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Abstract

Digital imaging has become omnipresent in the past years with a bulk of appli-

cations ranging from medical imaging to photography. When pushing the limits of

resolution and sensitivity noise has ever been a major issue. However, commonly used

non-adaptive filters can do noise reduction at the cost of a reduced effective spatial

resolution only.

Here we present a new package adimpro for R, which implements the Propagation-

Separation approach by Polzehl and Spokoiny (2006) for smoothing digital images.

This method naturally adapts to different structures of different size in the image

and thus avoids oversmoothing edges and fine structures. We extend the method for

imaging data with spatial correlation. Furthermore we show how the estimation of

the dependence between variance and mean value can be included. We illustrate the

use of the package through some examples.

1 Introduction

Digital imaging has seen a huge progress over the last decade through the broad availabil-

ity of digital cameras. An image in its digital form can easily undergo image processing

Gonzalez and Woods (2002) in order to improve its quality, to enhance certain details, or

to simply achieve some artistic effect. In the search for ever increased resolution and sensi-

tivity denoising has been a major issue since the sources of noise are inherently connected

with the physical properties of the technology. Many of the cameras therefore include

smoothing algorithms in their imaging process in order to achieve a maximum of image

quality for any lightening conditions.

However, denoising algorithms have to balance the trade-off between denoising and preser-

vation of structure. Non-adaptive Gaussian filter typically tend to oversmooth edges and

thus reduce noise at the cost of sharpness of the image. In order to overcome such a

drawback a new spatially adaptive smoothing algorithm has been proposed in a series of

papers (see e.g. Polzehl and Spokoiny (2000, 2006)). In contrast to classical non-adaptive

filters the smoothing method based on the Propagation-Separation (PS) approach natu-

rally adapts to different structures of different size in the image. This is realized through

local adaptive weighting schemes which ensure two main properties of the algorithm from
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which it draws its name. The propagation property means, that the smoothing algorithm

behaves like a non-adaptive filter in homogeneous regions. On the other hand the sep-

aration property characterizes the restriction of the weighting scheme to homogeneous

regions with respect to a specified model for the image data. The procedure has been

very successfully applied to the analysis of functional magnetic resonance imaging Polzehl

and Spokoiny (2001); Tabelow et al. (2006). Furthermore it has been suggested to use

this adaptive smoothing method in the context of image denoising Polzehl and Spokoiny

(2000, 2007).

In this paper we present an implementation of an algorithm based on PS for denoising of

grayscale and color images. The package adimpro is available for R R Development Core

Team (2005).

Let i = (ih, iv) ∈ IR2, 1 ≤ ih ≤ nh, 1 ≤ iv ≤ nv denote the n = nh×nv pixel coordinates

of a 2D -image and Yi ∈ Y ⊆ IRq an observed gray value (q = 1) or a vector of color

values (q ∈ {3, 4}) at coordinates i . We assume that the distribution of each Yi is

determined by a parameter θi = θ(i) which may depend on the coordinates i .

Example 1.1 [Gray scale images] Every Yi follows a Gaussian distribution with mean

θi and unknown variance σ2 that may depend on θi .

Example 1.2 [Color images] In color images Yi denotes a vector of values in a 3 di-

mensional color space at pixel coordinates i . A 4th component may code transparency

information. The observed vectors Yi can often be modeled as multivariate Gaussian, i.e.

Yi ∼ Nq(θi, Σi) with some unknown covariance Σ that again may depend on θi .

Depending on the image acquisition process noise in digital images may have an other

distribution than a simple Gaussian Gonzalez and Woods (2002). In all examples the

situation may be aggravated by spatial correlation due to physical reasons or preprocessing

steps.

The paper is organized as follows. Color images require the definition of some appropriate

space to represent color. Section 2 therefore reviews the definition of some important color

spaces. Section 3 provides the smoothing algorithm based on the Propagation-Separation

approach. Spatial correlation and models for heteroscedasticity can be incorporated into

the approach. We provide estimates for both spatial correlation and heteroskedastic vari-

ances. Examples are given in Section 4.
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2 Color Spaces

The concept of color spaces is closely related to the perception of color by the human eye.

Sunlight when passing a glass prism does show up a whole spectrum of pure colors ranging

from red to violet which blend smoothly into one another. They can be characterized by

a single wavelength of the corresponding electromagnetic wave that ranges from approxi-

mately 400 to 700nm. The superposition of such chromatic light is perceived by humans

as another color rather than recognizing the individual wavelengths separately Malacara

(2002). Thus the mixture of chromatic red and green light is seen as yellow. In the human

eye the cones are responsible for color vision. It has been experimentally found that they

can be mostly divided into three principal sensing categories, corresponding roughly to

red, green, and blue. Other colors can therefore be seen as combinations of these three

primary colors. This naturally leads to the definition of the RGB color space in which

each color is characterized by the amounts of the primary colors necessary to build it up.

Many displaying devices like computer monitors directly make use of this color space

through excitation of different amounts of red, green and blue areas on the screen. Dig-

ital cameras usually filter the three primary colors from the incoming light in the image

acquisition process using a Bayer mask Bayer (1976). Encoding color in the internet or

in imaging software follows this scheme too. It should be noted, that not all visible color

can be created by such mix, but it should be sufficient for most applications.

However, this does not match the way humans describe color. For example bright or pale

yellow are seen as two variants of the same color rather than different mixtures of the three

primary colors. Taking this into account we can characterize color in terms of brightness,

hue, and saturation. Hue is associated with the dominant wavelength and corresponds to

the notion of color as we perceive it. The amount of white light mixed with the hue is

referred to as saturation. Therefore the pure spectral colors are fully saturated. Other

colors like pink are mixtures of a pure color with white and thus less saturated. The

combination of hue and saturation is called chromaticity. The brightness corresponds to

the intensity as known from grayscale images. The three characteristics mentioned above

form the HSI color space.

Other color spaces like YUV or YIQ are related to the way, signal transport for television

is performed. One of the components (Y) again reflects the brightness of the image while

the other two refer to the chromaticity. Therefore black and white TV sets can simply

ignore the color information in the signal and nevertheless produce a reasonable output.

A specific color can be transferred from one color space into another. For example the

conversion from RGB to YUV is a linear transformation and can thus be represented as
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a matrix multiplication. This makes the conversion a very fast operation. Details on

the conversion between the color spaces can be found in the literature (see Gonzalez and

Woods (2002)).

In the package adimpro grayscale and color images are represented by objects of class

”adimpro”. Image data is stored as two and three dimensional arrays, respectively. The

third dimension for color images is 3 and contains the color information in a specific color

space as described above. The color space is coded in the attribute type and taken from the

following list: yuv, yiq, hsi, xyz, rgb, greyscale. It is possible to get information

on an adimpro-object via the generic summary-function. The package contains several

function to transform images from one colorspace to another like:

R> img.yuv <- rgb2yuv(img.rgb)

R> img.rgb <- hsi2rgb(img.hsi)

R> img.grey <- rgb2grey(img.rgb)

One can view any image with:

R> show.image(img.yuv)

3 Smoothing using structural adaptation

Efficient image denoising requires a reduction of random noise without compromising the

content of the image. The Propagation-Separation approach implemented in the package

adimpro is designed to achieve this goal. Image denoising is ideally done on images

that have been exposed to little preprocessing, like images coded in RAW or 16-Bit TIFF

format. Loss afflicted preprocessing like conversion to JPEG should be avoided ahead of

adaptive image denoising to improve the quality of adaptation of the algorithm. Image

acquisition in digital cameras is usually done by measuring the intensity of light for the

three primary colors using a Bayer mask Bayer (1976). The process of reconstruction of

the missing color components for the full resolution is called demosaicing but will not be

considered here.

Let the distribution of Yi be specified up to a parameter θi that may depend on the

coordinates i of a pixel and some additional parameters ν . Such parameters are possi-

bly heterogeneous error variances. Let us also assume for a moment that we know how

estimates of these parameters can be obtained.

We presume that for each pixel i the function θ(.) can be well approximated by a constant

within a local vicinity Ui containing pixel i . This serves as our structural assumption.
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Our estimation problem can now be viewed as consisting of two parts. In order to efficiently

estimate the function θ(.) at pixel coordinates i we need to describe a local model, i.e.

to assign weights Wi = {wi1, . . . , win} . If we knew the neighborhood Ui by an oracle we

would define local weights as wij = wj(i) = Ij∈Ui and use these weights to estimate θi as

θ̂i =
∑

j

wijYj . (1)

Since θ and therefore Ui are unknown the assignments will have to depend on the infor-

mation on θ that we can extract from the observed data. If we have good estimates θ̂j

of θj we can use this information to infer on the set Ui by testing the hypothesis

H : θj = θi. (2)

A weight wij can be assigned based on the value of a test statistic Tij , assigning zero

weights if θ̂j and θ̂i are significantly different. This provides us with a set of weights

Wi = {wi1, . . . , win} that determines a local model in i .

Given the local model we can then estimate our function θ(.) in each pixel i by (1).

We utilize both steps in an iterative procedure. We start with a very local model in each

point i given by weights

w
(0)
ij = Kloc(l

(0)
ij ) (3)

with l
(0)
ij = |i− j|/h(0) and |i− j|2 = (ih − jh)2 + (iv − jv)2 . The initial bandwidth h(0)

is chosen very small. Kloc is a kernel function supported on [−1, 1] , i.e. weights vanish

outside a ball U (0)
i of radius h(0) centered in i . We then iterate two steps, estimation of

θ(x) and refining the local models. In the k th iteration new weights are generated as

w
(k)
ij = Kloc(l

(k)
ij )Kst(s

(k)
ij ) with (4)

l
(k)
ij = |i− j|/h(k) and s

(k)
ij = T

(k)
ij /λ. (5)

The bandwidth h is increased by a constant factor with each iteration k . The test

statistic for (2)

T
(k)
ij = N

(k−1)
i D(θ̂(k−1)

i , θ̂
(k−1)
j ; ν̂i) (6)

with N
(k−1)
i =

∑
j w

(k−1)
ij is used to specify the penalty s

(k)
ij . This term effectively

measures the statistical difference of the current estimates in i and j . In (6) the term

D(θ, θ′; ν) denotes a distance between the probability measures Pθ,ν and Pθ′,ν .

3.1 Adaptive weights smoothing

We now formally describe the resulting algorithm. For clarity of presentation we, for a

moment, defer the problem of estimating νi and modifications due to spatial correlation

in the image.
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Image type Stochastic penalty s
(k)
ij νi

Gray scale images 1.1 N
(k−1)
i

λbσ2
i

(θ̂(k−1)
i − θ̂

(k−1)
j )2 σ2

i

Color images 1.2 N
(k−1)
i
λ (θ̂(k−1)

i − θ̂
(k−1)
j )T Σ̂−1

i (θ̂(k−1)
i − θ̂

(k−1)
j ) Σi

Table 1: Stochastic penalties for examples in Section 1.

• Initialization: Set the initial bandwidth h(0) and compute, for every i the statis-

tics

N
(0)
i =

∑
j

w
(0)
ij , and S

(0)
i =

∑
j

w
(0)
ij Yj (7)

and the estimates

θ̂
(0)
i = S

(0)
i /N

(0)
i (8)

using w
(0)
ij = Kloc(l

(0)
ij ) . Set k = 1 and h(1) = chh

(0) for some constant ch > 1 .

• Adaptation: For every pair i, j , compute the penalties

l
(k)
ij = |i− j|/h(k), (9)

s
(k)
ij = λ−1T

(k)
ij = λ−1N

(k−1)
i D(θ̂(k−1)

i , θ̂
(k−1)
j ; ν̂i). (10)

Now compute the weights w(k)
ij as

w
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s

(k)
ij

)
and specify the local model by W

(k)
i = {w(k)

i1 , . . . , w
(k)
in } .

• Local estimation: Now compute new local MLE estimates θ̂(k)
i of θ(xi) as

θ̂
(k)
i = S

(k)
i /N

(k)
i with N

(k)
i =

∑
j

w
(k)
ij , S

(k)
i =

∑
j

w
(k)
ij Yj .

• Stopping: Stop if h(k) ≥ hmax , otherwise set h(k) = chh
(k−1) , increase k by 1 and

continue with the adaptation step.

3.2 Examples

The algorithm provided in 3.1 can be adjusted to meet the properties of different types

of images, that is different types of distributions of Y , by an appropriate choice of the

statistical penalty sij in (9). For gray scale images 1.1 and color images 1.2 the appropriate

penalty is given in Table 1.

6



3.3 Choice of parameters - Propagation condition

The proposed procedure involves several parameters. The most important one is the scale

parameter λ in the statistical penalty sij . The special case λ = ∞ simply leads to

a kernel estimate with bandwidth hmax . We propose to chose λ as the smallest value

satisfying a propagation condition. This condition requires that, if the local assumption

is valid globally, i.e. θ(x) ≡ θ does not depend on x , then with high probability the final

estimate for hmax = ∞ coincides in every point with the global estimate. More formally

we request that in this case for each iteration k

EI |θ̂(k)(I)− θ| < (1 + α)EI |θ̌(k)(I)− θ| (11)

for a specified constant α > 0 . Here

θ̌(k)(i) =
∑

j

Kloc(l
(k)
ij )Yj/

∑
j

Kloc(l
(k)
ij ) (12)

denotes the nonadaptive kernel estimate employing the bandwidth h(k) from step k .

The value λ provided by this condition is characteristic for the selected class of error

distributions, but does not depend on the unknown model parameter θ . A default value

for λ can therefore be found by simulations. In the examples below they are selected for

a value of α = 0.1 .

The second parameter of interest is the maximal bandwidth hmax which controls both

numerical complexity of the algorithm and smoothness within homogeneous regions.

Additionally we specify a number of parameters and kernel functions that have less

influence on the resulting estimates. As a default the kernel functions are chosen as

Kloc(x) = (1− x2)2+ and Kst(x) = (1− x2)+ . The initial bandwidth h(0) is chosen as 1.

The bandwidth is increased after each iteration by a default factor ch = 1.251/2 .

3.4 Correction for spatial correlation

In a CCD sensor, the common device within a consumer digital camera, a Bayer mask is

used to obtain color information. Within a square of four pixel one is red filtered, one

blue and two green, that is red and blue are recorded in every fourth pixel while green is

obtained in every second. To obtain a color image in full resolution the missing color values

are filled in by interpolation (demosaicing). This results in spatial correlation within the

image. Other sources of spatial resolution are noise reduction filters applied within the

camera as well as effects from camera movements or their automatic corrections.
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Figure 1: Mean-variance dependence for a perfectly linear camera and for corresponding

gamma-corrected images γ = 2.4 .

The statistical penalty sij effectively measures the probability of observing the estimate

θ̂i if the correct parameter θi equals θ̂j . The penalty heavily depends on a correct

assessment of the variability of θ̂i . In case of (positive) spatial correlation the variance

reduction achieved will be reduced and therefore we need to adjust the statistical penalty.

As a rough model we assume the spatial correlation to be caused by convolution with a

Gaussian kernel with unknown bandwidths g = (gh, gv) in horizontal and vertical direc-

tion. This leads to a multiplicative correction factor Ci(g, h) =
P

l

[ P
j K(

|i−j|
h

)K(
|j−l|

g
)
]2

Qh;i Qg;i

with Qh;i =
∑

j K( |j−i|
h )2 in the statistical penalty.

3.5 Variance mean dependence

Error variances in the recorded images are usually unknown and to be estimated. De-

pending on the imaging process error variances may be heteroscedastic. Special examples

consists of confocal microscopy or perfectly linear cameras where the signal can be viewed

as a linear combination of the number of recorded photons (Poisson counts) and termal

noise (approximately homoscedastic Gaussian). Such a situation is characterized by a

linear dependence between variance and the expected signal Tian et al. (2001); Hirakawa

and Parks (2005). A linear behavior may also serve as an approximation in case of RAW-

images. In contrast images recorded in common formats like TIFF or JPEG are gamma

corrected, that is a nonlinear transformation has been applied to the measured intensities.

Except for low color values a constant variance may be a reasonable assumption for such

images, see Figure 1.
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3.6 Estimation of variances and spatial correlation

Problems frequently encountered in image processing are unknown error variances, or even

variance inhomogeneity, spatial correlation and correlated errors between channels in color

images.

We try, in each color channel, to estimate both the spatial correlation and the, possi-

bly heteroscedastic, error variances. These estimates are improved within the estimation

process.

Let l specify the index of the color channel and r
(k)
il = Yil− θ̂

(k)
il denote the residuals with

respect to the reconstructed image θ̂
(k)
il . For small bandwidths h(k) < 2 θ̂

(k)
il is replaced

by a non-adaptive kernel estimated using bandwidth 2 .

We estimate the spatial correlation as in color channel l as

µ
(k)
l = 1/n

n∑
i=1

r
(k)
il (13)

v
(k)
l = 1/n

n∑
i=1

(r(k)
il )2 − (µ(k)

l )2 (14)

ρ̃h =
nh−1∑
ih=1

nv∑
iv=1

(r(k)
(ih,iv)l − µ

(k)
l )(r(k)

(ih+1,iv)l − µ
(k)
l )/v(k)

l (15)

ρ̃v =
nh∑

ih=1

nv−1∑
iv=1

(r(k)
(ih,iv)l − µ

(k)
l )(r(k)

(ih,iv+1)l − µ
(k)
l )/v(k)

l (16)

These estimates are severely biased due to the spatial correlation of the original data.

The bias vanishes as h(k) increases. We apply an approximate bias correction using a

polynomial model for the correlation in ρ̃ , (h(k))−1/2 , and (h(k))−1 .

In case of color images estimates of the correlations between channels, that is ρ1,2, ρ1,3, ρ2,3 ,

can be obtained as

ρ̂l,m =
n∑

i=1

(r(k)
il − µ

(k)
l )(r(k)

im − µ(k)
m )/

√
v

(k)
l v

(k)
m . (17)

Variances within channels can again be estimated from adjusted residuals

r
(k)
il = (Y 1/2

il − θ̂
(k)
il ) (18)

as

σ̂2
l =

∑
i:N

(k)
i >1

N
(k)
i

N
(k)
i − 1

(r(k)
il )2(N (k)

i − 1)/
∑

i:N
(k)
i >1

(N (k)
i − 1) (19)
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in case of constant variances. The weights (N (k)
i − 1) reflect the varying information

content of the residuals while the factor N (k)
i /N

(k)
i − 1 corrects for the bias of the squared

residuals.

A linear variance model can be evaluated by solving

N
(k)
i

N
(k)
i − 1

(r(k)
il )2 = al + blθ̂

(k)
il , i : N (k)

i > 1 (20)

by weighted least squares with weights (N (k)
i − 1) leading to variance estimates

σ̂2
il = âl + b̂lθ̂

(k)
il . (21)

For color images estimates of covariance matrices Σi are then obtained as

Σ̂i =


σ̂2

i1 ρ̂12σ̂i1σ̂i2 ρ̂13σ̂i1σ̂i3

ρ̂12σ̂i1σ̂i2 σ̂2
i2 ρ̂23σ̂i2σ̂i3

ρ̂13σ̂i1σ̂i3 ρ̂23σ̂i2σ̂i3 σ̂2
i3

 (22)

assuming that correlations between channels do not depend on θi .

The proposed procedure, employing a local constant structural assumption, is implemented

in function awsimage.

3.7 Local polynomial Propagation-Separation (PS) approach

Until now we assume that the gray or color value is locally constant. This assumption

is essentially used in the form of the stochastic penalty sij . The effect can be viewed

as a regularization in the sense that in the limit for hmax → ∞ the reconstructed im-

age is forced to a local constant gray value or color structure even if the true image is

locally smooth. Such effects can be avoided if a local polynomial structural assumption

is employed. Due to the increased flexibility of such models this comes at the price of a

decreased sensitivity to discontinuities.

The Propagation-Separation approach from Polzehl and Spokoiny (2004) assumes that

within a homogeneous region containing pixel i , i.e. for j = (jh, jv) ∈ Ui , the gray value

or color Yj can be modelled as

Yj = θ>i Ψ(jh − ih, jv − iv) + εjh,jv , (23)

where the components of Ψ(δh, δv) contain values of basis functions

ψm1,m2(δh, δv) = (δh)m1(δv)m2 (24)
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for integers m1,m2 ≥ 0 , m1 +m2 ≤ p and some polynomial order p . For a given local

model Wi estimates of θi are obtained by local Least Squares as

θ̃i = B−1
i

∑
j

wijΨ(jh − ih, jv − iv)Yj , (25)

with

Bi =
∑

j

wijΨ(jh − ih, jv − iv)Ψ(jh − ih, jv − iv)>. (26)

The parameters θi are defined with respect to a system of basis functions centered in i .

The component of the estimate of θ in the local model Wj , corresponding to the basis

function ψm1,m2 centered at i can be obtained by a linear transformation as

θ̂
(k−1)
j(i),m =

∑
m′:|m′|≤p−|m|

(
m+m′

m

)
θ̂
(k−1)
j,m+m′ (i− j)m′

, |m| ≤ p. (27)

In iteration k a statistical penalty can now, for grayscale images, be defined as

s
(k)
ij =

1
λ2σ2

(
θ̂
(k−1)
i − θ̂

(k−1)
j(i)

)>
Bi

(
θ̂
(k−1)
i − θ̂

(k−1)
j(i) )

)
. (28)

In case of color images with independent errors between channels a natural generalization

occurs as a possibly weighted sum of the statistical penalties for the three color channels.

A detailed description and discussion of the resulting algorithm and corresponding theo-

retical results can be found in Polzehl and Spokoiny (2004).

Local linear and local quadratic models are implemented for both grayscale and color

images in function awspimage. The implementation allows for homogeneous spatial cor-

relation and unknown variances that are either constant or a linear function of the gray-

or colorvalues.

4 Examples

The package adimpro can basically read and write the pgm and ppm image format.

However the package allows to read and write all image formats supported by ImageMagick

ImageMagick Studio LLC (2006), if this is installed on the system. For reading camera

RAW formats the package adimpro uses dcraw Coffin (2006). Both programs are available

for many operating systems. However, if you can not or don’t want to install them on

your system you must rely on some other software or R package to read the image data

into the R session or to transform the image data into portable pixmap format. Since

image conversion is not the target of the package and excellent software for this purpose

exists we do not plan to extend its capabilities in the future.
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Reading an image file from disk is done by one of the following statements:

R> img <- read.image(’’image.tif’’)

R> img <- read.raw(’’image.raw’’)

Both statements create an object of class ’’adimpro’’. Such objects are lists containing

the gray- or color values as well as image metadata.

Alternatively an object of class ’’adimpro’’ can be generated from image data provided

as an array, with the first two dimensions corresponding to the image dimension and the

third being 1, or 3 for grayscale and color valued images, respectively. This is achieved by

R> img <- make.image(imgdata).

In the package adimpro we provide two functions which implement the Propagation-

Separation approach described in the preceeding sections. The function awsimage uses a

local constant model while awspimage considers local polynomial models up to a degree

of 2.

The complexity of the algorithm is mainly determined by hmax which corresponds to the

maximum bandwidth used in the iteration process (see Section 3 for details).

R> img.smooth <- awsimage(img, hmax = 4)

The function awsimage returns again an object of class ”adimpro”.

In Figure 2 we show an example of image smoothing under controlled noise conditions.

An image of good quality and low noise has been taken using a CANON 300D with ISO

100. Spatially correlated homogeneous noise has been added.

As we already mentioned before, the assumption of homogeneous noise may only be suit-

able for gamma corrected images. However, if the camera provides RAW format, noise is

characterized by a linear dependence between its variance and the mean intensity of light

at each pixel, aside from saturation effects. Thus for images in RAW format, it is possible

to specify a model for the variance mean dependence, namely a linear model.

Figure 3 shows a test image with nine homogeneous colored regions taken by a Panasonic

Lumix LX2 under extreme lighting conditions. ISO 1600 has been used, therefore the

image has a relatively strong noise component. The result of adaptive smoothing is given

on the right side of the figure. We read and processed the RAW image, as obtained by

dcraw Coffin (2006) using bilinear interpolation for demosaicing. The estimates for the

spatial correlation and the correlation between the color channels are given in Table 2

and 3.

Furthermode we demonstrate the effects of the use of the linear variance model, which is
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Figure 2: Smoothing a noisy image with a local constant model as structural assumption.

Upper left: Noisy image. Uniform but spatially correlated noise has been added to an

image taken with a digital camera. Upper right: Result of the awsimage function with

hmax = 10 . Lower left: non-adaptive kernel smoothing using a bandwidth that minimizes

MSE on the whole image. Lower right: Image illustrating the amount of adaptation used in

the iteration procedure in awsimage. Dark areas correspond to stronger adaptation, while

white areas show non-adaptive behavior. The latter correspond to homogeneous regions

with respect to the specified model, while darks lines are caused by detected structure.
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Figure 3: Adaptive smoothing of a noisy test image using a local constant model for the

color values and a linear model for the variance mean dependence. hmax = 22.4 has been

used. Left: original image Right: smoothed image.

red channel green channel blue channel

horizontal 0.66 0.42 0.63

vertical 0.62 0.40 0.61

Table 2: Estimated spatial correlation in horizontal and vertical direction in the three

color channels for the example image used in Figure 3.

red/green red/blue green/blue

-0.15 -0.0023 -0.58

Table 3: Estimated correlation between the color channels for the image used in Figure 3.
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Figure 4: Denoising the image in Figure 3 using a constant (left) and a linear variance

model (right). Part of the image in Figure 3 is shown here. Again hmax = 22.7 has

been used. The left column corresponds to a constant variance model, while the right

column shows the corresponding results for a linear variance model. The upper images

show the degree of adaptation to structure through the sum of weights in the two cases

as in Figure 2. The edges between the colored regions can be clearly identified in both

models. While there is only little structure in the homogeneous region, which is mainly

due to the heavy noise, the bright square shows a lot of structure when smoothing with a

constant variance model. Since noise for RAW images consists of two additive components

which are approximately proportional to the mean (photon counts) and constant (termal

noise) the linear variance model is correct, a constant model underestimates the variance

in the bright region. Thus smaller differences of the color value are detected as significant

with higher probability. The procedure therefore partly adapts to the noise structure.
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red channel green channel blue channel

black area 0.0229 0.0122 0.0121

white area 0.0507 0.0351 0.0329

blue area 0.0218 0.0157 0.0216

red area 0.0414 0.0145 0.0141

0.0234 0.0167 0.0151

Table 4: Estimated value for the variance in the three color channels in four areas of

different mean color for the example image used in Figure 3. We considered the four areas

in the upper right corner of the image. The first four rows of the table give the mean

estimates for a linear variance mean model, while the last row contains the corresponding

values for a constant variance mean dependence. The red value show cases, where in a

constant model, the variance is underestimated in contrast to the (true) linear model and

thus the smoothing procedure partly adapts to the noise. The effects are illustrated in

Figure 4.

red channel green channel blue channel

Estimated constant parameter 0.000378 0.0000824 0.0000775

Estimated linear parameter 0.00573 0.00404 0.00382

Table 5: Estimated parameters for the linear variance model in the three color channels

for the image used in Figure 3.

the correct one for RAW-images as described above. When smoothing an image using an

inadequate constant variance model we underestimate the variance where color values are

large. This leads to a segmentation of bright homogeneous regions through adaptation to

the noise component. A further negative bias in the estimated variance is introduced when

estimating the variance again from residuals in the iterative process. We demonstrate the

effect in Figure 4 and Tables 4 and 5, where the use of a linear and constant variance

model is compared.

As a last example we compare in Figure 5 the results of adaptively smoothing an image

taken by a CANON PowerShot S30 at 800 ISO with a local constant and a local quadratic

model.
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Figure 5: Smoothing an image with different structural assumptions. Left: Original image.

Center: Result of smoothing with a local constant model and hmax = 11.6 . Right: Same

for a local quadratic model and hmax = 18.4 . This demonstrates that a local quadratic

model leads to smoother impression at homogeneous regions at the cost of a slightly

decreased sensitivity at edges.
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