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Adaptive Tetrahedral Mesh Generation by Constrained Delaunay
Refinement

Hang Si*

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117, Berlin, Germany

SUMMARY

This paper discusses the problem of refining a constrained Delaunay tetrahedralization (CDT) for
adaptive numerical simulation. A simple and efficient algorithm which makes use of the classical
Delaunay refinement scheme is proposed. It generates an isotropic tetrahedral mesh corresponding
to a sizing function which can be either user-specified or automatically derived from the input
CDT. The quality of the produced meshes is guaranteed, i.e., most output tetrahedra have their
circumradius-to-shortest-edge ratios bounded except those in the neighborhood of small input angles.
Good mesh conformity can be obtained for smoothly changing sizing information. The algorithm
has been implemented. Various examples are provided to illustrate its theoretical aspects as well as
practical performance.

KEY WORDS: tetrahedral mesh generation, adaptive mesh refinement, constrained Delaunay property,
mesh quality

1. INTRODUCTION

Let € be a closed and bounded domain in R? and let 9Q be a piecewise linear discretization
of its boundary, ie., 9Q is a set of vertices in R® together with a set of non-crossing
segments and facets. The constrained tetrahedralization 7 of 02 is a tetrahedralization of
its vertices which respects the segments and facets as well. In particular, 7 is a constrained
Delaunay tetrahedralization (CDT) [18] if the Delaunay criterion [2] is satisfied everywhere in
T except in the neighborhood of the facets. CDTs retain many nice properties of Delaunay
tetrahedralizations which make them useful in many contexts [18]. It is well-known that a
constrained tetrahedralization may not exist for an arbitrary polyhedron [1, 26] and the
problem of deciding whether or not a polyhedron has a constrained tetrahedralization is
NP-hard [8]. However, the existence of a CDT is guaranteed [14] if 9 is slightly refined
with few additional points. Various algorithms for efficiently constructing CDTs from an
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arbitrary domain have been proposed [17, 33]. A robust software implementation is publicly
available [37].

CDTs are generally not well-suited in numerical simulation of physical models based on
partial differential equations. Numerical methods like finite element and finite volume methods
have special demands on the meshes [4, 16]. The element shape must satisfy certain quality
measures, e.g. with respect to the aspect ratio (the longest edge divided by the inradius of
an element). In order to capture the details of the solution field as well as to reduce the
CPU time, the size of the mesh should be dense enough in places where the solution or its
gradient changes rapidly, and as sparse as possible in the rest of the region. Usually, a CDT may
contain many badly-shaped tetrahedra, and the number of nodes (the degrees of freedom) may
be insufficiently small. Hence both the quality and mesh size of a CDT may need improving
in order to meet the basic requirements.

Adaptive numerical methods which combine mesh generation, numerical approximation,
linear system solving, and error estimation are effective to solve complex problems. In an
adaptive simulation in which an approximated solution is computed repeatedly, the desired
mesh size in a single loop is usually obtained from the solution of the previous loop through
an error estimator. It is convenient to introduce a sizing function (or control space [7, 23]) to
specify the desired size feature of the problem. For example, the function specifies the isotropic
or anisotropic mesh size at any point in the domain.

The three-dimensional adaptive mesh refinement problem can be described as follows: given
a mesh domain € in R3, the boundary constrained tetrahedralization 7 of 9, and a sizing
function H defined on €2, find a set of additional points that refines 7, such that all tetrahedra
of the refined mesh have a quality measure within certain bounds, and the mesh size conforms
to H. In this paper, we study a special case of the general problem by assuming that 7 is a
CDT. We refer to our problem as CDT refinement. This problem is motivated by two issues:
(1) to extend previous work on CDTs [17, 33, 37]; and (2) to have a robust and efficient
method to refine any CDT into a state acceptable for adaptive numerical simulations (an
example is shown in Fig. 1). Like most other refinement methods, CDT refinement does not
guarantee the removal of all badly-shaped elements. Thus a combination with mesh smoothing
or optimization step is necessary.

1.1. Previous Work

The Delaunay refinement methods pioneered by Chew [5, 6], Ruppert [9], and Shewchuk [13]
are well known for having theoretical guarantees on the quality of mesh elements. Moreover,
the dual graph of the resulting mesh is a Voronoi diagram. This property is extremely useful for
finite volume meshes [12, 24]. In three dimensions, only one class of badly-shaped tetrahedra,
so called slivers (a sliver has no short edges but nearly zero volume), can survive. The mesh
optimization is essentially used to remove slivers [19, 21, 22]. The main limitation against the
elegance of the basic scheme is that no input angle should be smaller than 90°. This condition
is not likely to be satisfied in most of the realistic problems. Much work [15, 27, 20] has gone
into removing the restrictions. However, all of these methods are not adaptive, i.e., they do
not allow to account for an arbitrary sizing function.

The algorithm of Miller et al [12] finds a well-spaced point set conforming to the domain
boundary by sphere-packing, then triangulates the point set using the Delaunay criterion.
Recently, Oudot et al [32] designed a volume meshing algorithm which greedily samples the
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Figure 1. Adaptive mesh refinement in a transient heat conduction simulation (an example of
WIAS-SHarP [35]). Top: three adaptive meshes at different time steps. Each mesh was refined based

on the error estimated from the solution of the previous time step. Bottom: the corresponding finite
volume solutions.

interior and the boundary of the domain using a similar Delaunay refinement scheme. Both
algorithms support user-defined sizing functions. However, these methods are not designed
for refining CDTs. The initial triangulation does not contain boundary data, and thus the
boundaries have to be enforced by the refinement.

Another class of refinement methods [10, 11], popularly used in engineering, works in
two phases: (1) point generation using the given sizing information, and (2) point insertion
according to the Delaunay criterion. In part (2), some generated points are not inserted due
to the closeness to the existing points. This approach is able to quickly generate a number
of additional points and can be parallelized easily. From the theoretical point of view, this
approach does not guarantee mesh quality. It heuristically relies on mesh optimization.

There are tetrahedral mesh generation methods directly based on mesh smoothing and
optimization [25, 30, 31]. Assume a set of additional nodes has been generated inside the mesh
domain, the basic idea of these methods is to introduce a mesh-dependent energy function, and
then minimize the function by changing both the node positions and mesh connectivity. The
generated mesh contains well-shaped tetrahedra. However, the CPU time of these methods
depends dramatically on the number and the initial locations of the nodes. They are suitable
as a post step of mesh refinement to improve the final mesh quality.

1.2. Our Contribution

In this paper, a practical mesh refinement algorithm which builds on several previous
work [9, 10, 13, 32] is presented. This algorithm generates an isotropic mesh corresponding to
a sizing function H which can be either user-specified or automatically derived. In a nutshell,
the CDT is refined incrementally by appropriately inserting points into it. At each step, a new
point v is generated by the basic Delaunay refinement rules, v is inserted only if the local mesh
is sparse according to H. The process terminates when no new point can be inserted. Our
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Figure 2. Left: a piecewise linear complex (PLC). The shaded area highlights one of its facets. Right:
a constrained Delaunay tetrahedralization (CDT) of the left PLC. The surface mesh of the CDT
consists of subsegments and subfaces.

algorithm makes two improvements over the basic Delaunay refinement algorithms [9, 13]: (1)
it has no restriction on the input angle but certain mesh quality can still be guaranteed; and
(2) it takes a user-defined sizing function into account, which enables the mesh adaption under
specific features.

Our analysis establishes several advantages of the algorithm. Good mesh quality is
guaranteed in the bulk of the domain. The remaining low-quality tetrahedra are well-located in
the neighborhood of small input angles. By assuming some smoothness of the sizing function,
good mesh conformity can be obtained as well. The constrained Delaunay property of the
generated meshes can be enforced by applying the segment splitting rules introduced in [33].

The remainder of this paper is organized as follows. In Section 2, after a brief review of some
basic definitions in CDTs, the proposed algorithm is described in detail. In Section 3, we provide
theoretical analysis regarding the conditions on mesh quality and mesh conformity of our
algorithm. Section 4 discusses ways of specifying sizing functions, which include automatically
deriving a sizing function, and the use of a background mesh. In Section 5, we demonstrate
various examples corresponding to our analysis. We conclude with some remarks and discuss
some possible future improvements.

2. CONSTRAINED DELAUNAY REFINEMENT

In this section, the algorithm for refining CDTs is presented. It behaves like the Delaunay
refinement algorithm of Shewchuk [13], i.e. it finds the badly-shaped tetrahedra and eliminates
them by inserting their circumcenters. However, the insertion of circumcenters is restricted by
the local mesh sizing information specified on input. We refer to this algorithm as constrained
Delaunay refinement.

2.1. Definitions

The boundary of the mesh domain is represented by a piecewise linear complex X [12], i.e.,
X is a set of vertices in R?, together with a set of segments and facets (see Fig. 2 left). Our
algorithm takes a CDT 7T of X as input. The segments and facets of X are represented as a
union of subsegments and subfaces in T (see Fig. 2 right). Any tetrahedron 7 in 7 is constrained
Delaunay, i.e., the circumsphere of 7 encloses no vertex of X that is visible from the inside of
7, the visibility is blocked by the subsegments and subfaces of X [18].

Let H : X — RT be a sizing function such that for each point p € X, H(p) specifies the
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desired length of edges connecting at a vertex inserted at the location of p. H is isotropic if the
edge length does not vary with respect to the directions at p, otherwise, it is anisotropic. In the
scope of this paper, we assume H is isotropic. An ideal sizing function is defined analytically
at any point of X. In practice, it is more convenient, to approximate H by a discrete function
specified at some points in X, the size of other points is obtained by means of interpolation.

Let ¢ be a tetrahedron, r the radius of the circumsphere of ¢, [ the shortest edge length of ¢.
The radius-edge ratio of ¢ is defined by r/l. A regular tetrahedron (whose all edges have equal
length) minimizes the ratio, which is v/6/4 ~ 0.612. Badly shaped tetrahedra (e.g., needles,
wedges, etc) usually have a large radius-edge ratio, except slivers which may have ratios as
small as \/5/ 2 ~ 0.707. In this sense, the radius-edge ratio is not a proper quality measure
for tetrahedra. Nevertheless, for a theoretical point of view, it can be useful. In practice, the
radius-edge ratio needs to be replaced by better quality measures such as aspect ratio, the
largest dihedral angle, etc.

A subsegment or subface can have infinitely many circumspheres in R?. However, its smallest
circumsphere (i.e. the diametric circumsphere) is unique. In the scope of this paper, we tacitly
use the term circumsphere to mean the unique one. A subsegment or a subface is said to be
encroached if a vertex lies inside or on its circumsphere.

2.2. The Algorithm

Given a CDT 7 to be refined, a sizing function H, a radius-edge ratio bound B, and two
parameters a1, ag, the algorithm incrementally adds points into 7 and updates 7 into a
refined mesh.

At each step, a new point v is generated by the basic Delaunay refinement scheme, i.e. v is
found by the following three point-generating rules.

R1 If a subsegment s is encroached, then v is the midpoint of s.

R2 If a subface f is encroached, then v is the circumcenter of f. However, if the choice of v
encroaches upon some subsegments, then reject v. Instead, use R1 to find a v on one of
the encroached subsegments.

R3 If a tetrahedron ¢ satisfies one of the following two cases, R3.1 or R3.1, where:

R3.1 t has a radius-edge ratio greater than B.
R3.2 there is a corner p of ¢, such that a3y H(p) < r, where r is the radius of the
circumsphere of ¢,

then v is the circumcenter of t. However, if this choice of v encroaches upon any
subsegment or subface, then reject v. Instead, use R1 or R2 to find a v on one of the
encroached subsegments or subfaces.

Once the point v is found, the point-accepting rule decides whether or not v can be inserted
into the mesh. Let P be a set of vertices collected as follows:

e If v is found by R1, then P contains two endpoints of s.

e If v is found by R2, then P contains the endpoints of subfaces which v is intended to
split.

e If v is found by R3, then P contains the endpoints of tetrahedra which v is intended to
split.
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Then v is inserted if apH(p) < |v — p| for all p € P, where | - | is the Euclidean distance.
Otherwise, v is not inserted.

If v passes the point-accepting rule, then it is inserted into the current mesh, and the local
mesh of v is rearranged according to the Delaunay criterion.

Remark. R3.1 tests if ¢ has bad quality, and R3.2 checks the H-conformity of the corners
of t. R3.1 has priority higher than R3.2, that is, R3.2 is triggered only if all tetrahedra have
radius-edge ratio larger than B.

In the point-accepting rule, if v is found by R1 or R2, only the endpoints of the subsegment
or subfaces of the same facet on which v lies have the right to accept or reject v. It appears
that v can be very close to some existing vertices in terms of H, i.e., there exist a point p & P,
such that agH (p) > |v —p|. However, we will show in the next section that the distance |v —p|
is always bounded by a constant times the radius of a protecting ball.

2.3. Repair Non-Delaunay Segments

Generally, the mesh generated by the above algorithm may not be a CDT. A non-Delaunay
subsegment may not get split due to the point-accepting rule. Such subsegments may result
some internal faces which are both locally non-Delaunay and unflippable.

We can force the splitting all encroached subsegments by ignoring the point-accepting rule
if the point is generated by R1, then all non-Delaunay subsegments will be split. However,
this simple approach will not terminate if there are acute input angles. For example, if two
segments form an angle smaller than 90°, then inserting a point on one segment by R1 may
cause another segment to become encroached. The situation may be repeated forever. We need
a rule to replace R1 which can guarantee both the removal all non-Delaunay subsegments and
the termination.

In [33], a simple segment recovery algorithm, which uses a set of segment splitting rules,
is introduced for constructing CDTs. The algorithm takes a piecewise linear complex X,
incrementally splits non-Delaunay segments of X until all subsegments of X are Delaunay.
The termination of the algorithm is guaranteed. In the following, we propose a new rule R1*
for repairing encroached segments which uses these segment splitting rules.

R1* If a segment s is encroached by at least one existing vertex, then v is found by using one of
the segment splitting rules of [33]; otherwise (s is encroached by a rejected circumcenter
of an encroached subface or a bad quality tet), v is the midpoint of s.

It will be shown in the next section that if R1* is used instead of R1 in the above algorithm
and the point-accepting rule accepts the points generated by R1* whenever they are used to
repair non-Delaunay subsegments, then the subsegments in the output mesh are Delaunay and
the mesh is again a CDT.

3. ANALYSIS

The central idea of the algorithm is the following: Only inserts a point when the local mesh
of the point is sparse. The sparseness is indicated by the values of the sizing function at its
adjacent vertices. In the isotropic case, one can assume that each vertex p of the mesh is
surrounded by two virtual balls, one sparse ball with radius a1 H(p), and one protecting ball
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with radius aeH (p). The space outside the sparse ball of p is sparse from the viewpoint of
p, while the space inside the protecting ball of p is free of additional points. Notice that if
a1 — +oo (i.e. no sparse space) and as — 0 (i.e. no protecting ball), it becomes the basic
Delaunay refinement algorithm [13].

In the following, we provide conditions on the sizing function H, and on the parameters a;,
ag, and B to ensure the theoretical guarantees of our algorithm. Specifically, we will show:

The termination of the algorithm only depends on as.
The mesh quality is governed by both B and ao.

The properties of H will influence the mesh conformity.
The mesh size depends on both a1, as, and H.

3.1. Termination

For each output vertex v, its parent p, is defined as follows: if v is an input vertex, p, is the
closest output vertex to v (v # p,); if v is an inserted vertex, and if P(v) denotes the set
of vertices collected by the point-accepting rule, then p, € P(v) is the closest vertex to v
immediately after v is inserted. If there are several such vertices, then choose the one which is
the most recently inserted. Notice that p, may not be the closest output vertex to v.

Given a point p in a PLC X, the local feature size [9] L fs(p) is the radius of the smallest ball
centered at p that intersects two non-incident features of X (where each of two features might
be a vertex, segment or facet). [fs() is defined for all points in X, it satisfies a 1-Lipschitz
condition, i.e., for any two points p and ¢ in X, Ifs(p) <Ifs(q) + |p — q|-

The definition of input angle is from Cheng et al. [20]. Simply speaking, an input angle of
the PLC X is any angle formed by two incident segments, or a segment and a facet, or the
dihedral angle formed by two incident facets. Let 6,, be the smallest acute input angle of X.
In case there is no acute angle, set 6,, = 90°.

Lemma 1 shows that in the output mesh, the length of the shortest edge of each vertex is
bounded by asH() and Ifs().

Lemma 1. Let v be a vertex of the output mesh, and let p be the vertex closest to v in the
output mesh. Then:
|v — p| > min{asH (v), CasH(p,),lfs(v)}, (1)

where C' = sin Gm/\/i

Proof. We prove this lemma by enumerating all cases which will result in the presence of v and
p, respectively deriving the length bound for |v — p| in each case, and taking the minimum in
the end.

Assume v is an input vertex. If p is also an input vertex, then |v — p| > [ fs(v). Now assume
p is an inserted vertex. If v € P(p), then |v — p| > anH(v), otherwise, |[v — p| > [fs(v) (since
v is disjoint with the segment or facet on which p lies).

Assume p is an input vertex and v is an inserted vertex. If p € P(v), then |v—p| = |[v—p,| >
asH (p,); otherwise |[v — p| > Ifs(v) (since p is disjoint with the segment or facet on which v
lies).

In the following, we examine the cases where both v and p are inserted vertices. The notation
p < v means p is inserted before v.

Assume v is found by R1. Let s be the segment on which v lies.
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Figure 3. Suppose v is found by R1, vp is the shortest edge connected at v, ¢ illustrates the possible
location of the parent of v.

(1) Assume p is found by R1. Let s’ be the segment on which p lies.

(1a) s and ¢ are coincident. If p < v, then |[v — p| = |v — py| > azH(p,), otherwise,
[v —p| > asH(v).

(1b) s and s are disjoint. Then |v — p| > [ fs(v).

(1c) s and s’ share a common input vertex e (see Fig. 3 left). Let 6 be the angle
formed by s and s’. Note 8 < 90° (since p is the closest vertex to v). Then
[v—p| > |v—-e|sind > |v— py|sind > asH(p,) sin Oy,

(2) Assume p is found by R2 and let f be the facet on which p lies.

(2a) s and f are disjoint. Then |v — p| > I fs(v).

(2b) s and f share one common input vertex e (see Fig. 3 middle). Let 6 be the angle
formed by s and line segment eq. Note 8 < 90°. Then |v — p| > |v — ¢|sinf >
|[v — py|sind > aaH (py) sin Oy,

(2¢) s belongs to f (see Fig. 3 right). Suppose p < v. Then p does not encroach upon the
subsegment which v splits, hence [v—p| > |v—p,|. However this is not possible since
Py is closer to v than p is. We thus conclude that v < p. Then |v — p| > a2 H (v).

(3) Assume p is found by R3. Similar to the case of (2¢), only v < p is possible. Then
[v —p| > asH(v).

For the next three cases, (4) - (6), we assume v is found by R2, and let f be the facet on
which v lies:

(4) Assume p is found by R1. Let s be the segment on which p lies.

(4a) s and f are disjoint. Then |v — p| > I fs(v).

(4b) s and f intersect at exactly one input vertex e (refer to Fig. 3 middle, switch the
positions of v and p), then let 6 be the input angle formed by s and f. Note 6 < 90°
,and [v —p| > v —e|sind > |v — p,|sinf > az H(p,) sin Oy,.

(4c) s is part of f (refer to Fig. 3 right, switch the positions of v and p). If p < v, then
|[v —p| > |v = py| > a2 H(p,); otherwise, their exists a ¢ € s, such that ¢ is either
an input vertex or ¢ < v (see below), then |[v —p| > |[v — q|/vV2 > |v — po|/V2 >

O‘2H(pv)/\/§'

Now we show that the vertex ¢ exists. It can be found by the following iterative process:
initialize 7 := 0, qo := p; (i) let ¢;+1 be the endpoint of the subsegment split by ¢; which
is closer to v; if ¢;4+1 is an input vertex or ¢;+1; < v, then let ¢ := ¢;4+1 and return;
otherwise, let 4 := i+ 1 and goto (i). The iterative process will terminate since R1 has a
priority higher than R2.
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(5) Assume p is found by R2, and let f’ be the facet on which p lies.

(5a) f and f’ are coincident. If p < v, then |v — p| = |[v — py| > a2H(p,), otherwise,
|[v —p| > agH(v).

(5b) f and f’ are disjoint. Then |v — p| > Ifs(v).

(5¢) f and f’ intersect at an input vertex e (refer to Fig. 3 middle). Let 6 be the input
angle formed by line segments ev and ep. Note § < 90°, and |v —p| > |v—e|sinf >
[v — py|sind > asH(p,) sin Oy,.

(5d) f’ and f intersect at a common segment s, let @ be the input dihedral angle formed
by f and f’. Note # < 90°. Using the same arguments in case (4c), there is a ¢
on s which is either an input vertex or ¢ < v, and |v — q| > aaH(p,)/v/2. Then
|v—p| > |v—q|sind > asH(p,)sinb,, /2.

(6) Assume p is found by R3. If p < v, then let g € f be either an input vertex or p < v (such
g can be found by using the similar iterative process in case (4) and the fact that R2
has a higher priority than R3). Then |v —p| > [v —q|/V2 > |[v —pu|/V2 > aaH(p,) /2.
Otherwise, v < p, |v — p| > asH (v).

Assume v is found by R3. If p < v, then |v — p| = |v — py| > asH(p,), otherwise, we have
the following cases:

(7) Assume p is found by R1. Let s be the segment on which p lies. Similar to case (4), there
is ¢ € s such that ¢ is either an input vertex or ¢ < v. Then |v — p| > |v — ¢|/V2 >
(0= 2ol /V2 > a2 H (py) V2.

(8) Assume p is found by R2. Let f be the facet on which p lies. Similar to case (6), there
is ¢ € f such that ¢ is either an input vertex or ¢ < v. Then |v — p| > |v — ¢|/V2 >
v = pul/V2 > azH(p,)/ V2.

(9) Assume p is found by R3. Then |v — p| > asH (v).

We have now checked all cases which can occur for v and p. In each case, |v — p| is larger or
equal to one of the bounds, namely asH (v), CasH (p,), or Ifs(v). The smallest value of the
constant C' appears in case (5d), namely, C' = sin6,,/v/2.

Finally, we can replace R1 by R1* in each of the above cases, and the bounds do not change.
Thus Inequality (1) holds for R1* as well. [ |

Since H () and [ fs() are always positive, |v—p| will not be zero as long as as > 0. Theorem 1,
that guarantees the termination of the algorithm, is a direct consequence of Lemma 1.

Theorem 1. The algorithm terminates if as > 0. [ |

3.2. Constrained Delaunay Property

By using R1* instead of R1 to split encroached segments, we show that the resulting mesh
can be guaranteed to have constrained Delaunay property.

Theorem 2. There exists a positive constant Dg, such that for as < Dg, by repeatedly using
R1* to split encroached segments, one can guarantee that all subsegments are not encroached,
thus they are Delaunay segments.
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Proof. Notice that if the point-accepting rule is ignored, then the repeated applying of R1* will
terminate and all encroached segments will be split [33]. This is the essential oberservation to
prove the theorem. Let the point-accepting rule always accept the points generated by R1*,
provided they lie on encroached segments (or subsegments).

For an encroached segment Sy, whose endpoints are a and b, R1* will generate a point
v € Sp. One can choose a constant Dg,, such that

la — | |v—b\}
H(a)’ H(®)

Dg, < min{

Then, if 0 < as < Dg,, v will be accepted and Sy is split into two subsegments. Similarly, for
any encroached segment (or subsegment) .S;, one can choose a constant Dg,, such that S; will
be split if 0 < ag < Dg,. We thus can form a finite set of constants {Dg,, Ds,,- -, Ds,, }. The
theorem is proved by choosing Dg = min{Dg,, Ds,," -, Ds,, }. [ |

Once all segments are Delaunay (they are also strongly Delaunay since they are not
encroached upon), the existence of a CDT is guaranteed [14]. A CDT can be constructed
by using the facet recovery algorithm of [33] or the flip algorithm of [17].

3.3. Mesh Quality

In this section, we consider the output mesh quality. Our goal is to show that the algorithm
is able to create a mesh with most of the tetrahedra having their radius-edge ratio bounded,
where only a few poor-quality tetrahedra remain in well defined locations.

We say a tetrahedron is skinny if its radius-edge ratio is smaller than B. A vertex v is called
sharp if there are two segments or a segment and a facet intersecting at v forming an acute
angle. A segment s is called sharp if it contains a sharp vertex or if there are two facets sharing
s forming an acute dihedral angle; a facet f is called sharp if it contains a sharp segment or
there is another segment or facet adjacent to f forming an acute angle or acute dihedral angle.

Theorem 3. Suppose the quality bound B is larger than 2 and the constrained Delaunay
property is maintained. Then there exists a constant Dg, such that, for as = Dg, the internal
tetrahedra have a radius-edge ratio smaller than B. The circumcenter of any skinny tetrahedron
is within a distance of \/2aoH (p) from p, where p is a sharp vertex or a vertes inserted on a
sharp segment or a sharp facet.

Proof. If there is no acute input angle and B > 2, then the basic Delaunay refinement algorithm
guarantees that the distance between any output vertex v and its nearest neighbor is at least
llf;ﬁ), where D > 1 is a fixed constant (Theorem 6 in [13]). Our theorem can be proved if D¢
is chosen sufficiently small such that the inequality

Lfs(v)
H(w)(D+1)

DQ<

holds for each output vertex v, i.e., the protecting-ball of v is always empty and no later
generated vertex will be rejected.

Now consider the case where there are acute input angles. The theorem can be proved by a
“bad tetrahedra elimination” procedure. Since the constrained Delaunay property is required,
rule R1* is used instead of R1 in the following runs of the algorithm. At the initialization,
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Figure 4. Left: The case t € ®; (defined in Section ?7?), one case of the existence of an encroached

segment. The triangle abc is a face of ¢ and lies inside a facet F'. C and c¢; are the circumcircle and

circumcenter of abc, respectively. de is the segment of F' which is both encroached upon and visible

by a. Right: The case ¢t € ®4. The circumcenter cs of s lies inside the protecting ball of p, one of the
endpoints of s.

choose 0 < Dg, < Dgs and run the algorithm with as = Dg,. The output mesh contains skinny
tetrahedra (otherwise we are done). Let ¢ be such a skinny tetrahedron, ¢; be its circumcenter.
t can be categorized into one of the four sets @1, ..., &4, which are:

e &, contains all ¢ such that there is a corner of t encroaches upon at least a segment or
a subface.

e &5 contains all ¢ such that c¢; lies inside the mesh and does not encroach upon any
segment or subface.

e &3 contains all ¢ such that ¢; encroaches upon a segment (or a subface) which is non-
sharp.

e &, contains all ¢ such that ¢; encroaches upon a sharp segment (or a sharp subface).

Consider a tetrahedron t € ®;. Let v be the corner of ¢, and let s be the segment (or subface)
which is encroached upon by v and s is visible by v (see Fig. 4 left). s is non-conforming
Delaunay, and s is not split because the point ¢, generated by R1* (or R2) is rejected by the
point-accepting rule, i.e., ¢, lies inside at least one of the protecting balls of its corners.

t will be eliminated if s is split. This can be achieved by shrinking the protecting balls of
the endpoints of s such that c; lies outside all of them. It is possible to choose a sufficiently
small Dqg, > 0, such that all tetrahedra of ®; can be removed by running the algorithm with
az = Dg,. The newly inserted vertices may create new poor quality tetrahedra which can be
classified into @5, ®3, and P4.

Consider a tetrahedron ¢ € ®5, ¢; is rejected by some protecting balls of existing vertices
at the neighborhood of t. ¢ can be eliminated by shrinking these protecting balls such that ¢,
lies outside all of them. It is possible to choose a sufficiently small Dg,, 0 < Dg, < Dg,, such
that no t € ®, can survive after running the algorithm with as = Dg,. There are possibly
remaining poor quality tetrahedra of ®3 and ®4.

Consider a tetrahedron ¢ € ®3, the circumcenter of the segment (or subface) s is rejected by
lying inside some protecting balls of its endpoints. s will be split by shrinking these protecting
balls. Consequently, either ¢ gets eliminated during the split of s, or ¢; does not encroach upon
any segment or subface and is accepted for insertion, or ¢ becomes a tetrahedron of ®5. It is
possible to choose a sufficiently small Dg,, 0 < Dg, < Dg,, such that no t € ®, U ®3 can
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survive after running the algorithm with ap = Dg,. Now the possibly remaining poor quality
tetrahedra can only belong to ®4.

If t € 4, then the point cs generated by R1* (or R2) of an encroached segment (or subface)
s is rejected by lying inside some protect balls of the endpoints of s (see Fig. 4 right). Let p
be such a vertex. Then |¢; — ¢s| < |cs — p| < aoH(p). Hence |¢; — p| < V2o H(p). [ |

3.4. Mesh Conformity

Next, we consider the mesh conformity with respect to the sizing function H. For each vertex

v, let S(v) and L(v) denote the lengths of the shortest edge and the longest edge among all

edges containing v, respectively. We are interested in the values fl((z)) and II;,((Z)) Theorem 4

gives bounds for these quantities at those output vertices, where the local mesh quality is
satisfied.

Theorem 4. Suppose all tetrahedra containing v have their radius-edge ratio bounded by B
(given on input), and the rule R3.2 is not applicable on any of them, then:

. S(v . H(py,) lfs(v
(i) H((v)) > min{ag, Cas H((pu)), fl((v))}.

(ii) iy < 2005

Proof. The first claim follows directly from the inequality (1). Let ¢ be a tetrahedron which

contains v and has a longest edge of length L(v). Moreover, let r be the circumradius of ¢.

Then: L(;) <r<aH@w) = % < 2aj. [ |

When the local mesh quality is satisfied, and the mesh is saturated. then Theorem 4 shows
that the mesh conformity at each vertex v is related to H, oy, az, and [fs. Specifically:

e H, «as, and [fs together decide the lower bound of the mesh conformity.

e The term 111;((;):)) indicates that H should not vary too much in v’s neighborhood, e.g., H

is 1-Lipschitz. The term % indicates that H is constrained by [fs which is dependent

upon the boundary of the CDT.

e s plays a contradictory role between mesh quality and mesh conformity. It needs to be
small in order to guarantee the mesh quality. While it is desired to be as large as possible
for good mesh conformity.

e « limits the length of the longest output edge connected at v. It directly controls the
resulting mesh size, i.e., the smaller it is, the bigger the mesh size will be.

4. SPECIFYING SIZING FUNCTIONS

Our algorithm needs a sizing function H which is defined over the mesh domain and specifies
the local mesh size, e.g., the desired edge length or element density. The data of a sizing
function can be based on either a priori known information or on a posteriori error estimation.
If no sizing function is given, a simple approach is proposed to automatically derive a sizing
function from the boundary data of the CDT. Alternatively, a background mesh, whose vertices
contain the size information, can be supplied along with the CDT.
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4.1. A Sizing Function Derived from the CDT

It is possible that an appropriate sizing function may not be available in advance, for example,
when initially generating a mesh for adaptive simulation. In such a case, we propose a simple
method to automatically derive a sizing function from the input CDT:

e If p is a point of the input CDT, then H(p) = Ifs(p).
e Otherwise H (p) is interpolated from its adjacent vertices by the Shepard interpolation [3],
where the weights are set to be the second inverse power of the distances, i.e.,

H(p) = D lp— Ui|72H(Ui). @)
D lp =il 2
here v; is a vertex connecting to p in the current mesh.

The above method guarantees that every point of the mesh is assigned a size. If p is a
vertex of the initial CDT, then [fs(p) can be efficiently computed by searching locally the
smallest distance of the nearest vertex, subsegment, and subface. For each inserted vertex p,
Equation (2) has the effect that the closest node has the biggest influence on the size of p.
Notice that H can be computed on the fly, i.e., each new point can be assigned its size after
it is inserted. There are similar approaches [10, 11, 31], but they all require additional data
structures, e.g., a background mesh or a KD-tree.

Our method attempts to approximate the local feature size on the mesh nodes it is easier and
much more efficient than to comput [fs() (see Fig. 5). Due to the simplicity of the method,
the obtained H may not be smooth and thus may fail to result in a good quality mesh.
Nevertheless, the mesh quality can be improved by choosing an appropriate value for as.

4.2. Use of a Background Mesh

If H is known in advance, then the most popular and flexible way for specifying H is through
a background mesh whose vertices or elements encode the information about the desired mesh
size. The background mesh can be any grid structure (such as a uniform grid or Octree) or an
unstructured mesh (such as a CDT).

We use an unstructured mesh as the background mesh. Hence it can be the initial CDT or
a tetrahedral mesh obtained at the previous iteration in an adaptive process. At any point p
of the current mesh, H(p) can be obtained by means of interpolation in the background mesh:

e locate p in a tetrahedron ¢ which contains p;
e compute H(p) as the P! interpolation of the sizes H(p;) at the vertices p; of .

5. EXAMPLES

The algorithm has been integrated into TetGen — a quality Delaunay tetrahedral mesh
generator [37]. The input can be either a PLC or a CDT. A sizing function H can be optionally
specified through a background mesh. Parameters B, a1, and a5 are all adjustable at runtime.
Each of them has a default value (B = 2.0,a; = v/2, a3 = 0.5).

The next two examples (Fig. 6 and 7) were built for analysis purposes. We study the effects
of using different combinations of the parameters (B, a1, and az) and compare the results
according to the analysis in Section 3.
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Figure 5. Sizing function derived from local feature sizes and Shepard interpolation. The top two

pictures show a CDT (left, 9k nodes, 27k tetrahedra) and the refined mesh (right, 124k nodes, 533k

tetrahedra) of a mechanical part. At the bottom, the density of sizing functions are shown. Left is the

initial H function obtained by the local feature sizes of the input points; on the right is the final H

function derived by our method. The CPU time of mesh refinement, including the H-generation, is
less than 15 sec. (on a Intel machine clocked at 3.60GHz).

The geometry of the first example (Fig. 6) contains many acute input angles. The basic
Delaunay refinement algorithm [13] generally will not terminate on such input. Fig. 6 shows
sequences of meshes created by our algorithm with various combinations of (B, ag). The sizing
functions are automatically derived. Remaining poor-quality tetrahedra are plotted for selected
meshes. The size statistics of each mesh is given in the form n,/n:/ny, where n, denotes
the number of nodes, n; denotes the number of tetrahedra, and n; denotes the number of
remaining poor-quality tetrahedra. The results validate our claim (Theorem 3) on the mesh
quality, i.e., for an appropriate ai, most of tetrahedra have a bounded radius-edge ratio, poor-
quality tetrahedra are all close to small input angles. Notice that few slivers may remain in
the volume, they can be removed by a mesh smoothing step.

Fig. 7 shows three refined meshes resulting from a unit cube. Each mesh is obtained by
specifying a piecewise smooth sizing function through a background mesh. The parameters
(B = 2.0, &y = V2, and ay = 0.05) were chosen in such a way that the hypothesizes of

Theorem 4 are satisfied. Table I lists the statistics of the ratios % and % (defined in

Theorem 4) at mesh vertices. From all three meshes, L, is strictly bounded by 2«;, which
verifies claim (ii) of Theorem 4. The smallest S, is much larger than as. The meshes well
conform to the specified sizing functions.
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(QO,OJ)

(2.0,0.2)

536/1526/124 1022/2963,/240

(1.4,0.2) (1.2,0.2) (1.1,0.2)
692/2064,/124 964,/3082/124 1901,/7233/126

Figure 6. Test case for various combinations of parameters (B, az).

Mesh 1 Mesh 2 Mesh 3
12248/73693/0 22587/139484/0 108389/688768/0

Figure 7. Meshes created by specifying different sizing functions.
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Table I. Statistics of the ratios S, = 5) and L, = L{v) (defined in Theorem 4) at mesh vertices of

H(v) H(v)
the meshes shown in Fig. 7.

Mesh 1 Mesh 2 Mesh 3
S, L, S, L, S, L,
< 05 0 0 0 0 0 0
0.5 — 1/V2 58 0 0 0 0 0
1/vV2 — 1 3221 1 283 0 0 0
1 — V2 15062 113 10778 14 1927 49
V2 - 2 4246 3867 1187 1044 94186 12594
2 — 2V2 0 18606 0 11190 12276 95746
> 2V2 0 0 0 0 0 0

To further demonstrate both the robustness and efficiency of our algorithm, we tested
it on two complicated and challenging geometries taken from Inria’s large repository
http://www-rocql.inria.fr/gamma.

Fig. 8 shows a meshed result of a Boeing 747. The input is a surface mesh of the plane skin
(Fig. 8 (a), 2,874 nodes, 5, 738 triangles) enclosed by a bounding box. A smooth sizing function
was used (Fig. 8 (b)) to govern the desired mesh size, which is small near the plane skin and
gradually increasing toward the bounding box. The resulting mesh (Fig. 8 (¢) - (e) 490,692
nodes, 2,709, 770 tetrahedra) was generated with parameters: B = 2.0,y = 0.5, a2 = 0.25.

Fig. 9 shows the tetrahedral mesh of a car and the Navier-Stokes solution of a channel flow
simulation based on the mesh. The mesh domain (Fig. 9 (a)) represents a car body (surface
mesh, 2,813 nodes, 5,594 triangles) inside a channel, the internal of the car is not meshed.
The initial CDT was re-used as the background mesh for specifying the sizing function H,
which was simply chosen such that the size is small on the car surface and big on the wall
of the channel. The tetrahedral mesh (Fig. 9 (b) and (c), 15,783 nodes, 866,474 tetrahedra)
was created by default parameters. A velocity field of the solution (Fig. 9 (d)) is viewed using
pdelib [34].

Fig. 10 shows the histograms of radius-edge ratios of the above two meshes. Both meshes
contain high-quality tetrahedra in the bulk of the respective mesh domain. For example, over
94% of the tetrahedra of the Boeing 747 mesh have radius-edge ratios between 0.612 and 1.1.
Only about 0.4% of the tetrahedra are bad-quality and they are all close to the input acute
angles of the surface mesh (see Fig. 8 (f)).

Finally, the efficiency of the algorithm is partially reflected in the CPU times elapsed during
the mesh refinement. It took 59 seconds for the refinement of Boeing 747 and 21 seconds for
the Car. The meshing speed is about 44.5k tetrahedra/sec. for the Boeing 747 and about 39.5k
tetrahedra/sec. for the car. The times were obtained on an Intel machine with a CPU clocked
at 3.60GHz.

6. CONCLUSIONS AND DISCUSSION

In this paper, the problem of refining constrained Delaunay tetrahedralizations is raised in
the context of adaptive numerical simulations. A practical algorithm based on a Delaunay
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(b) The sizing function

(a) The surface mesh

(c) Tet mesh detail (d) Tet mesh detail

(e) Tet mesh detail (f) Highlights of remaining bad quality tetrahedra

Figure 8. Tet Mesh of Boeing 747 (490, 692 nodes, 2,709, 770 tetrahedra).
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o -

) The geometry (b) Tet mesh detail

s

\,

) Tet mesh detail ) The velocity field

Figure 9. Tet Mesh of Car (157,083 nodes, 866,474 tetrahedra) and the velocity field of a channel
flow solution (by AcuSolve [36]).

250406 T T T T T T — 700000 T T T T T T —
747: Tet vs r/l Ratio —— — Car: Tet vs r/l Ratio C——1

600000
2e+06 [

500000

1.5e+06 [
400000 -

300000
1e+06

200000

500000 -
100000 [

o N ‘ ‘ ‘ . A=

0 0.5 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

Figure 10. The radius-edge ratio histograms of meshes in Fig. 8 and Fig. 9.
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refinement scheme is proposed. The algorithm eliminates the angle restrictions in the basic
Delaunay refinement algorithms [9, 13] and supports adaptive refinement through a user-
defined sizing function. Theoretical analysis shows that the mesh quality can be guaranteed,
while good mesh conformity can be obtained for smooth sizing functions.

Let us point out some possibilities to improve the mesh quality and to reduce the mesh size.
Notice that the circumcenter used in the basic Delaunay refinement scheme might not be the
best position for a Steiner point. Alternatively, the off-center [29] may be considered.

Although our algorithm is proposed for refining CDTs, it can be used to refine any boundary
constrained tetrahedralizations (non-CDTs) as well. Notice that the point-generating rules and
the point-accepting rule do not rely on the type of input. A CDT is eligible for an efficient
implementation of these rules. But is not the case for arbitrary non-CDTs, where required
features might not be found locally. Whatsoever, a background grid (such as Octree) may
then be used.

It would be interesting to adapt the algorithm for anisotropic H. For this purpose, the usual
ways of measuring edge lengths, updating locally Delaunay property around Steiner points,
and the interpolation of H must be modified by anisotropic means [23].
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