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Abstract

We discuss existence, uniqueness, regularity, and homogenization results
for some nonlinear time-dependent material models. One of the methods for
proving existence and uniqueness is the so-called energetic formulation, based
on a global stability condition and on an energy balance. As for the two-scale
homogenization we use the recently developed method of periodic unfolding
and periodic folding. We also take advantage of the abstract I'-convergence
theory for rate-independent evolutionary problems.

1 Introduction

The models analyzed here concern three types of materials of high interest for ap-
plications: shape memory alloys (SMA), ferroelectric materials, and a class of rate-
independent systems within the theory of elastoplasticity with hardening. All of
them work in the framework of small deformations and quasistatic approximation
for the elastic or electrostatic equilibria. The last two are rate-independent, while in
the first (SMA) so are the hysteretic flow rule for the phase transformation and the
linear constitutive elasticity, but not the heat equation. For both rate-independent
models we will apply the energetic method as introduced in Ref. [21] (for a survey
see Ref. [18]). In each case the energetic formulation will be explicitely described.

In Section 2 we consider a thermomechanical model of shape memory alloys. This
model (see Ref. |5]) takes into account the non-isothermal character of the phase
transformations, as well as the existence of the intrinsic dissipation. For the gov-
erning equations we prove existence, uniqueness and regularity in several functions
spaces.

In Section 3 we discuss rate-independent engineering models for multi-dimensional
behavior of ferroelectric materials. These models capture the non-linear and hys-
teretic behavior of such materials. We show that these models can be formulated
in an energetic framework based on the elastic and the electric displacements as
reversible variables, and on internal irreversible variables such as the remanent po-
larization. Quite general conditions on the constitutive laws guarantee the existence
of a solution. Under more restrictive assumptions uniqueness of the solutions holds.

Section 4 is devoted to the homogenization for a class of rate-independent systems
described by the energetic formulation. The associated nonlinear partial differen-
tial system has periodically oscillating coefficients, but has the form of a standard
evolutionary variational inequality. Thus, the model applies to standard linearized



elastoplasticity with hardening. Using the recently developed methods of two-scale
convergence, periodic unfolding and periodic folding, we show that the homogenized
problem can be represented as a two-scale limit, which is again an energetic formu-
lation, but now involving the macroscopic variable in the physical domain as well as
the microscopic variable in the periodicity cell.

2 Shape Memory Alloys

This section is devoted to the mathematical study of a thermomechanical model
describing the macroscopic behavior of shape memory alloys. The analyzed model
takes into account the non-isothermal character of the phase transition, as well as
the existence of the intrinsic dissipation. The model is published in Ref. [5], but a
description of it can also be found in Refs. |31, 33|. A variant which neglects the
intrinsic dissipation was studied in Refs. |3, 4|. The newest model from Ref. |5] is
founded on a free energy which is a convex function with respect to the strain and
to the martensitic volume fraction and concave with respect to the temperature.
In the circular cylindrical case, uniqueness of solutions in a large class of spaces,
as well as their existence in the space of continuous functions were established in
Refs. |31, 32|. Existence, uniqueness and regularity of solutions in various functions
spaces were proved in Ref. |28].

We next give a brief description of the mathematical problem and of our main
results on it. The first law of thermodynamics, the balance of momentum in its qua-
sistatic form, the evolution equation for the internal variables (the volume fraction
of martensite), together with the second principle of thermodynamics (the entropy
inequality), lead to a partial differential equations system. In the circular cylindrical
case the problem reduces to the following ordinary differential system:

(). 6+ lo—T+ L5
T C

o= E(e—gp)

(If 3 =0, then 0 <ot and
ﬂ<O:>a§a_

(T) If 0<pB <1, then 07 <o <o" and

(&): 0<p<1, B<0=0=0"

{5>O:>a:a+
If =1, then ¢ >0~ and
L B>0=0>0"

The unknown data are: the temperature ¢ at the surface of the body, the total frac-
tion § of the martensite in the body, and the axial elongation € of the sample in the
Ox3 direction. The stress o is supposed to be given. All these are real functions only



depending on the time variable t > 0. The constants 7,I", L,C, E, g,p,q,To, T,, AT
are all positive, Ty > T,, ' < L/C, and o* := p(Ty — T, + 0 + BAT) + q.

Some comments are necessary in order to understand the mathematical problem
raised by (7):

1. The known data is an arbitrarily given continuous function o : J — R (J is an
interval with min J = 0) such that ¢(0) = 0. The system (7) is initially considered
for unknown functions 3,6,¢ : J — R having lateral derivatives everywhere on J,
since they should satisfy (H), (£) with respect to these. If [ is strictly increasing
on some open subinterval J, C J, then' {t € Jy| () > 0} is dense in Jy, and so
o=oc"=p(Ty—T,+ 6+ BAT) + g on Jy, by (£). Consequently o should have
lateral derivatives on Jy. This poses a serious compatibility problem for our system
if the given ¢ does not have lateral derivatives (e.g. if o is continuous but nowhere
differentiable).

2. If ¢ is such that ﬁb(to) > 0 and f((ty) = 1, then [ cannot be differentiable at
tg, since § < 1. This may happen even if ¢ is analytic on J, and so # can be less
regular than ¢. This is the reason to insist on lateral differentiability.

3. There exist strictly increasing continuous functions u : J — R, such that
fot U(s)ds = 0 # u(t) —u(0) for every ¢t > 0. Since the usual derivative sometimes
fails to characterize continuous and almost everywhere differentiable functions, its
presence in (7)) may not guarantee the uniqueness of solutions.

4. Since for arbitrarily given ¢ a pronounced non-differentiability of solutions may
occur, it would be natural to study (7)) in the space C(J) of all real continuous
functions on J, with the derivative in the sense of distributions. This is related to
serious difficulties: what is the meaning of |3 in (H) and of 3(¢) in (€), if 3 is a
distribution but not a function?

In order to remove the derivatives of § from (£), we introduced in Ref. [31] a
new notion. A point ¢t € Jy (Jp an interval) is said to be an increment point
for uw € C(Jp), if and only if for every neighborhood V of ¢, we have t; <
ty and u(t;) < wu(ty) for some ti,t5 € V N Jy. Let MT(u) denote the set of
all increment points of w and set M~ (u) := M™*(—u). If X(J) is any of the
spaces ACioc(J), Lipioe(J), DA(J), D{(J), DA(J), DX (J), A:(J), An(J), Ai(J), en-
dowed with its natural derivative (see the list below for details), then an equivalent

form of (&) for 5,0 € X(J) is

>0
c Bt)<1l=o(t) <ot(t
E)xn\ t e+ @) = o)
te M (8) = olt) =

If 3,0 € C(J) satisty (€)c(s), then 8 must be locally monotone (see Ref. [31],
Cor.4.2, p.455). If we write (H) on every interval .Jy of monotonicity for 5, we can

o
then consider the following equation in distributions on J:

0+ %9 - (ro + é) 3 in D'(Jo), (1)

"¢ (t) and 1w, (¢) denote the forward and the backward derivatives of u at t.
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where Iy i— I', if g is increasing on Jy,

—I', else.
The system (7)) may be considered for any of the functions spaces and derivatives
listed below (see Ref. [31] for the definition of an abstract derivation structure X (.J)

and for the corresponding system (7)x(J))-

List of functions spaces and associated derivatives
o

1) C(J), with the derivative in the sense of distributions in D’(.J). We have the
natural inclusions C'(J) C C’(j) C D’(j). Let us recall that w € C(J) is increasing

o

if and only if v’ € D'(J) is positive.

2) BVioe(J) := {u € C(J) | u has locally bounded variation}, with the derivative in
the sense of distributions.

3) ACioc(J) := {u € C(J)|u is locally absolutely continuous}, with the derivative
almost everywhere.

4) Lipioe(J) :={u € C(J) | is locally Lipschitz}, with the derivative almost every-
where.

5) For every fixed at most countable subset A of J, consider the spaces:

a) DA(J) := {u € C(J)|u is differentiable to the right on J \ A} (respectively
D{(J)), with the forward (respectively backward) derivative on J \ A.

b) DA(J) = DA(J) N D{}(J), with both forward and backward derivatives.

6) D¥(J) := {u € C(J)]| the set of non-differentiability points of u is at most
countable}, with the usual derivative where this one exists.

7) a) Ay(J) := {u € C(J)|u is forward-analytic}, with the forward derivative. A
function u € C(J) is said to be forward-analytic at ¢ € J \ {sup J}, iff u is analytic
on some [t,s) C J (s > t). We call u a forward-analytic function, iff u is forward-
analytic at every t € J\ {sup J}.

b) Ap(J) := {u € C(J) | uis backward-analytic}, with the backward derivative (def-
initions are similar to those for Ag(J)).

c) A(J) = Ag(J) N Ap(J), with both forward and backward derivatives.

Our problem is the following: for a fixed X (/) in the above list and for a given o €
X (J) with o(0) = 0, we wish to investigate the existence of solutions 3,0,¢ € X (J)
of the system (7')x(s). The constitutive equation o = E(e — g3) and the condition
£(0) = 0 from (7)x(s) can be ignored, since for 3,0 € X(J) satisfying all other
conditions, we get a solution of (7)x(;) with e = & 4 g8 € X(J). Therefore, every
solution of (7") x(y) is given by a pair (3, 6) of functions from X (J).

In Ref. [31] the following result is proved.

Proposition 2.1 Let X(J) be an abstract derivation structure. For (3,0 € C(J),
the following statements are equivalent:

(a) (B,0) is a solution of (T )x (-
(b) (B,0) is a solution of (T )c(yy and 3,0 € X(J).

4



Now let o € X (J) be fixed, such that o(0) = 0. Since every solution of (7)x(, also
satisfies (7")c(s), we deduce that (7)x(yy is compatible if and only if for the unique
solution (3,0) of (T)c(s) (see Ref. [32], Th.3.1, p.543) we have (3,6 € X (J). Hence,
for our problem, regularity of solutions (that is 3,0 € X (J) whenever o € X(J)) is
equivalent to their existence.

Let X (J) be any of the spaces

BYioc(J1). ACloc(J). Lipe (). D). DA, DA D).
Ae(J), An(J), Ai(J),

endowed with its natural derivative from the above list.

Our main result is the following (for the proof, see Ref. [28]):

Theorem 2.2 For any given o € X (J), the system (T )x(y) has a unique solution.

3 Ferroelectric Materials

Here we give a general description of a class of time-dependent models for ferro-
electric materials. Our class of models is inspired by the engineering models from
Refs. |13, 14, 15, 25, 29|. However, we will rephrase the theories there in such a way
that it can be formulated in terms of two energetic functionals, namely the stored
energy £ and the pseudo-potential R for the dissipation. Thus, we will be able to
take advantage of the recently developed energetic approach to rate-independent
models, (see Refs. |11, 20, 17, 21| and the survey [18]).

The basic quantities in the theory are the elastic displacement field u : Q — R?
and the electric displacement field D : R — R?. Here, the electric displacement
is also defined outside the body, as interior polarization of a ferroelectric material
generates an electric field £ and displacement D in all of R? via the static Maxwell
equation in R?. Commonly, the polarization P is used for modeling, and is defined
via

D =ekFE + P,

where € is the dielectric constant (or permetivity) in the medium surrounding the
body €. Our formulation stays with D, since it leads to a simple and consistent
thermomechanical model.

In addition we use internal variables @ :  — R which, for instance, may be taken
as a remanent strain g, or a remanent polarization Pey,.

The stored-energy functional has the form

E(t,u,D,Q) = A(W(m,s(u),D,Q)—l—a(w,V@)) dx+/Rd\92%0|D|2dx
_<£(t>7(uvD)>7



where W is the Helmholtz free energy and e(u) is the infinitesimal strain tensor
given by

1
e(u) = §(Vu+ Vu') € RIxd . — {ee€ Rxd le=¢€").

Sym

The nonlocal term a(z, VQ) in € usually takes the form %|VQ[* with k£ > 0. This
term penalizes rapid changes of the internal variable by introducing a length scale
which determines the minimal width of the interfaces between domains of different
polarization.

The external loading ¢(¢) depends on the process time ¢ and is usually given by

(£(t), (u,D)) = /Rd Eext(t,x)-D(x)d:L'+/vaol(t,x)-u(:v)d:v

+ fourt(t, ) u(z)da(x),

FNeu
where Fey, fvor and fs,r are applied, external fields.

For the dissipation potential R we take the very simple form
R(Q) = [ R Qla))ds
Q

where R(z,-) : R%@ — [0,00) is convex and positively homogeneous of degree 1.
Note that the dissipation potential only acts on the rate Q = %Q of the internal
variable. The classical way to describe dissipation in ferroelectrics is a switching
function of the form

Oz, Xo) <0, with X = %W — div(Da(VQ)). (3)

This is equivalent to our dissipation potential R by the relation
R(z,Q) = max{ Q-Xq | ®(z, Xq) < 0}.

To formulate the rate-independent evolution law we use the thermomechanically
conjugated forces

o= 2w erid, E:{
Oe

o)
a_DW on Q,

1D onRI\Q Xo e R, (4)
€0

where o is the stress tensor and E the electric field. The elastic equilibrium equation
and the Maxwell equations read

—divo + fu(t,) =0 in Q, -
divD =0 and curl(E — Ee(t,-)) =0 in RY,

where curl £ is defined as VE—(VE)T for general dimensions.

The evolution of ) follows the force balance law:

0 € OR(x,Q) + Xg,
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where OR(z, -) is the subdifferential of the convex function R(z,-).

We now want to rewrite these relations, as equations in function spaces. For this
purpose we introduce a suitable state space ) = F x Q as follows. The space F
contains the functions v and D, and takes the form

F =H x L% (RY), where L3, (RY) := {¢ € L*(R%:RY) | divey =0}

and H is a closed affine subspace of H'(€2;R?). The space Q contains the internal
state functions @ and is taken to be W14e(Q); R%) for a suitable gg > 1.

Using the well-known fact (cf. Ref. |30], Th.1.4) that the total space L2(R% R?)
decomposes in two orthogonal closed subspaces L2, (R%) and

L2m@RY) = {y € (R4 RY) | curly =01},

we obtain the following result.

Proposition 3.1 Let Dp&(t,u, D, Q)[f)] denote the Gateaux derivative of € in the
direction D. Then

(VD e L4, (RY) : Dp&(t,u,D,Q)[D] =0) <= curl(E — Epy(t,-)) =0
in RY.

Thus, we implement the Maxwell equations by the condition Dp&(t,u, D, Q) =
0 in a suitable function space. Similarly, the elastic equilibrium is obtained by
D.E(t,u, D, Q) = 0. The full problem may be written as

D.E(t, u(t), D(t),Q(t)) = 0, Dp&(t,u(t), D(t),Q(t)) =0, (6)
0 € OR(Q(t)) + Do&(t, u(t), D(t), Q(t)),

where the last above equation corresponds to the dissipative force balance.

In fact, our theory is not based on the force balance (6). Instead, following Refs. |18,
21], we use a weaker formulation only based on energies. This energetic formulation
avoids derivatives of £ and of the solution (u, D, Q). Under suitable smoothness
and convexity assumptions the energetic formulation is equivalent to (6). We call
(u, D, Q) an energetic solution of the problem associated with & and R, if for all
t € [0, 7] the stability condition (S) and the energy balance (E) hold:

(E) E(t,u(t), D(t )+ fo (7)

= &(0, u(0 )7D(0) ( ) = Jot(s), (u () D(s)))ds.

In Refs. [22, 23] we showed that (S) & (E) has solutions for suitable initial data, if
the constitutive functions W, «, and R satisfy reasonable continuity and convexity
assumptions. Under stronger conditions we also proved uniqueness of solutions.

(S) 5(t7U(t),D(t) Q( ))<5( t,@,D @)+R(Q Q(1)) for all @, D, Q;
R(Q(s)))d
(((s),

7



We now provide conditions on the constitutive functions W, o and R, in order to
get the existence result.

The first assumption concerns the domain and the Dirichlet boundary:

Q) ¢ R? is a connected bounded open set with Lipschitz boundary T,

and I'p;, a measurable subset of I', such that fFD' 1da > 0. (BO)

The function R : Q x R% — [0, 00) satisfies
Re C'(Q xR%) and Jcgz, Cr > 0VV € R% : ¢x|V| < R(z,V) < Cg|V|. (B1)

Vo eQ: R(z,): R —[0,00) is 1-homogeneous and convex. (B2)

The functions W and « have to fulfill the following three conditions:

W Qx RES xR x R — [0, 00) is a Caratheodory function, (B3)
which means that the function W (-, e, D, @) is measurable on (2 for each (e, D, Q),
and that the mapping W (x,-, -, ) is continuous on Rgl;n‘f x R? x R for a.e. x € Q.
Jee,Ce >0, ¢>1VY(2,6,D,Q,V) € REI x RY x R x R (B4)
W(ZIZ’, g, D> Q) + Oé(V) Z Cg(|€|2 + |l)|2 + |Q|q + |V|q) - Cc‘:'
a : R%e*d 5 R is convex and (B5)
V(z,Q) € A xR%: W(z,-,-Q): RS x R — R is convex.
For the external loading ¢(t) we assume
e CH([0,T], (Hy,, (4 RY))" x L, (RY)). (B6)

Let us consider the following functions spaces:
F = Hiy, (R wear X Ly (R veaks 2 = L2, R™ ) str0mg.

Here the subscripts “weak” and “strong” indicate the use of the weak or strong (norm)
topology in the corresponding Banach spaces. The functional &£ is defined as above
on [0,T] x F x Z , where E(t,u, D, Q) takes the value +oo if Q ¢ WH9(Q; R%) or
if the integrand is not in L().

We can now state our existence theorem.

Theorem 3.2 (Existence theorem)

If the assumptions (B0) (B6) hold, then for each stable initial condition (ug, Dy, Qo) €
F x Z, the energetic problem (S) & (E) has a solution (u,D,Q) : [0,T] — F x Z,
such that (u(0), D(0),Q(0)) = (ug, Do, Qo), and

(u, D, Q) € L=([0, T); Hly, (4 RY) x L3, (RY) x WH9(Q5 R™)).



4 Homogenization for rate-independent systems

Our aim is to provide homogenization results for evolutionary variational inequalities
of the type:

(Ag—L(t),v —q) + R(v) — R(¢) >0 for every v € Q. (8)

Here Q is a Hilbert space with dual Q*, the continuous linear operator A : Q —
Q* is symmetric and positive definite, the forcing ¢ lies in C'([0,7T],Q*), and the
dissipation functional R : Q — [0, 00) is convex, lower semi-continuous and positively
homogeneous of degree 1, i.e., R(yq) = 7R(q) for all v > 0 and ¢ € Q. The last
property of R leads to rate independence.

The problem (8) has many different equivalent formulations. For our purposes the
so-called energetic formulation for rate-independent hysteresis problem is especially
appropriate, cf. Refs. [18, 20]. This formulation is solely based on the energy-storage
functional &€ : [0, 7] x Q — R defined via

E(t,q) = %(Aq,q} — ({{(t), q),

and on the dissipation functional R. Thus, homogenization of an evolutionary prob-
lem can be reduced to some extend to homogenization of functionals. We formulate
our rate-independent evolutions systems and we provide existence and uniqueness
theorems for the initial and expected two-scale homogenized problems. We present
some ['-convergence results and finally our main homogenization theorem.

The notion of two-scale convergence has been introduced by Nguetseng (see Ref. [27])
in 1989 and developed by Allaire in 1992 (see Ref. [2]). Ref. [16] provides an overview
of the main homogenization problems studied by this technique. The periodic un-
folding method recently introduced (2002) by Cioranescu, Damlamian and Griso in
Ref. [8], reduces the two-scale convergence to a weak convergence in an appropriate
space. This concept is now applied in a variety of quite different applications in
continuum mechanics, see e.g., Refs. [1, 10, 26, 34, 35]. To the best of our knowl-
edge there is no theory for nonsmooth evolutionary systems like the variational
inequalities here.

Throughout, the domain Q will be a bounded open subset of R%. For the semi-open

unit cell Y = [0,1)%, we have Uycza(A+Y) = RYand A+ Y)N(u+Y) =0 for
A\, p € Z% with X # p. From now on we will assume that p € (1, 00).

Let us recall the definition of the classical two-scale convergence.

Definition 4.1 Let (v.). be a sequence in LP(Q). One says that (v.). two-scale

converges to V. = V(x,y) in LP(Q x Y) (we write v, Ly V'), if for any function
Y =(x,y) in CZ( CR.(Y)), one has

per

lim Qva(x)w <£L’, g) dx = /Q/Y V(z,y)(x,y) dy de. (9)

e—0



The periodic unfolding operator 7. was introduced in Ref. [§8] and then used for
homogenization of nonlinear integrals in Refs. [6, 7|. On the full space R?, it is
defined by

7. IP(RY) — LP(R* x Y); T(z,y)=v <6 [f} + 6y> :
€
We next introduce the notions of weak/strong two-scale convergence.
Definition 4.2 Let V € LP(Q x Y). A bounded sequence (v.). in 1P(2)

(w2): weakly two-scale converges to V' (we write v, by V), if

Tov. =V (weakly) in LP(R? x Y).

(s2): strongly two-scale converges to V' (we write v, = V), if

Tv. — V (strongly) in LP(R? x Y).

Clearly, the above weak two-scale convergence is stronger than the classical.

4.1 ¢ problem

Let us consider:

Q) C R, a connected bounded open set, with Lipschitz boundary T,
Y = [0,1)? C R%, unit periodicity cell,

u:  — R? displacement,

z: 2 — R™, internal variable.

For every € > 0, define the energy functional €. and the dissipation functional R.
by

E(tu,z) = /Q%<<c (£) (elw) ~ B (£) 2).efu) ~ B (2) =) da
—I—/Q % <]HI (%) z, z> dr — /Qu(:v)fext(t,x) dx

R = [ p(25) dr

where

sym

1
e(u) = §(V“ +Vu") e R = {o e R o =0T }.

10



The tensors C,H, B defined on R are Y-periodic, and take values in:
C(y) € Sym4™ order tensor, B(y) € Lin(R™, R4 H(y) € R™X™.

sym sym
We work under the hypotheses stated below.
Assumptions for C,H,B: for all y € R? and z € R™, we have
1 1

5|8|2 < (C(y)e,e) < Clef, C|Z|2 (Hz, z) < Cl2]*,  |B(y)ll <C
(for some constant C' > 0).
Assumptions for p:
((p:REXR™ — [0, 00),

p(-,v) Lebesgue measurable and Y-periodic, for every v € R™,
(H,) p(y,-) 1-homogeneous and convex for a.e. y € RY,

&lvl < p(y,v) for a.e. y € R™ and every v € R™,
L p(y,v) — p(y,v")| < Clv — /| for a.e. y € R? and all v,v" € R™.

Let us consider the Hilbert space Q = Hf, ()4 x L*(Q)™.

We call ¢. = (ue, 2:) : [0,7] — Q an energetic solution of the problem associated
with €. and R, if for every t € [0,T] the stability condition (S°) and the energy
balance (Ef) hold:

(S%) = Ec(t,uc(t), z(1) < E.(t,u,2) + Ro(z — 2:(t)) for every (u,z) € Q,
(Ef) : Ec(t,uc(t), 2:(t)) +/ R.(Z:(s)) ds = €.(0,u:(0), z:(0))

] /fext o) o)

We now state our existence and uniqueness result for (5°) & (Ef).

Proposition 4.3 Let fe € CHP([0,T], (Hf, (Q)%)*). Then for alle > 0 and stable
(u?, 20) € Q, there is a unique solution (ue,zg) e CHr([0,7),9) of (S°) & (E°), with

€1 %e
(u-(0), 2(0)) = (u2, 20).
Moreover, we have e-independent Lipschitz bounds for the solutions, that is, for some
constant ¢; > 0 we have

1(ue(t), 2:(8)) — (uels), 2:(s))|[mixre < et —s| for allt,s € [0,T],e > 0. (10)

4.2 Two-scale homogenized problem

We now formulate the problem (S) & (E), which will turn out to be the two-scale
homogenized problem for (S%) & (Ef).
Let Q = H x Z, where

H = H} () < I(GHL (Y)Y, Z=LAQL2(Y)" = L(Qx Y™,

11



Here, HL (Y) = {U € H,(Y) | [, U(y)dy = 0}. For all Q = (U, Z) in Q, with
U= (Uo, Uy), let us define the two- scale functionals E and R

pev.z) - [ 5 <c<y><a<U>—E<y>Z>,a<U>—E<y>Z>dydx

// Y2, Z) dyd:c—// Uo () fue (2, 2) dy da,
R(Z) = [ [ 2o dya,

where €(U) = e, (Up)+e,(Uy), which means €(U)(z,y) = e,(Uy(-))(x)+e,(Ui(z,-))(y).
The energetic formulation for the two-scale homogenized problem (S) & (E) reads:
for every t € [0, T, the stability condition (S) and the energy balance (E) hold, that
is,
(8): E(t,U(t), 2(1) <E(t )+R(Z Z)WVQ=(U,Z) e HxZ,
(E): E(t,U(t), Z(t)) ) ds = E(0,U(0), Z(0))

//fext s,x) - Up(r)dzds.

We next state our existence and uniqueness result for the problem (S) & (E).

[e=]

Proposition 4.4 Let fo € CYP([0,T], (HE, (2)%)*). Then for every stable Q° =
(U°, Z°) € Q, the problem (S)& (E) has a unique solution Q = (U, Z) € C¥?([0,T], Q),

with Q(0) = Q°.

The convergence of €. and R. to E and R can be viewed as a type of two-scale
Mosco convergence, i.e., I'-convergence in the weak and in the strong topology (see
Ref. [19]). Here we rely on the unfolding operator and on the folding operator
in order to construct suitable recovery sequences, also called realizing sequences in

Ref. [12].

The crucial tool for proving the convergence of the solutions ¢. to the energetic
solution @) associated with E and R is the abstract I'-convergence theory developed
in Ref. [19]|. There, the simple theory relies on the fact that the dissipation functions
converge continuously in the weak topology; yet this is not the case in our situation.
However, we are able to use the quadratic nature of the energies allowing some
cancelations in differences of energies. For instance, £.(¢,q.) — E.(t, ¢-) converges to
E(t, Q) — E(t, é), if ¢ has the “weak” two-scale limit ) and ¢. — ¢ has a strong(!)
two-scale limit ) — @

Our homogenization theorem is based on the notion of two-scale cross-convergence.

Definition 4.5 Let Q = (U, Z) € Q, with U = (Uy, Uy). A sequence q. = (ue, z:)e
in Q is called two-scale cross-convergent to (U, Z), if

w20y, Vu. BVU+ VU, 222
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We write this as (ue, z:) o (U, 2).

We can now formulate our main result stating that (S) & (E) is the two-scale ho-
mogenized problem for (5°%) & (E°) (see Ref. |24] for the proof).

Theorem 4.6 Let q. = (u, z-) be the solution of (S°) & (E°). For the initial data,
assume that:

q? = (u?, Zg) 18 stable for every e > 0,
cw2
@ = (2, 20) Q0 = (1, 2°) € Q,

€:(0,¢2) — E(0,Q").

Then (q:)e two-scale cross-converges to the unique solution QQ = (U, Z) of the two-
scale homogenized problem (S) & (E), with Q(0) = Q°.
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