
Weierstraÿ-Institutfür Angewandte Analysis und Sto
hastikim Fors
hungsverbund Berlin e.V.Preprint ISSN 0946 � 8633Sequential testing problems for some di�usionpro
essesPavel Gapeev1 , 2submitted: O
tober 27, 2006
1 Weierstrass Institutefor Applied Analysis and Sto
hasti
sMohrenstrasse 3910117 BerlinGermanye-mail: gapeev�wias-berlin.de

2 Russian A
ademy of S
ien
esInstitute of Control S
ien
esProfsoyuznaya Str. 65117997 Mos
owRussia
No. 1178Berlin 2006

W I A S2000 Mathemati
s Subje
t Classi�
ation. 60G40, 62M20, 34K10, 62C10, 62L15, 60J60.Key words and phrases. Sequential testing, di�usion pro
ess, optimal stopping, free-boundaryproblem, smooth-�t 
ondition, It�'s formula.This resear
h was supported by Deuts
he Fors
hungsgemeins
haft through the SFB 649 E
o-nomi
 Risk.



Edited byWeierstraÿ-Institut für Angewandte Analysis und Sto
hastik (WIAS)Mohrenstraÿe 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



Abstra
tWe study the Bayesian problem of sequential testing of two simple hy-potheses about the lo
al drift of an observed di�usion pro
ess. The optimalstopping time is found as the �rst time when the a posteriori probability pro-
ess leaves the region de�ned by two sto
hasti
 boundaries depending on theobservation pro
ess. It is shown that under some nontrivial relationships onthe 
oe�
ients of the observed di�usion the problem admits a 
losed formsolution. The method of proof is based on embedding the initial probleminto a two-dimensional optimal stopping problem and solving the equivalentfree-boundary problem by means of the smooth-�t 
onditions.1. Introdu
tionThe problem of sequential testing of two simple hypotheses about the lo
al drift
µ(x) of an observed di�usion pro
ess seeks to determine as soon as possible andwith minimal error probabilities if the true drift 
oe�
ient is either µ0(x) or µ1(x).This problem admits two di�erent formulations (see Wald [20℄). In the Bayesianformulation it is assumed that the drift 
oe�
ient µ(x) has an a priori given distri-bution, and in the variational formulation no probabilitsi
 assumption is made aboutthe unknown drift µ(x). In this paper we only study the Bayesian formulation.By means of the Bayesian approa
h, Wald and Wolfowitz [21℄-[22℄ proved the opti-mality of the sequential probability ratio test (SPRT) in the variational formulationof the problem for sequen
es of i.i.d. observations. Dvoretzky, Kiefer and Wolfowitz[2℄ pointed out that if the (
ontinuous time) likelihood ratio pro
ess has stationaryindependent in
rements, then the SPRT remains optimal in the variational problem.Mikhalevi
h [12℄ and Shiryaev [18℄ (see also [19; Chapter IV℄) obtained an expli
itsolution of the Bayesian problem for an observed Wiener pro
ess by redu
ing theinitial optimal stopping problem to a free-boundary problem for an ordinary se
-ond order operator. A 
omplete proof of the statement of [2℄ (under some mildassumptions) was given by Irle and S
hmitz [7℄. Peskir and Shiryaev [14℄ obtainedan expli
it solution of the Bayesian problem of testing hypotheses about the in-tensity of an observed Poisson pro
ess by solving a free-boundary problem for adi�erential-di�eren
e operator. Sequential testing problems for a 
ompound Pois-son pro
ess having exponentially distributed jumps were expli
itly solved in [4℄.Re
ently, Dayanik and Sezer [1℄ obtained a solution of the Bayesian sequential test-ing problem for a general 
ompound Poisson pro
ess. A �nite horizon version ofthe Wiener sequential testing problem was studied in [5℄. The main purpose of this1



paper is to present a solution of the problem of testing hypotheses about the lo-
al drift of an observed di�usion pro
ess in the Bayesian formulation. In this 
asethe optimal Bayes stopping time is the �rst time when the a posteriori probabilitypro
ess leaves the region de�ned by two sto
hasti
 boundaries depending on theobservation pro
ess.In the present paper we make an embedding of the initial Bayesian problem intoan extended optimal stopping problem for a two-dimensional (time-homogeneousstrong) Markov di�usion pro
ess (
onsisting of the a posteriori probability pro
essand the observation pro
ess). We show that the 
ontinuation region (for the aposteriori probability pro
ess) is determined by two sto
hasti
 boundaries dependingon the observation pro
ess where the behavior of the boundaries is 
hara
terized bythe signal/noise ratio pro
ess. In order to �nd analyti
 expressions for the valuefun
tion and the stopping boundaries under some spe
ial nontrivial relationshipson 
oe�
ients of the observed di�usion, we formulate an equivalent free-boundaryproblem. By applying smooth-�t 
onditions we show that the free-boundary problemadmits an expli
it solution and the boundaries are uniquely determined from a
oupled system of trans
endental equations. Then we verify that the solution of thefree-boundary problem turns out to be a solution of the initial extended optimalstopping problem.2. Formulation and solution of the Bayesian problemIn the Bayesian formulation of the problem (see [19; Chapter IV, Se
tion 2℄ for the
ase of Wiener pro
ess) it is assumed that we observe a traje
tory of the di�usionpro
ess X = (Xt)t≥0 with drift µ0(x)+θ(µ1(x)−µ0(x)) where the random parameter
θ may be 1 or 0 with probability π or 1 − π , respe
tively.2.1. For a pre
ise probabilisti
 formulation of the Bayesian problem it is 
onvenientto assume that all our 
onsiderations take pla
e on a probability spa
e (Ω,F , Pπ)where the probability measure Pπ has the following stru
ture:

Pπ = πP1 + (1 − π)P0 (2.1)for any π ∈ [0, 1]. Let θ be a random variable taking two values 1 and 0 withprobabilities Pπ[θ = 1] = π and Pπ[θ = 0] = 1 − π , and let W = (Wt)t≥0 be astandard Wiener pro
ess started at zero under Pπ . It is assumed that θ and W areindependent.It is further assumed that we observe a 
ontinuous pro
ess X = (Xt)t≥0 with the(open) state spa
e E ⊆ R and solving the sto
hasti
 di�erential equation:
dXt = [µ0(Xt) + θ(µ1(Xt) − µ0(Xt))] dt + σ(Xt) dWt (X0 = x) (2.2)where the fun
tions µi(x) and σ(x) are Lips
hitz 
ontinuous on E , i.e., there existsa 
onstant C > 0 su
h that:

[µi(x) − µi(x
′)]2 + [σ(x) − σ(x′)]2 ≤ C[x − x′]2 (2.3)2



for all x, x′ ∈ E and i = 0, 1 . Thus, from [11; Theorem 4.6℄ it follows that under�xed θ = i equation (2.2) has a unique strong solution, and hen
e, Pπ[X ∈ · |θ =
i] = Pi[X ∈ · ] is the distribution law of a homogeneous di�usion pro
ess (startingat some �xed point x ∈ E ) with drift µi(x) and di�usion 
oe�
ient σ2(x) for
i = 0, 1 . We will also assume that either µ0(x) < µ1(x) or µ0(x) > µ1(x) holds and
σ2(x) > 0 for all x ∈ E . Let π and 1 − π play the role of a priopi probabilities ofthe statisti
al hypotheses:

H1 : θ = 1 and H0 : θ = 0 (2.4)respe
tively.Being based upon the 
ontinuous observation of X our task is to test sequentiallythe hypotheses H1 and H0 with a minimal loss. For this, we 
onsider a sequentialde
ision rule (τ, d) where τ is a stopping time of the observed pro
ess X (i.e.,a stopping time with respe
t to the natural �ltration FX
t = σ{Xs | 0 ≤ s ≤ t}generated by the pro
ess X for t ≥ 0), and d is an FX

τ -measurable fun
tion takingon values 0 and 1 . After stopping the observations at time τ , the terminal de
isionfun
tion indi
ates whi
h hypothesis should be a

epted a

ording to the followingrule: if d = 1 we a

ept H1 , and if d = 0 we a

ept H0 . The problem 
onsists of
omputing the risk fun
tion:
V (π) = inf

(τ,d)
Eπ[τ + aI(d = 0, θ = 1) + bI(d = 1, θ = 0)] (2.5)and �nding the optimal de
ision rule (τ∗, d∗), 
alled the π -Bayes de
ision rule,at whi
h the in�mum in (2.5) is attained. Here Eπ[τ ] is the average 
ost of theobservations, and aPπ[d = 0, θ = 1] + bPπ[d = 1, θ = 0] is the average loss due to awrong terminal de
ision, where a > 0 and b > 0 are some given 
onstants.2.2. By means of standard arguments (see [19; pages 166-167℄) one 
an redu
e theBayesian problem (2.5) to the optimal stopping problem:

V (π) = inf
τ

Eπ[τ + ga,b(πτ )] (2.6)for the a posteriori probability pro
ess πt = Pπ[θ = 1|FX
t ] for t ≥ 0 with Pπ[π0 =

π] = 1 . Here ga,b(π) = aπ∧b(1−π) for π ∈ [0, 1], and the optimal de
ision fun
tionis given by d∗ = 1 if πτ∗ ≥ c, and d∗ = 0 if πτ∗ < c, where here and in the sequelwe set c = b/(a + b).2.3. Sin
e for i = 0, 1 
ondition (2.3) is assumed to be satis�ed, by means ofGirsanov theorem for di�usion-type pro
esses [11; Theorem 7.19℄ we get that theloglikelihood ratio pro
ess Z = (Zt)t≥0 de�ned as logarithm of the Radon-Nikodymderivative:
Zt = log

d(P1|F
X
t )

d(P0|FX
t )

(2.7)(here Pi|F
X
t denotes the restri
tion of Pi to FX

t for i = 0, 1) takes the form:
Zt =

∫ t

0

µ1(Xs) − µ0(Xs)

σ2(Xs)
dXs −

1

2

∫ t

0

µ2
1(Xs) − µ2

0(Xs)

σ2(Xs)
ds (2.8)3



for all t ≥ 0 . A

ording to the arguments in [19; pages 180-181℄, the a posterioriprobability pro
ess (πt)t≥0 
an be expressed as:
πt =

(
π

1 − π
eZt

) /(
1 +

π

1 − π
eZt

) (2.9)and, by virtue of It�'s formula (see, e.g., [11; Theorem 4.4℄), it solves the equation:
dπt =

µ1(Xt) − µ0(Xt)

σ(Xt)
πt(1 − πt) dW t (π0 = π) (2.10)where, by means of P. Lévy's theorem [17; Chapter IV, Theorem 3.6℄, the innovationpro
ess W = (W t)t≥0 de�ned by:

W t =

∫ t

0

dXs

σ(Xs)
−

∫ t

0

(
µ0(Xs)

σ(Xs)
+ πs

µ1(Xs) − µ0(Xs)

σ(Xs)

)
ds (2.11)is a standard Wiener pro
ess. Therefore, from (2.11) it follows that the pro
ess

X = (Xt)t≥0 admits the representation:
dXt = [µ0(Xt) + πt(µ1(Xt) − µ0(Xt))] dt + σ(Xt) dW t (X0 = x). (2.12)Let us suppose that the signal/noise ratio fun
tion r(x) de�ned by:

r(x) =
µ1(x) − µ0(x)

σ(x)
(2.13)is also Lips
hitz 
ontinuous, i.e. there exists a 
onstant C ′ > 0 su
h that 
ondition:

[r(x) − r(x′)]2 ≤ C ′[x − x′]2 (2.14)holds for all x, x′ ∈ E , and there are 
onstants r∗ and r∗ su
h that the inequalities:
0 < r∗ ≤ r(x) ≤ r∗ < ∞ (2.15)are satis�ed for all x ∈ E . Hen
e, by means of Remark to [11; Theorem 4.6℄ (seealso [13; Theorem 5.2.1℄), we 
on
lude that the pro
ess (πt, Xt)t≥0 turns out to bea unique strong solution of the (two-dimensional) sto
hasti
 di�erential equation(2.10)+(2.12), and thus, by virtue of [13; Theorem 7.2.4℄, it is a (time-homogeneousstrong) Markov pro
ess with respe
t to its natural �ltration whi
h obviously 
oin-sides with (FX

t )t≥0 . Therefore, the in�mum in (2.6) is taken over all stopping timesof (πt, Xt)t≥0 being a Markovian su�
ient statisti
 in the problem (see [19; Chap-ter II, Se
tion 15℄).2.4. For the problem (2.6) let us 
onsider the following extended optimal stoppingproblem for the Markov pro
ess (πt, Xt)t≥0 :
V (π, x) = inf

τ
Eπ,x[τ + ga,b(πτ )] (2.16)4



where Pπ,x is a measure of the di�usion pro
ess (πt, Xt)t≥0 starting at the point
(π, x) and solving the (two-dimensional) equation (2.10)+(2.12), and the in�mumin (2.16) is taken over all stopping times τ of the pro
ess (πt, Xt)t≥0 su
h that
Eπ,x[τ ] < ∞ for all (π, x) ∈ [0, 1] × E .2.5. Now let us determine the stru
ture of the optimal stopping time in the problem(2.16).(i) First, applying applying It�-Tanaka-Meyer formula (see, e.g., [8; Chapter V,(5.52)℄ or [16; Chapter IV, Theorem 51℄) to the fun
tion ga,b(π) = aπ ∧ b(1−π), weget:

ga,b(πt) = ga,b(π) +

∫ t

0

(ga,b)π(πs) ds +
1

2

∫ t

0

∆π(ga,b)π(πs) dℓc
s(π) + N c

t (2.17)where ∫ t

0
∆π(ga,b)π(πs)dℓc

s(π) = (−b − a)ℓc
t(π), the pro
ess (ℓc

t(π))t≥0 is the lo
altime of (πt)t≥0 at the point c given by:
ℓc
t(π) = lim

ε↓0

1

2ε

∫ t

0

I(c − ε < πs < c + ε) r2(Xs)π
2
s(1 − πs)

2 ds (2.18)as a limit in probability, and for any (FX
t )t≥0 -stopping time τ satisfying Eπ,x[τ ] < ∞the pro
ess (N c

τ∧t,F
X
t , Pπ,x)t≥0 de�ned by N c

τ∧t =
∫ τ∧t

0
(ga,b)π(πs)I(πs 6= c)r(Xs)πs

(1 − πs)dW s is a 
ontinuous (uniformly integrable) martingale.Let us �x some (π, x) from the 
ontinuation region C and let τ∗ = τ∗(π, x) de-note the optimal stopping time in the problem (2.16). By applying Doob's optionalsampling theorem (see, e.g., [9; Chapter I, Theorem 1.39℄ or [17; Chapter II, Theo-rem 3.1℄) and by using (2.17), it follows that:
V (π, x) = Eπ,x[τ∗ + ga,b(πτ∗)] = ga,b(π) + Eπ,x

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π)

] (2.19)and hen
e, by virtue of general optimal stopping theory for Markov pro
esses (see[19; Chapter III℄), we have:
V (π, x) − ga,b(π) = Eπ,x

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π)

]
< 0. (2.20)Then taking any π′ su
h that π < π′ ≤ c or c ≤ π′ < π and using the expli
itexpression (2.9), from (2.17)-(2.18) we obtain:

V (π′, x) − ga,b(π
′) ≤ Eπ′,x

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π′)

]
≤ Eπ,x

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π)

](2.21)and thus, by means of (2.20), we see that (π′, x) ∈ C . Therefore, a

ording to thegeneral optimal stopping theory (see, e.g., [19℄ and [15℄), these arguments (togetherwith the easily proved 
on
avity of the fun
tion π 7→ V (π, x) on [0, 1], see also5



[10℄) show that there exists a 
ouple of fun
tions (g0(x), g1(x)), x ∈ E , su
h that
0 ≤ g0(x) ≤ c ≤ g1(x) ≤ 1 , and the 
ontinuation region for the optimal stoppingproblem (2.16) is an open set of the form:

C = {(π, x) ∈ [0, 1] × E | π ∈ 〈g0(x), g1(x)〉} (2.22)and the stopping region is the 
losure of the set:
D = {(π, x) ∈ [0, 1] × E | π ∈ [0, g0(x)〉 ∪ 〈g1(x), 1]}. (2.23)(ii) Now for given (π, x) ∈ C let us take x′ ∈ E su
h that x′ < x if x < c or x < x′ if

x > c. Then using the fa
ts that (πt, Xt)t≥0 is a time-homogeneous Markov pro
essand τ∗ = τ∗(π, x) does not depend on x′ , from (2.17)-(2.18) we obtain:
V (π, x′) − ga,b(π) ≤ Eπ,x′

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π)

] (2.24)
≤ Eπ,x

[
τ∗ −

1

2
(a + b)ℓc

τ∗
(π)

]
= V (π, x) − ga,b(π)and hen
e, by means of (2.20), we see that (π, x′) ∈ C . Therefore, we may 
on
ludein (2.22)-(2.23) that the boundary x 7→ g0(x) is in
reasing (de
reasing) and theboundary x 7→ g1(x) is de
reasing (in
reasing) on E when the fun
tion r(x) isin
reasing (de
reasing), respe
tively.(iii) Next, let us observe that the value fun
tion V (π, x) from (2.16) and the bound-aries (g0(x), g1(x)) from (2.22)-(2.23) also depend on r(x) and denote them here by

V∗(x, π) and V ∗(π, x) and (A∗, B∗) and (A∗, B∗) when r(x) = r∗ and r(x) = r∗ forall x ∈ E , respe
tively. Using the fa
t that x 7→ V (π, x) is an in
reasing (de
reas-ing) fun
tion when r(x) is in
reasing (de
reasing) on E , and V (π, x) = ga,b(π) forall π ∈ [0, g0(x)] ∪ [g1(x), 1], we 
on
lude that 0 < A∗ ≤ g0(x) ≤ A∗ < c < B∗ ≤
g1(x) ≤ B∗ < 1 for all x ∈ E . Here we note that if r∗ = r∗ then A∗ = g0(x) = A∗and B∗ = g1(x) = B∗ for all x ∈ E , where 0 < A∗ < A∗ < c < B∗ < B∗ < 1 areuniquely determined from the system (4.85) in [19; Chapter IV℄.2.6. Summarizing the fa
ts proved in Subse
tion 2.5 above we may 
on
lude thatthe following optimal de
ision rule is optimal in the extended problem (2.16):

τ∗ = inf{t ≥ 0 | πt /∈ 〈g0(Xt), g1(Xt)〉} (2.25)
d∗ =

{
1, if πτ∗ = g1(Xτ∗)
0, if πτ∗ = g0(Xτ∗)

(2.26)(whenever Eπ,x[τ∗] < ∞) where the two boundaries (g0(x), g1(x)), x ∈ E , satisfythe following properties:
g0(x) : E → [0, 1] is 
ontinuous and in
reasing (de
reasing) (2.27)
g1(x) : E → [0, 1] is 
ontinuous and de
reasing (in
reasing) (2.28)
A∗ ≤ g0(x) ≤ A∗ < c < B∗ ≤ g1(x) ≤ B∗ for all x ∈ E (2.29)6



whenever r(x) is an in
reasing (de
reasing) fun
tion on E , respe
tively. Here
(A∗, B∗) and (A∗, B∗) satisfying 0 < A∗ < A∗ < c < B∗ < B∗ < 1 are the op-timal stopping points for the 
orresponding in�nite horizon problem with r(x) = r∗and r(x) = r∗ for all x ∈ E , respe
tively, uniquely determined from the system oftrans
endental equations (4.85) in [19; Chapter IV℄.2.7. Let us further assume that the state spa
e of the pro
ess X = (Xt)t≥0 is
E = 〈−ζ,∞〉 for some ζ ∈ R �xed, and under 
onditions of Subse
tions 2.1 and 2.3the relationship:

µi(x) =
ηiσ

2(x)

x + ζ
(2.30)holds for all x ∈ E and some 
onstants ηi ∈ R, i = 0, 1 , su
h that η0 6= η1 and

η0 + η1 = 1 . Let us de�ne the pro
ess Y = (Yt)t≥0 by:
Yt = log

πt

1 − πt

−
1

η
log

x + ζ

Xt + ζ
(2.31)with η = 1/(η1 − η0). From the stru
ture of (2.31) it is easily seen that there isa one-to-one 
orresponden
e between the pro
esses (πt, Xt)t≥0 and (πt, Yt)t≥0 , andthus, the latter is also a (time-homogeneous strong) Markov pro
ess with respe
t toits natural �ltration, whi
h 
oin
ides with (FX

t )t≥0 . Deriving the expression for Xtfrom (2.31) and substituting it into (2.10), we obtain:
dπt =

σ
(
(x + ζ)e−ηYt [πt/(1 − πt)]

η − ζ
)

η(x + ζ)e−ηYt [πt/(1 − πt)]η
πt(1 − πt) dW t (π0 = π). (2.32)Di�erentiating by It�'s formula the expression (2.31) and using the representations(2.10) and (2.12) as well as the assumption (2.30) with η0 6= η1 and η0 + η1 = 1 , weget dYt = 0 and thus:

Yt = log
π

1 − π
(2.33)for all t ≥ 0 .2.8. By means of standard arguments it is shown that under the assumptions ofSubse
tion 2.7 the optimal stopping problems (2.6) and (2.16) are equivalent to:

Ṽ (π, y) = inf
τ

Eπ[τ + ga,b(πτ )] (2.34)where the in�mum is taken over all stopping times τ of the pro
ess (πt, Yt)t≥0 su
hthat Eπ[τ ] < ∞ for all (π, y) ∈ [0, 1]×R and y = log[π/(1− π)] for ea
h π ∈ 〈0, 1〉and x ∈ E = 〈−ζ,∞〉 �xed. It also follows that there exists a 
ouple of fun
tions
(h0(y), h1(y)), y ∈ R, su
h that the 
ontinuation region C from (2.22) is equivalentto:

C̃ = {(π, y) ∈ [0, 1] × R | π ∈ 〈h0(y), h1(y)〉} (2.35)and the set D from (2.23) is equivalent to:
D̃ = {(π, y) ∈ [0, 1] × R | π ∈ [0, h0(y)〉 ∪ 〈h1(y), 1]} (2.36)7



for ea
h y ∈ R and x ∈ E �xed.2.9. If the assumption (2.30) with η0 6= η1 and η0 + η1 = 1 holds, then by meansof standard arguments it is shown that the in�nitesimal operator L̃ of the pro
ess
(πt, Yt)t≥0 from (2.32)-(2.33) a
ts on a fun
tion F ∈ C2,0(〈0, 1〉 × R) like:

(L̃F )(π, y) =
r2(x; π, y)

2
π2(1 − π)2∂2F

∂π2
(π, y) (2.37)with

r(x; π, y) =
σ ((x + ζ)e−ηy[π/(1 − π)]η − ζ)

η(x + ζ)e−ηy[π/(1 − π)]η
(2.38)for all (π, y) ∈ 〈0, 1〉 ∈ R and ea
h x ∈ E = 〈−ζ,∞〉 �xed.Now let us use the results of general theory of optimal stopping problems for 
on-tinuous time Markov pro
esses (see, e.g., [6℄, [19; Chapter III, Se
tion 8℄ and [15℄)to formulate the 
orresponding free-boundary problem for the unknown value fun
-tion (π, y) 7→ Ṽ (π, y) from (2.16) (with ga,b(π) = aπ ∧ b(1 − π)) and the 
ouple ofboundaries (h0(y), h1(y)), y ∈ R, from (2.35)-(2.36):

(L̃Ṽ )(π, y) = −1 for (π, y) ∈ C̃ (2.39)
Ṽ (π, y)

∣∣
π=h0(y)+

= ah0(y), Ṽ (π, y)
∣∣
π=h1(y)−

= b(1 − h1(y)) (2.40)
∂Ṽ

∂π
(π, y)

∣∣
π=h0(y)+

= a,
∂Ṽ

∂π
(π, y)

∣∣
π=h1(y)−

= −b (2.41)
Ṽ (π, y) = ga,b(π) for (π, y) ∈ D̃ (2.42)
Ṽ (π, y) ≤ ga,b(π) for (π, y) ∈ C̃ (2.43)where C̃ and D̃ are given by (2.35) and (2.36), and the instantaneous stopping
onditions (2.40) and the smooth-�t 
onditions (2.41) are assumed to be satis�ed forall y ∈ R and ea
h x ∈ E �xed.Note that by Dynkin's superharmoni
 
hara
terization of the value fun
tion (see[3℄ and [19℄) it follows that Ṽ (π, y) from (2.34) is the largest fun
tion satisfying(2.39)-(2.40) and (2.42)-(2.43) for ea
h y ∈ R and x ∈ E �xed.2.10. Integrating the equation (2.39) with some h1(y) ∈ 〈c, 1〉 �xed for any given

y ∈ R and using the boundary 
onditions (2.40)-(2.41), we obtain:
Ṽ (π, y; h1(y)) = b(1 − h1(y)) −

∫ h1(y)

π

∫ h1(y)

u

2

r2(x; v, y)v2(1 − v)2
dvdu (2.44)with r(x; π, y) given by (2.38) for all π ∈ 〈0, h1(y)] and ea
h x ∈ E = 〈−ζ,∞〉�xed.From (2.44) it is easily seen that for any y ∈ R given and �xed the fun
tion π 7→

Ṽ (π, y; h1(y)) is 
on
ave on 〈0, 1〉 , and hen
e Ṽ (h′
1(y), y; h′′

1(y)) < Ṽ (h′
1(y), y; h′

1(y))for 0 < h′
1(y) < h′′

1(y) < 1 . This means that for di�erent h′
1(y) and h′′

1(y) the 
urves8



π 7→ Ṽ (π, y; h′
1(y)) and π 7→ Ṽ (π, y; h′′

1(y)) have no points of interse
tion on thewhole interval π ∈ 〈0, h′
1(y)]. From (2.44) it also follows that Ṽ (π, y; h1(y)) →

−∞ as π ↓ 0 for all h1(y) ∈ [c, 1〉 and Ṽ (π, y; 1−) < 0 for all π ∈ 〈0, 1〉 and
Ṽ (1−, y; 1−) = 0 . In this 
ase, for some h̃1(y) ∈ 〈c, 1〉 the 
urve π 7→ Ṽ (π, y; h̃1(y))interse
ts the line π 7→ aπ at some point h0(y) ∈ 〈0, c〉 . Sin
e for di�erent h′

1(y) ∈

〈c, 1〉 the 
urves π 7→ Ṽ (π, y; h′
1(y)) do not interse
t ea
h other on the intervals

〈0, h′
1(y)〉 , we may 
on
lude that there exists a unique point h1(y) obtained bymoving the point h′

1(y) from h̃1(y) and su
h that in some point h0(y) ∈ 〈0, c〉the boundary 
onditions (2.40)-(2.41) hold. It thus follows that the boundaries
(h0(y), h1(y)) are uniquely determined from the system:

b + a =

∫ h1(y)

h0(y)

2

r2(x; u, y)u2(1 − u)2
du (2.45)

b(1 − h1(y)) = ah0(y) −

∫ h1(y)

h0(y)

∫ h1(y)

u

2

r2(x; v, y)v2(1 − v)2
dvdu (2.46)for ea
h y ∈ R and x ∈ E = 〈−ζ,∞〉 �xed.2.11. Making use of the fa
ts proved above we are now ready to formulate the mainresult of the paper.Theorem 2.1. Suppose that 
onditions (2.3) and (2.14)-(2.15) hold for all x ∈

E = 〈−ζ,∞〉 and some ζ ∈ R �xed, and assumption (2.30) is satis�ed with η0 6= η1and η0 + η1 = 1. Then in the Bayesian problem (2.6)+(2.16)+(2.34) of testing twosimple hypotheses (2.4) for the pro
ess (2.2) the value fun
tion has the expression:
V (π) = V (π, x) = Ṽ (π, y) =

{
Ṽ (π, y; h1(y)), if π ∈ 〈h0(y), h1(y)〉

ga,b(π), if π ∈ [0, h0(y)] ∪ [h1(y), 1]
(2.47)and the optimal π -Bayes de
ision rule is expli
itly given by:

τ∗ = inf{t ≥ 0 | πt /∈ 〈h0(y), h1(y)〉} (2.48)
d∗ =

{
1, if πτ∗ = h1(y)

0, if πτ∗ = h0(y)
(2.49)where the two boundaries (h0(y), h1(y)) are 
hara
terized as a unique solution of the
oupled system of equations (2.45)-(2.46) for y = log[π/(1−π)] and ea
h π ∈ 〈0, 1〉and x ∈ E �xed.Proof. It remains to show that the fun
tion (2.47) 
oin
ides with the value fun
tion(2.34) and that the stopping time τ∗ from (2.48) with the boundaries (h0(y), h1(y)),

y ∈ R, spe
i�ed above is optimal. Let us denote by Ṽ (π, y) the right-hand side ofthe expression (2.47). It follows by 
onstru
tion from the previous se
tion that thefun
tion Ṽ (π, y) solves the system (2.39)-(2.42). Thus, applying It�'s formula to9



Ṽ (πt, y), we obtain:
Ṽ (πt, y) = Ṽ (π, y) +

∫ t

0

(L̃Ṽ )(πs, y)I(πs 6= h0(y), πs 6= h1(y)) ds + M̃t (2.50)where the pro
ess (M̃t)t≥0 de�ned by:
M̃t =

∫ t

0

∂Ṽ

∂π
(πs, y)I(πs 6= h0(y), πs 6= h1(y)) r(Xt)πs(1 − πs) dW s (2.51)is a 
ontinuous lo
al martingale under Pπ with respe
t to (FX

t )t≥0 .By using the arguments above it 
an be veri�ed that (L̃Ṽ )(π, y) ≥ −1 for all
(π, y) ∈ 〈0, 1〉 × R su
h that π 6= h0(y) and π 6= h1(y). Moreover, by means ofstandard arguments and using the 
onstru
tion of Ṽ (π, y) above it 
an be 
he
kedthat the property (2.43) also holds that together with (2.39)-(2.40)+(2.42) yields
Ṽ (π, y) ≤ ga,b(π) for all (π, y) ∈ [0, 1] × R. Observe that the time spent by thepro
ess π at the boundaries (h0(y), h1(y)), y ∈ R, is of Lebesgue measure zero,that allows to extend (L̃Ṽ )(π, y) arbitrarily to π = h0(y) and to π = h1(y) andthus to ignore the indi
ators in (2.50)-(2.51). Hen
e, from the expressions (2.50)and the stru
ture of the stopping time in (2.48) it follows that the inequalities:

τ + ga,b(πτ ) ≥ τ + Ṽ (πτ , y) ≥ Ṽ (π, y) + M̃τ (2.52)hold for any stopping times τ of the pro
ess (πt)t≥0 started at π ∈ [0, 1] and forea
h y ∈ R.Let (τn)n∈N be an arbitrary lo
alizing sequen
es of stopping times for the pro
esses
(M̃t)t≥0 . Taking in (2.52) the expe
tation with respe
t to the measure Pπ , bymeans of the optional sampling theorem (see, e.g., [9; Chapter I, Theorem 1.39℄ or[17; Chapter II, Theorem 3.1℄), we get:
Eπ [τ ∧ τn + ga,b(πτ∧τn

)] ≥ Eπ

[
τ ∧ τn + Ṽ (πτ∧τn

, y)
]
≥ Ṽ (π, y) + Eπ

[
M̃τ∧τn

]
= Ṽ (π, y)(2.53)for all (π, y) ∈ [0, 1]×R. Hen
e, letting n go to in�nity and using Fatou's lemma,for any stopping times τ su
h that Eπ[τ ] < ∞ we obtain that the inequalities:

Eπ [τ + ga,b(πτ )] ≥ Eπ

[
τ + Ṽ (πτ , y)

]
≥ Ṽ (π, y) (2.54)are satis�ed for all (π, y) ∈ [0, 1] × R.By virtue of the fa
t that the fun
tion Ṽ (π, y) together with the boundaries h0(y)and h1(y) satisfy the system (2.39)-(2.43), by the stru
ture of the stopping time τ∗in (2.48) and the expressions (2.50) it follows that the equalities:

τ∗ ∧ τn + ga,b(πτ∗∧τn
) = τ∗ ∧ τn + Ṽ (πτ∗∧τn

, y) = Ṽ (π, y) + M̃τ∗∧τn
(2.55)hold for all (π, y) ∈ [0, 1] × R and any lo
alizing sequen
e (τn)n∈N of (M̃t)t≥0 .Note that, by means of standard arguments and using the stru
ture of the pro
ess10



(2.32) and of the stopping time (2.48), we have Eπ[τ∗] < ∞ for all π ∈ [0, 1]. Hen
e,letting n go to in�nity and using 
onditions (2.39)-(2.40), we 
an apply the Lebesguebounded 
onvergen
e theorem for (2.55) to obtain the equality:
Eπ [τ∗ ∧ τn + ga,b(πτ∗∧τn

)] = Ṽ (π, y) (2.56)for all (π, y) ∈ [0, 1] × R, whi
h together with (2.54) dire
tly imply the desiredassertion. �A
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