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AbstratWe disuss existene, uniqueness, regularity, and homogenization resultsfor some nonlinear time-dependent material models. One of the methods forproving existene and uniqueness is the so-alled energeti formulation, basedon a global stability ondition and on an energy balane. As for the two-salehomogenization we use the reently developed method of periodi unfoldingand periodi folding. We also take advantage of the abstrat Γ-onvergenetheory for rate-independent evolutionary problems.1 IntrodutionThe models analyzed here onern three types of materials of high interest for ap-pliations: shape memory alloys (SMA), ferroeletri materials, and a lass of rate-independent systems within the theory of elastoplastiity with hardening. All ofthem work in the framework of small deformations and quasistati approximationfor the elasti or eletrostati equilibria. The last two are rate-independent, while inthe �rst (SMA) so are the hystereti �ow rule for the phase transformation and thelinear onstitutive elastiity, but not the heat equation. For both rate-independentmodels we will apply the energeti method as introdued in Ref. [21℄ (for a surveysee Ref. [18℄). In eah ase the energeti formulation will be expliitely desribed.In Setion 2 we onsider a thermomehanial model of shape memory alloys. Thismodel (see Ref. [5℄) takes into aount the non-isothermal harater of the phasetransformations, as well as the existene of the intrinsi dissipation. For the gov-erning equations we prove existene, uniqueness and regularity in several funtionsspaes.In Setion 3 we disuss rate-independent engineering models for multi-dimensionalbehavior of ferroeletri materials. These models apture the non-linear and hys-tereti behavior of suh materials. We show that these models an be formulatedin an energeti framework based on the elasti and the eletri displaements asreversible variables, and on internal irreversible variables suh as the remanent po-larization. Quite general onditions on the onstitutive laws guarantee the existeneof a solution. Under more restritive assumptions uniqueness of the solutions holds.Setion 4 is devoted to the homogenization for a lass of rate-independent systemsdesribed by the energeti formulation. The assoiated nonlinear partial di�eren-tial system has periodially osillating oe�ients, but has the form of a standardevolutionary variational inequality. Thus, the model applies to standard linearized1



elastoplastiity with hardening. Using the reently developed methods of two-saleonvergene, periodi unfolding and periodi folding, we show that the homogenizedproblem an be represented as a two-sale limit, whih is again an energeti formu-lation, but now involving the marosopi variable in the physial domain as well asthe mirosopi variable in the periodiity ell.2 Shape Memory AlloysThis setion is devoted to the mathematial study of a thermomehanial modeldesribing the marosopi behavior of shape memory alloys. The analyzed modeltakes into aount the non-isothermal harater of the phase transition, as well asthe existene of the intrinsi dissipation. The model is published in Ref. [5℄, but adesription of it an also be found in Refs. [31, 33℄. A variant whih neglets theintrinsi dissipation was studied in Refs. [3, 4℄. The newest model from Ref. [5℄ isfounded on a free energy whih is a onvex funtion with respet to the strain andto the martensiti volume fration and onave with respet to the temperature.In the irular ylindrial ase, uniqueness of solutions in a large lass of spaes,as well as their existene in the spae of ontinuous funtions were established inRefs. [31, 32℄. Existene, uniqueness and regularity of solutions in various funtionsspaes were proved in Ref. [28℄.We next give a brief desription of the mathematial problem and of our mainresults on it. The �rst law of thermodynamis, the balane of momentum in its qua-sistati form, the evolution equation for the internal variables (the volume frationof martensite), together with the seond priniple of thermodynamis (the entropyinequality), lead to a partial di�erential equations system. In the irular ylindrialase the problem redues to the following ordinary di�erential system:
(T )





(H) : θ̇ +
1

τ
θ = Γ|β̇| +

L

C
β̇

σ = E(ε− gβ)

(E) : 0 ≤ β ≤ 1,






If β = 0, then σ ≤ σ+ and
β̇ < 0 ⇒ σ ≤ σ−If 0 < β < 1, then σ− ≤ σ ≤ σ+ and
{
β̇ < 0 ⇒ σ = σ−

β̇ > 0 ⇒ σ = σ+If β = 1, then σ ≥ σ− and
β̇ > 0 ⇒ σ ≥ σ+

β(0) = 0, θ(0) = 0, ε(0) = 0, σ(0) = 0The unknown data are: the temperature θ at the surfae of the body, the total fra-tion β of the martensite in the body, and the axial elongation ǫ of the sample in the
Ox3 diretion. The stress σ is supposed to be given. All these are real funtions only2



depending on the time variable t ≥ 0. The onstants τ,Γ, L, C, E, g, p, q, T0, Ta,∆Tare all positive, T0 > Ta, Γ < L/C, and σ± := p(T0 − Ta + θ + β∆T ) ± q.Some omments are neessary in order to understand the mathematial problemraised by (T ):1. The known data is an arbitrarily given ontinuous funtion σ : J → R (J is aninterval with min J = 0) suh that σ(0) = 0. The system (T ) is initially onsideredfor unknown funtions β, θ, ε : J → R having lateral derivatives everywhere on J ,sine they should satisfy (H), (E) with respet to these. If β is stritly inreasingon some open subinterval J0 ⊂ J , then1 {t ∈ J0 | β̇f(t) > 0} is dense in J0, and so
σ = σ+ = p(T0 − Ta + θ + β∆T ) + q on J0, by (E). Consequently σ should havelateral derivatives on J0. This poses a serious ompatibility problem for our systemif the given σ does not have lateral derivatives (e.g. if σ is ontinuous but nowheredi�erentiable).2. If σ is suh that β̇b(t0) > 0 and β(t0) = 1, then β annot be di�erentiable at
t0, sine β ≤ 1. This may happen even if σ is analyti on J , and so β an be lessregular than σ. This is the reason to insist on lateral di�erentiability.3. There exist stritly inreasing ontinuous funtions u : J → R, suh that∫ t

0
u̇(s)ds = 0 6= u(t) − u(0) for every t > 0. Sine the usual derivative sometimesfails to haraterize ontinuous and almost everywhere di�erentiable funtions, itspresene in (T ) may not guarantee the uniqueness of solutions.4. Sine for arbitrarily given σ a pronouned non-di�erentiability of solutions mayour, it would be natural to study (T ) in the spae C(J) of all real ontinuousfuntions on J , with the derivative in the sense of distributions. This is related toserious di�ulties: what is the meaning of |β̇| in (H) and of β̇(t) in (E), if β̇ is adistribution but not a funtion?In order to remove the derivatives of β from (E), we introdued in Ref. [31℄ anew notion. A point t ∈ J0 (J0 an interval) is said to be an inrement pointfor u ∈ C(J0), if and only if for every neighborhood V of t, we have t1 <

t2 and u(t1) < u(t2) for some t1, t2 ∈ V ∩ J0. Let M+(u) denote the set ofall inrement points of u and set M−(u) := M+(−u). If X(J) is any of thespaes ACloc(J), Liploc(J), DA
f (J), DA

b (J), DA
l (J), Dℵ0(J), Af(J), Ab(J), Al(J), en-dowed with its natural derivative (see the list below for details), then an equivalentform of (E) for β, θ ∈ X(J) is

(E)X(J)






β(t) > 0 ⇒ σ(t) ≥ σ−(t)
β(t) < 1 ⇒ σ(t) ≤ σ+(t)
t ∈M+(β) ⇒ σ(t) = σ+(t)
t ∈M−(β) ⇒ σ(t) = σ−(t).If β, θ ∈ C(J) satisfy (E)C(J), then β must be loally monotone (see Ref. [31℄,Cor.4.2, p.455). If we write (H) on every interval J0 of monotoniity for β, we anthen onsider the following equation in distributions on o

J0:
θ̇ +

1

τ
θ =

(
Γ0 +

L

C

)
β̇ in D′(

o

J0), (1)1
u̇f(t) and u̇b(t) denote the forward and the bakward derivatives of u at t.3



where Γ0 :=

{
Γ, if β is inreasing on J0,

−Γ, else.The system (T ) may be onsidered for any of the funtions spaes and derivativeslisted below (see Ref. [31℄ for the de�nition of an abstrat derivation struture X(J)and for the orresponding system (T )X(J)).List of funtions spaes and assoiated derivatives1) C(J), with the derivative in the sense of distributions in D′(
o

J). We have thenatural inlusions C(J) ⊂ C(
o

J) ⊂ D′(
o

J). Let us reall that u ∈ C(J) is inreasingif and only if u′ ∈ D′(
o

J) is positive.2) BVloc(J) := {u ∈ C(J) | u has loally bounded variation}, with the derivative inthe sense of distributions.3) ACloc(J) := {u ∈ C(J) | u is loally absolutely ontinuous}, with the derivativealmost everywhere.4) Liploc(J) := {u ∈ C(J) | u is loally Lipshitz}, with the derivative almost every-where.5) For every �xed at most ountable subset A of J , onsider the spaes:a) DA
f (J) := {u ∈ C(J) | u is di�erentiable to the right on J \ A} (respetively

DA
b (J)), with the forward (respetively bakward) derivative on J \ A.b) DA

l (J) = DA
f (J) ∩DA

b (J), with both forward and bakward derivatives.6) Dℵ0(J) := {u ∈ C(J) | the set of non-di�erentiability points of u is at mostountable}, with the usual derivative where this one exists.7) a) Af(J) := {u ∈ C(J) | u is forward-analyti}, with the forward derivative. Afuntion u ∈ C(J) is said to be forward-analyti at t ∈ J \ {sup J}, i� u is analytion some [t, s) ⊂ J (s > t). We all u a forward-analyti funtion, i� u is forward-analyti at every t ∈ J \ {sup J}.b) Ab(J) := {u ∈ C(J) | u is bakward-analyti}, with the bakward derivative (def-initions are similar to those for Af(J)).) Al(J) := Af(J) ∩Ab(J), with both forward and bakward derivatives.Our problem is the following: for a �xed X(J) in the above list and for a given σ ∈
X(J) with σ(0) = 0, we wish to investigate the existene of solutions β, θ, ε ∈ X(J)of the system (T )X(J). The onstitutive equation σ = E(ε− gβ) and the ondition
ε(0) = 0 from (T )X(J) an be ignored, sine for β, θ ∈ X(J) satisfying all otheronditions, we get a solution of (T )X(J) with ε = σ

E
+ gβ ∈ X(J). Therefore, everysolution of (T )X(J) is given by a pair (β, θ) of funtions from X(J).In Ref. [31℄ the following result is proved.Proposition 2.1 Let X(J) be an abstrat derivation struture. For β, θ ∈ C(J),the following statements are equivalent:(a) (β, θ) is a solution of (T )X(J).(b) (β, θ) is a solution of (T )C(J) and β, θ ∈ X(J).4



Now let σ ∈ X(J) be �xed, suh that σ(0) = 0. Sine every solution of (T )X(J) alsosatis�es (T )C(J), we dedue that (T )X(J) is ompatible if and only if for the uniquesolution (β, θ) of (T )C(J) (see Ref. [32℄, Th.3.1, p.543) we have β, θ ∈ X(J). Hene,for our problem, regularity of solutions (that is β, θ ∈ X(J) whenever σ ∈ X(J)) isequivalent to their existene.Let X(J) be any of the spaes
BVloc(J), ACloc(J), Liploc(J), DA

f (J), DA
b (J), DA

l (J), Dℵ0(J),
Af(J), Ab(J), Al(J),

(2)endowed with its natural derivative from the above list.Our main result is the following (for the proof, see Ref. [28℄):Theorem 2.2 For any given σ ∈ X(J), the system (T )X(J) has a unique solution.3 Ferroeletri MaterialsHere we give a general desription of a lass of time-dependent models for ferro-eletri materials. Our lass of models is inspired by the engineering models fromRefs. [13, 14, 15, 25, 29℄. However, we will rephrase the theories there in suh a waythat it an be formulated in terms of two energeti funtionals, namely the storedenergy E and the pseudo-potential R for the dissipation. Thus, we will be able totake advantage of the reently developed energeti approah to rate-independentmodels, (see Refs. [11, 20, 17, 21℄ and the survey [18℄).The basi quantities in the theory are the elasti displaement �eld u : Ω → Rdand the eletri displaement �eld D : Rd → Rd. Here, the eletri displaementis also de�ned outside the body, as interior polarization of a ferroeletri materialgenerates an eletri �eld E and displaement D in all of Rd via the stati Maxwellequation in Rd. Commonly, the polarization P is used for modeling, and is de�nedvia
D = ǫ0E + P,where ǫ0 is the dieletri onstant (or permetivity) in the medium surrounding thebody Ω. Our formulation stays with D, sine it leads to a simple and onsistentthermomehanial model.In addition we use internal variables Q : Ω → RdQ whih, for instane, may be takenas a remanent strain εrem or a remanent polarization Prem.The stored-energy funtional has the form

E(t, u,D,Q) =

∫

Ω

(
W (x, ε(u), D,Q) + α(x,∇Q)

)
dx+

∫

Rd\Ω

1

2ǫ0
|D|2dx

−〈ℓ(t), (u,D)〉, 5



where W is the Helmholtz free energy and ε(u) is the in�nitesimal strain tensorgiven by
ε(u) =

1

2
(∇u+ ∇uT) ∈ R

d×d
sym := { ε ∈ R

d×d | ε = ε
T }.The nonloal term α(x,∇Q) in E usually takes the form k

2
|∇Q|2 with k > 0. Thisterm penalizes rapid hanges of the internal variable by introduing a length salewhih determines the minimal width of the interfaes between domains of di�erentpolarization.The external loading ℓ(t) depends on the proess time t and is usually given by

〈ℓ(t), (u,D)〉 =

∫

Rd

Eext(t, x)·D(x)dx+

∫

Ω

fvol(t, x)·u(x)dx

+

∫

ΓNeu fsurf(t, x)·u(x)da(x),where Eext, fvol and fsurf are applied, external �elds.For the dissipation potential R we take the very simple form
R(Q̇) =

∫

Ω

R(x, Q̇(x))dx,where R(x, ·) : RdQ → [0,∞) is onvex and positively homogeneous of degree 1.Note that the dissipation potential only ats on the rate Q̇ = ∂
∂t
Q of the internalvariable. The lassial way to desribe dissipation in ferroeletris is a swithingfuntion of the form

Φ(x,XQ) ≤ 0, with XQ =
∂

∂Q
W − div(Dα(∇Q)). (3)This is equivalent to our dissipation potential R by the relation

R(x, Q̇) = max{ Q̇·XQ | Φ(x,XQ) ≤ 0 }.To formulate the rate-independent evolution law we use the thermomehaniallyonjugated fores
σ =

∂

∂ε
W ∈ R

d×d, E =

{
∂

∂D
W on Ω,

1
ǫ0
D on Rd \ Ω

, XQ ∈ R
dQ , (4)where σ is the stress tensor and E the eletri �eld. The elasti equilibrium equationand the Maxwell equations read

− div σ + fvol(t, ·) = 0 in Ω,
divD = 0 and curl(E −Eext(t, ·)) = 0 in Rd,

(5)where curlE is de�ned as ∇E−(∇E)T for general dimensions.The evolution of Q follows the fore balane law:
0 ∈ ∂R(x, Q̇) +XQ,6



where ∂R(x, ·) is the subdi�erential of the onvex funtion R(x, ·).We now want to rewrite these relations, as equations in funtion spaes. For thispurpose we introdue a suitable state spae Y = F × Q as follows. The spae Fontains the funtions u and D, and takes the form
F = H× L2

div(R
d), where L2

div(R
d) := {ψ ∈ L2(Rd; Rd) | divψ = 0 }and H is a losed a�ne subspae of H1(Ω; Rd). The spae Q ontains the internalstate funtions Q and is taken to be W1,qQ(Ω; RdQ) for a suitable qQ > 1.Using the well-known fat (f. Ref. [30℄, Th.1.4) that the total spae L2(Rd; Rd)deomposes in two orthogonal losed subspaes L2

div(R
d) and

L2
curl(R

d) = {ψ ∈ L2(Rd; Rd) | curlψ = 0 },we obtain the following result.Proposition 3.1 Let DDE(t, u,D,Q)[D̂] denote the Gâteaux derivative of E in thediretion D̂. Then
(
∀ D̂ ∈ L2

div(R
d) : DDE(t, u,D,Q)[D̂] = 0

)
⇐⇒ curl(E −Eext(t, ·)) = 0in R

d.Thus, we implement the Maxwell equations by the ondition DDE(t, u,D,Q) =
0 in a suitable funtion spae. Similarly, the elasti equilibrium is obtained by
DuE(t, u,D,Q) = 0. The full problem may be written as

DuE(t, u(t), D(t), Q(t)) = 0, DDE(t, u(t), D(t), Q(t)) = 0,

0 ∈ ∂R(Q̇(t)) + DQE(t, u(t), D(t), Q(t)),
(6)where the last above equation orresponds to the dissipative fore balane.In fat, our theory is not based on the fore balane (6). Instead, following Refs. [18,21℄, we use a weaker formulation only based on energies. This energeti formulationavoids derivatives of E and of the solution (u,D,Q). Under suitable smoothnessand onvexity assumptions the energeti formulation is equivalent to (6). We all

(u,D,Q) an energeti solution of the problem assoiated with E and R, if for all
t ∈ [0, T ] the stability ondition (S) and the energy balane (E) hold:(S) E(t, u(t), D(t), Q(t)) ≤ E(t, û, D̂, Q̂) + R(Q̂−Q(t)) for all û, D̂, Q̂;(E) E(t, u(t), D(t), Q(t)) +

∫ t

0
R(Q̇(s)))ds

= E(0, u(0), D(0), Q(0))−
∫ t

0
〈ℓ̇(s), (u(s), D(s))〉ds.

(7)In Refs. [22, 23℄ we showed that (S) & (E) has solutions for suitable initial data, ifthe onstitutive funtions W , α, and R satisfy reasonable ontinuity and onvexityassumptions. Under stronger onditions we also proved uniqueness of solutions.7



We now provide onditions on the onstitutive funtions W , α and R, in order toget the existene result.The �rst assumption onerns the domain and the Dirihlet boundary:
Ω ⊂ R

d is a onneted bounded open set with Lipshitz boundary Γ,and ΓDir a measurable subset of Γ, suh that ∫
ΓDir

1da > 0.
(B0)The funtion R : Ω × RdQ → [0,∞) satis�es

R ∈ C0(Ω × R
dQ) and ∃ cR, CR > 0 ∀V ∈ R

dQ : cR|V | ≤ R(x, V ) ≤ CR|V |. (B1)
∀x ∈ Ω : R(x, ·) : R

dQ → [0,∞) is 1-homogeneous and onvex. (B2)The funtions W and α have to ful�ll the following three onditions:
W : Ω × R

d×d
sym × R

d × R
dQ → [0,∞) is a Caratheodory funtion, (B3)whih means that the funtion W (·, ε, D,Q) is measurable on Ω for eah (ε, D,Q),and that the mapping W (x, ·, ·, ·) is ontinuous on Rd×d

sym × Rd × RdQ for a.e. x ∈ Ω.
∃ cE , CE > 0, q > 1 ∀ (x, ε, D,Q, V ) ∈ Rd×d

sym × Rd × RdQ × RdQ :
W (x, ε, D,Q) + α(V ) ≥ cE(|ε|

2 + |D|2 + |Q|q + |V |q) − CE .
(B4)

α : RdQ×d → R is onvex and
∀ (x,Q) ∈ Ω × RdQ : W (x, ·, ·, Q) : Rd×d

sym × Rd → R is onvex. (B5)For the external loading ℓ(t) we assume
ℓ ∈ C1

(
[0, T ], (H1

ΓDir
(Ω; Rd))∗ × L2

div(R
d)∗

)
. (B6)Let us onsider the following funtions spaes:

F = H1
ΓDir

(Ω,Rd)weak × L2
div(R

d)weak, Z = L1(Ω,RdQ)strong.Here the subsripts �weak� and �strong� indiate the use of the weak or strong (norm)topology in the orresponding Banah spaes. The funtional E is de�ned as aboveon [0, T ] × F × Z , where E(t, u,D,Q) takes the value +∞ if Q 6∈ W1,q(Ω; RdQ) orif the integrand is not in L1(Ω).We an now state our existene theorem.Theorem 3.2 (Existene theorem)If the assumptions (B0)�(B6) hold, then for eah stable initial ondition (u0, D0, Q0) ∈
F × Z, the energeti problem (S) & (E) has a solution (u,D,Q) : [0, T ] → F × Z,suh that (u(0), D(0), Q(0)) = (u0, D0, Q0), and

(u,D,Q) ∈ L∞([0, T ]; H1
ΓDir

(Ω; Rd) × L2
div(R

d) × W1,q(Ω; RdQ)).8



4 Homogenization for rate-independent systemsOur aim is to provide homogenization results for evolutionary variational inequalitiesof the type:
〈Aq − ℓ(t), v − q̇〉 + R(v) − R(q̇) ≥ 0 for every v ∈ Q. (8)Here Q is a Hilbert spae with dual Q∗, the ontinuous linear operator A : Q →

Q∗ is symmetri and positive de�nite, the foring ℓ lies in C1([0, T ],Q∗), and thedissipation funtionalR : Q → [0,∞) is onvex, lower semi-ontinuous and positivelyhomogeneous of degree 1, i.e., R(γq) = γR(q) for all γ ≥ 0 and q ∈ Q. The lastproperty of R leads to rate independene.The problem (8) has many di�erent equivalent formulations. For our purposes theso-alled energeti formulation for rate-independent hysteresis problem is espeiallyappropriate, f. Refs. [18, 20℄. This formulation is solely based on the energy-storagefuntional E : [0, T ] × Q → R de�ned via
E(t, q) =

1

2
〈Aq, q〉 − 〈ℓ(t), q〉,and on the dissipation funtional R. Thus, homogenization of an evolutionary prob-lem an be redued to some extend to homogenization of funtionals. We formulateour rate-independent evolutions systems and we provide existene and uniquenesstheorems for the initial and expeted two-sale homogenized problems. We presentsome Γ-onvergene results and �nally our main homogenization theorem.The notion of two-sale onvergene has been introdued by Nguetseng (see Ref. [27℄)in 1989 and developed by Allaire in 1992 (see Ref. [2℄). Ref. [16℄ provides an overviewof the main homogenization problems studied by this tehnique. The periodi un-folding method reently introdued (2002) by Cioranesu, Damlamian and Griso inRef. [8℄, redues the two-sale onvergene to a weak onvergene in an appropriatespae. This onept is now applied in a variety of quite di�erent appliations inontinuum mehanis, see e.g., Refs. [1, 10, 26, 34, 35℄. To the best of our knowl-edge there is no theory for nonsmooth evolutionary systems like the variationalinequalities here.Throughout, the domain Ω will be a bounded open subset of Rd. For the semi-openunit ell Y = [0, 1)d, we have ∪λ∈Zd(λ + Y ) = Rd and (λ + Y ) ∩ (µ + Y ) = ∅ for

λ, µ ∈ Zd with λ 6= µ. From now on we will assume that p ∈ (1,∞).Let us reall the de�nition of the lassial two-sale onvergene.De�nition 4.1 Let (vε)ε be a sequene in Lp(Ω). One says that (vε)ε two-saleonverges to V = V (x, y) in Lp(Ω × Y ) (we write vε
ts
⇀ V ), if for any funtion

ψ = ψ(x, y) in C∞
c (Ω; C∞

per(Y )), one has
lim
ε→0

∫

Ω

vε(x)ψ
(
x,
x

ε

)
dx =

∫

Ω

∫

Y

V (x, y)ψ(x, y) dy dx. (9)9



The periodi unfolding operator Tε was introdued in Ref. [8℄ and then used forhomogenization of nonlinear integrals in Refs. [6, 7℄. On the full spae Rd, it isde�ned by
Tε : Lp(Rd) → Lp(Rd × Y ); Tεv(x, y) = v

(
ε
[x
ε

]
+ εy

)
.We next introdue the notions of weak/strong two-sale onvergene.De�nition 4.2 Let V ∈ Lp(Ω × Y ). A bounded sequene (vε)ε in Lp(Ω)(w2): weakly two-sale onverges to V (we write vε

w2
⇀ V ), if

Tεvε ⇀ V (weakly) in Lp(Rd × Y ).(s2): strongly two-sale onverges to V (we write vε
s2
⇀ V ), if

Tεvε → V (strongly) in Lp(Rd × Y ).Clearly, the above weak two-sale onvergene is stronger than the lassial.4.1 ε problemLet us onsider:
Ω ⊂ Rd, a onneted bounded open set, with Lipshitz boundary Γ,
Y = [0, 1)d ⊂ Rd, unit periodiity ell,
u : Ω → Rd, displaement,
z : Ω → Rm, internal variable.For every ε > 0, de�ne the energy funtional Eε and the dissipation funtional Rεby

Eε(t, u, z) =

∫

Ω

1

2

〈
C

(
x
ε

)
(e(u) − B

(
x
ε

)
z), e(u) − B

(
x
ε

)
z
〉

dx

+

∫

Ω

1

2

〈
H

(
x
ε

)
z, z

〉
dx−

∫

Ω

u(x)fext(t, x)dx

Rε(ż) =

∫

Ω

ρ
(

x
ε
, ż(x)

)
dx,where

e(u) =
1

2
(∇u+ ∇uT) ∈ R

d×d
sym := { σ ∈ R

d×d | σ = σT }.10



The tensors C,H,B de�ned on R
d are Y -periodi, and take values in:

C(y) ∈ Sym4th order tensor, B(y) ∈ Lin(Rm,Rd×d
sym), H(y) ∈ R

m×m
sym .We work under the hypotheses stated below.Assumptions for C,H,B: for all y ∈ R

d and z ∈ R
m, we have

1

C
|e|2 ≤ 〈C(y)e, e〉 ≤ C|e|2,

1

C
|z|2 ≤ 〈Hz, z〉 ≤ C|z|2, ‖B(y)‖ ≤ C(for some onstant C > 0).Assumptions for ρ:

(Hρ)





ρ : Rd × Rm → [0,∞),

ρ(·, v) Lebesgue measurable and Y -periodi, for every v ∈ Rm,

ρ(y, ·) 1-homogeneous and onvex for a.e. y ∈ Rd,
1
C
|v| ≤ ρ(y, v) for a.e. y ∈ Rm and every v ∈ Rm,

|ρ(y, v) − ρ(y, v′)| ≤ C|v − v′| for a.e. y ∈ Rd and all v, v′ ∈ Rm.Let us onsider the Hilbert spae Q = H1
ΓDir

(Ω)d × L2(Ω)m.We all qε = (uε, zε) : [0, T ] → Q an energeti solution of the problem assoiatedwith Eε and Rε, if for every t ∈ [0, T ] the stability ondition (Sε) and the energybalane (Eε) hold:
(Sε) : Eε(t, uε(t), zε(t)) ≤ Eε(t, u, z) + Rε(z − zε(t)) for every (u, z) ∈ Q,

(Eε) : Eε(t, uε(t), zε(t)) +

∫ t

0

Rε(żε(s)) ds = Eε(0, uε(0), zε(0))

−

∫ t

0

∫

Ω

ḟext(s, x) · u(x)dxds.We now state our existene and uniqueness result for (Sε) & (Eε).Proposition 4.3 Let fext ∈ CLip([0, T ], (H1
ΓDir

(Ω)d)∗). Then for all ε > 0 and stable
(u0

ε, z
0
ε) ∈ Q, there is a unique solution (uε, zε) ∈ CLip([0, T ],Q) of (Sε) & (Eε), with

(uε(0), zε(0)) = (u0
ε, z

0
ε ).Moreover, we have ε-independent Lipshitz bounds for the solutions, that is, for someonstant c1 > 0 we have

‖(uε(t), zε(t)) − (uε(s), zε(s))‖H1×L2 ≤ c1|t− s| for all t, s ∈ [0, T ], ε > 0. (10)4.2 Two-sale homogenized problemWe now formulate the problem (S) & (E), whih will turn out to be the two-salehomogenized problem for (Sε) & (Eε).Let Q = H × Z, where
H = H1

ΓDir
(Ω)d × L2(Ω; H1

av(Y ))d, Z = L2(Ω; L2(Y ))m = L2(Ω × Y )m.11



Here, H1
av(Y ) = {U ∈ H1

per(Y ) |
∫

Y
U(y) dy = 0 }. For all Q = (U,Z) in Q, with

U = (U0, U1), let us de�ne the two-sale funtionals E and R

E(t, U, Z) =

∫

Ω

∫

Y

1

2

〈
C(y)(ê(U) − B(y)Z), ê(U) − B(y)Z

〉
dydx

+

∫

Ω

∫

Y

1

2
〈H(y)Z,Z〉dydx−

∫

Ω

∫

Y

U0(x)fext(t, x)dydx,

R(Ż) =

∫

Ω

∫

Y

ρ(y, Ż(x, y))dydx,where ê(U) = ex(U0)+ey(U1), whih means ê(U)(x, y) = ex(U0(·))(x)+ey(U1(x, ·))(y).The energeti formulation for the two-sale homogenized problem (S) & (E) reads:for every t ∈ [0, T ], the stability ondition (S) and the energy balane (E) hold, thatis,
(S) : E(t, U(t), Z(t)) ≤ E(t, Ũ , Z̃) + R(Z̃ − Z(t)) ∀ Q̃ = (Ũ , Z̃) ∈ H × Z,

(E) : E(t, U(t), Z(t)) +

∫ t

0

R(Ż(s)) ds = E(0, U(0), Z(0))

−

∫ t

0

∫

Ω

ḟext(s, x) · U0(x)dxds.We next state our existene and uniqueness result for the problem (S) & (E).Proposition 4.4 Let fext ∈ CLip([0, T ], (H1
ΓDir

(Ω)d)∗). Then for every stable Q0 =
(U0, Z0) ∈ Q, the problem (S)& (E) has a unique solution Q = (U,Z) ∈ CLip([0, T ],Q),with Q(0) = Q0.The onvergene of Eε and Rε to E and R an be viewed as a type of two-saleMoso onvergene, i.e., Γ-onvergene in the weak and in the strong topology (seeRef. [19℄). Here we rely on the unfolding operator and on the folding operatorin order to onstrut suitable reovery sequenes, also alled realizing sequenes inRef. [12℄.The ruial tool for proving the onvergene of the solutions qε to the energetisolution Q assoiated with E and R is the abstrat Γ-onvergene theory developedin Ref. [19℄. There, the simple theory relies on the fat that the dissipation funtionsonverge ontinuously in the weak topology; yet this is not the ase in our situation.However, we are able to use the quadrati nature of the energies allowing someanelations in di�erenes of energies. For instane, Eε(t, qε)−Eε(t, q̃ε) onverges to
E(t, Q) − E(t, Q̃), if qε has the �weak� two-sale limit Q and qε − q̃ε has a strong(!)two-sale limit Q− Q̃.Our homogenization theorem is based on the notion of two-sale ross-onvergene.De�nition 4.5 Let Q = (U,Z) ∈ Q, with U = (U0, U1). A sequene qε = (uε, zε)εin Q is alled two-sale ross-onvergent to (U,Z), if

uε
w2
⇀ U0, ∇uε

w2
⇀ ∇U0 + ∇yU1, zε

w2
⇀ Z.12



We write this as (uε, zε)
cw2
⇀ (U,Z).We an now formulate our main result stating that (S) & (E) is the two-sale ho-mogenized problem for (Sε) & (Eε) (see Ref. [24℄ for the proof).Theorem 4.6 Let qε = (uε, zε) be the solution of (Sε) & (Eε). For the initial data,assume that:

q0
ε = (u0

ε, z
0
ε) is stable for every ε > 0,

q0
ε = (u0

ε, z
0
ε)

cw2
⇀ Q0 = (U0, Z0) ∈ Q,

Eε(0, q
0
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