
Weierstraÿ-Institutfür Angewandte Analysis und Sto
hastikim Fors
hungsverbund Berlin e.V.Preprint ISSN 0946 � 8633Nonadditive disorder problems for some di�usionpro
essesPavel Gapeev1 , 2submitted: November 6, 2006
1 Weierstrass Institutefor Applied Analysis and Sto
hasti
sMohrenstrasse 3910117 BerlinGermanye-mail: gapeev�wias-berlin.de

2 Russian A
ademy of S
ien
esInstitute of Control S
ien
esProfsoyuznaya Str. 65117997 Mos
owRussia
No. 1181Berlin 2006

W I A S2000 Mathemati
s Subje
t Classi�
ation. 60G40, 62M20, 34K10, 62C10, 62L15, 60J60.Key words and phrases. Qui
kest 'disorder' (
hange-point) dete
tion, di�usion pro
ess, optimalstopping, su�
ient statisti
, free-boundary problem, smooth-�t and normal-entran
e 
onditions,It�'s formula.This resear
h was supported by Deuts
he Fors
hungsgemeins
haft through the SFB 649 E
o-nomi
 Risk.



Edited byWeierstraÿ-Institut für Angewandte Analysis und Sto
hastik (WIAS)Mohrenstraÿe 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



Abstra
tWe study nonadditive Bayesian problems of dete
ting a 
hange in drift ofan observed di�usion pro
ess where the 
ost fun
tion of the dete
tion delay hasthe same stru
ture as in [27℄ and 
onstru
t a �nite-dimensional Markovian suf-�
ient statisti
 for that 
ase. We show that when the 
ost fun
tion is linear theoptimal stopping time is found as the �rst time when the a posteriori probabil-ity pro
ess hits a sto
hasti
 boundary depending on the observation pro
ess.It is shown that under some nontrivial relationships on the 
oe�
ients of theobserved di�usion the problem admits a 
losed form solution. The method ofproof is based on embedding the initial problem into a two-dimensional op-timal stopping problem and solving the equivalent free-boundary problem bymeans of the smooth-�t 
onditions.1. Introdu
tionThe problem of qui
kest disorder dete
tion for an observed di�usion pro
ess seeksto determine a stopping time whi
h is as 
lose as possible to the (unknown) timeof 'disorder' (
hange-point) when the drift 
oe�
ient µ(x) of the observed pro
ess
hanges from µ0(x) to µ1(x). This problem admits at least two di�erent Bayesianformulations. In the 'free' formulation (below referred to as the 'Bayesian problem')one looks for a time of 'alarm' minimizing a linear 
ombination of the probabilityof a 'false alarm' and the expe
tation of a 'delay' in dete
ting the time of disorder
orre
tly with no 
onstraint on the former. In the '�xed false-alarm' formulation(sometimes referred to as the 'variational problem') one looks for a time of 'alarm'minimizing the same linear 
ombination under the 
onstraint that the probabilityof a 'false alarm' 
annot ex
eed a given value. In this paper we only study the'Bayesian problem' where we also use the 
ustomary assumption that the time ofdisorder is exponentially distributed.Shiryaev [25℄-[26℄ and [28℄-[29℄ (see also [30; Chapter IV℄) derived an expli
it solu-tion of the Bayesian and variational problem of dete
ting a 
hange in drift of anobserved Wiener pro
ess by redu
ing the initial optimal stopping problem to a free-boundary problem for an ordinary se
ond order operator. Some parti
ular 
ases ofthe Bayesian problem of dete
ting a 
hange in the intensity of an observed Poissonpro
ess were 
onsidered by Gal'
huk and Rozovskii [10℄ and Davis [6℄. Peskir andShiryaev [20℄ obtained a 
omplete solution of the latter problem by redu
ing theinitial optimal stopping problem for a di�erential-di�eren
e operator. The Bayesianand variational disorder problems for a 
ompound Poisson pro
ess with exponen-tially distributed jumps were expli
itly solved in [11℄. Re
ently, Dayanik and Sezer1



[7℄ obtained a solution of the Bayesian disorder problem for a general 
ompoundPoisson pro
ess. In all these problems the optimal stopping time was the �rst timewhen the a posteriori probability pro
ess hits a 
onstant boundary. A �nite horizonversion of the Bayesian and variational Wiener disorder problem was solved in [12℄by redu
ing a paraboli
 free-boundary problem to an equivalent a nonlinear integralequation for the 
urved optimal stopping boundary depending on time. The mainpurpose of this paper is to study the Bayesian problem of dete
ting a 
hange in lo
aldrift of an observed di�usion pro
ess and present a 
losed form solution of the prob-lem under some nontrivial relationships on 
oe�
ients of the observed di�usion. Inthis 
ase the optimal stopping time is the �rst time when the a posteriori probabilitypro
ess hits a sto
hasti
 boundary depending on the observation pro
ess.Shiryaev [27℄ studied the problem of �nding �nite-dimensional Markovian su�
ientstatisti
s in the disorder problem with nonadditive minimizing fun
tionals. Morere
ently, it was shown by Poor [22℄ for the 
ase of observed sequen
es of random vari-ables, by Beibel [4℄ for the 
ase of observed Wiener pro
ess, and then by Bayraktarand Dayanik [1℄ for the 
ase of observed Poisson pro
ess, that when the 
ost fun
-tion of the dete
tion delay has an exponential form the Markovian su�
ient statisti
turns out to be one-dimensional that essentially simpli�es the solution of the relatedoptimal stopping problem. Some other formulations of the Poisson disorder prob-lem were 
onsidered by Bayraktar, Dayanik and Karatzas [2℄. Another 'adaptive'formulation of the Poisson disorder problem where the arrival rate of the observedpro
ess 
hanges to an unobservable value and the related problem of �nding �nite-dimensional Markovian su�
ient statisti
s were studied by Bayraktar, Dayanik andKaratzas [3℄. It was shown that when the new arrival rate has Bernoulli distributionthe Markovian su�
ient statisti
 turns out to be two-dimensional that makes pos-sible to observe interesting analyti
 properties of the solution of the 
orrespondingoptimal stopping problem.The paper is organized as follows. In Se
tion 2, after formulating the Bayesian dis-order problem for an observed di�usion pro
esses we study the problem of �ndingMarkovian su�
ient statisti
s for the 
ase where the minimizing nonadditive fun
-tional has the same form as in [27℄. In Se
tion 3, we 
onsider the 
ase where the
ost fun
tion of the dete
tion delay is linear and make an embedding of the initialBayesian problem into an extended optimal stopping problem for a two-dimensional(time-homogeneous strong) Markov pro
ess (
onsisting of the a posteriori probabil-ity pro
ess and the observation pro
ess). We show that the 
ontinuation region (forthe a posteriori probability pro
ess) is determined by a sto
hasti
 boundary depend-ing on the observation pro
ess where the behavior of the boundary is 
hara
terizedby the signal/noise ratio. In order to �nd analyti
 expressions for the value fun
tionand the stopping boundary under some spe
ial nontrivial relationships on 
oe�-
ients of the observed di�usion, we formulate an equivalent free-boundary problem.By applying smooth-�t 
ondition we show that the free-boundary problem admitsan expli
it solution and the boundary is uniquely determined from a trans
endentalequation. Then we verify that the solution of the free-boundary problem turns outto be a solution of the initial extended optimal stopping problem. The main results2



of the paper are stated in Theorems 2.1 and 3.1.2. Formulation of the problemIn the Bayesian formulation of the problem (see [30; Chapter IV, Se
tion 4℄ forthe 
ase of Wiener pro
ess) it is assumed that we observe a traje
tory of the dif-fusion pro
ess X = (Xt)t≥0 with drift 
oe�
ient 
hanging from µ0(x) to µ1(x) atsome random time θ taking the value 0 with probability π and being exponentiallydistributed with parameter λ > 0 under θ > 0 .2.1. For a pre
ise probabilisti
 formulation of the Bayesian problem it is 
onvenientto assume that all our 
onsiderations take pla
e on a probability spa
e (Ω,F , Pπ)where the probability measure Pπ has the following stru
ture:
Pπ = πP 0 + (1 − π)

∫ ∞

0

λe−λsP s ds (2.1)for any π ∈ [0, 1] and the measures P s for s ∈ [0,∞] are spe
i�ed below. Let θ bea nonnegative random variable satisfying Pπ[θ = 0] = π and Pπ[θ > t | θ > 0] = e−λtfor all t ≥ 0 and some λ > 0 , and let W = (Wt)t≥0 be a standard Wiener pro
essstarted at zero under Pπ . It is assumed that θ and W are independent.It is further assumed that we observe a 
ontinuous pro
ess X = (Xt)t≥0 with the(open) state spa
e E ⊆ R and solving the sto
hasti
 di�erential equation:
dXt = [µ0(Xt) + I(t ≥ θ)(µ1(Xt) − µ0(Xt))] dt+ σ(Xt) dWt (X0 = x) (2.2)where the fun
tions µi(x) and σ(x) are Lips
hitz 
ontinuous on E , that is, thereexists a 
onstant C > 0 su
h that:

[µi(x) − µi(x
′)]2 + [σ(x) − σ(x′)]2 ≤ C[x− x′]2 (2.3)for all x, x′ ∈ E and i = 0, 1 . Thus, from [17; Chapter IV, Theorem 4.6℄ it followsthat under �xed θ = s equation (2.2) has a unique strong solution, and hen
e,

Pπ[X ∈ · | θ = s ] = P s[X ∈ · ] is the distribution law of a homogeneous di�usionpro
ess (starting at some �xed point x ∈ E ) with di�usion 
oe�
ient σ2(x) andlo
al drift 
hanging from µ0(x) to µ1(x) at time s ∈ [0,∞]. We will also assumethat either µ0(x) < µ1(x) or µ0(x) > µ1(x) holds and σ2(x) > 0 for all x ∈ E . It isassumed that the time of 'disorder' is unknown (i.e., it 
annot be observed dire
tly).Being based upon the 
ontinuous observation of X our task is to �nd among thestopping times τ of X (i.e., stopping times with respe
t to the natural �ltration
FX

t = σ{Xs | 0 ≤ s ≤ t} generated by the pro
ess X for t ≥ 0) an optimal stoppingtime (a time of 'alarm') being 'as 
lose as possible' to the unknown time θ . Morepre
isely, the problem 
onsists of 
omputing the risk fun
tion:
V (π) = inf

τ

(
Pπ[τ < θ] + Eπ[f(τ − θ)I(τ ≥ θ)]

)
, (2.4)3



and �nding the optimal stopping time τ∗ , 
alled the π -Bayes time, at whi
h thein�mum in (2.4) is attained. Here Pπ[τ < θ] is the probability of a 'false alarm',
Eπ[f(τ − θ)I(τ ≥ θ)] is the 'average 
ost of delay' in dete
ting disorder 
orre
tly(i.e., when τ ≥ θ), so that the 
ost fun
tion f(t) of the dete
tion delay satis�es
f(t) ≥ 0 for t ≥ 0 and f(t) = 0 for t ≤ 0 .2.2. Following the s
hema of arguments in [27℄, one 
an easily show that the Bayesianproblem (2.4) is redu
ed to the optimal stopping problem:

V (π) = inf
τ
Eπ

[
1 − πτ,τ + f(τ)π0,τ +

∫ τ

0

f(τ − u) duπu,τ

] (2.5)for the 
onditional probability πu,t = Pπ[θ ≤ u | FX
t ] for ea
h 0 ≤ u ≤ t and all

t ≥ 0 with π0,0 = π (Pπ -a.s.).It follows by de�nition of the measures P s above that:
d(P s|FX

t )

d(P∞|FX
t )

= I(s ≤ t) +
Lt

Ls

I(s > t) (2.6)for ea
h s ∈ [0,∞], where by applying Girsanov's theorem for di�usion-type pro-
esses [17; Chapter VII, Theorem 7.19℄, we have:
Lt = exp

(∫ t

0

µ1(Xu) − µ0(Xu)

σ2(Xu)
dXu −

1

2

∫ t

0

µ2
1(Xu) − µ2

0(Xu)

σ2(Xu)
du

) (2.7)for all t ≥ 0 . Then, by means of generalized Bayes' formula [17; Chapter VII,Lemma 7.4℄, for the 
onditional probability πu,t = Pπ[θ ≤ u | FX
t ] we get:

πu,t =
πLt + (1 − π)

∫ u

0
(Lt/Ls)λe

−λs ds

πLt + (1 − π)
∫ t

0
(Lt/Ls)λe−λs ds+ (1 − π)e−λt

(2.8)for ea
h 0 ≤ u ≤ t and all t ≥ 0 . Hen
e, after setting πt = πt,t , we obtain:
πu,t

1 − πt

=
Lt

e−λt

(
π

1 − π
+

∫ u

0

λe−λs

Ls

ds

) (2.9)for ea
h 0 ≤ u ≤ t and all t ≥ 0 . Thus, by means of standard arguments it followsthat the value fun
tion (2.5) takes the form:
V (π) = inf

τ
Eπ

[
(1 − πτ )

(
1 +

Lτ

e−λτ

(
f(τ)

π

1 − π
+

∫ τ

0

f(τ − u)
λe−λu

Lu

du

))]
.(2.10)2.3. Following the s
hema of arguments from [27℄, from now on we assume that theLapla
e transform f̂(z) of the fun
tion f(t) is a rational fun
tion of the form:

f̂(z) =

∫ ∞

0

f(u)e−zu du =

n∑

k=1

m(k)∑

l=1

ckl

(z − λk)l
(2.11)4



for all z > 0 , z 6= λ1, . . . , z 6= λn , where ckl , l = 1, . . . , m(k), k = 1, . . . , n, aresome real 
onstants. Let us denote by e−Su the shift operator a
ting on an arbitraryfun
tion a(t) like e−Su [a(t)] = a(t− u) for all t ≥ 0 and some u ≥ 0 �xed. In this
ase, by virtue of the assumption (2.11) we may set:
f̂(S) [ · ] =

∫ ∞

0

f(u)e−Su [ · ] du =

n∑

k=1

m(k)∑

l=1

ckl

(S − λk)l
[ · ] (2.12)and thus, we have:

f̂(S)

[
λe−λt

Lt

]
=

∫ ∞

0

f(u)
λe−λ(t−u)

Lt−u

du =

n∑

k=1

m(k)∑

l=1

ckl

(S − λk)l

[
λe−λt

Lt

] (2.13)for all t ≥ 0 . By means of standard arguments from [8℄, we get:
1

(S − λk)l

[
λe−λt

Lt

]
= ψkl

t

e−λt

Lt

≡

∫ ∞

0

eλku ul−1

(l − 1)!

λe−λ(t−u)

Lt−u

du (2.14)for ea
h 0 ≤ u ≤ t and all t ≥ 0 , where the pro
ess (ψkl
t )t≥0 is de�ned by:

ψkl
t =

Lt

e−λt

∫ t

0

eλk(t−u) (t− u)l−1

(l − 1)!

λe−λu

Lu

du (2.15)for every l = 1, . . . , m(k) and k = 1, . . . , n. By using the fa
t that:
∫ t

0

f(t− u)
λe−λu

Lu

du =

∫ ∞

0

f(u)
λe−λ(t−u)

Lt−u

du (2.16)for ea
h 0 ≤ u ≤ t and all t ≥ 0 , we therefore 
on
lude that the value fun
tion(2.10) admits the representation:
V (π) = inf

τ
Eπ


(1 − πτ )


1 +

Lτf(τ)

e−λτ

π

1 − π
+

n∑

k=1

m(k)∑

l=1

cklψ
kl
τ




 . (2.17)2.4. Let us now introdu
e the likelihood ratio pro
ess (ϕt)t≥0 de�ned by ϕt =

πt/(1 − πt), and thus, by virtue of (2.9), taking the expression:
ϕt =

Lt

e−λt

(
π

1 − π
+

∫ t

0

λe−λs

Ls

ds

) (2.18)for all t ≥ 0 . Then, by applying It�'s formula [17; Chapter IV, Theorem 4.4℄ to theexpressions (2.18), (2.7) and (2.15), and by using the fa
t that:
πt =

ϕt

1 + ϕt

(2.19)5



we obtain the following representations:
dπt = λ(1 − πt) dt+

µ1(Xt) − µ0(Xt)

σ(Xt)
πt(1 − πt) dW t (π0 = π) (2.20)

dLt =
µ1(Xt) − µ0(Xt)

σ(Xt)
Lt dW t (L0 = 1) (2.21)

dψk1
t =

[
λ+ (λ+ λk)ψ

k1
t

]
dt+

µ1(Xt) − µ0(Xt)

σ(Xt)
ψk1

t dW t (ψk1
0 = 0) (2.22)

dψkl
t =

[
ψ

k(l−1)
t + (λ+ λk)ψ

kl
t

]
dt+

µ1(Xt) − µ0(Xt)

σ(Xt)
ψkl

t dW t (ψkl
0 = 0) (2.23)for every l = 2, . . . , m(k) and k = 1, . . . , n, where, by means of P. Lévy's theorem[24; Chapter IV, Theorem 3.6℄, the innovation pro
ess W = (W t)t≥0 de�ned by:

W t =

∫ t

0

dXs

σ(Xs)
−

∫ t

0

(
µ0(Xs)

σ(Xs)
+ πs

µ1(Xs) − µ0(Xs)

σ(Xs)

)
ds (2.24)is a standard Wiener pro
ess under the measure Pπ with respe
t to the �ltration

(FX
t )t≥0 . Therefore, from (2.24) it follows that the pro
ess X = (Xt)t≥0 admits therepresentation:

dXt = [µ0(Xt) + πt(µ1(Xt) − µ0(Xt))] dt+ σ(Xt) dW t (X0 = x). (2.25)Let us suppose that the signal/noise ratio fun
tion de�ned by:
r(x) =

µ1(x) − µ0(x)

σ(x)
(2.26)is also Lips
hitz 
ontinuous, that is, there exists a 
onstant C ′ > 0 su
h that 
ondi-tion:

[r(x) − r(x′)]2 ≤ C ′[x− x′]2 (2.27)holds for all x, x′ ∈ E , and there are 
onstants r∗ and r∗ su
h that the inequalities:
0 < r∗ ≤ r(x) ≤ r∗ <∞ (2.28)are satis�ed for all x ∈ E . Hen
e, by means of Remark to [17; Chapter IV, The-orem 4.6℄ (see also [18; Chapter V, Theorem 5.2.1℄) we 
on
lude that the pro
ess

(πt, Lt, ψt, Xt)t≥0 where we denote ψt = (ψkl
t , l = 1, . . . , m(k), k = 1, . . . , n) turnsout to be a unique strong solution of the multi-dimensional sto
hasti
 di�eren-tial equation (2.20)-(2.23)+(2.25), and thus, by virtue of [18; Chapter VII, Theo-rem 7.2.4℄, it is a (time-homogeneous strong) Markov pro
ess with respe
t to itsnatural �ltration, whi
h obviously 
oin
ides with (FX

t )t≥0 . Therefore, the in�mumin (3.2) is taken over all stopping times of (πt, Lt, ψt, Xt)t≥0 playing the role of aMarkovian su�
ient statisti
 in the problem.2.5. Summarizing the fa
ts proved above we now formulate the following assertion.6



Theorem 2.1. Suppose that 
ondition (2.3) holds and the Lapla
e transform f̂(z)of the 
ost of delay f(t) takes the form (2.11). Then in the Bayesian problem(2.4)-(2.5) the value fun
tion admits the representation (2.17), where the pro
esses
(πt)t≥0 , (Lt)t≥0 and (ψkl

t )t≥0 , l = 1, . . . , m(k), k = 1, . . . , n, de�ned in (2.19),(2.7) and (2.15) solve the sto
hasti
 di�erential equations (2.20)-(2.23). Moreover,if the 
onditions (2.27)-(2.28) are satis�ed, then (πt, Lt, ψt, Xt)t≥0 turns out to be aMarkovian su�
ient statisti
 in the problem (2.4)-(2.5).Remark 2.2. The Lapla
e transform f̂(z) has the form (2.11) if, for example,the fun
tion f(t) satis�es a homogeneous ordinary di�erential equation of the or-der q =
∑n

k=1m(k) : f (q)(t) + a1f
(q−1)(t) + . . . + aq−1f

′(t) + aqf(t) = 0 with theinitial 
onditions f(0) = c0, f
′(0) = c1, . . . , f

(q−1)(0) = cq−1 , where a1, . . . , aq and
c0, c1, . . . , cq−1 are some real 
onstants (see, e.g., [8℄).Example 2.3. Assume that f(t) = ct for all t ≥ 0 and some c > 0 given and �xed.Then it is easily shown (see, e.g., [30; Chapter IV℄) that the value fun
tion (2.4)takes the form (3.1)-(3.2) below, so that (πt)t≥0 turns out to be a one-dimensionalsu�
ient statisti
.Example 2.4. Assume that f(t) = ctα for all t ≥ 0 and some α > 0 and
c > 0 given and �xed. In this 
ase, the Lapla
e transform takes the form f̂(z) =
cΓ(α + 1)/zα+1 for z > 0 , where Γ is the Euler Gamma fun
tion. If α ∈ N then
f̂(z) is of the type (2.11), from where, by means of the arguments above we obtainthat the value fun
tion (2.10) admits the representation:

Lπ(τ) = Eπ

[
(1 − πτ )

(
1 +

Lτcτ
α

e−λτ

π

1 − π
+ cΓ(α + 1)

α+1∑

l=1

ψl
τ

)]
. (2.29)Otherwise, if α > 0 but α /∈ N then the fun
tion f̂(z) 
annot be expressed in theform (2.11) with �nite number of summands.3. The 
ase of linear 
ost of delayIn this se
tion we study the 
ase 
onsidered in Example 2.3 above where the 
ost ofdelay is a linear fun
tion.3.1. Assume that in (2.4) we have f(t) = ct for all t ≥ 0 and some c > 0 �xed. Inthis 
ase the value fun
tion admits the representation:

V (π) = inf
τ

(
Pπ[τ < θ] + cEπ[τ − θ]+

) (3.1)where the in�mum is taken over all stopping time of the pro
ess X . By means ofstandard arguments (see [30; pages 195-197℄) one 
an easily show that the Bayesian7



problem (3.1) is redu
ed to the optimal stopping problem:
V (π) = inf

τ
Eπ

[
1 − πτ + c

∫ τ

0

πt dt

] (3.2)for the a posteriori probability pro
ess πt = Pπ[θ ≤ t | FX
t ] for t ≥ 0 with π0 = π(Pπ -a.s.).3.2. For the problem (3.2) let us 
onsider the following extended optimal stoppingproblem for the Markov pro
ess (πt, Xt)t≥0 :

V (π, x) = inf
τ
Eπ,x

[
1 − πτ + c

∫ τ

0

πt dt

] (3.3)where Pπ,x is a measure of the di�usion pro
ess (πt, Xt)t≥0 starting at the point
(π, x) and solving the (two-dimensional) equation (2.20)+(2.25), and the in�mumin (3.3) is taken over all stopping times τ of the pro
ess (πt, Xt)t≥0 su
h that
Eπ,x[τ ] <∞ for all (π, x) ∈ [0, 1] ×E .3.3. Let us now determine the stru
ture of the optimal stopping time in the problem(3.3).(i) First, by applying It�'s formula we get:

1 − πt = 1 − π − λ

∫ t

0

(1 − πs) ds+Nt (3.4)where for any (FX
t )t≥0 -stopping time τ satisfying Eπ,x[τ ] <∞ the pro
ess (Nτ∧t)t≥0de�ned by Nτ∧t = −

∫ τ∧t

0
r(Xs)πs(1−πs)dW s is a 
ontinuous (uniformly integrable)martingale under Pπ,x . It follows from (3.4) using the optional sampling theorem(see, e.g., [24; Chapter II, Theorem 3.2℄) that:

Eπ,x

[
1 − πσ + c

∫ σ

0

πu du

]
= 1 − π + Eπ,x

[∫ σ

0

(c πt − λ(1 − πt)) du

] (3.5)for ea
h (FX
t )t≥0 -stopping time σ . Choosing σ to be the exit time from a smallball, we see from (3.5) that it is never optimal to stop when πt < λ/(λ+c) for t ≥ 0 .In other words, this shows that all points (π, x) for x ∈ E with 0 ≤ π < λ/(λ+ c)belong to the 
ontinuation region:

C = {(π, x) ∈ [0, 1] ×E | V (π, x) < 1 − π}. (3.6)Sin
e π 7→ V (π, x) with x ∈ E given and �xed is 
on
ave on [0, 1] (this is easilydedu
ed using the same arguments as in [30; pages 197-198℄), it follows that thereexists a fun
tion g(x) satisfying 0 < λ/(λ + c) ≤ g(x) < 1 for all t ≥ 0 su
h thatthe 
ontinuation region is an open set of the form:
C = {(π, x) ∈ [0, 1] ×E | π < g(x)} (3.7)8



and the stopping region is the 
losure of the set:
D = {(π, x) ∈ [0, 1] ×E | π > g(x)}. (3.8)(ii) Now for given (π, x) ∈ C let us take x′ ∈ E su
h that x′ < x or x > x′ .Then using the fa
ts that (πt, Xt)t≥0 is a time-homogeneous Markov pro
ess and

τ∗ = τ∗(π, x) does not depend on x′ , from (3.4) we obtain:
V (π, x′) − (1 − π) ≤ Eπ,x′

[∫ τ∗

0

(c πt − λ(1 − πt))dt

] (3.9)
≤ Eπ,x

[∫ τ∗

0

(c πt − λ(1 − πt))dt

]
= V (π, x) − (1 − π)and hen
e, by means of (3.6), we see that (π, x) ∈ C . Therefore, we may 
on
ludethat in (3.7)-(3.8) and the boundary x 7→ g(x) is de
reasing (in
reasing) on E whenthe fun
tion r(x) is in
reasing (de
reasing), respe
tively.(iii) Next, let us observe that the value fun
tion V (π, x) from (3.3) and the boundary

g(x) from (3.7)-(3.8) also depend on r(x) de�ned in (2.26) and denote them here by
V∗(π, x) and V ∗(π, x) as well as A∗ and A∗ when r(x) = r∗ and r(x) = r∗ for all
x ∈ E , respe
tively. Using the fa
t that x 7→ V (π, x) is an in
reasing (de
reasing)fun
tion when r(x) is in
reasing (de
reasing) on E , and V (π, x) = 1 − π for all
g(x) ≤ π ≤ 1 , we 
on
lude that 0 < A∗ ≤ g(x) ≤ A∗ < 1 for all x ∈ E . Here wenote that if r∗ = r∗ then A∗ = g(x) = A∗ for all x ∈ E , where 0 < λ/(c + λ) <
A∗ < A∗ < 1 are uniquely determined from the system (4.147) in [30; Chapter IV℄.3.4. Summarizing the fa
ts proved in Subse
tion 3.3 above we may 
on
lude thatthe following optimal de
ision rule is optimal in the extended problem (3.3):

τ∗ = inf{t ≥ 0 | πt ≥ g(Xt)} (3.10)(whenever Eπ,x[τ∗] < ∞) where the boundary g(x), x ∈ E , satis�es the followingproperties:
g(x) : E → [0, 1] is 
ontinuous and de
reasing (in
reasing) (3.11)
A∗ ≤ g(x) ≤ A∗ for all x ∈ E (3.12)whenever r(x) is an in
reasing (de
reasing) fun
tion on E , respe
tively. Here A∗and A∗ satisfying 0 < λ/(c + λ) < A∗ < A∗ < 1 are the optimal stopping pointsfor the 
orresponding in�nite horizon problem with r(x) = r∗ and r(x) = r∗ forall x ∈ E , respe
tively, uniquely determined from the system of trans
endentalequations (4.147) in [30; Chapter IV℄.3.5. Let us further assume that the state spa
e of the pro
ess X = (Xt)t≥0 under

θ = s for all s ∈ [0,∞] is E = 〈−ζ,∞〉 for some ζ ∈ R �xed, and under 
onditionsof Subse
tions 2.1 and 2.4 as well as of the Example 2.3 the relationship:
µi(x) =

ηiσ
2(x)

x+ ζ
(3.13)9



holds for all x ∈ E and some 
onstants ηi ∈ R, i = 0, 1 , su
h that η0 6= η1 and
η0 + η1 = 1 . Let us de�ne the pro
ess Y = (Yt)t≥0 by:

Yt = log
πt

1 − πt

−
1

η
log

x+ ζ

Xt + ζ
(3.14)with η = 1/(η1 − η0). From the stru
ture of (3.14) it is easily seen that there isa one-to-one 
orresponden
e between the pro
esses (πt, Xt)t≥0 and (πt, Yt)t≥0 , andthus, the latter is also a (time-homogeneous strong) Markov pro
ess with respe
t toits natural �ltration, whi
h 
oin
ides with (FX

t )t≥0 . By deriving the expression for
Xt from (3.14) and by substituting it into (2.20), we obtain:
dπt = λ(1 − πt) dt+

σ
(
(x+ ζ)e−ηYt [πt/(1 − πt)]

η − ζ
)

η(x+ ζ)e−ηYt [πt/(1 − πt)]η
πt(1 − πt) dW t (π0 = π).(3.15)By applying It�'s formula to the expression (3.14) and by using the representations(2.20) and (2.25) as well as the assumption (3.13) with η0 6= η1 and η0 + η1 = 1 , weget dYt = 0 and thus:

Yt = log
π

1 − π
(3.16)for all t ≥ 0 .3.6. By means of standard arguments it is shown that under the assumptions ofSubse
tion 3.5 the optimal stopping problems (3.2) and (3.3) are equivalent to:

Ṽ (π, y) = inf
τ
Eπ

[
1 − πτ + c

∫ τ

0

πt dt

] (3.17)where the in�mum is taken over all stopping times τ of the pro
ess (πt, Yt)t≥0 su
hthat Eπ[τ ] <∞ for all (π, y) ∈ [0, 1]×R and y = log[π/(1− π)] for ea
h π ∈ 〈0, 1〉and x ∈ E = 〈−ζ,∞〉 �xed. It also follows that there exists a fun
tion h(y), y ∈ R,su
h that the 
ontinuation region C from (3.7) is equivalent to:
C̃ = {(π, y) ∈ [0, 1] × R | π < h(y)} (3.18)and the set D from (3.8) is equivalent to:
D̃ = {(π, y) ∈ [0, 1] × R | π > h(y)} (3.19)for ea
h y ∈ R and x ∈ E �xed.3.7. If the assumption (3.13) with η0 6= η1 and η0 + η1 = 1 holds, then by meansof standard arguments it is shown that the in�nitesimal operator L̃ of the pro
ess

(πt, Yt)t≥0 from (3.15)-(3.16) a
ts on a fun
tion F ∈ C2,0(〈0, 1〉 × R) like:
(L̃F )(π, y) =

(
λ(1 − π)

∂F

∂π
+
r2(x; π, y)

2
π2(1 − π)2∂

2F

∂π2

)
(π, y) (3.20)10



with
r(x; π, y) =

σ ((x+ ζ)e−ηy[π/(1 − π)]η − ζ)

η(x+ ζ)e−ηy[π/(1 − π)]η
(3.21)for all (π, y) ∈ 〈0, 1〉 × R and ea
h x ∈ E = 〈−ζ,∞〉 �xed.Now let us use the results of general theory of optimal stopping problems for 
ontin-uous time Markov pro
esses (see, e.g., [13℄, [30; Chapter III, Se
tion 8℄ and [21℄) toformulate the 
orresponding free-boundary problem for the unknown value fun
tion

(π, y) 7→ Ṽ (π, y) from (3.3) and the boundary h(y), y ∈ R, from (3.18)-(3.19):
(L̃Ṽ )(π, y) = −c π for (π, y) ∈ C̃ (3.22)
Ṽ (π, y)

∣∣
π=h(x)−

= 1 − h(x) (3.23)
∂Ṽ

∂π
(π, y)

∣∣
π=h(x)−

= −1 (3.24)
∂Ṽ

∂π
(π, y)

∣∣
π=0+

= 0 (3.25)
Ṽ (π, y) = 1 − π for (π, y) ∈ D̃ (3.26)
Ṽ (π, y) < 1 − π for (π, y) ∈ C̃ (3.27)where C̃ and D̃ are given by (3.18) and (3.19), and the instantaneous-stopping
ondition (3.23) and the smooth-�t 
ondition (3.24) as well as the normal-entran
e
ondition (3.25) are assumed to be satis�ed for all y ∈ R and ea
h x ∈ E �xed.Note that by Dynkin's superharmoni
 
hara
terization of the value fun
tion (see[9℄ and [30℄) it follows that Ṽ (π, y) from (3.17) is the largest fun
tion satisfying(3.22)-(3.23) and (3.26)-(3.27) for ea
h y ∈ R and x ∈ E �xed.3.8. By integrating the equation (3.22) and by using the boundary 
onditions (3.23)-(3.25), we obtain:

Ṽ (π, y;h(y)) = 1 − h(y) (3.28)
−

∫ h(y)

π

∫ z

0
exp

(
−

∫ h(y)

u

2λ

r2(x; v, y)v2(1 − v)
dv

)
2c

r2(x;u, y)u(1 − u)2
dudzwith r(x;π, y) given by (3.21) for all π ∈ 〈0, h(y)] and ea
h y ∈ R and x ∈ E = 〈−ζ,∞〉�xed. By means of the arguments similar to [30; pages 203-204℄ it follows that the boundary

h(y) is uniquely determined from the equation:
∫ h(y)

0
exp

(
−

∫ h(y)

u

2λ

r2(x; v, y)v2(1 − v)
dv

)
2c

r2(x;u, y)u(1 − u)2
dudz = 1 (3.29)for ea
h y ∈ R and x ∈ E = 〈−ζ,∞〉 �xed.3.9. Making use of the fa
ts proved above we are now ready to formulate the main resultof the paper. 11



Theorem 3.1. Suppose that 
onditions (2.3) and (2.27)-(2.28) hold for all x ∈ E =
〈−ζ,∞〉 and some ζ ∈ R �xed, and assumption (3.13) is satis�ed with η0 6= η1 and η0 +
η1 = 1. Then in the Bayesian problem (3.2)+(3.3)+(3.17) of qui
kest disorder dete
tionfor the pro
ess (2.2) the value fun
tion has the expression:

V (π) = V (π, x) = Ṽ (π, y) =

{
Ṽ (π, y;h(y)), if π ∈ [0, h(y)〉

1 − π, if π ∈ [h(y), 1]
(3.30)and the optimal π -Bayes stopping time is expli
itly given by:

τ∗ = inf{t ≥ 0 | πt ≥ h(y)} (3.31)where the boundary h(y) is 
hara
terized as a unique solution of the equation (3.29) for
y = log[π/(1 − π)] and ea
h π ∈ 〈0, 1〉 and x ∈ E �xed.Proof. It remains to show that the fun
tion (3.30) 
oin
ides with the value fun
tion(3.17) and that the stopping time τ∗ from (3.31) with the boundary h(y) , y ∈ R , spe
i�edabove is optimal. Let us denote by Ṽ (π, y) the right-hand side of the expression (3.30).It follows by 
onstru
tion from the previous se
tion that the fun
tion Ṽ (π, y) solves thesystem (3.22)-(3.26). Thus, applying It�'s formula to Ṽ (πt, y) , we obtain:

Ṽ (πt, y) = Ṽ (π, y) +

∫ t

0
(L̃Ṽ )(πs, y)I(πs 6= h(y)) ds + M̃t (3.32)where the pro
ess (M̃t)t≥0 de�ned by:

M̃t =

∫ t

0

∂Ṽ

∂π
(πs, y)I(πs 6= h(y))

µ1(Xt) − µ0(Xt)

σ(Xt)
πs(1 − πs) dW s (3.33)is a 
ontinuous lo
al martingale under Pπ with respe
t to (FX
t )t≥0 .By using the arguments above it 
an be veri�ed that (L̃Ṽ )(π, y) ≥ −cπ for all (π, y) ∈

〈0, 1〉 × R su
h that π 6= h(y) . Moreover, by means of standard arguments and usingthe 
onstru
tion of Ṽ (π, y) above it 
an be 
he
ked that the property (3.27) also holdsthat together with (3.22)-(3.23)+(3.26) yields Ṽ (π, y) ≤ 1 − π for all (π, y) ∈ [0, 1] × R .Observe that the time spent by the pro
ess π at the boundary h(y) , y ∈ R , is of Lebesguemeasure zero, that allows to extend (L̃Ṽ )(π, y) arbitrarily to π = h(y) and thus to ignorethe indi
ators in (3.32)-(3.33). Hen
e, from the expressions (3.32) and the stru
ture of thestopping time in (3.31) it follows that the inequalities:
1 − πτ + c

∫ τ

0
πs ds ≥ Ṽ (πτ , y) + c

∫ τ

0
πs ds ≥ Ṽ (π, y) + M̃τ (3.34)hold for any stopping times τ of the pro
ess (πt)t≥0 started at π ∈ [0, 1] and for ea
h

y ∈ R .Let (τn)n∈N be an arbitrary lo
alizing sequen
es of stopping times for the pro
esses
(M̃t)t≥0 . Taking in (3.34) the expe
tation with respe
t to the measure Pπ , by meansof the optional sampling theorem (see, e.g., [15; Chapter I, Theorem 1.39℄ or [24; Chap-ter II, Theorem 3.1℄), we get:

Eπ

[
1 − πτ∧τn

+ c

∫ τ∧τn

0
πs ds

]
≥ Eπ

[
Ṽ (πτ∧τn

, y) + c

∫ τ∧τn

0
πs ds

] (3.35)
≥ Ṽ (π, y) + Eπ

[
M̃τ∧τn

]
= Ṽ (π, y)12



for all (π, y) ∈ [0, 1]×R . Hen
e, letting n go to in�nity and using Fatou's lemma, for anystopping times τ su
h that Eπ[τ ] < ∞ we obtain that the inequalities:
Eπ

[
1 − πτ + c

∫ τ

0
πs ds

]
≥ Eπ

[
Ṽ (πτ , y) + c

∫ τ

0
πs ds

]
≥ Ṽ (π, y) (3.36)are satis�ed for all (π, y) ∈ [0, 1] × R .By virtue of the fa
t that the fun
tion Ṽ (π, y) together with the boundary h(y) satisfy thesystem (3.22)-(3.27), by the stru
ture of the stopping time τ∗ in (3.31) and the expressions(3.32) it follows that the equalities:

1 − πτ∗∧τn
+ c

∫ τ∗∧τn

0
πs ds = Ṽ (πτ∗∧τn

, y) + c

∫ τ∗∧τn

0
πs ds = Ṽ (π, y) + M̃τ∗∧τn

(3.37)hold for all (π, y) ∈ [0, 1] × R and any lo
alizing sequen
e (τn)n∈N of (M̃t)t≥0 . Notethat, by means of standard arguments and by using the stru
ture of the pro
ess (3.15)and of the stopping time (3.31), we have Eπ[τ∗] < ∞ for all π ∈ [0, 1] . Hen
e, letting
n go to in�nity and using 
onditions (3.22)-(3.23), we 
an apply the Lebesgue bounded
onvergen
e theorem for (3.37) to obtain the equality:

Eπ

[
1 − πτ∗∧τn

+ c

∫ τ∗∧τn

0
πs ds

]
= Ṽ (π, y) (3.38)for all (π, y) ∈ [0, 1] × R , whi
h together with (3.36) dire
tly imply the desired assertion.
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