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1. Introduction 

The investigation of nonlinear reaction-diffusion systems of the form 

au at - \7 · D(u)\lu = f(u, Vu) (1.1) 

has received much attention in recent years [Am]. Here, u = ( u 1 , ... , un) represents the 
concentrations of n species, D =(Di, ... , Dn) is the corresponding set of diffusion coeffici-
ents and f describes external sources and reactions. If transport includes drift in addition 
to diffusion, the flow J = -D\lu has to be replaced by J = -D\lu + v, where vis the 
convection flow. If the species are electrically charged,· a drift is self consistently caused by 
the electrical field v = -c\lvo, where v0 is the electrostatic potential satisfying Poisson's 
equation with the charge density as right-hand side. (The notation v0 for the electrostatic 
potential will be convenient later on.) Drift-diffusion processes of charged species play 
an important role in many branches of modern natural sciences and technology. Especi-
ally in microelectronics, drift-diffusion models have fundamental significance for process 
simulation as well as for device. simulation (see [Se]). . 

In this paper we state some basic facts about reaction-diffusion equations for charged 
species. Unlike the usual approach in device simulation, including only electrons and 
holes, we admit an arbitrary number of charged species. Our main aim is to show, that 
regardless of its complexity, the system of partial differential equations governing drift, 
diffusion and reaction of charged species has a convenient mathematical structure. Thus, 
following the ideas of S.G. Michlin [Mi], variational methods can be applied for proving 
global existence and uniqueness results. The key is a convex functional which can be 
interpreted from the viewpoint of thermodynamics as free energy. In particular, this 
functional turns out to be a Lyapunov function of the system and ensures exponential 
decay of arbitrary perturbations of thermal equilibria. We have to admit, however, that 
our existence results are based on additional assumptions restricting the growth of the 
source terms caused. by chemical reactions. 

The plan of the paper is following: First we discus some physical models for the drift-
diffusion approach. Section 3 is devoted to the precise statement of the mathematical 
problem. The Lyapunov function is introduced in Section 4 and some a priori estimates 
are derived. An existence result is stated and a proof is sketched in Section 5. Section 6 
deals with the question of uniqueness. Finally, in Section 7, we study the stationary 
problem and the asymptotic behaviour of transient solutions. 

2. Mathematical modeling 

The now classical drift-diffusion model of charged carrier transport in semiconductors 
was established by van Roosbroeck [vR] 1950. It consists of a Poisson equation for the 
electrostatic potential v0 and continuity equations for the densities ui, u2 of electrons and 
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holes, respectively: 

2 

-V · (e\lvo) = f +I: qiui, 
i=l 

8u· 
at" + V · Ji + R = 0, i = 1, 2. 

Here e is the dielectric permittivity, q1 , q2 are the charges of electrons and holes, respec-
tively, f denotes the net concentration of electrical active dopants, and R is the reaction 
(recombination/generation) term. The first equation expresses the Gauss law, the lat-
ter two local carrier conservation. Van Roosbroeck's equations are completed by current 
relations. It turns out to be useful both from the physical and from the mathematical 
point of view to introduce the electrochemical potentials (quasi Fermi potentials) (1 , ( 2 
of electrons and holes, respectively, by 

(2.1) 

wh~re v1 , v2 are the chemical potentials (which are known functions of the densities u1 , u2 , 

cf. (2.3), (2.4) below). According to Ohm's law, the gradient of the electrochemical 
potential is postulated to be the driving force for the flow 

(2.2) 

here µi is the mobility. The notation drift-diffusion model becomes clear by inserting 
(2.1) into (2.2). If a magnetic field Bis present, in (2.2) a term due to the Lorentz power 
has to be added: 

where /3i = µiriB (ri is the so called Hall factor). Although the drift-diffusion model has 
proved to be of fundamental significance for the analysis and the numerical simulation 
of carrier transport in semiconductors, there are serious physical restrictions. First of 
all, the temperature is treated as a constant parameter. In order to model thermal 
effects the system has to be extended by an energy balance equation. Moreover, the 
trend to miniaturization forces modeling to become more microscopic and to take into 
account kinetic and even quantum mechanical transport effects. Some recent versions 
of the drift-diffusion model try to incorporate such effects via .a careful and consistent 
choice of the physical model parameters. This approach is based on .the fact that the 
drift-diffusion equations can be derived rigorously from kinetic models (Vlasov-Poisson-
Boltzmann system) [P]. 

The drift-diffusion model describes electrons and holes in one semiconductor material 
(e.g. silicon) reacting via recombination and generation processes. In many situations 
different substances have to be taken into account and ionization as well as other chemical 
reactions occur. In process modeling, for instance, silicon as semiconductor and boron and 
phosphorus as dopants may be involved and may react according to different mechanisms 
(e.g. Frank-Turnbull, kick out [GGH, HS]). 
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In what follows we shall admit n species with densities ui and specific charges qi. We 
discuss the physical model parameters from a more or less mathematical point of view. 
That means, we look for mathematically reasonable relations expressing carrier densities, 
mobilities and reaction rates in terms of the potentials to be determined as solutions of 
the equations. Fortunately, there is a correspondence between the mathematical and the 
physical point of view. As to the physical background we refer to [Se, SF]. 

Carrier densities 
The introduction of a discrete number of charged species in a semiconductor is based 
on the energy band model of solid state physics and the effective mass approximation. 
Nonequilibrium situations are described by Fermi levels associated to the discrete energy 
bands. This means in particular that intraband relaxation processes are assumed to 
be much faster then interband ones. The standard drift-diffusion model distinguishes 
only two species, electrons and holes, associated to the conduction and valence band, 
respectively. 

Frequently Boltzmann statistics is used for calculating the carrier distribution with 
respect to energy. Accordingly, carrier densities Ui and chemical potentials Vi are related 
by 

(2.3) 
where ui is a reference density that generally depends on position because of doping or 
heterogeneous materials. Note that the chemical potential Vi is assumed to be scaled due to 
the fact that only isothermal processes are considered. In some situations (degeneration), 
e.g. at high doping levels, Boltzmann statistics has to be replaced by Fermi-Dirac statistics 
leading to 

* 2 [''° Vi dt 
Ui = ui F112(vi), F112(s) = ft Jo l+ exp(t _ s)' (2.4) 

We shall cover both options by assuming 

(2.5) 

with functions ei satisfying mild conditions stated in the next section. 

Mobilities 
Mobility models have to account for different scattering mechanisms and high field effects. 
In particular, carrier-impurity scattering leads to an explic~t space dependency of the 
mobilities. Carrier-carrier scattering can be modeled via a dependency of µi on the 
chemical potentials Vi. 

The drift-diffusion model is mainly based on the linearized Boltzmann equation. At 
higher electric fields the carriers are able to accelerate and to heat up. Thus, linearization 
is no longer justified and a dependency of the mobilities on the gradients of the quasi Fermi 
potentials has to be admitted. In order to include the physical effects just mentioned and, 
possibly, a magnetic field, we assume that 

(2.6) 

3 



where the properties of the functions di are stated in the next section. 

Reactions 
Reactions between charged species are often recombination and generation processes. Re-
combination ca.n happen e.g. via deep levels in the gap between conduction and valence 
band or as band-to-band transition. Which mechanism dominates depends on mate-
rial properties and operation conditions. The most important recombination/ generation 
models for electrons and holes are due to Shockley-Read-Hall and Auger: 

72( U1 + r1) + T1( U2 + r2)' 
- (exp ((1 + (2) - l)(a1u1 + a2u2), 

where the parameters Ti, Ti and ai may depend on position x. 

Generalizing these recombination models, we consider mass .action type reactions of 
the form: 

where X1, ... , Xn denote the species with the concentrations u1, ... , un, respectively, and 
(a,(3) is a pair of vectors (a1 , ... , an), ((31, ... ,f3n) of stoichiometric coefficients charac-
terizing the reaction leading from Ei=1 aiXi to Ei=1 f3iXi and its converse reaction. We 
assume that the rates of these reactions are ·of the form Taf3( ·, v, a·() and Taf3( ·, v, (3 · (), 
respectively, where v := ( v0, ... , vn) and 

( := ((1, ... , (n), (i := qiVo +Vi, i = 1, ... , n, (2.7) 

is the vector of electrochemical potentials (i consisting of the electrostatic part qivo (qi the 
specific charge of Xi) and the chemical part Vi ( i = 1, ... , n ). The assumption with respect 
to Taf3 reflects the fact that the scalar product (a - (3) · ( is supposed to be driving force 
for the reactions. Correspondingly, 

~ = L (raf3( ·, v, a·() - Taf3( ·, v, f3 · ())( O.i - f3i)· (2.8) 
(a,{3)E'R. 

The finite set n denotes the set of reactions actually taking place in the volume n occupied 
by the species. Besides the reactions in the volume n further reactions may occur on the 
boundary r of n. In analogy to (2.8) we may assume that 

Rf == L ( r~f3 (-, v, a · () - r~f3 ( ·, v, (3 · ()) ( ai - f3i) (2.9) 
(a,{3)e'R.r 

is the contribution of these reactions to the balance of species Xi (which must be accounted 
for in the boundary conditions). Here nr is a finite set of pairs of vectors of stoichiometric 
coefficients, and the functions r~f3 model the surface reaction rates. 

By specifying the coefficients of the reactions as 

r af3 ( ·, v, s) = Caf3 ( ·, v) exp( s), 
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it becomes clear, that standard mass action rates as well as the recombination models 
considered above are included as special cases. 

Now we want to combine the physical models to get our final system of partial diffe-
rential equations. To this end let n be a bounded domain in IRN' N ~ 2, and an = r. 
We denote by v(xo) the outer unit normal at x0 E r. Then the initial boundary value 
problem we are interested in reads as follows: 

n ) 
-\J · (c;\Jvo) = f + L qiui 

i=t on IR+ x n, au· . 7Jt + \J ·Ji+ R;, = 0, i = 1, ... , n, 

ll. (c;\Jvo) + JWo =fr, ll. Ji+ Rf = 0, i = 1, ... 'n on IR+ x r, 
Ui(O,·)=u~, i~l, ... ,n, on n. 

(2.10) 

(2.11) 

(2.12) 

Here the densities ui, the flows Ji, and the reaction terms R;,, Rf are given by (2.5) 
- (2.9). The functions f and /f' are fixed source terms (representing e.g. the charge 
density of dopants ). The function "' represents a capacity of the boundary. The system 
(2.5) - (2.12) is to be regarded as an initial boundary value problem for the unknown 
vector v = ( v0, v1, ... , Vn) of potentials and the corresponding vector u = ( u0, ... , Un) of 
densities. Here u 0 := 2:f=1 qiui is the charge density caused by the mobile species. 

Remark 2.1. An essential feature of the problem (2.5) - (2.11) is the fact that it allows so 
called thermal equilibria, i.e. steady states with vanishing driving forces. The results on 
steady states and asymptotic behaviour stated in Section 7 rest heavily on this property. 
All the other. results remain true also in more general situations, for example, if Dirichlet 
conditions are posed on a part of the boundary r. 

3. Precise statement of the problem 

In this section we want. to state precisely the problem discussed in the preceding section. 
We start with the formulation of basic hypotheses with respect to the data of the problem. 

These hypotheses read as follows: 

n is a bounded Lipschitzian domain in IRN, N ~ 2, and r :=an, (3.1) 

c; E L00 (n), c; ~co > 0, "' E L00 (r), "'~ 0, "'# 0, f E L00 (n), fr E L.00 (r), (3.2) 

ui E L00 (n), ui ~ 8 > 0, u? E L00 (n), u? ~ 8 > 0, i = 1, ... , n, (3.3) 
n 

q = (qi, ... , qn) E IRn, ug :=I: qiu?, u 0 := ( ug, u~; ... , u~), (3.4) 
i=l 

ei E C 1 (1R) is strictly increasing, lim ei(Y) = 0, lim ei(Y) = +oo ) 
0 

y--oo y-oo . 

e~ ~ ei, J ei(y)dy < oo, i = 1, ... ,n, 
-00 

(3.5) 
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di : n x lR x lRN -----+ lRN satisfies the Caratheodory conditions, 
(di ( x, y, O - di ( x, y, 37)) · ( e - 77) 2:: s e~ ( y) I e - 77 I 2, di ( x, y, o) == o, 
I di ( x, y, e) - di ( x, y, 77) I ::; t ei ( Y) I e - 77 I 
for x E f2, y E lR, e,77 E lRN, i == 1, ... ,n, and some S > 0, 

n and nr are finite subsets of z~ x z~, 

\/(a, /3) En: Ta13: n x JRn+l x lR----+ lR+ satisfies the Caratheodory conditions, 
ra13( x, v, ·) is strictly increasing, ra13( x, v, y) ::; co exp(y) 
for x E n, y E lR, and some constant co, 

\/(a, /3) E nr: r;13 : r x lRn+i x lR----+ lR+ satisfies the Caratheodory conditions, 
r;f3(x,v, ·)is strictly increasing, Taf3(x,v,y)::; coexp(y) 
for x Er, y E lR, and some constant co, 

\/(a, {3) E 'RU 'Rr : a · q == f3 · q. 

(3.6) 

(3.7) 

(As usual, Z+ :== {m E Z: m 2:: O} and lR+ :== {y E lR: y 2:: 0}.) The requirements 
a · q == f3 · q for (a, /3) E 'RU nr express the fact that electrical charges are conserved 
during the reaction processes. 

Throughout the paper we shall assume that (3.1) - (3.7) are satisfied without menti-
oning this explicitly in our theorems. Further assumptions will be formulated later on in 
connection with existence and uniqueness results. 

Let 
V := H 1 (f2; lRn+i ), H := L 2(f2; lRn+i ), W := V n L 00 (f2; lRn+i ). 

We define E: W-----+ V* and A: W x V-----+ V* as follows: 

(Ew,v) 

(A(w,v),v) 

·n 

.- f (t:Vwo · \lvo - fvo + L:u:ei(wi)vi)dx + f (Kwo - fr)vodr, Jn i=l Jr 

.- r (t di(-, Wi, vci). vci Jn i=l 

+ L (rar;(., w, a. 7)) - Ta13(., w, /3. 7) ))(a - /3). c) dx 
(a,{3)E'R. 

r """ r r -+ Jr LI ( r af3 (-, w, a · r;) - r af3 ( ·, w, /3 · 77)) (a - f3) · ( dr, 
r (a,{3)E'R.r 

where w == (wo, ... ,wn) E W, v == (vo, ... ,vn) E V, v = (vo, ... ,vn) E V, 

( :== ((1, · · · '(n), ( := ((1, · · · '(n), 77 := (711, · · · '71n), 
(i := qivo +Vi, (i := qivo + vi, 71i := qiwo + wi, i == 1, ... , n. 

Before we can formulate the initial boundary value problem to be solved we have 
to introduce some notation in connection with functions of time. Let Y be any Banach 
space and Sany (bounded or unbounded) interval in JR. Then LP(S; Y) (resp. Lf0 c(S; Y)), 
p E [1, oo], means the space of equivalence classes of Bochner measurable functions 
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u: S ~ Y such that llu(·)ll ELP(S) (resp. llu(·)ll E Lf0 c(S)). This space will be equipped 
with its standard norm (resp. the usual seminorms). H1(S; Y) is defined as the space of 
all u E L 2(S; Y) such that u' E L 2(S; Y), where u' denotes the derivative of u in the sense 
of Y-valued distributions. Hl~c(S; Y) is defined analogously. 

Now the problem we want to solve can be stated as follows: Find ( u, v) such that 

u E Hz1;,0 (1R+; V*), v E L~00(1R+;V) n L00 (JR.+; L00(f!; JR.n+1
)) } 

u' + A(v,v) = 0, u = Ev, u(O) = u0 • (P) 

Here and afterwards A( v, v) and Ev mean the (equivalence classes of the) functions on 
IR+ with the values A(v(t),_v(t)) and Ev(t), respectively. 

Remark 3.l. Standard arguments show that a pair ( u, v) of smooth functions solves (P) 
if and only if u and v satisfy the equations (2.5) - (2.12). In particular, by means of test 
functions of the form (vo, -q1vo, ... , -qnvo) it is easy to check that for any solution ( u, v) 

n . 
to (P) it holds uo = :E qiui. 

i=l 

Remark 3.2. Let ( u, v) be a solution to Problem (P). As an element of Hz~c(IR+; V*) 
the function u is a continuous mapping from IR+ into V*. Using the boundedness of the 
functions Vi and the properties of the functions ei, i = 1, ... , n, it is· easy to show that 
t ~ u(t) is continuous from IR+ to L00 (n; 1Rn+1 ), equipped with its weak* topology. 

4. Physically motivated estimates and invariants 

In this section we assume that we are given a solution to Problem (P). We shall show 
that physically motivated arguments lead to a priori estimates for the solution which are 
important for the proof of existence of solutions. In addition, we shall exhibit some inva-
riants of the solution reflecting the "stoichiometric nature" of the reaction terms. These 
invariants will play a role in connection with the large time behaviour of the solution. 

The boundary conditions introduced in Section 2 model a dissipative interaction of the 
physical system under consideration with its surrounding. Since we consider isothermic 
processes only we may expect that the free energy deer.eases along the solutions to (P}. We 
are going to show that this is indeed the case. Moreover, giving an explicit expression for 
the free energy, we prove that this leads to interesting a priori estimates for the solutions 
to Problem (P). 

In view of (3.5) it makes sense to define 'Pi E O(IR) and 'Z/;i E O(IR+), i = 1, ... , n, by 

'Pi(v):=[ei(y)dy for vEIR, 'l/;i(u):=lu e;1(z)dz for u E IR+, i=l, ... ,n. (4.1) 
o e,(o) 

Next we introduce two convex functionals, namely 
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and its conjugate . 
w(u) :=sup {(u,v) - <I>(v)}, u E V*. ( 4.3) 

·veV 

Note that the values <I>(v) and w(u) may be +oo. Since <I>(O) = 0 we have w(u) ~ 0 for 
every u E V*. We refer to Ekeland-Temam [ET] for the basic notions and results from 
convex analysis. 

The functional <I> is strictly convex. Hence for every v E V its sub differential 8<I>( v) 
contains at most one element. If v E W then, as is easily checked, 8<I>( v) = {Ev }. 

A simple calculation shows that 

w(u) = I (-2
1 

eJVvoJ2 + f,u';,P;(u;fu;))dx + r -21 iw~dr, (4.4) lo i=l lr 
provided that u E V*, Ui E L2(n), Ui ~ 0, i = 1, ... ·, n, and that v0 is defined by 

Vvo E H 1(n): fo(c'lvo · 'lvo - fva)dx + £(1wo - fr)vodr = (uo,vo). (4.5) 

The value '11( u) is to be interpreted as the free energy of the state u. Therefore one is led 
to investigate the behaviour of this functional along solutions to Problem (P). 

Theorem 4.1. Let ( u, v) be a solution to Problem (P) and let W be the functional defined 
above. Then, for 0 ::; s ::; t, 

w(u(t))::; w(u(s)) < oo, ( 4.6) 
i.e., W is decreasing along any solution to Problem (P). Moreover, 

n 

llvol1£00(1R+;H1(0)) + 2: 117/li( ui/u;)llLoo(lR+;Ll(O)) ::; c, (4.7) 
i=l 

and 
n 

L II e~( Vi) l'l (i l2 llL1(lR+;L1(0)) 
i=l 

+ L II ( r a,8 ( ·, v, a · () - r a,8 ( ·, v, f3 · ()) (a - f3) · ( 11 L1 (1R+ ;L1 ( 0)) ( 4. 8) 
(a,,8)E'R 

+ L II ( r~,a( ·, v, a· () - r~13 (-, v, (3 · ())(a - (3) · (llL1 (JR. ·Li(r)) ::; c. 
(a,,8)e'Rr +• 

where c is a constant depending on the data of the problem. As before, ( = ( (1 , ... , (n) is · 
defined by (i := qivo +Vi, i = 1, ... , n. 

Proof. 
1. First we mention that, for every w E W, 

n 

(A( w, w ), w) > SL lle~( wi)j'l77il2 llL1(0) 
i=l 

+ L II ( r a,8 ( ·, w, a · 77) - r a,8 (-, w, f3 · 77)) (a - f3) · 77 II L1 ( 0) ( 4. 9) 
(cx,/3)E'R 

+ 2: II ( r~,a ( ·, w, a · 77) - r~13 ( ·, w, f3 · 77)) (a - f3) · 77 II £l (r) , 
(a,,8)E'Rr 
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where 7] := (77i, ... , 'l/n), , 'f/i := qiwo + Wi , i = 1, ... , n. This is an immediate consequence 
of the definition of A ( cf. (3.6), (3. 7) ). 
2. Let ( u, v) be a solution to (P). Then, for a.e. t E lR+, 

u(t) = Ev(t) E 8<I>(v(t)). 

According to a standard result of convex analysis this implies that 

v(t) E 8'11(u(t)), for a.e. t E lR+ 

Therefore, if 0 :::; s :::; t, then ( cf. Brezis [BJ, Lemma 3.3) 

\f!(u(t))- \f!(u(s)) = J.' (u'(r),v(r))dr. 

(Note that '11(u(t)) is finite for every t E IR+, cf. Remark 3.2 and (4.4).) Since (u,v) is a 
solution to (P) we obtain 

\f!(u(t))- \f!(u(s)) = J.' (-A(v(r),v(r)),v(r))dr::; O. (4.10) 

The last inequality follows from ( 4.9). Hence ( 4.6) holds. 
3. The estimate ( 4. 7) is an immediate consequence of ( 4.6) and (4.4). The assertion ( 4.8) 
follows from f" (A( v( t), v( t) ), v(t)) dt ::; \f!( u0

) 

and the relation ( 4.9). D 

Remark 4.1. The following theorem shows how to use ( 4. 7) and ( 4.8) to get further 
information about a solution ( u, v) to Problem (P). 

Theorem 4.2. Let ( u, v) be a solution to Problem (P). Then 

udog(ui) E L 00 (IR+; L1(!1)), i = 1,. . .,n. ( 4.11) 

If N = 2 then v0 E L00 (IR+; L00 (!1)). The same is true if 

· -1/(po-1) N . hm sup ei(Y )y < oo for some Po > -2 , i = 1, ... , n. ( 4.12) 
y--+-oo 

In that case we have also Ui E L 00 (IR+; LP0 (!1)), i = 1, ... , n. 

Remark 4.2. The condition ( 4.12) is satisfied for .N = 3 with p0 = 5/3 if the functions 
ei are given according to the Fermi-Dirac statistics ( cf. (2.4)). · 

Proof of Theorem 4.2. 
1. The relation e~(y) :::; ei(Y ), y E IR, implies that e(y) :::; e(O) exp(y) for y ~ 0. Consequ-
ently, for u ~ ei(O), 

/.u /.u 1 'l/Ji(u) = ei1(z)dz ~. log(z/ei(O))dz ~ -ulog(u) - c. 
ei(O) ei (0) 2 

( 4.13) 
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An estimate of this form is true also if 0 < u < ei(O). Therefore the assertion ( 4.11) follows 
from ( 4.7). 

n 
2. Let N = 2. The first part of the proof shows that for u0 = 2.: qiui it holds 

i=l 
luol log(luol) E L00 (lR+; L1(0)). Since Vo satisfies (4.5) the property v0 E L00 (lR+; L00 (0)) 
follows from the results in [G2]. 
3. Let N > 2, and let p0 > !}- be given such that ( 4.12) holds. Then ei(Y) ::; c0y1/(po-l) 

for sufficiently large y and a suitable constant c0 . Consequently, 

e;1 (z) ~ (z/c0 )Po-l for sufficiently large z 

and, for every u ~ 0, 
'l/;i(u) = {1"'. ei1(z)dz ~ c1uP0 - c2, 

le;,(O) 

where c1 > 0. Therefore (4.7) implies that Ui E L00 (lR+; LP0 (0)). The assertion with 
respect to v0 now follows from a standard result on elliptic boundary value problems (see 
[LU]). D 

. Next we shall discuss the invariants of the process mentioned in the beginning of this 
section. The space 

S :=span {,B- a: (o:,,8) ER U nr} ( 4.14) 

will be called the stoichiometric subspace of lRn associated to the system under conside-
ration. By 1 we denote the function on n with the constant value 1. We define 

n 

U : = { u E V* : Uo = L qiui, ( ( U1, 1) , ... , (Un, 1)) E S.} ( 4.15) 
i=l 

(Note that (ui, 1) = fo Uidx if u E V* n L1(0; JRn+l).) The introduction of u is justified 
by the following 

Theorem 4.3. Let (u,v) be a solution to Problem (P). Then 

\:/t E lR+ : u(t) E U + u0
. 

Proof. Let 

UJ_ := {v E V: \7( = 0, (ES\ where ( := (q1vo + v1, ... , qnvo + vn)}. ( 4.16) 

Here and afterwards SJ_ means the orthogonal complement of S in 1Rn. From the definition 
of UJ_ and that of the operator A it follows immediately that, for arbitrary w E W and 
v E V, we have 

\:/vEUJ_: (A(w,v),v)=O. 
In particular, if (u,v) is a solution to (P), then (A(v(s),v(s)),v) = 0 for every v E U1-. 
Hence 

VV E Ul.: \u(t)- u0 ,v) = l (u'(s),V} ds = - l (A(v(s),v(s)),V} ds = 0. 
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It is easy to check that U == { u E V* : ( u, v) == 0 for every v E U .L}. Therefore, the 
preceding equality proves the assertion of Theorem 4.3. D 

Remark 4.3. It may well happen that the stoichiometric subspace S equals IR.n. In that 
case Theorem 4.3 reduces to the observation that u 0 == l:i=1 qiui (cf. Remark 3.1). 

5. Existence 

As mentioned in the introduction we can prove existence only under additional restrictive 
hypotheses with respect to the reaction terms. We shall assume that 

Vv E IR.n+1, V(a,{3) ER, Vi E {1, ... ,n}: } 

(r.,13(-, v, a· () - r .,13(-, v, (3 · ())((3 - a); ~ c( vo) j~l le;( v; )ll+k + c( v0 ), 
(5.1) 

Vv E IR.n+i, V(a,{3) E nr, Vi E {1, ... ,n}: } 
n 1 

( r~,a(-, v, a · () - r~,e(-, v, {3 · () )({3 - a )i ::; c( vo) i;;:l I ei( Vj) jl+N' + c( vo); 
(5.2) 

here (i :== qivo +Vi, i == 1, ... , n. 

The conditions (5.1) and (5.2) impose restrictions only on the source terms whereas 
the sink terms may be large. 

Theorem 5.1. Suppose that (5.1) and (5.2) hold. Let N == 2 or let ( 4.12) and the follo-
wing additional assµmptions be satisfied: 

c is constant , 

d;( x, y, e) = <T;(y )e for x E !1, y E JR., e E lR.N, where 5e: ~ <T; ~ ~e; for some 5 > 0. 

Then there exists a solution ( u, v) to Problem (P). 

We shall not give a complete proof of Theorem 5.1 but only sketch the main ideas. 

The first idea is to investigate a "regularized" problem which arises from (P) by 
cutting off the nonlinearities in a suitable way at a certain level. Later one provides a 
priori estimates which are independent of that level. As a consequence a solution to the 
regularized problem will be a solution to the original problem (P) if only the cut off ·level 
is chosen sufficiently large. 

Let M > 0 be a fixed number such that 

(5.3) 
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This number will play the role of the cut off level. By PM we denote the convex projection 
from IR onto [-M, M], i.e., the mapping given by 

l. M, if y > M, 
PM(Y) := y, if -M $_ y $_ M, 

-M, if y < -M. 

We define EM : V -----? V* and AM : V x V ~ V* by 

and (with the same notation as that used for the definition of A) 

(AM( w, v ), ii) .- t { r (di(·, PMWi, V(i). V(i + ((i - PM(qiwo) - PMwi)(i 
i=l Jn 

+ AM(w) :E (ro.{l(·, v, a. 11) - Ta.fl(·, v, /3. 11))( a - /3). c) dx 
(a.,/3)E'R. 

+ J AM(w) :E (r;/l(·,v,a · 17) - r;fl(·,v,/3·17))(a -/3) · (dr }, 
I" (a.,/3)E'R.r 

where AM is a fixed function in C(IRn+l; (0, 1]) such that 

The definitions of the operators EM and AM are made in such a way that the essential 
properties of E and.A are conserved. The regularized problem announced above reads as 
follows: Find ( u, v) such that . 

u E Hz~(IR+; V*), v E Llx:(IR+; V) } 
u' + AM(v,v) = 0, u = EMv, u(O) = u0

• 
(PM) 

Remark 5.1. Let (u,v) be a solution to Problem (PM)· Then Ui = u£ei(PMvi), i = 
n 

1, ... ,n, and uo = L: qiui (cf. Remark 3.1). If 
i=l 

f[v;llL~(IR+;L~(n)) :::; ~ and (1 + fq;f)[[vollL~(JR+;L~(n)) :::; ~, i = 1, ... , n, 

then ( u, v) is a solution to (P). 

The solvability of Problem PM can be proved by the investigation of systems which 
result from (PM) by a discretization of time. To describe these systems we fix a sequence 
(rk) of time steps converging to 0. Let st := ](j - l)Tk,jTk], j E lN. If y is any Banach 
space we denote by Ck(IR+; Y) the space of all functions u: IR+ -----? X, which are constant 
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on each of the intervals Sk, j E JN. We write ui for the value of u E Ck(1R+; X) on S{ 
We define ~k as a mapping from Ck(1R+; H) into itself by 

(5.4) 

where u 0 is the initial value introduced in (3.4). The problem 

(PMk) 

which can be written more explicitly as 

0 0 
Uk= U, (5.5) 

is to be considered as the discrete version of (PM) corresponding to the time step Tk. 

One can prove that for every k E 1N there exists a solution ( uic, vk) to Problem (P Mk) 
using a result on operators of variational type in the sense of Lions [L], Oh. 2, Sect. 2.5. 
Furthermore, one can find a priori estimates (depending on M) allowing to go to the limit 
as k --7 oo. In this way one finds a solution to (PM). We don't want to go into to details 
here. For similar considerations in a special case we refer to [ GG 2]. 

Next for a solution ( u, v) to Problem (PM) one has to derive a priori estimates which 
are independent of M. This is the most difficult part of the proof. 

The operator EM is defined in such a way that it is the Gateaux derivative of a 
functional <.PM : V --7 1R, where <I>M ~ <I> (for the definition of <I> cf. (4.2)). The 
conjugate functional WM to <I> M satisfies WM 2:: W, where W denotes again the conjugate 
of <I>. In the same way as the corresponding result for W in Section 4 one can prove that 
WM decreases along the solutions to (PM)· Since by the choice of M the initial value 
WM( u0 ) is independent of M, this leads to a priori estimates independent of M for the 
following norms: 

llvo llL00 (IR+;H1(0)), llvo llL 00 (IR+ ;£00 (0)), } 

i~ Jiu; log( u;)JIL=(JR+;L'(n)) if N = 2, i~ llu•llL=(JR+;LPO(O)) if N > 2. (S.G) 

A priori bounds for the norms (5.6) are not sufficient for our purposes. What is needed 
are bounds for llvillLco(IR+;Loo(n)), i = 1, ... , n. 

First we indicate how to obtain upper bounds for the densities Ui by means of a tech-
nique introduced by Moser [Mo]. Let w := (0, w1 , ... , wn), Wi := exp(pt)[ei(PMvi)]P-1 , 

i = 1, ... , n, where p 2:: 2. Using w for the values p = 2\ k = 1, 2, .. ., as test functions 
for the equation u' + A( v, v) = 0 it is possible to derive successively bounds for the 
norms llullLoo(IR+;L21c(O;IRn.+1)) which are independent of M and of k. This implies that 
ei(PMvi) ~ c or PMVi ~ e;1 ( c), i = 1, ... , n. We omit the rather technical details. We 
mention only that it is this step which requires to distinguish the cases N = 2 and N > 2. 
For the case N = 2 the technique has been presented in [GG2] for a special case in 
some detail. From now· on we assume that the choice of M is made in such a way that 
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M > e;1 (c), i = 1, ... ,n. Then the estimate for ei(PMvi) implies that Vi::::; ei1 (c), i.e. 
the components of the vector v of potentials are bounded from above independently of 
M. 

To get lower bounds for the potentials one can use test functions of the form 

p[(log(ei(PMvi)) + kt]p-l . 
w:=(O,w1, ... ,wn),wi:=- ( ) ,i=l, ... ,n. 

ei PMVi 
Here p ~ 2 and k is a sufficiently large parameter. The superscript "-" denotes the nega-
tive part of a function. This time one gets bounds for ll(log(ei(PMvi)) + k)-llLoo(IR+;LP(O)) 
independent of Mand of p. Hence (log( ei(PMvi)) + k t ::; c or PMVi 2:: ei1

( exp(-c- k )). 
If Mis chosen such that -M < e;1(exp(-c - k)), i = 1, ... , n, then the components of 
v must be bounded from below by a constant independent of M. 

Remark 5.2. Existence can be proved also without the assumption ( 4.12) if qi ;::: 0 or 
qi ::::; 0 for i = 1, ... , nor if there are only two species taking par~ in the process (n = 2). 

6. Uniqueness 

Due to the nonlinearities of the flow expressions (2.6), uniqueness of solutions to (P) can-
not be proved by standard arguments without using additional regularity properties of 
the solutions. For example, boundedness of the gradients of the electrochemical potenti-
als would imply uniqueness. But such strong regularity assumption excludes practically 
relevant geometries as well as heterogeneous structures. 

In the case of Boltzmann statistics a quite satisfying uniqueness result has been proved 
in [GGl] for van Roosbroeck's system. This result rests on special properties of the 
exponential function and can be extended to (P) in case that Ui = ui exp( Vi). However, 
for more general functions ei, in particular for Ferrrii-Dirac statistics, there is still a gap 
between existence and uniqueness results, at least for N ;::: 3. For two space dimensions 
uniqueness has been proved in [GR, Ga]. Thus the situation is quite similar to Navier-
Stokes equations. 

In this section we want to state a uniqueness result under a quite weak regularity 
hypothesis. To this purpose we assume the functions di from (2.6) to have the following 
special structure 

di(·,y,e) = e~(y)ri(·,e). (6.1) 
Moreover, in addition to (3.5), we assume: 

9i := e~ o e;1 
: ]O, oo[ ~ ]O, oo[, i = 1, ... , n, 1s concave. (6.2) 

Finally, we replace (3.6) by: 

/i : n x m.N ----7 m.N satisfies the Caratheodory conditions, Ii( x, 0) = 0, ) 
/i is strongly monotone and Lipschitzian: 
(1i(x,e1)-1i(x,e2)) · (e1 - e2) 2:: 8le1 -e2!2, l1i(x,e)-1i(x,TJ)I::::; tie -TJI, (6·

3
) 

for x E 0, e,TJ E lR.N·, i = l, ... ,n, and some 5 > 0. 
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Remark 6.1. In the case of Boltzmann statistics ( cf. (2.3)) the condition (6.2) is trivially 
satisfied, since 9i is the identity .map. It can be shown that for Fermi-Dirac statistics ( cf. 
(2.4)) the function 9i is even strictly concave. 

Now we are ready to state a mild regularity condition with respect to the electrostatic 
potential ensuring uniqueness. 

Theorem 6.1. Let the additional conditions (6.1) - (6.3) be satisfied. Then a solution 
( u, v) to problem (P) is unique if either ei = exp, i = 1, ... , n, (Boltzmann statistics) or 

\lvo E L~c(lR+; LP(fl; lRN)) for some p > N. (6.4) 

Proof. Suppose there are two solutions (ui,vi), j = 1, 2, to (P) satisfying (6.4). We set 

(u,v) := (ul - u2,v1 -v2), ( := (1 - (2. 

For the proof of uniqueness we may and we will restrict our considerations to a compact 
interval of time, say S == [O, T]. By means of the convex functional ( 4.4) we define a 
"distance" 

Since the functions 'l/Ji from ( 4.1) are locally uniformly convex, there exists a positive 
constant c1 such that 

n 

Vt Es: c1(llva(t)ll11(n) + L llui(t)lli2(n))::; e(u1 (t);u 2(t)). (6.6) 
i=l 

Hence, because of Gronwall's lemma, it suffices to show that 
t n 

lJ(u1(t),u2(t))::; C2 J (llva(s)ll11(n) + ?= llui(s)lli2(n))ds. 
' 0 i=l 

(6.7) 

Now, setting 

va +v~ 
Vo== ---

2 
e ·(v~) + e ·(v~) -- -1 ( i i i i ) /' - + -Vi == ei 2 ' ~i == qiVo Vi, 

using the initial conditions along with ( 4.10) and the definition of the operator A, we 
obtain 
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(To simplify the notation we have omitted the time argument in the last expressions. 
This simplification will be used.also in the following calculations.) To prove (6. 7) we have 
to estimate the last expression from above. The only cumbersome term is the first one 
involving partial derivatives. Setting 

we can rewrite this term as follows 
2 

L e~(vf)Ti(·, V(/) · V((/ - (i) 
j=l 

2
1
9 
__ t_ e:( vf)T,(-, 'iJ C/) · (2g, \!(et - q,vg) - e:( vl)\lvf - e:( vf)'iJvl) 

i j=l 

2~, ( e:( vl )e:( vf)( 1'•( ·, 'iJ Cl) - 1'•( ·, 'iJ Cf)) · \!(Cl - c,2 
- q;( v~ - v~)) 

2 

+Gi ~ e~( vf )Ti(·, \7 (/) · V( (/ - qivg)). 
J=l 

Here, using the strong monotonicity and Lipschitz continuity of /i, the first term can be 
estimated easily. Since Gi ~ 0 by (6.2), it remains to estimate ll~IVvglllL2(n)· Under 
Boltzmann statistics Gi vanishes. Thus we can apply ( 6.4) and find by means of the 
inequalities of Holder, Gagliardo-Nirenberg, and Young 

lo Gil\lvgl 2 dx < llGillLP/(p-2)(n)lll\lvgllliP(O):::; cllvilli2p/(i>-2)(n)lll\lvgllliP(O) 
< cll\lvill~~(~;lRN) llvilli;~~/Pll Vv~lliP(O;lRN) 

< ill'iJv;ll~'(O;JRN) + cilv•llhnill'iJvgll~~~;;k) 
< ~ll'iJC;ll~'(n;JRN) + cll'iJvtll~'(n;JRN) + ciiu•llhcni· 

From this the theorem follows. D 

Remark 6.2. The electrostatic potential v0 satisfies the Poisson equation at any time 
t > 0. Hence, the condition (6.4) reduces to a standard question of regularity: Does the 
gradient of the solution to a linear elliptic boundary value problem with a right-hand side 
in L 00 (n) belong to LP(f!) for some p > N? Since the answer is positive for a Lipschitzian 
domain n and N = 2 (see [Gl]) the assumption (6.4) can be omitted if N = 2. For N ~ 3 
sufficient conditions for ( 6.4) to hold can be found in [Sh]. As to smooth data, a positive 
answer is given by the classical regularity theory ( cf. [L UJ). · 
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7. Equilib~ia and asymptotic behaviour 

First we want to describe the set of all steady states of the system under consideration. 
By a steady state we mean a pair ( u, v) E V* x W such that A( v, v) = 0, u = Ev, and 
Uo = :Ei=l qiUi. 

We know already from Theorem 4.3 that, if (u, v) is a solution to Problem (P), then 
all values u(t) remain in the affine subspace U + u0 of V* ( cf. ( 4.15) for the definition 
of U). Thus, one might expect that there exists a steady state ( u, v) such that u is in this 
subspace. The following theorem confirms this expectation. 

Theorem 7.1. For every u0 E V* such that ug = :E?=i qiu? and (u?, 1) > 0, i = 1, ... , n, 
there exists a unique (u,v) E V* x W such that A(v,v) = 0, u = Ev, and u EU+ u0 • 

Proof. Let u0 E V* be given such that ug = :Ei=1 qiu? and (u?, 1) > 0, i = 1, ... , n. 
1. Suppose that (ui,vi), j = 1,2, are steady states satisfying ui EU +u0 • Then 

(A( vi, vi), vi) = 0, (7.1) 

and this implies that vi E UJ.. (note that (7.1) implies the right hand side of (4.9) to 
vanish [of course with 'r/ replaced by (i]). Hence u 1 - u 2 E U, v 1 - v 2 E UJ.., and 

0 = (u1 -u2 ,v1 -v2
) = (Ev1 -Ev2 ,v1 -v2

). 

Since E is strictly monotone this is possible only if v1 = v 2 and u 1 = u 2 • 

2. We define 
Vv E V: ~o(v) := ~(v) + luJ.(v)-(u0 ,v); 

here ~ is the functional introduced in ( 4.2) and luJ. is defined by 

{ 
0, if v E UJ.., 

1uJ.(v) := "f V\UJ.. +oo, 1 v E . 

(7.2) 

It is easy to check that ~o is bounded from below and that lim ~o( v) = +oo. Conse-
llvllv-oo 

quently, there exists v E V such that ~o( v) = J~t ~o( v). Obviously, we have v E U J... 

3. Let (i := qivo +Vi, i = 1, ... , n, where v is the minimal element of ~o- Since v E UJ.., 
the functions (i are constant. Note that (u0 , v) = 2::?=1 (u?, (i).We define, for w E H 1(n), 

g(w) := f (~l\7wj 2 -fw) dx + f (!5:.w2 
- fr w) dr + t f uicpi((i - qiw)dx. Jn 2 Jr 2 i=l Jn 

The definition of g is made in such a way that v0 minimizes g. In particular, 'Pi( (i-qivo) E 
L1(n). Exploiting our assumptions with respect to the functions ei we can show that, for 
w E H 1(n) n L 00 (n), 

(g'(v0 ),w) = f (c:Vvo · \7w- (! + tqiuiei((i - qiva)w)dx + f (1wo - fr)wdI'. (7.3) Jn i=l Jr 
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Because Vo minimiz.es g, we have (g'( vo), w) = 0 for every w E H 1 (f2) n L00 (f2). Standard 
arguments show that the solution to the last equation is necessarily in L00 (f2). Therefore 
the functions Vo and Vi = (i - qiVo' i = 1, ... ' n are all in the space L 00 

( n). From v E 
u.i n L00 (f2; 1Rn+i) it follows that A( v, v) = 0. 
4. Next we define 

Since we know already that Vo E L00 (f2) the value h(71) is finite for every 'T/ E s.i. The 
definition of h implies that ( minimizes h ( ( defined as above). Hence, for every ( E s.i, 

0 = h'( ()(=~{in u;e,( (i - q,v0 )dx(; - ( u?, (;)}. 

Let u := Ev. Then Ui = u;ei( Vi), i = 1, ... , n, and the last equation shows that 
( (u1 - u~, 1), ... , (un - u~, 1)) E S. From (g'(v0), w) = 0 for w E H 1(fl) n L00 (f2) and 
(7.3) it follows that uo = 2:f=1 qiui ( cf. the defi~ition of E). These facts show that 
u EU +u0 • D 

In the remaining part of this section we are going to investigate the asymptotic be-
haviour of transient solutions as.time tends to infinity. 

In order to obtain satisfactory results we impose the following (rather mild) additional 
condition on the functions ro:f3 and rr a.(3 modeling the reactions: 

V x E fl, V v E 1R n+ 1 
: r o:f3 ( x, v, y) - r o:f3 ( x, v, z) ~ m( z) ( y - z), l 

\Ix Er, \Iv E JRn+l: r;f3(x,v,y)- r;f3(x,v,z) ~ m(z)(y - z), 
if y, z E JR, y > z, where m: 1R---? ]O, oo[ is continuous. 

(7.4) 

Under this hypothesis we have the following 

Theorem 7.2. Let ( u, v) be a solution to Problem (P). Then, for some µ > 0, 

where ( u, v) denotes the unique steady state in the affine space U + u0 (cf. Theorem 7.1). 

Proof. Let ( u, v) be the steady state in U + u0 • We introduce ((t), ((t), and (by 
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Then, taking into account that u == Ev and ii, == Ev, we obtain (using Poincare's inequa-
lity) 

n 
llva(t) - vallJfl(O) +?: llui(t) - uilli2(n) 

i=l 

::; c{ (uo(t) - uo, va(t) - vo) + i~ (ui(t) - ui, vi(t) - vi)} 
n _ n 

== c ~ (ui(t) - ui, (i(t) - (i) == c ~ (ui(t) - ui, (i(t)) 
~1 ~1 

(7.5) 

::; c i~ (IJui(t) - uillL2(n)llV(i(t)llL2(n;JRN) + (i(t) J0 (ui(t) - ui)dx). 

Since ( J0 (u1(t) - u1)dx, ... , J0 (un(t) - un)dx) ES the estimate (7.5) proves that 

n 

llvo(t) - vall1"1cn) + llui(t) - Uilli2cn) ::; c L llV(i(t)ll~2(n;JRN) + c1Ps((t)l 2
, (7.6) 

i=l 

where Ps((t) denotes the orthogonal projection of ((t) onto the subspace S. 

On the other hand starting from ( 4.9) and exploiting the hypothesis (7.4) one can 
easily show that, for some 5 > 0, 

n 

(A(v(t),v(t)),v(t)) ~ 52: llV(i(t)ll~2(n;lRN) + 5IPs((t)l2. (7.7) 
i=l 

Finally, we note that 

ll>'(u(t)) - ll>'(U) = lo iJV(vo(t) - Vo)J2dx +fr ~Jvo(t) - V0 J
2dr 

+ t f ui ~uif:i (e-;1(y) - e-;1(uifui))dy. 
i=l Jn lui/Ui 

Combining the preceding relations we find that, for sufficiently smallµ > 0, 

n 

exp(µt) (llva(t) - vall1"1cn) + L llui(t) - uilli2cn)) 
i=l 

::; cexp(µt)(w( u( t)) - '11( u)) 

= c (w(u0
) - ll>'(ii.)) +cl exp(µs)(µ(ll>'(u(s)) - ll>'(U))- (A(v(s),v(s)),v(s)) )ds 

::; c (w(u0
) - w(u)). 

This proves the desired asymptotic behaviour of ( u, v ). D 
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