] × R and any loalizing sequene (τn)n∈N of (M̃t)t≥0 . Notethat, by means of standard arguments and by using the struture of the proess (3.15)and of the stopping time (3.31), we have Eπ[τ∗] < ∞ for all π ∈ [0, 1] . Hene, letting
n go to in�nity and using onditions (3.22)-(3.23), we an apply the Lebesgue boundedonvergene theorem for (3.37) to obtain the equality:

Eπ

[
1 − πτ∗∧τn

+ c

∫ τ∗∧τn

0
πs ds

]
= Ṽ (π, y) (3.38)for all (π, y) ∈ [0, 1] × R , whih together with (3.36) diretly imply the desired assertion.
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