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Abstract

We study nonadditive Bayesian problems of detecting a change in drift of
an observed diffusion process where the cost function of the detection delay has
the same structure as in |27] and construct a finite-dimensional Markovian suf-
ficient statistic for that case. We show that when the cost function is linear the
optimal stopping time is found as the first time when the a posteriori probabil-
ity process hits a stochastic boundary depending on the observation process.
It is shown that under some nontrivial relationships on the coefficients of the
observed diffusion the problem admits a closed form solution. The method of
proof is based on embedding the initial problem into a two-dimensional op-
timal stopping problem and solving the equivalent free-boundary problem by
means of the smooth-fit conditions.

1. Introduction

The problem of quickest disorder detection for an observed diffusion process seeks
to determine a stopping time which is as close as possible to the (unknown) time
of “disorder’ (change-point) when the drift coefficient pu(x) of the observed process
changes from pg(x) to pi(z). This problem admits at least two different Bayesian
formulations. In the 'free’ formulation (below referred to as the 'Bayesian problem’)
one looks for a time of 'alarm’ minimizing a linear combination of the probability
of a ’false alarm’ and the expectation of a ’delay’ in detecting the time of disorder
correctly with no constraint on the former. In the ’fixed false-alarm’ formulation
(sometimes referred to as the 'variational problem’) one looks for a time of ’alarm’
minimizing the same linear combination under the constraint that the probability
of a ’false alarm’ cannot exceed a given value. In this paper we only study the
'Bayesian problem’ where we also use the customary assumption that the time of
disorder is exponentially distributed.

Shiryaev [25]-[26] and [28]-]29] (see also |30; Chapter IV|) derived an explicit solu-
tion of the Bayesian and variational problem of detecting a change in drift of an
observed Wiener process by reducing the initial optimal stopping problem to a free-
boundary problem for an ordinary second order operator. Some particular cases of
the Bayesian problem of detecting a change in the intensity of an observed Poisson
process were considered by Gal’chuk and Rozovskii |10| and Davis |6]. Peskir and
Shiryaev [20] obtained a complete solution of the latter problem by reducing the
initial optimal stopping problem for a differential-difference operator. The Bayesian
and variational disorder problems for a compound Poisson process with exponen-
tially distributed jumps were explicitly solved in [11]. Recently, Dayanik and Sezer
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[7] obtained a solution of the Bayesian disorder problem for a general compound
Poisson process. In all these problems the optimal stopping time was the first time
when the a posteriori probability process hits a constant boundary. A finite horizon
version of the Bayesian and variational Wiener disorder problem was solved in [12]
by reducing a parabolic free-boundary problem to an equivalent a nonlinear integral
equation for the curved optimal stopping boundary depending on time. The main
purpose of this paper is to study the Bayesian problem of detecting a change in local
drift of an observed diffusion process and present a closed form solution of the prob-
lem under some nontrivial relationships on coefficients of the observed diffusion. In
this case the optimal stopping time is the first time when the a posteriori probability
process hits a stochastic boundary depending on the observation process.

Shiryaev [27] studied the problem of finding finite-dimensional Markovian sufficient
statistics in the disorder problem with nonadditive minimizing functionals. More
recently, it was shown by Poor [22] for the case of observed sequences of random vari-
ables, by Beibel [4] for the case of observed Wiener process, and then by Bayraktar
and Dayanik [1] for the case of observed Poisson process, that when the cost func-
tion of the detection delay has an exponential form the Markovian sufficient statistic
turns out to be one-dimensional that essentially simplifies the solution of the related
optimal stopping problem. Some other formulations of the Poisson disorder prob-
lem were considered by Bayraktar, Dayanik and Karatzas [2|. Another ’adaptive’
formulation of the Poisson disorder problem where the arrival rate of the observed
process changes to an unobservable value and the related problem of finding finite-
dimensional Markovian sufficient statistics were studied by Bayraktar, Dayanik and
Karatzas [3]. It was shown that when the new arrival rate has Bernoulli distribution
the Markovian sufficient statistic turns out to be two-dimensional that makes pos-
sible to observe interesting analytic properties of the solution of the corresponding
optimal stopping problem.

The paper is organized as follows. In Section 2, after formulating the Bayesian dis-
order problem for an observed diffusion processes we study the problem of finding
Markovian sufficient statistics for the case where the minimizing nonadditive func-
tional has the same form as in [27|. In Section 3, we consider the case where the
cost function of the detection delay is linear and make an embedding of the initial
Bayesian problem into an extended optimal stopping problem for a two-dimensional
(time-homogeneous strong) Markov process (consisting of the a posteriori probabil-
ity process and the observation process). We show that the continuation region (for
the a posteriori probability process) is determined by a stochastic boundary depend-
ing on the observation process where the behavior of the boundary is characterized
by the signal /noise ratio. In order to find analytic expressions for the value function
and the stopping boundary under some special nontrivial relationships on coeffi-
cients of the observed diffusion, we formulate an equivalent free-boundary problem.
By applying smooth-fit condition we show that the free-boundary problem admits
an explicit solution and the boundary is uniquely determined from a transcendental
equation. Then we verify that the solution of the free-boundary problem turns out
to be a solution of the initial extended optimal stopping problem. The main results



of the paper are stated in Theorems 2.1 and 3.1.

2. Formulation of the problem

In the Bayesian formulation of the problem (see [30; Chapter IV, Section 4| for
the case of Wiener process) it is assumed that we observe a trajectory of the dif-
fusion process X = (X;)i>o with drift coefficient changing from po(z) to ui(x) at
some random time 6 taking the value 0 with probability m and being exponentially
distributed with parameter A > 0 under 6 > 0.

2.1. For a precise probabilistic formulation of the Bayesian problem it is convenient
to assume that all our considerations take place on a probability space (Q, F, P;)
where the probability measure P, has the following structure:

Pr=7P'+(1—m) / e P*ds (2.1)
0

for any 7 € [0,1] and the measures P® for s € [0, 00] are specified below. Let 6 be

a nonnegative random variable satisfying P[0 = 0] = 7 and P[0 > t|0 > 0] = e~

for all ¢ > 0 and some A > 0, and let W = (W;);>0 be a standard Wiener process

started at zero under P.. It is assumed that # and W are independent.

It is further assumed that we observe a continuous process X = (X;);>¢ with the
(open) state space E' C R and solving the stochastic differential equation:

dXy = [po(Xe) + 1(t = 0)(p1(Xe) — po(Xy))] dt + 0(X3) dWy (X =) (2.2)

where the functions p;(x) and o(z) are Lipschitz continuous on E, that is, there
exists a constant C' > 0 such that:

[i(x) = pa(a)* + [o(z) — o(2)]* < Clw — 2] (2.3)

for all x,2/ € E and i = 0,1. Thus, from |[17; Chapter IV, Theorem 4.6] it follows
that under fixed § = s equation (2.2) has a unique strong solution, and hence,
P.[X € |0 =s]=P°[X € -] is the distribution law of a homogeneous diffusion
process (starting at some fixed point z € E) with diffusion coefficient o?(z) and
local drift changing from po(z) to py(z) at time s € [0,00]. We will also assume
that either po(x) < py(x) or po(x) > pi(z) holds and o?(z) >0 for all x € E. Tt is
assumed that the time of ’disorder’is unknown (i.e., it cannot be observed directly).

Being based upon the continuous observation of X our task is to find among the
stopping times 7 of X (i.e., stopping times with respect to the natural filtration
FX =0{X,|0<s <t} generated by the process X for ¢t > 0) an optimal stopping
time (a time of ’alarm’) being ’‘as close as possible’ to the unknown time 6. More
precisely, the problem consists of computing the risk function:

V(r) = irTlf (PW[T <O+ E:[f(r—0)I(T > 9)]), (2.4)
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and finding the optimal stopping time 7,, called the m-Bayes time, at which the
infimum in (2.4) is attained. Here P,[r < 6] is the probability of a ’false alarm’,
E.[f(r —0)I(t > 0)] is the ’average cost of delay’ in detecting disorder correctly
(i.e., when 7 > 6), so that the cost function f(¢) of the detection delay satisfies
f(t) >0 for t >0 and f(t) =0 for t <O0.

2.2. Following the schema of arguments in [27], one can easily show that the Bayesian
problem (2.4) is reduced to the optimal stopping problem:

V(r) = irTlf E: |1 —m .+ f(T)mor + /OT f(r—u) duwuﬁ} (2.5)

for the conditional probability m,; = P[0 < u|F;X] for each 0 < u < ¢ and all
t >0 with mog =7 (Pr-a.s.).

It follows by definition of the measures P* above that:

d(P*|Fi)

Ly
W:[(sgt)+—l(s>t) (2.6)

L

for each s € [0, 00|, where by applying Girsanov’s theorem for diffusion-type pro-
cesses [17; Chapter VII, Theorem 7.19|, we have:

L, = exp (/Ot Ml(X;)z(—ij)o(Xu) QX — %/Ot M%(X;l(—ij)g(Xu) du) (2.7)

for all ¢ > 0. Then, by means of generalized Bayes’ formula |17; Chapter VII,
Lemma 7.4, for the conditional probability m,, = P[0 < u|F;X] we get:

L+ (1 =) [ (Le/Ls)Ae ™ ds
Tt

it 7TLt + (1 o 71') fg(Lt/Ls))\e—)\s ds + (1 o 7T)6_)‘t (28)

for each 0 <wu <t and all t > 0. Hence, after setting m, = m,, we obtain:

Tt L, T U \e s
L + d 2.9
1—m e <1 - /0 Ly S) (2.9)

for each 0 <wu <t and all t > 0. Thus, by means of standard arguments it follows
that the value function (2.5) takes the form:

(2.10)

1—m

V(r) = inf By [(1 — ) (1 4 6%; (f(r) T, /OT T AeL—:u

2.3. Following the schema of arguments from |27|, from now on we assume that the

o~

Laplace transform f(z) of the function f(t) is a rational function of the form:

n m(k)

f(z) = /OOO flw)e " du = Z Z ﬁ (2.11)

k=1 I=1
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forall z >0, 2z # A,...,2 # A\, where ¢, [ = 1,...,m(k), k =1,...,n, are
some real constants. Let us denote by e™>* the shift operator acting on an arbitrary
function a(t) like =% [a(t)] = a(t — u) for all t > 0 and some u > 0 fixed. In this
case, by virtue of the assumption (2.11) we may set:

/f e du_ZZS ] (2.12)

and thus, we have:

e oAt n_m gy
f([e]/f T ZSM[@LJ (2.13)

for all £ > 0. By means of standard arguments from [8|, we get:

1 >\6_)\t — kli)\t = /OO 6)\ku ul_l >\6_)\(t_u> du (2 14)
(S—=X) | L YLy (I—1) L, ‘

for each 0 <wu <t and all t > 0, where the process (¢f);>o is defined by:

Kl L [ e u)' =t Ae M
¢ 6_)‘t 0 (l — 1)' Lu

du (2.15)
for every [ =1,...,m(k) and k =1,...,n. By using the fact that:

/ft—u _Mdu—/ Flu ;:(tuu du (2.16)

for each 0 < u <t and all ¢ > 0, we therefore conclude that the value function
(2.10) admits the representation:

L.f

kl
_M . (2.17)

V(im)=inf B, |{(1—7.) |1+
! k=1 1=1

2.4. Let us now introduce the likelihood ratio process (¢¢)i>o defined by ¢; =
m/(1 —m), and thus, by virtue of (2.9), taking the expression:

L, T b e s
b= <1 g —|—/0 I ds) (2.18)

for all t > 0. Then, by applying It6’s formula [17; Chapter IV, Theorem 4.4| to the
expressions (2.18), (2.7) and (2.15), and by using the fact that:

Pt
I+

™ = (2.19)
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we obtain the following representations:

pa (Xe) — po(Xy)

dmy = N1 — ;) dt + =5 m (1 —m)dW, (mg =) (2.20)
dL, = a(Xe) = po(Xo) L, dW, (Ly=1) (2.21)
o(Xy)
X)) — po(X _
AYE = Do A+ M) 61] e 4+ 2L Q(X’;O( Dyaw, Wi =0) (@)
t
_ Xi) — po(X, _
agtt = [0+ e r o] ar+ DL g, gl —0) (29
o(Xt)
for every [ =2,...,m(k) and k = 1,...,n, where, by means of P. Lévy’s theorem

[24; Chapter IV, Theorem 3.6], the innovation process W = (W,);>o defined by:

W= / b / (Lfgf)) ’ ”SM(XZ}&SO(XS)) o

is a standard Wiener process under the measure P, with respect to the filtration
(FX)i>0- Therefore, from (2.24) it follows that the process X = (X;);>o admits the
representation:

dX; = [po(Xy) + m(pa (Xe) — po( X)) dt + 0 (X)) dWy (Xo = ). (2.25)

Let us suppose that the signal/noise ratio function defined by:

) — 3) o)

e (2.26)

is also Lipschitz continuous, that is, there exists a constant C’ > 0 such that condi-
tion:
[r(z) —r(z))? < C'lx — 2')? (2.27)

holds for all z, 2" € E, and there are constants r, and r* such that the inequalities:
O<r.<r(r)<r <o (2.28)

are satisfied for all x € F. Hence, by means of Remark to |17; Chapter IV, The-
orem 4.6] (see also [18; Chapter V, Theorem 5.2.1]) we conclude that the process
(m¢, L, 0, Xt )0 where we denote ¢y = (Y1 =1,... . m(k),k = 1,...,n) turns
out to be a unique strong solution of the multi-dimensional stochastic differen-
tial equation (2.20)-(2.23)+(2.25), and thus, by virtue of [18; Chapter VII, Theo-
rem 7.2.4|, it is a (time-homogeneous strong) Markov process with respect to its
natural filtration, which obviously coincides with (F*);>o. Therefore, the infimum
in (3.2) is taken over all stopping times of (m, L, ¥y, X¢)i>0 playing the role of a
Markovian sufficient statistic in the problem.

2.5. Summarizing the facts proved above we now formulate the following assertion.
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Theorem 2.1. Suppose that condition (2.3) holds and the Laplace transform f(z)
of the cost of delay f(t) takes the form (2.11). Then in the Bayesian problem
(2.4)-(2.5) the value function admits the representation (2.17), where the processes
()0, (Li)iso and (VF)iso, 1 = 1,....m(k), k = 1,...,n, defined in (2.19),
(2.7) and (2.15) solve the stochastic differential equations (2.20)-(2.23). Moreover,
if the conditions (2.27)-(2.28) are satisfied, then (my, Ly, ¥y, Xi)i>0 turns out to be a
Markovian sufficient statistic in the problem (2.4)-(2.5).

~

Remark 2.2. The Laplace transform f(z) has the form (2.11) if, for example,
the function f(¢) satisfies a homogeneous ordinary differential equation of the or-
der ¢ = Y0  m(k): fO) +arf9 V@) + ...+ ag1f'(t) + a,f(t) = 0 with the
initial conditions f(0) = co, f/(0) = c1,..., f97Y(0) = ¢,_1, where ay,...,a, and
Co,C1, ..., Cq—1 are some real constants (see, e.g., [8]).

Example 2.3. Assume that f(¢) = ct for all ¢ > 0 and some ¢ > 0 given and fixed.
Then it is easily shown (see, e.g., [30; Chapter IV]) that the value function (2.4)
takes the form (3.1)-(3.2) below, so that (m;);>¢ turns out to be a one-dimensional
sufficient statistic.

Example 2.4. Assume that f(t) = ct* for all ¢ > 0 and some « > 0 and
¢ > 0 given and fixed. In this case, the Laplace transform takes the form f(z) =
cl'(a+1)/2° for 2 > 0, where T is the Euler Gamma function. If o € N then
f(z) is of the type (2.11), from where, by means of the arguments above we obtain

that the value function (2.10) admits the representation:

LW(T) = E7r

(1—m) (1 S N T aZwlT)] . (2.29)

e M 1—m
=1

Otherwise, if & > 0 but a ¢ N then the function f(z) cannot be expressed in the
form (2.11) with finite number of summands.

3. The case of linear cost of delay

In this section we study the case considered in Example 2.3 above where the cost of
delay is a linear function.

3.1. Assume that in (2.4) we have f(t) = ct for all t > 0 and some ¢ > 0 fixed. In
this case the value function admits the representation:

V(r) = inf (Pelr < 0]+ cEx[T —6]") (3.1)

where the infimum is taken over all stopping time of the process X. By means of
standard arguments (see |30; pages 195-197|) one can easily show that the Bayesian



problem (3.1) is reduced to the optimal stopping problem:
V(m) = inf B, [1 -7+ c/ T dt} (3.2)
T 0

for the a posteriori probability process m = P[0 < t|FX| for t > 0 with 7y = 7
(Pr-a.s.).

3.2. For the problem (3.2) let us consider the following extended optimal stopping
problem for the Markov process (m, X¢)i>o0:

V(m,z) =inf B , [1 — 7 + c/ s dt} (3.3)
T 0

where Py, is a measure of the diffusion process (m, X;);>o starting at the point
(m,x) and solving the (two-dimensional) equation (2.20)-+(2.25), and the infimum
in (3.3) is taken over all stopping times 7 of the process (m;, Xi)i>0 such that
Er.[t] < oo for all (m,z) € [0,1] X E.

3.3. Let us now determine the structure of the optimal stopping time in the problem

(3.3).

(i) First, by applying It6’s formula we get:

t
1—7rt:1—7r—)\/(1—7r8)ds+Nt (3.4)

0
where for any (F;¥)i>o-stopping time 7 satisfying F, .[7] < oo the process (N, )0
defined by N, s = — OTM r(X,)ms(1—7,)dW  is a continuous (uniformly integrable)

martingale under P, ,. It follows from (3.4) using the optional sampling theorem
(see, e.g., [24; Chapter II, Theorem 3.2]) that:

E; . [1 — T, + c/ T du} =1l-n+E;, [/ (cmy — A1 —m)) du (3.5)
0 0

for each (F;*);>0-stopping time o. Choosing o to be the exit time from a small
ball, we see from (3.5) that it is never optimal to stop when 7, < A/(A+¢) for t > 0.
In other words, this shows that all points (7, x) for x € E with 0 <7 < A/(A + ¢)
belong to the continuation region:

C={(mz)€0,1] x E|V(m,x)<1—m}. (3.6)

Since 7 +— V(m,x) with € E given and fixed is concave on [0, 1] (this is easily
deduced using the same arguments as in [30; pages 197-198]), it follows that there
exists a function g(x) satisfying 0 < A\/(A+¢) < g(x) < 1 for all £ > 0 such that
the continuation region is an open set of the form:

C={(ra2)e0,1]x E|r<g(a)} (3.7)
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and the stopping region is the closure of the set:

D={(m2)€0,1]x E| 7> g(x)}. (3.8)

(ii) Now for given (m,z) € C let us take 2’ € E such that 2/ < z or = > 2.
Then using the facts that (m, X¢)i>0 is a time-homogeneous Markov process and
T, = Tx(m, ) does not depend on z’, from (3.4) we obtain:

Vim, ') = (1 —7) < Ey UO (em — A1 — ﬁt))dt} (3.9)
<E., UOT*(CM a1 ﬁt))dt} -

and hence, by means of (3.6), we see that (m,z) € C'. Therefore, we may conclude
that in (3.7)-(3.8) and the boundary z — g(x) is decreasing (increasing) on E when
the function r(z) is increasing (decreasing), respectively.

(iii) Next, let us observe that the value function V (7, z) from (3.3) and the boundary
g(x) from (3.7)-(3.8) also depend on r(z) defined in (2.26) and denote them here by
Vi(m,x) and V*(m, x) as well as A, and A* when r(z) = r, and r(z) = r* for all
x € E, respectively. Using the fact that x — V(m,x) is an increasing (decreasing)
function when r(x) is increasing (decreasing) on F, and V(m, z) = 1 — 7 for all
g(z) < m <1, we conclude that 0 < A, < g(z) < A* <1 for all z € E. Here we
note that if r, = r* then A, = g(z) = A* for all x € E, where 0 < \/(c+ \) <
A, < A* <1 are uniquely determined from the system (4.147) in [30; Chapter IV|.

3.4. Summarizing the facts proved in Subsection 3.3 above we may conclude that
the following optimal decision rule is optimal in the extended problem (3.3):

mo=inf{t > 0] m > g(X,)} (3.10)

(whenever E, ,[1.] < co) where the boundary g(x), = € E, satisfies the following
properties:

g(x): E—[0,1] is continuous and decreasing (increasing) (3.11)
A, <g(z) <A forall ze€F (3.12)

whenever r(x) is an increasing (decreasing) function on E, respectively. Here A,
and A* satisfying 0 < A\/(c + ) < A, < A* < 1 are the optimal stopping points
for the corresponding infinite horizon problem with r(z) = r, and r(z) = r* for
all © € FE, respectively, uniquely determined from the system of transcendental
equations (4.147) in [30; Chapter IV].

3.5. Let us further assume that the state space of the process X = (X;);>o under
0 =s forall s €[0,00]is F = (—(,00) for some ¢ € R fixed, and under conditions
of Subsections 2.1 and 2.4 as well as of the Example 2.3 the relationship:

_ 771'02(1')
(@) = x+C

(3.13)



holds for all € F and some constants 7, € R, ¢ = 0,1, such that ny # n; and
no +m1 = 1. Let us define the process Y = (Y;);>0 by:

Tt 1 :E—G-C
— —log

Y, =1o
! gl—ﬂt n X+ ¢

(3.14)

with n = 1/(m — n9). From the structure of (3.14) it is easily seen that there is
a one-to-one correspondence between the processes (m, X;)i>0 and (7, Y;)i>0, and
thus, the latter is also a (time-homogeneous strong) Markov process with respect to
its natural filtration, which coincides with (F;¥)i>. By deriving the expression for
X, from (3.14) and by substituting it into (2.20), we obtain:

((z+ Qe ™ m/(1 = m)]" — ()

dmy = M1 —m) dt + n(x 4+ Qe ™ [m /(1 — m)|"

(1 —m) dW;  (mo = 7).

(3.15)
By applying 1t6’s formula to the expression (3.14) and by using the representations
(2.20) and (2.25) as well as the assumption (3.13) with 1y # n; and 9o +m =1, we
get dY; = 0 and thus:

Ytzlogl7T

(3.16)
for all t > 0.

3.6. By means of standard arguments it is shown that under the assumptions of
Subsection 3.5 the optimal stopping problems (3.2) and (3.3) are equivalent to:

‘7(7r, y) = inf E, [1 -7+ c/ T dt} (3.17)
T 0

where the infimum is taken over all stopping times 7 of the process (7, ;)10 such
that E.[1] < oo for all (m,y) € [0,1] x R and y = log[r/(1 — 7)] for each 7 € (0, 1)
and z € E = (—(, 00) fixed. It also follows that there exists a function h(y), y € R,
such that the continuation region C' from (3.7) is equivalent to:

C={(ry) €[0,]] xR |7 < h(y)} (3.18)

and the set D from (3.8) is equivalent to:

D ={(my) € [0, xR |7 > h(y)} (3.19)
for each y € R and z € £ fixed.

3.7. If the assumption (3.13) with 7y # 11 and 1y + 7, = 1 holds, then by means

of standard arguments it is shown that the infinitesimal operator IL of the process
(74, Yy)i>0 from (3.15)-(3.16) acts on a function F' € C*°({0,1) x R) like:

(LF)(r,y) = ()\(1 I G

o 5 72(1 — W)Qa—F) (m,y) (3.20)

om?
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with

t o (e + Qe [x/(1 - m)]" — Q)
n@ T Qe i /(L= m)

for all (7, y) € (0,1) x R and each z € E = (—(, 00) fixed.

r(z;m,y) = (3.21)

Now let us use the results of general theory of optimal stopping problems for contin-
uous time Markov processes (see, e.g., [13], [30; Chapter III, Section 8] and [21]) to
formulate the corresponding free-boundary problem for the unknown value function
(m,y) — V(m,y) from (3.3) and the boundary h(y), y € R, from (3.18)-(3.19):

(~E\7)(w,y) =—cn for (my)eC (3.22)
V(W,y)}ﬂzh(w)_ =1-—h(z) (3.23)
Z—Z(W,y)}wzh(x)_ =1 (3.24)
?9—‘7:(7r,y)}7r:0+ =0 (3.25)
Vimy) =1—m for (my)eD 3.26)
Viry)<l—= for (my)eC (3.27)

where C' and D are given by (3.18) and (3.19), and the instantaneous-stopping
condition (3.23) and the smooth-fit condition (3.24) as well as the normal-entrance
condition (3.25) are assumed to be satisfied for all y € R and each = € E fixed.

Note that by Dynkin’s superharmonic characterization of the value function (see
[9] and [30]) it follows that V(m,y) from (3.17) is the largest function satisfying
(3.22)-(3.23) and (3.26)-(3.27) for each y € R and z € F fixed.

3.8. By integrating the equation (3.22) and by using the boundary conditions (3.23)-
(3.25), we obtain:

Vi(m yih(y)) =1 —h(y (3.28)

)
h(y) =z h(y) 2\ 2c
A (‘/ o)1) d”) Pl —ap "

with r(z;7,y) given by (3.21) for all 7 € (0,h(y)] and each y € R and z € E = (—(,o0)
fixed. By means of the arguments similar to [30; pages 203-204] it follows that the boundary
h(y) is uniquely determined from the equation:

/ " / " 2 d 2c dudz =1 (3.29)
o TP\ Paeyer -0 ) Pae g — w2 T |

for each y € R and z € E = (—(, 00) fixed.

3.9. Making use of the facts proved above we are now ready to formulate the main result
of the paper.

11



Theorem 3.1. Suppose that conditions (2.8) and (2.27)-(2.28) hold for all x € E =
(—(,00) and some ( € R fized, and assumption (3.13) is satisfied with ny # n1 and no +
m = 1. Then in the Bayesian problem (3.2)+(3.3)+(3.17) of quickest disorder detection
for the process (2.2) the value function has the expression:

- V(my;h f mel0,h
1—m, if ™€ lh(y),1]
and the optimal w-Bayes stopping time is explicitly given by:
T = 1inf{t > 0| m > h(y)} (3.31)

where the boundary h(y) is characterized as a unique solution of the equation (3.29) for
y =log[r/(1 —7)] and each w € (0,1) and x € E fized.

Proof. It remains to show that the function (3.30) coincides with the value function
(3.17) and that the stopping time 7, from (3.31) with the boundary h(y), y € R, specified
above is optimal. Let us denote by V(m,y) the right-hand side of the expression (3.30).
It follows by construction from the previous section that the function TN/(W,y) solves the
system (3.22)-(3.26). Thus, applying 1t6’s formula to V (m,y), we obtain:

V(m,y) =V(my) + /0 (LV) (75, y)I (s # h(y)) ds + M, (3.32)

where the process (]\/Zt)tzo defined by:

R R ST AR CED

0

is a continuous local martingale under P, with respect to (F{X);>o.

By using the arguments above it can be verified that (LV)(m,y) > —cr for all (m,y) €
(0,1) x R such that = # h(y). Moreover, by means of standard arguments and using
the construction of TN/(W,y) above it can be checked that the property (3.27) also holds
that together with (3.22)-(3.23)+(3.26) yields V(m,y) < 1 — 7 for all (m,y) € [0,1] x R.
Observe that the time spent by the process m at the boundary h(y), y € R, is of Lebesgue
measure zero, that allows to extend (LV)(,y) arbitrarily to = = h(y) and thus to ignore
the indicators in (3.32)-(3.33). Hence, from the expressions (3.32) and the structure of the
stopping time in (3.31) it follows that the inequalities:

1—7rT~|—c/ 7rsd32\~/(7TT,y)+c/ mods > V(m,y) + M, (3.34)
0 0

hold for any stopping times 7 of the process (m);>o started at 7 € [0,1] and for each
y € R.

Let (7,)neny be an arbitrary localizing sequences of stopping times for the processes
(]\Aft)tzo. Taking in (3.34) the expectation with respect to the measure Py, by means
of the optional sampling theorem (see, e.g., [15; Chapter I, Theorem 1.39] or [24; Chap-
ter II, Theorem 3.1|), we get:

TNATn . TNATh
E, [1 — Tram, + c/ T ds] > E, |:V(7T7—/\7-n,y) + c/ T ds] (3.35)
0 0

> ‘7(777 y) + Er []\77/\7%] = ‘7(777 y)

12



for all (m,y) € [0,1] x R. Hence, letting n go to infinity and using Fatou’s lemma, for any
stopping times 7 such that E,[7T] < oo we obtain that the inequalities:

E; [1 — 7+ c/ s ds] > FE, [TN/(WT,y) + c/ s ds] > V(r,y) (3.36)
0 0

are satisfied for all (m,y) € [0,1] x R.

By virtue of the fact that the function 17(71', y) together with the boundary h(y) satisfy the
system (3.22)-(3.27), by the structure of the stopping time 7, in (3.31) and the expressions
(3.32) it follows that the equalities:

T« NTn, . T« \Tn ~ —~
1= g / rods = V(mrpmy) + ¢ / rods = V(my) + My, (3.37)
0 0

hold for all (m,y) € [0,1] x R and any localizing sequence (7p,)nen of (M)tzo- Note
that, by means of standard arguments and by using the structure of the process (3.15)
and of the stopping time (3.31), we have E[r.] < oo for all = € [0,1]. Hence, letting
n go to infinity and using conditions (3.22)-(3.23), we can apply the Lebesgue bounded

convergence theorem for (3.37) to obtain the equality:

T« N\Tn, -
E; [1 — Trnr, + c/ s ds] =V(my) (3.38)
0

for all (m,y) € [0,1] x R, which together with (3.36) directly imply the desired assertion.
O
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