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Abstra
tWe dis
uss existen
e, uniqueness, regularity, and homogenization resultsfor some nonlinear time-dependent material models. One of the methods forproving existen
e and uniqueness is the so-
alled energeti
 formulation, basedon a global stability 
ondition and on an energy balan
e. As for the two-s
alehomogenization we use the re
ently developed method of periodi
 unfoldingand periodi
 folding. We also take advantage of the abstra
t Γ-
onvergen
etheory for rate-independent evolutionary problems.1 Introdu
tionThe models analyzed here 
on
ern three types of materials of high interest for ap-pli
ations: shape memory alloys (SMA), ferroele
tri
 materials, and a 
lass of rate-independent systems within the theory of elastoplasti
ity with hardening. All ofthem work in the framework of small deformations and quasistati
 approximationfor the elasti
 or ele
trostati
 equilibria. The last two are rate-independent, while inthe �rst (SMA) so are the hystereti
 �ow rule for the phase transformation and thelinear 
onstitutive elasti
ity, but not the heat equation. For both rate-independentmodels we will apply the energeti
 method as introdu
ed in Ref. [21℄ (for a surveysee Ref. [18℄). In ea
h 
ase the energeti
 formulation will be expli
itely des
ribed.In Se
tion 2 we 
onsider a thermome
hani
al model of shape memory alloys. Thismodel (see Ref. [5℄) takes into a

ount the non-isothermal 
hara
ter of the phasetransformations, as well as the existen
e of the intrinsi
 dissipation. For the gov-erning equations we prove existen
e, uniqueness and regularity in several fun
tionsspa
es.In Se
tion 3 we dis
uss rate-independent engineering models for multi-dimensionalbehavior of ferroele
tri
 materials. These models 
apture the non-linear and hys-tereti
 behavior of su
h materials. We show that these models 
an be formulatedin an energeti
 framework based on the elasti
 and the ele
tri
 displa
ements asreversible variables, and on internal irreversible variables su
h as the remanent po-larization. Quite general 
onditions on the 
onstitutive laws guarantee the existen
eof a solution. Under more restri
tive assumptions uniqueness of the solutions holds.Se
tion 4 is devoted to the homogenization for a 
lass of rate-independent systemsdes
ribed by the energeti
 formulation. The asso
iated nonlinear partial di�eren-tial system has periodi
ally os
illating 
oe�
ients, but has the form of a standardevolutionary variational inequality. Thus, the model applies to standard linearized1



elastoplasti
ity with hardening. Using the re
ently developed methods of two-s
ale
onvergen
e, periodi
 unfolding and periodi
 folding, we show that the homogenizedproblem 
an be represented as a two-s
ale limit, whi
h is again an energeti
 formu-lation, but now involving the ma
ros
opi
 variable in the physi
al domain as well asthe mi
ros
opi
 variable in the periodi
ity 
ell.2 Shape Memory AlloysThis se
tion is devoted to the mathemati
al study of a thermome
hani
al modeldes
ribing the ma
ros
opi
 behavior of shape memory alloys. The analyzed modeltakes into a

ount the non-isothermal 
hara
ter of the phase transition, as well asthe existen
e of the intrinsi
 dissipation. The model is published in Ref. [5℄, but ades
ription of it 
an also be found in Refs. [31, 33℄. A variant whi
h negle
ts theintrinsi
 dissipation was studied in Refs. [3, 4℄. The newest model from Ref. [5℄ isfounded on a free energy whi
h is a 
onvex fun
tion with respe
t to the strain andto the martensiti
 volume fra
tion and 
on
ave with respe
t to the temperature.In the 
ir
ular 
ylindri
al 
ase, uniqueness of solutions in a large 
lass of spa
es,as well as their existen
e in the spa
e of 
ontinuous fun
tions were established inRefs. [31, 32℄. Existen
e, uniqueness and regularity of solutions in various fun
tionsspa
es were proved in Ref. [28℄.We next give a brief des
ription of the mathemati
al problem and of our mainresults on it. The �rst law of thermodynami
s, the balan
e of momentum in its qua-sistati
 form, the evolution equation for the internal variables (the volume fra
tionof martensite), together with the se
ond prin
iple of thermodynami
s (the entropyinequality), lead to a partial di�erential equations system. In the 
ir
ular 
ylindri
al
ase the problem redu
es to the following ordinary di�erential system:
(T )





(H) : θ̇ +
1

τ
θ = Γ|β̇| +

L

C
β̇

σ = E(ε− gβ)

(E) : 0 ≤ β ≤ 1,






If β = 0, then σ ≤ σ+ and
β̇ < 0 ⇒ σ ≤ σ−If 0 < β < 1, then σ− ≤ σ ≤ σ+ and
{
β̇ < 0 ⇒ σ = σ−

β̇ > 0 ⇒ σ = σ+If β = 1, then σ ≥ σ− and
β̇ > 0 ⇒ σ ≥ σ+

β(0) = 0, θ(0) = 0, ε(0) = 0, σ(0) = 0The unknown data are: the temperature θ at the surfa
e of the body, the total fra
-tion β of the martensite in the body, and the axial elongation ǫ of the sample in the
Ox3 dire
tion. The stress σ is supposed to be given. All these are real fun
tions only2



depending on the time variable t ≥ 0. The 
onstants τ,Γ, L, C, E, g, p, q, T0, Ta,∆Tare all positive, T0 > Ta, Γ < L/C, and σ± := p(T0 − Ta + θ + β∆T ) ± q.Some 
omments are ne
essary in order to understand the mathemati
al problemraised by (T ):1. The known data is an arbitrarily given 
ontinuous fun
tion σ : J → R (J is aninterval with min J = 0) su
h that σ(0) = 0. The system (T ) is initially 
onsideredfor unknown fun
tions β, θ, ε : J → R having lateral derivatives everywhere on J ,sin
e they should satisfy (H), (E) with respe
t to these. If β is stri
tly in
reasingon some open subinterval J0 ⊂ J , then1 {t ∈ J0 | β̇f(t) > 0} is dense in J0, and so
σ = σ+ = p(T0 − Ta + θ + β∆T ) + q on J0, by (E). Consequently σ should havelateral derivatives on J0. This poses a serious 
ompatibility problem for our systemif the given σ does not have lateral derivatives (e.g. if σ is 
ontinuous but nowheredi�erentiable).2. If σ is su
h that β̇b(t0) > 0 and β(t0) = 1, then β 
annot be di�erentiable at
t0, sin
e β ≤ 1. This may happen even if σ is analyti
 on J , and so β 
an be lessregular than σ. This is the reason to insist on lateral di�erentiability.3. There exist stri
tly in
reasing 
ontinuous fun
tions u : J → R, su
h that∫ t

0
u̇(s)ds = 0 6= u(t) − u(0) for every t > 0. Sin
e the usual derivative sometimesfails to 
hara
terize 
ontinuous and almost everywhere di�erentiable fun
tions, itspresen
e in (T ) may not guarantee the uniqueness of solutions.4. Sin
e for arbitrarily given σ a pronoun
ed non-di�erentiability of solutions mayo

ur, it would be natural to study (T ) in the spa
e C(J) of all real 
ontinuousfun
tions on J , with the derivative in the sense of distributions. This is related toserious di�
ulties: what is the meaning of |β̇| in (H) and of β̇(t) in (E), if β̇ is adistribution but not a fun
tion?In order to remove the derivatives of β from (E), we introdu
ed in Ref. [31℄ anew notion. A point t ∈ J0 (J0 an interval) is said to be an in
rement pointfor u ∈ C(J0), if and only if for every neighborhood V of t, we have t1 <

t2 and u(t1) < u(t2) for some t1, t2 ∈ V ∩ J0. Let M+(u) denote the set ofall in
rement points of u and set M−(u) := M+(−u). If X(J) is any of thespa
es ACloc(J), Liploc(J), DA
f (J), DA

b (J), DA
l (J), Dℵ0(J), Af(J), Ab(J), Al(J), en-dowed with its natural derivative (see the list below for details), then an equivalentform of (E) for β, θ ∈ X(J) is

(E)X(J)






β(t) > 0 ⇒ σ(t) ≥ σ−(t)
β(t) < 1 ⇒ σ(t) ≤ σ+(t)
t ∈M+(β) ⇒ σ(t) = σ+(t)
t ∈M−(β) ⇒ σ(t) = σ−(t).If β, θ ∈ C(J) satisfy (E)C(J), then β must be lo
ally monotone (see Ref. [31℄,Cor.4.2, p.455). If we write (H) on every interval J0 of monotoni
ity for β, we 
anthen 
onsider the following equation in distributions on o

J0:
θ̇ +

1

τ
θ =

(
Γ0 +

L

C

)
β̇ in D′(

o

J0), (1)1
u̇f(t) and u̇b(t) denote the forward and the ba
kward derivatives of u at t.3



where Γ0 :=

{
Γ, if β is in
reasing on J0,

−Γ, else.The system (T ) may be 
onsidered for any of the fun
tions spa
es and derivativeslisted below (see Ref. [31℄ for the de�nition of an abstra
t derivation stru
ture X(J)and for the 
orresponding system (T )X(J)).List of fun
tions spa
es and asso
iated derivatives1) C(J), with the derivative in the sense of distributions in D′(
o

J). We have thenatural in
lusions C(J) ⊂ C(
o

J) ⊂ D′(
o

J). Let us re
all that u ∈ C(J) is in
reasingif and only if u′ ∈ D′(
o

J) is positive.2) BVloc(J) := {u ∈ C(J) | u has lo
ally bounded variation}, with the derivative inthe sense of distributions.3) ACloc(J) := {u ∈ C(J) | u is lo
ally absolutely 
ontinuous}, with the derivativealmost everywhere.4) Liploc(J) := {u ∈ C(J) | u is lo
ally Lips
hitz}, with the derivative almost every-where.5) For every �xed at most 
ountable subset A of J , 
onsider the spa
es:a) DA
f (J) := {u ∈ C(J) | u is di�erentiable to the right on J \ A} (respe
tively

DA
b (J)), with the forward (respe
tively ba
kward) derivative on J \ A.b) DA

l (J) = DA
f (J) ∩DA

b (J), with both forward and ba
kward derivatives.6) Dℵ0(J) := {u ∈ C(J) | the set of non-di�erentiability points of u is at most
ountable}, with the usual derivative where this one exists.7) a) Af(J) := {u ∈ C(J) | u is forward-analyti
}, with the forward derivative. Afun
tion u ∈ C(J) is said to be forward-analyti
 at t ∈ J \ {sup J}, i� u is analyti
on some [t, s) ⊂ J (s > t). We 
all u a forward-analyti
 fun
tion, i� u is forward-analyti
 at every t ∈ J \ {sup J}.b) Ab(J) := {u ∈ C(J) | u is ba
kward-analyti
}, with the ba
kward derivative (def-initions are similar to those for Af(J)).
) Al(J) := Af(J) ∩Ab(J), with both forward and ba
kward derivatives.Our problem is the following: for a �xed X(J) in the above list and for a given σ ∈
X(J) with σ(0) = 0, we wish to investigate the existen
e of solutions β, θ, ε ∈ X(J)of the system (T )X(J). The 
onstitutive equation σ = E(ε− gβ) and the 
ondition
ε(0) = 0 from (T )X(J) 
an be ignored, sin
e for β, θ ∈ X(J) satisfying all other
onditions, we get a solution of (T )X(J) with ε = σ

E
+ gβ ∈ X(J). Therefore, everysolution of (T )X(J) is given by a pair (β, θ) of fun
tions from X(J).In Ref. [31℄ the following result is proved.Proposition 2.1 Let X(J) be an abstra
t derivation stru
ture. For β, θ ∈ C(J),the following statements are equivalent:(a) (β, θ) is a solution of (T )X(J).(b) (β, θ) is a solution of (T )C(J) and β, θ ∈ X(J).4



Now let σ ∈ X(J) be �xed, su
h that σ(0) = 0. Sin
e every solution of (T )X(J) alsosatis�es (T )C(J), we dedu
e that (T )X(J) is 
ompatible if and only if for the uniquesolution (β, θ) of (T )C(J) (see Ref. [32℄, Th.3.1, p.543) we have β, θ ∈ X(J). Hen
e,for our problem, regularity of solutions (that is β, θ ∈ X(J) whenever σ ∈ X(J)) isequivalent to their existen
e.Let X(J) be any of the spa
es
BVloc(J), ACloc(J), Liploc(J), DA

f (J), DA
b (J), DA

l (J), Dℵ0(J),
Af(J), Ab(J), Al(J),

(2)endowed with its natural derivative from the above list.Our main result is the following (for the proof, see Ref. [28℄):Theorem 2.2 For any given σ ∈ X(J), the system (T )X(J) has a unique solution.3 Ferroele
tri
 MaterialsHere we give a general des
ription of a 
lass of time-dependent models for ferro-ele
tri
 materials. Our 
lass of models is inspired by the engineering models fromRefs. [13, 14, 15, 25, 29℄. However, we will rephrase the theories there in su
h a waythat it 
an be formulated in terms of two energeti
 fun
tionals, namely the storedenergy E and the pseudo-potential R for the dissipation. Thus, we will be able totake advantage of the re
ently developed energeti
 approa
h to rate-independentmodels, (see Refs. [11, 20, 17, 21℄ and the survey [18℄).The basi
 quantities in the theory are the elasti
 displa
ement �eld u : Ω → Rdand the ele
tri
 displa
ement �eld D : Rd → Rd. Here, the ele
tri
 displa
ementis also de�ned outside the body, as interior polarization of a ferroele
tri
 materialgenerates an ele
tri
 �eld E and displa
ement D in all of Rd via the stati
 Maxwellequation in Rd. Commonly, the polarization P is used for modeling, and is de�nedvia
D = ǫ0E + P,where ǫ0 is the diele
tri
 
onstant (or permetivity) in the medium surrounding thebody Ω. Our formulation stays with D, sin
e it leads to a simple and 
onsistentthermome
hani
al model.In addition we use internal variables Q : Ω → RdQ whi
h, for instan
e, may be takenas a remanent strain εrem or a remanent polarization Prem.The stored-energy fun
tional has the form

E(t, u,D,Q) =

∫

Ω

(
W (x, ε(u), D,Q) + α(x,∇Q)

)
dx+

∫

Rd\Ω

1

2ǫ0
|D|2dx

−〈ℓ(t), (u,D)〉, 5



where W is the Helmholtz free energy and ε(u) is the in�nitesimal strain tensorgiven by
ε(u) =

1

2
(∇u+ ∇uT) ∈ R

d×d
sym := { ε ∈ R

d×d | ε = ε
T }.The nonlo
al term α(x,∇Q) in E usually takes the form k

2
|∇Q|2 with k > 0. Thisterm penalizes rapid 
hanges of the internal variable by introdu
ing a length s
alewhi
h determines the minimal width of the interfa
es between domains of di�erentpolarization.The external loading ℓ(t) depends on the pro
ess time t and is usually given by

〈ℓ(t), (u,D)〉 =

∫

Rd

Eext(t, x)·D(x)dx+

∫

Ω

fvol(t, x)·u(x)dx

+

∫

ΓNeu fsurf(t, x)·u(x)da(x),where Eext, fvol and fsurf are applied, external �elds.For the dissipation potential R we take the very simple form
R(Q̇) =

∫

Ω

R(x, Q̇(x))dx,where R(x, ·) : RdQ → [0,∞) is 
onvex and positively homogeneous of degree 1.Note that the dissipation potential only a
ts on the rate Q̇ = ∂
∂t
Q of the internalvariable. The 
lassi
al way to des
ribe dissipation in ferroele
tri
s is a swit
hingfun
tion of the form

Φ(x,XQ) ≤ 0, with XQ =
∂

∂Q
W − div(Dα(∇Q)). (3)This is equivalent to our dissipation potential R by the relation

R(x, Q̇) = max{ Q̇·XQ | Φ(x,XQ) ≤ 0 }.To formulate the rate-independent evolution law we use the thermome
hani
ally
onjugated for
es
σ =

∂

∂ε
W ∈ R

d×d, E =

{
∂

∂D
W on Ω,

1
ǫ0
D on Rd \ Ω

, XQ ∈ R
dQ , (4)where σ is the stress tensor and E the ele
tri
 �eld. The elasti
 equilibrium equationand the Maxwell equations read

− div σ + fvol(t, ·) = 0 in Ω,
divD = 0 and curl(E −Eext(t, ·)) = 0 in Rd,

(5)where curlE is de�ned as ∇E−(∇E)T for general dimensions.The evolution of Q follows the for
e balan
e law:
0 ∈ ∂R(x, Q̇) +XQ,6



where ∂R(x, ·) is the subdi�erential of the 
onvex fun
tion R(x, ·).We now want to rewrite these relations, as equations in fun
tion spa
es. For thispurpose we introdu
e a suitable state spa
e Y = F × Q as follows. The spa
e F
ontains the fun
tions u and D, and takes the form
F = H× L2

div(R
d), where L2

div(R
d) := {ψ ∈ L2(Rd; Rd) | divψ = 0 }and H is a 
losed a�ne subspa
e of H1(Ω; Rd). The spa
e Q 
ontains the internalstate fun
tions Q and is taken to be W1,qQ(Ω; RdQ) for a suitable qQ > 1.Using the well-known fa
t (
f. Ref. [30℄, Th.1.4) that the total spa
e L2(Rd; Rd)de
omposes in two orthogonal 
losed subspa
es L2

div(R
d) and

L2
curl(R

d) = {ψ ∈ L2(Rd; Rd) | curlψ = 0 },we obtain the following result.Proposition 3.1 Let DDE(t, u,D,Q)[D̂] denote the Gâteaux derivative of E in thedire
tion D̂. Then
(
∀ D̂ ∈ L2

div(R
d) : DDE(t, u,D,Q)[D̂] = 0

)
⇐⇒ curl(E −Eext(t, ·)) = 0in R

d.Thus, we implement the Maxwell equations by the 
ondition DDE(t, u,D,Q) =
0 in a suitable fun
tion spa
e. Similarly, the elasti
 equilibrium is obtained by
DuE(t, u,D,Q) = 0. The full problem may be written as

DuE(t, u(t), D(t), Q(t)) = 0, DDE(t, u(t), D(t), Q(t)) = 0,

0 ∈ ∂R(Q̇(t)) + DQE(t, u(t), D(t), Q(t)),
(6)where the last above equation 
orresponds to the dissipative for
e balan
e.In fa
t, our theory is not based on the for
e balan
e (6). Instead, following Refs. [18,21℄, we use a weaker formulation only based on energies. This energeti
 formulationavoids derivatives of E and of the solution (u,D,Q). Under suitable smoothnessand 
onvexity assumptions the energeti
 formulation is equivalent to (6). We 
all

(u,D,Q) an energeti
 solution of the problem asso
iated with E and R, if for all
t ∈ [0, T ] the stability 
ondition (S) and the energy balan
e (E) hold:(S) E(t, u(t), D(t), Q(t)) ≤ E(t, û, D̂, Q̂) + R(Q̂−Q(t)) for all û, D̂, Q̂;(E) E(t, u(t), D(t), Q(t)) +

∫ t

0
R(Q̇(s)))ds

= E(0, u(0), D(0), Q(0))−
∫ t

0
〈ℓ̇(s), (u(s), D(s))〉ds.

(7)In Refs. [22, 23℄ we showed that (S) & (E) has solutions for suitable initial data, ifthe 
onstitutive fun
tions W , α, and R satisfy reasonable 
ontinuity and 
onvexityassumptions. Under stronger 
onditions we also proved uniqueness of solutions.7



We now provide 
onditions on the 
onstitutive fun
tions W , α and R, in order toget the existen
e result.The �rst assumption 
on
erns the domain and the Diri
hlet boundary:
Ω ⊂ R

d is a 
onne
ted bounded open set with Lips
hitz boundary Γ,and ΓDir a measurable subset of Γ, su
h that ∫
ΓDir

1da > 0.
(B0)The fun
tion R : Ω × RdQ → [0,∞) satis�es

R ∈ C0(Ω × R
dQ) and ∃ cR, CR > 0 ∀V ∈ R

dQ : cR|V | ≤ R(x, V ) ≤ CR|V |. (B1)
∀x ∈ Ω : R(x, ·) : R

dQ → [0,∞) is 1-homogeneous and 
onvex. (B2)The fun
tions W and α have to ful�ll the following three 
onditions:
W : Ω × R

d×d
sym × R

d × R
dQ → [0,∞) is a Caratheodory fun
tion, (B3)whi
h means that the fun
tion W (·, ε, D,Q) is measurable on Ω for ea
h (ε, D,Q),and that the mapping W (x, ·, ·, ·) is 
ontinuous on Rd×d

sym × Rd × RdQ for a.e. x ∈ Ω.
∃ cE , CE > 0, q > 1 ∀ (x, ε, D,Q, V ) ∈ Rd×d

sym × Rd × RdQ × RdQ :
W (x, ε, D,Q) + α(V ) ≥ cE(|ε|

2 + |D|2 + |Q|q + |V |q) − CE .
(B4)

α : RdQ×d → R is 
onvex and
∀ (x,Q) ∈ Ω × RdQ : W (x, ·, ·, Q) : Rd×d

sym × Rd → R is 
onvex. (B5)For the external loading ℓ(t) we assume
ℓ ∈ C1

(
[0, T ], (H1

ΓDir
(Ω; Rd))∗ × L2

div(R
d)∗

)
. (B6)Let us 
onsider the following fun
tions spa
es:

F = H1
ΓDir

(Ω,Rd)weak × L2
div(R

d)weak, Z = L1(Ω,RdQ)strong.Here the subs
ripts �weak� and �strong� indi
ate the use of the weak or strong (norm)topology in the 
orresponding Bana
h spa
es. The fun
tional E is de�ned as aboveon [0, T ] × F × Z , where E(t, u,D,Q) takes the value +∞ if Q 6∈ W1,q(Ω; RdQ) orif the integrand is not in L1(Ω).We 
an now state our existen
e theorem.Theorem 3.2 (Existen
e theorem)If the assumptions (B0)�(B6) hold, then for ea
h stable initial 
ondition (u0, D0, Q0) ∈
F × Z, the energeti
 problem (S) & (E) has a solution (u,D,Q) : [0, T ] → F × Z,su
h that (u(0), D(0), Q(0)) = (u0, D0, Q0), and

(u,D,Q) ∈ L∞([0, T ]; H1
ΓDir

(Ω; Rd) × L2
div(R

d) × W1,q(Ω; RdQ)).8



4 Homogenization for rate-independent systemsOur aim is to provide homogenization results for evolutionary variational inequalitiesof the type:
〈Aq − ℓ(t), v − q̇〉 + R(v) − R(q̇) ≥ 0 for every v ∈ Q. (8)Here Q is a Hilbert spa
e with dual Q∗, the 
ontinuous linear operator A : Q →

Q∗ is symmetri
 and positive de�nite, the for
ing ℓ lies in C1([0, T ],Q∗), and thedissipation fun
tionalR : Q → [0,∞) is 
onvex, lower semi-
ontinuous and positivelyhomogeneous of degree 1, i.e., R(γq) = γR(q) for all γ ≥ 0 and q ∈ Q. The lastproperty of R leads to rate independen
e.The problem (8) has many di�erent equivalent formulations. For our purposes theso-
alled energeti
 formulation for rate-independent hysteresis problem is espe
iallyappropriate, 
f. Refs. [18, 20℄. This formulation is solely based on the energy-storagefun
tional E : [0, T ] × Q → R de�ned via
E(t, q) =

1

2
〈Aq, q〉 − 〈ℓ(t), q〉,and on the dissipation fun
tional R. Thus, homogenization of an evolutionary prob-lem 
an be redu
ed to some extend to homogenization of fun
tionals. We formulateour rate-independent evolutions systems and we provide existen
e and uniquenesstheorems for the initial and expe
ted two-s
ale homogenized problems. We presentsome Γ-
onvergen
e results and �nally our main homogenization theorem.The notion of two-s
ale 
onvergen
e has been introdu
ed by Nguetseng (see Ref. [27℄)in 1989 and developed by Allaire in 1992 (see Ref. [2℄). Ref. [16℄ provides an overviewof the main homogenization problems studied by this te
hnique. The periodi
 un-folding method re
ently introdu
ed (2002) by Cioranes
u, Damlamian and Griso inRef. [8℄, redu
es the two-s
ale 
onvergen
e to a weak 
onvergen
e in an appropriatespa
e. This 
on
ept is now applied in a variety of quite di�erent appli
ations in
ontinuum me
hani
s, see e.g., Refs. [1, 10, 26, 34, 35℄. To the best of our knowl-edge there is no theory for nonsmooth evolutionary systems like the variationalinequalities here.Throughout, the domain Ω will be a bounded open subset of Rd. For the semi-openunit 
ell Y = [0, 1)d, we have ∪λ∈Zd(λ + Y ) = Rd and (λ + Y ) ∩ (µ + Y ) = ∅ for

λ, µ ∈ Zd with λ 6= µ. From now on we will assume that p ∈ (1,∞).Let us re
all the de�nition of the 
lassi
al two-s
ale 
onvergen
e.De�nition 4.1 Let (vε)ε be a sequen
e in Lp(Ω). One says that (vε)ε two-s
ale
onverges to V = V (x, y) in Lp(Ω × Y ) (we write vε
ts
⇀ V ), if for any fun
tion

ψ = ψ(x, y) in C∞
c (Ω; C∞

per(Y )), one has
lim
ε→0

∫

Ω

vε(x)ψ
(
x,
x

ε

)
dx =

∫

Ω

∫

Y

V (x, y)ψ(x, y) dy dx. (9)9



The periodi
 unfolding operator Tε was introdu
ed in Ref. [8℄ and then used forhomogenization of nonlinear integrals in Refs. [6, 7℄. On the full spa
e Rd, it isde�ned by
Tε : Lp(Rd) → Lp(Rd × Y ); Tεv(x, y) = v

(
ε
[x
ε

]
+ εy

)
.We next introdu
e the notions of weak/strong two-s
ale 
onvergen
e.De�nition 4.2 Let V ∈ Lp(Ω × Y ). A bounded sequen
e (vε)ε in Lp(Ω)(w2): weakly two-s
ale 
onverges to V (we write vε

w2
⇀ V ), if

Tεvε ⇀ V (weakly) in Lp(Rd × Y ).(s2): strongly two-s
ale 
onverges to V (we write vε
s2
⇀ V ), if

Tεvε → V (strongly) in Lp(Rd × Y ).Clearly, the above weak two-s
ale 
onvergen
e is stronger than the 
lassi
al.4.1 ε problemLet us 
onsider:
Ω ⊂ Rd, a 
onne
ted bounded open set, with Lips
hitz boundary Γ,
Y = [0, 1)d ⊂ Rd, unit periodi
ity 
ell,
u : Ω → Rd, displa
ement,
z : Ω → Rm, internal variable.For every ε > 0, de�ne the energy fun
tional Eε and the dissipation fun
tional Rεby

Eε(t, u, z) =

∫

Ω

1

2

〈
C

(
x
ε

)
(e(u) − B

(
x
ε

)
z), e(u) − B

(
x
ε

)
z
〉

dx

+

∫

Ω

1

2

〈
H

(
x
ε

)
z, z

〉
dx−

∫

Ω

u(x)fext(t, x)dx

Rε(ż) =

∫

Ω

ρ
(

x
ε
, ż(x)

)
dx,where

e(u) =
1

2
(∇u+ ∇uT) ∈ R

d×d
sym := { σ ∈ R

d×d | σ = σT }.10



The tensors C,H,B de�ned on R
d are Y -periodi
, and take values in:

C(y) ∈ Sym4th order tensor, B(y) ∈ Lin(Rm,Rd×d
sym), H(y) ∈ R

m×m
sym .We work under the hypotheses stated below.Assumptions for C,H,B: for all y ∈ R

d and z ∈ R
m, we have

1

C
|e|2 ≤ 〈C(y)e, e〉 ≤ C|e|2,

1

C
|z|2 ≤ 〈Hz, z〉 ≤ C|z|2, ‖B(y)‖ ≤ C(for some 
onstant C > 0).Assumptions for ρ:

(Hρ)





ρ : Rd × Rm → [0,∞),

ρ(·, v) Lebesgue measurable and Y -periodi
, for every v ∈ Rm,

ρ(y, ·) 1-homogeneous and 
onvex for a.e. y ∈ Rd,
1
C
|v| ≤ ρ(y, v) for a.e. y ∈ Rm and every v ∈ Rm,

|ρ(y, v) − ρ(y, v′)| ≤ C|v − v′| for a.e. y ∈ Rd and all v, v′ ∈ Rm.Let us 
onsider the Hilbert spa
e Q = H1
ΓDir

(Ω)d × L2(Ω)m.We 
all qε = (uε, zε) : [0, T ] → Q an energeti
 solution of the problem asso
iatedwith Eε and Rε, if for every t ∈ [0, T ] the stability 
ondition (Sε) and the energybalan
e (Eε) hold:
(Sε) : Eε(t, uε(t), zε(t)) ≤ Eε(t, u, z) + Rε(z − zε(t)) for every (u, z) ∈ Q,

(Eε) : Eε(t, uε(t), zε(t)) +

∫ t

0

Rε(żε(s)) ds = Eε(0, uε(0), zε(0))

−

∫ t

0

∫

Ω

ḟext(s, x) · u(x)dxds.We now state our existen
e and uniqueness result for (Sε) & (Eε).Proposition 4.3 Let fext ∈ CLip([0, T ], (H1
ΓDir

(Ω)d)∗). Then for all ε > 0 and stable
(u0

ε, z
0
ε) ∈ Q, there is a unique solution (uε, zε) ∈ CLip([0, T ],Q) of (Sε) & (Eε), with

(uε(0), zε(0)) = (u0
ε, z

0
ε ).Moreover, we have ε-independent Lips
hitz bounds for the solutions, that is, for some
onstant c1 > 0 we have

‖(uε(t), zε(t)) − (uε(s), zε(s))‖H1×L2 ≤ c1|t− s| for all t, s ∈ [0, T ], ε > 0. (10)4.2 Two-s
ale homogenized problemWe now formulate the problem (S) & (E), whi
h will turn out to be the two-s
alehomogenized problem for (Sε) & (Eε).Let Q = H × Z, where
H = H1

ΓDir
(Ω)d × L2(Ω; H1

av(Y ))d, Z = L2(Ω; L2(Y ))m = L2(Ω × Y )m.11



Here, H1
av(Y ) = {U ∈ H1

per(Y ) |
∫

Y
U(y) dy = 0 }. For all Q = (U,Z) in Q, with

U = (U0, U1), let us de�ne the two-s
ale fun
tionals E and R

E(t, U, Z) =

∫

Ω

∫

Y

1

2

〈
C(y)(ê(U) − B(y)Z), ê(U) − B(y)Z

〉
dydx

+

∫

Ω

∫

Y

1

2
〈H(y)Z,Z〉dydx−

∫

Ω

∫

Y

U0(x)fext(t, x)dydx,

R(Ż) =

∫

Ω

∫

Y

ρ(y, Ż(x, y))dydx,where ê(U) = ex(U0)+ey(U1), whi
h means ê(U)(x, y) = ex(U0(·))(x)+ey(U1(x, ·))(y).The energeti
 formulation for the two-s
ale homogenized problem (S) & (E) reads:for every t ∈ [0, T ], the stability 
ondition (S) and the energy balan
e (E) hold, thatis,
(S) : E(t, U(t), Z(t)) ≤ E(t, Ũ , Z̃) + R(Z̃ − Z(t)) ∀ Q̃ = (Ũ , Z̃) ∈ H × Z,

(E) : E(t, U(t), Z(t)) +

∫ t

0

R(Ż(s)) ds = E(0, U(0), Z(0))

−

∫ t

0

∫

Ω

ḟext(s, x) · U0(x)dxds.We next state our existen
e and uniqueness result for the problem (S) & (E).Proposition 4.4 Let fext ∈ CLip([0, T ], (H1
ΓDir

(Ω)d)∗). Then for every stable Q0 =
(U0, Z0) ∈ Q, the problem (S)& (E) has a unique solution Q = (U,Z) ∈ CLip([0, T ],Q),with Q(0) = Q0.The 
onvergen
e of Eε and Rε to E and R 
an be viewed as a type of two-s
aleMos
o 
onvergen
e, i.e., Γ-
onvergen
e in the weak and in the strong topology (seeRef. [19℄). Here we rely on the unfolding operator and on the folding operatorin order to 
onstru
t suitable re
overy sequen
es, also 
alled realizing sequen
es inRef. [12℄.The 
ru
ial tool for proving the 
onvergen
e of the solutions qε to the energeti
solution Q asso
iated with E and R is the abstra
t Γ-
onvergen
e theory developedin Ref. [19℄. There, the simple theory relies on the fa
t that the dissipation fun
tions
onverge 
ontinuously in the weak topology; yet this is not the 
ase in our situation.However, we are able to use the quadrati
 nature of the energies allowing some
an
elations in di�eren
es of energies. For instan
e, Eε(t, qε)−Eε(t, q̃ε) 
onverges to
E(t, Q) − E(t, Q̃), if qε has the �weak� two-s
ale limit Q and qε − q̃ε has a strong(!)two-s
ale limit Q− Q̃.Our homogenization theorem is based on the notion of two-s
ale 
ross-
onvergen
e.De�nition 4.5 Let Q = (U,Z) ∈ Q, with U = (U0, U1). A sequen
e qε = (uε, zε)εin Q is 
alled two-s
ale 
ross-
onvergent to (U,Z), if

uε
w2
⇀ U0, ∇uε

w2
⇀ ∇U0 + ∇yU1, zε

w2
⇀ Z.12



We write this as (uε, zε)
cw2
⇀ (U,Z).We 
an now formulate our main result stating that (S) & (E) is the two-s
ale ho-mogenized problem for (Sε) & (Eε) (see Ref. [24℄ for the proof).Theorem 4.6 Let qε = (uε, zε) be the solution of (Sε) & (Eε). For the initial data,assume that:

q0
ε = (u0

ε, z
0
ε) is stable for every ε > 0,

q0
ε = (u0

ε, z
0
ε)

cw2
⇀ Q0 = (U0, Z0) ∈ Q,

Eε(0, q
0
ε) → E(0, Q0).Then (qε)ε two-s
ale 
ross-
onverges to the unique solution Q = (U,Z) of the two-s
ale homogenized problem (S) & (E), with Q(0) = Q0.Referen
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