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Abstract

The multiple disorder problem consists of finding a sequence of stopping
times which are as close as possible to the (unknown) times of ’disorder’ when
the distribution of an observed process changes its probability characteristics.
We present a formulation and solution of the multiple disorder problem for a
Wiener and a compound Poisson process with exponential jumps. The method
of proof is based on reducing the initial optimal switching problems to the
corresponding coupled optimal stopping problems and solving the equivalent
coupled free-boundary problems by means of the smooth- and continuous-fit
conditions.

1. Introduction

Assume that at time ¢ = 0 we begin to observe a continuously updated process X =
(Xt)i>0 which probability characteristics change at some unknown times (7,)nen
when an unobservable (two-stated) continuous time Markov chain 6 = (6;):>¢, called
the disorder process, changes its state from one to another. Throughout the paper
it is assumed that the process 0 starts at 0 with probability 1 — 7, starts at 1 with
probability 7, and changes its state with intensity A > 0. The multiple disorder
problem (or the problem of quickest multiple disorder detection) is to decide by
observing the process X at which time instants one should give alarms in order to
indicate the occurrence of disorders (7,)nen. In contrast to the problem of single
disorder, in the multiple disorder problem one looks for an infinite sequence of alarm
times which should be as close as possible to the times (7, ),en in the sense that the
sum of probabilities of false alarms and the total average time between the occurrence
of disorders and the alarms (when the latter are given correctly) should be minimal.
The idea of consideration of multiple disorder problems in such formulation is due
to A.N. Shiryaev. Note that the problem of quickest detection admits different
formulations and appears in a number of applied sciences (see, e.g., [20] or [5]).

The problem of detecting a change in drift of a Wiener process was formulated and
solved by Shiryaev [26]-[28] (see also [29] and [30; Chapter 1V]). Some particular
cases of the problem of detecting a change in the intensity of a Poisson process were
considered in Gal’chuk and Rozovskii [13]| and in Davis |6]. Peskir and Shiryaev [23]
presented a complete solution of the disorder problem for a Poisson process in the
Bayesian formulation. A complete solution to the problem for a compound Poisson
process with exponential jumps in the Bayesian and variational formulations was
derived in [14]. Recently, Dayanik and Sezer [7] obtained a solution to the disorder
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problem for a general compound Poisson process. A finite horizon version of the
Wiener disorder problem was studied in [15]. In the present paper we formulate and
solve the multiple disorder problem for observed Wiener and compound Poisson
processes having exponentially distributed jumps. This problem can be reduced to
an equivalent optimal switching problem.

Optimal switching problems are extensions of optimal stopping problems and opti-
mal stopping games where one is looking for an infinite sequence optimal stopping
times. A general approach for studying such problems was developed in Bensoussan
and Friedman [2]|-[3] and Friedman [11] (see also Friedman [12; Chapter XVI|). This
investigation was continued in Brekke and Oksendal [4], Duckworth and Zervos [9],
Hamadéne and Jeanblanc [17] for the continuous-time case, and in Yushkevich [31]
and Yushkevich and Gordienko [32] for the discrete-time case. A direct method for
solving optimal switching problems for diffusion processes is described in Dayanik
and Egami [8].

The paper is organized as follows. In Section 2, we give a formulation of the multiple
disorder problem for a Wiener and a compound Poisson process with exponential
jumps, and reduce it to the corresponding optimal switching problem. Then, using
the strong Markov property of the a posteriori probability process, we construct
an equivalent coupled optimal stopping problem and formulate the corresponding
coupled free-boundary problem. In Section 3, we derive solutions to the coupled
free-boundary problems for the both cases of Wiener and compound Poisson pro-
cesses with exponential jumps, separately. In Section 4, we formulate and prove
the main assertion of the paper showing that the specified solutions of the coupled
free-boundary problems turn out to be solutions of the initial coupled optimal stop-
ping problems. The main results of the paper are formulated in Theorem 4.1. The
optimal switching procedure is displayed more explicitly in Remark 4.3.

2. Formulation of the problem

In order to simplify the further exposition, in this section we formulate the multiple
disorder problem for the observed sum of a Wiener and a compound Poisson process
having exponentially distributed jumps (see [30; Chapter IV, Sections 3-4| and [23]
for the single disorder case).

2.1. For a precise formulation of the problem, it is convenient to assume that all
our considerations take place on a probability space (2, F, P,) for 7 € [0,1]. Let
0 = (0:)>0 be a continuous time Markov chain with two states 0 and 1, initial
distribution [1 — 7, 7], transition-probability matrix [e=*, 1 —e ;1 —e=* =] for
t > 0, and intensity-matrix [—A, A\; A, —A] with A > 0. The process 6 defined above
is called a ‘telegraphic signal’ (see [21; Chapter IX, Section 4]). It is assumed that
the process @ is unobservable, so that, the switching times 1, = inf{t > n,_1 |0, #
6,, .}, when the process 6 switches from 0 to 1 and from 1 to 0, are unknown
(i.e., they cannot be observed directly).



It is further assumed that we observe a process X = (X;):>o defined by:

t t
Xt:/ es_dX;Jr/(l—es_)dXQ (2.1)
0 0

where X| = iut + oW, + Zjvztl Y} forall t > 0. Here W = (W;);>0 is a standard
Wiener process, N = (N/);>o are Poisson processes with intensities 1/);, and
(in)jeN are sequences of independent random variables exponentially distributed
with parameters \; > 0 for ¢ = 0,1, respectively. It is supposed that W, N*,
(Y})jen and 6 are independent for i =0, 1.

Based upon the continuous observation of X, our task is to find a (nondecreasing)
sequence of stopping times with respect to the natural filtration ¥ = o{X, |0 <
s < t} generated by X for ¢ > 0 being ’as close as possible’ to the unknown
switching times of the process . More precisely, the problem consists of computing
the risk function:

Ru(m) = min{V.(x), W, (r)} (22)
for m € [0, 1], where
0 1 Ton—1+i
Vi) = inf S 0Peffy, = 0] + aPalfy, = 1]+ 3 / 16 =1—i)dt
(n) n—1 i=0 T2an—2+i
(2.3)
©© 1 Oon—1+i
Weim) = int 3 (aPellon , = 1]+ bPrl0y, =0+ 3 / (6, = i) dt
(on) n—1 i=0 O2n—2-+i
(2.4)

and finding the corresponding (nondecreasing) sequences of optimal stopping times
(75 )nen and (0))neny at which the infimums in (2.3) and (2.4) are attained. In
order to avoid difficulties with notations, we set 79 = 09 = 0. Note that in (2.3)
it is assumed that the process 6 initially switches from 0 to 1 first, while in (2.4)
it is assumed that 6 initially switches from 1 to 0 first. Here P[0, = i| is the
probability of a ’false alarm’ and Eﬂ[f;"il 160, =1— i)dt] is the ’average delay’
in detecting the ’disorder’ correctly after giving the alarm 7,,_; when the process ¢
switches from the state i to the state 1 —¢ for ¢ = 0,1 and n € N, and a > 0 and
b > 0 are given constants (costs of false alarms). It follows that if V.(7) < W ()
then (77),en is the optimal strategy in (2.2), while if V,(7) > W, (7) then (07),en
is optimal in (2.2), and either solution is good if V,(7) = W.(r).

2.2. Straightforward calculations based on the fact that (7,),en is a nondecreasing

sequence of stopping times with respect to the filtration (F;X);>¢ show that in (2.3)-
(2.4) we have:

/ "I, = i)t
Tn—1

_ B [ /0 ¥ B [I(ras < 160, = DI(t < 1) | FY] dt} ~ B,

Ex

_ B, [ /O Iy < DI, = DIt < ) dt} (2.5)

/ " P = imX]dt]
Tn—1



for @ = 0,1. Then, by means of similar arguments to those presented in [30;
pages 195-197|, one can reduce the functions (2.3)-(2.4) to the form:

Z(b(l—ﬁTznl)+a7rT2n+/ . 7Ttdt—|—/ (1—m) dt ]
(2.

Vi(m) = (1£1f) E,

n=1 T2n—2 T2n—1

O2n—1 O2n
Z (aﬂg% L 01— 7, ) + / (1 —m)dt +/ e dt)]
— 02n—2 02n—1
(

B 2.7)

6)

W.(r) = inf E,

(Un

where 7, = P[0, = 1| F/*] for t > 0 is the a posteriori probability process with
P.my = m] = 1, and we set 79 = 09 = 0. Moreover, it is easily seen that the
infimums in (2.6) and (2.7) are taken over all sequences of stopping times (7,)nen
and (0,)nen such that E |1, V 0,] < oo for all n € N.

2.3. Tt can be shown (see [21; Chapters IX, XVIII and XIX]) that the a posteriori
probability process (m)¢>0 solves the stochastic differential equation:

dmy = )\(1 — 27’(}/) dt + gﬂ't(l — 7Tt) th (28)
00 . -\ _ ,—Xox
+/ m- (1 —m-)(e ) (1 (at, de)
0

7Tt_6_>‘1m + (1 — 7Tt_)€_)‘0m

— (MM 4 (1 — my_)e™ M%) dtda;) (mg =)

where the innovation process W = (W;);>o defined by:

W, = %(Xf — ,u/ot T ds) (2.9)

is a standard Wiener process (see also [21; Chapter IX]). Here X¢ = (Xf);>0 denotes
the continuous part and p*(dt, dz) is the measure of jumps of the process X (see [19;
Chapters I and I1]). It can be verified that (m;);>¢ is a time-homogeneous (strong)
Markov process under P, with respect to its natural filtration. As the latter clearly
coincides with (FX);>g, it is also clear that the infimums in (2.6) and (2.7) can
equivalently be taken over all stopping times of (7;);>¢. This shows that the process
(m¢)e>0 plays the role of a sufficient statistic in the problems (2.6) and (2.7).

2.4. Using the strong Markov property of the process (m)i>0, we can reduce the
system (2.6)-(2.7) to the following coupled optimal stopping problem:

Vi(m) = ilgf E, [b(l — 7))+ /OT T dt + W*(T('T):| (2.10)

W. () = inf E; {mg +/OJ(1 —wt)dt+V*(7r(,)} (2.11)



where the infimums in (2.10) and (2.11) are taken over all stopping times 7 and o
such that E.[T V o] < oo, respectively. By using the arguments in [30; pages 197-
198] and [23] it can be verified that the function V,(m) from (2.10) is concave and
decreasing, while the function W, (7) from (2.11) is concave and increasing on [0, 1].
Then it follows that the optimal stopping times in (2.10) and in (2.11) have the form:

T, =inf{t > 0| m > B.} (2.12)
o, =inf{t >0|m < A} (2.13)

where B, is the smallest number 7 from [0, 1] such that V,(7) = b(1 — 7), and A,
is the largest number 7 from [0, 1] such that W, (7) = aw. Hence, we may conclude
that the sequence of stopping times (77),en given by:

Ton_y = nf{t > 15 o | m > B.} (2.14)
1o, =inf{t > 15 | m < A} (2.15)

is optimal in (2.6) and thus in (2.3), while the sequence of stopping times (07),en
given by:

Opnq = nf{t > 05, o | m < A} (2.16)
oy, =1inf{t > o5 || m > B.} (2.17)

is optimal in (2.7) and thus in (2.4). In order to avoid difficulties in notations, here
we set 75 = o5 = 0.

It is also seen that there exist a unique point 0 < m, < 1 such that V,(m,) = W, (7).
Therefore, for a given number 7 from the interval [0, 1] it follows that if m, <7 <1
then the sequence (2.14)-(2.15) is optimal in the problem (2.2), while if 0 < 7 < 7,
then the sequence (2.16)-(2.17) is optimal in (2.2), and either solution is good if
T = Ty.

2.5. Standard arguments imply that the infinitesimal operator IL of the process
(7 )10 acts on a function F € C*([0,1]) according to the rule:

(LF)(n) = ()\(1 —2m) — A(;O_Aflm - ﬁ)) Fio)+ 221 = n)2p () (2.18)

202
+ /oo F e — F(m)| (me ™ 4 (1 — m)e ") dx
0 me ™M 4 (1 — )e—tox

for all 7 € [0,1]. In order to find the unknown value functions V.(7) and W, ()
from (2.10) and (2.11) as well as the unknown boundaries A, and B, from (2.12) and
(2.13), using the general theory of optimal stopping problems for continuous time
Markov processes (see, e.g., [16] and [30; Chapter 111, Section 8|), we can formulate




the following coupled free-boundary problem:

(LW)(r)=—(1—-m) for A<nm<l1l, (LV)(r)=-m for 0<m<B (2.19)

W(A+) = aA + V(A+), V(B—)=b(1—B)+W(B-) (2.20)
W(r)=ar+V(r) for 0<7m<A, V(r)=0b1-m)+W(r) for B<r<1
(2.21)

W(r) <ar+V(r) for A<m<l1l, V(rm)<bl—m)+W(r) for 0<7m<B
(2.22)

with 0 < A, < B, < 1, where the conditions (2.20), which are satisfied by virtue of
the concavity arguments above, play the role of instantaneous-stopping conditions.
Note that by the superharmonic characterization of the value function (see [10] or
[30]) it follows that V. (7) from (2.10) and W, (m) from (2.11) are the largest functions
satisfying (2.19)-(2.22). Moreover, we assume that the smooth-fit conditions:

(Gf 20 0r Ag > M) W/(AT) = a+ V'(A+), V/(B—)=—b (2.23)
+ W/(B—) (1f,u §£ 0or A\ < )\1)

are satisfied. The latter can be explained by the fact that in these cases the process
(m¢)i>0 can pass through the corresponding boundaries A, and B, continuously.
Such property was earlier observed in |22|-[23| by solving some other optimal stop-
ping problems for jump processes (see also |1| for necessary and sufficient conditions
for the occurrence of smooth fit and references to the related literature, and [24] for
an extensive overview).

In order to find the optimal boundaries A, and B,, let us introduce the reference
(difference) function U(m) = V(m)—W (x) for all 7 € [0,1]. Then from (2.19)-(2.22)
and (2.23) it follows that U(m) solves the system:

(LU)(mr)=1-271 for A<m<B (
U(A+) = —aA, U(B-)=10b(1-B) (

U(r)=—ar for 0<nm<A, U(r)=0b1-m) for B<n<1 (2.26
U(r) > —ar for A<n <1, U(r)<bl—m) for 0<m<B (

and the following conditions hold:

(1f,u7§00r Ao >)\1) U/(A+) = —a, U/(B—> =—-b (1f,u7§00r Ao <)\1)
(2.28)

3. Solutions of the coupled free-boundary problem

In this section we solve the systems (2.24)-(2.27)+(2.28) and (2.19)-(2.22)+(2.23)
for the both cases p # 0 with \g = A; and p = 0 with \g # A1, separately.



3.1. By means of straightforward calculations it can be checked that in case p # 0
and Ao = A; the solution of the system (2.24)-(2.26)+(2.28) takes the form:

b—a

Fy(A) — Fo(B)

U(m; A, B) = /7T Fo(z) dx + # —aA (3.1)

A

for all A, < m < B, and the boundaries A, and B, such that 0 < A, < B, < 1 are
uniquely determined by the following coupled system of equations:

bEy(A) — aFy(B) = %(FO(B) - Fy(4)) (3.2)
(b— a) /A Fo(x) do = (aA +b(1—B) - %(B - A)) (FO(A) . FO(B)> (3.3)
with the function Fy(x) defined by:
2\o?
Fy(x) = exp (m> (3.4)

for all 0 <z <1 (see Figure 1 below).

S

v
b

Figure 1: A computer drawing of the reference (difference) function 7 — U, ()
on [0, 1].

Therefore, solving equations (2.19) and using conditions (2.20) for A and B fixed
(as well as taking into account the fact that the value functions should be bounded),
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we obtain the expressions:

VirB) = b(1— B) + 2:2/ /028 (1d_y 5 da (3.5)
W (m; A) —aA+—/7r/ ];28 fy_y)d (3.6)

where the function Fy(z) is defined in

3.2. Let us now assume that g =0 and A\g # A\;. In this case, by making straight-
forward calculations it is shown that when Ag > A; the solution of the system
(2.24)-(2.26)+(2.28) takes the form:

B g\ H (2, B)(1 — x)x7

U(m; A, B) = b(1 — B) —/W S e T (3.7)
with
N T T
CBB(1-BY A(1—22)(1—z)
GEB =0 TE T oo 39

(1;95)(93+7—1)
Gi(z, B) = exp <—/x Dd(Z)> (3.11)

and v = Ao/(Ao— A1) > 1, X = Ag(Xo — A1) > 0 as well as the boundaries A, and
B, such that 0 < A, < B, < 1 are uniquely determined by the following coupled
system of equations:

’Y)\lHl(A, B)(]_ — A)A’Y

Dot Oo— WA —A) (3.12)
B\ Hy(z,B)(1 — z)2" . B
/A o+ O — A)al(l = 2y dex =aA+b(1 — B) (3.13)
and when \g < \; the function U(m; A, B) is given by:
. - T ’7)\1H2(l’, A)(l — l’)l’ﬁ/
Ui B) = ed+ [ T = )
with
_ L T ! CQ(yv A>G2(y7 A)
Hy(x, A) = D) <C’2( JA) +/A D(y)Galz, A) dy) (3.15)
_dA(l =AY M —2z)(1 — )
R Z Ty 10
Y odz
Go(z, A) = exp (/A W) (3.17)
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and v = Ag/(Ao— A1) <0, X = Ag(Xo — A1) < 0 as well as the boundaries A, and
B, such that 0 < A, < B, < 1 are uniquely determined by the following coupled
system of equations:

’)/)\1H2(B, A)(]_ — B)Bﬁ{

it Co— ) BIA— By " (3.18)
/A [A?Aiilio(?iigi]ﬁx_)i)w dz = aA+b(1 - B). (3.19)

Therefore, solving equations (2.19) and using conditions (2.20) for A and B fixed
(as well as taking into account the fact that the value functions should be bounded),
we obtain the expressions:

V(W;B):b(l—B)—/ﬂ [A?tﬁix_li)l() (11@ dx (3.20)

|
. . & ’}/)\1F2(ZL',A)(1—ZL') 2
W) =ad+ | ot Co — A)ald — )

d (3.21)

where when Ay > \; we have:

_ L x - b C3(y7B)G1(y7B)
Fy(x, A) = ﬁ <C’4(x, A) —i—/A Og?é;;gii(’yé)fl) dy) (3.23)

bB(1—B)  Aoz(l —ax)

Yy =1)B" (1 —x)a?
aA(l =AY Xz(l —x)?

Cy(z, A) = _7(7 —1)Ar B v(1 — x)zY

while when )y < A\ we have:

Fi(e, B) = — <C5(:E,B)—/xB Csly, B)Grly, B) dy) (3.26)

(3.25)

D(x D(y)Gi(z, B)
1 “ Cs(y, A)Ga(y, A)
Fy(z, A) = D) <C’6(:E A) + /A D(y)Galz. A) dy) (3.27)
Cs(x, B) = b?(l__lf; = AO(lv(_lgi)S);x)y (3.28)
CGA(L— A A1 —2)(1 — )
Cula, 4) = =~ ey (3.29)

4. Main result and proof

Taking into account the facts proved above, we are now ready to formulate and
prove the main assertion of the paper.



Figure 2: A computer drawing of the value functions 7 +— V,(7m) and 7© — W, ()
for m € [0, 1].

Theorem 4.1. Let the process X = (Xi)>0 be given by (2.1) with p # 0 or
Xo # A1. Then the value functions (2.3) and (2.4) take the expressions:

V(m; B,), if 0<m< B,
V(7)) = . (4.1)
b(1—m), if B.<7m<1
and
W*(’]T) — W(Tﬁ ) Zf <7 (42)
am, if 0< 7 <A,

and the optimal stopping times (7)) nen and (07)nen have the structure (2.14)-(2.15)
and (2.16)-(2.17), where the functions V(m; B) and W (mw; A) and the boundaries A.
and B, are specified as follows [see Figure 2 above/:

(i) if p # 0 and N\g = A1, then V(m; B) and W (7; A) are given by (3.5) and (3.6), as
well as the optimal boundaries A, and B, satisfy the inequalities 0 < A, < B, < 1
and are uniquely determined by the coupled system of equations (3.2)-(3.3);

(17) if =10 and Ao > A1, then V(m; B) and W (m; A) are given by (3.20) and (3.21),
as well as the optimal boundaries A, and B, satisfy the inequalities 0 < A, < B, <
1 and are uniquely determined by the coupled system of equations (3.12)-(3.13);

(1i3) if @ =0 and N\g < A1, then V(m; B) and W{(m; A) are given by (3.20) and
(3.21), as well as the optimal boundaries A, and B, satisfy the inequalities 0 <

A, < B, <1 and are uniquely determined by the coupled system of equations (3.18)-
(3.19).

Proof. In order to verify the related assertions, it remains to show that the functions
(4.1) and (4.2) coincide with the value functions (2.10) and (2.11), respectively, and
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the stopping times 7. and o, from (2.12) and (2.13) with the boundaries A, and
B, specified above are optimal. For this, let us denote by V(w) and W(r) the
right-hand sides of the expressions (4.1) and (4.2), respectively. In these cases, by
means of straightforward calculations and the assumptions above it follows that the
functions V(7) and W (m) solve the system (2.19)-(2.22), and conditions (2.23) are
satisfied under the corresponding relationships on the parameters of the model. Note
that from the formulas of the previous section it is seen that the both functions V()
and W () are concave on [0,1]. The latter can be shown directly by analyzing the
expressions (3.5)-(3.6) and (3.20)-(3.21). Then, applying It6-Tanaka-Meyer formula
(see, e.g., |[18; Chapter V, Theorem 5.52| or |25; Chapter IV, Theorem 51|) to V()
and W (m;), we obtain:

V(m) =V(r)+ /Ot@LV)(WS) I(ms # B.)ds + M, (4.3)
W(m) = W(r) + /Ot(]LW)(ws) I(ms # As)ds + N, (4.4)
where the processes (M;);>o and (N;);>¢ defined by:

= t ! v Bﬂ' — 7T W
Mt_/o V() (1 ) diV (4.5)

" /ot /0°° [V <ws_e—hwwi_(i_il;_)e—xom> - V(Ws—)] <ux(ds,d:r) — v(ds, dx))

= t ! T E'ﬂ- — T
Nt—/o W) B (1 — ) 7, (4.6)

" /ot /OOO [W (ws_e—Alww:(i_f;_)e—m> - W(Ws—)] (uX(ds, dx) — v(ds, d:r))

are local martingales under the measure P, with respect to (F;*);>0 and we set
v(dt,dx) = (m_e M% 4+ (1 — m_)e 2% dtdx.

By the construction of V() and W () from the previous sections and by using the
straightforward calculations it can be checked that (LV)(7) > —x forall B <7 <1
and (LW)(m) > —(1 —x) for all 0 < m# < A. Moreover, by means of standard
arguments it can be shown that the function V(m; B,) is decreasing, while the
function W(m; A,) is increasing on the intervals (0, B,) and (A,, 1), respectively,
since for their derivatives we have —b < V'(m; B,) < 0 and 0 < W'(m; A,) < a.
Then the properties (2.22) also hold, that together with (2.20)-(2.21) yields V() <
b(1—m)+W(m) and W (r) < ar+V (x) for all 7 € [0,1]. Observe that by using (2.8)
it is shown that the time spent by the process (m):>0 at the points A, and B, is of
Lebesgue measure zero. Hence, from the expressions (4.3)-(4.4) and the structure
of stopping times in (2.12)-(2.13), by using the fact that A, < (aA+1)/(2a\+ 1),

11



B, > b\/(20A + 1) and 0 < A, < B, <1 it follows that the inequalities:
b(1 — ) +/ rods +W(r,) > V(r) +/ rods > V()4 M, (A7)
0 0
amy +/ (1 —ms)ds+V(n,) > W(n,) + / (1—mg)ds >W(m)+ N, (4.8)
0 0

hold for any stopping times 7 and o of the process (m;):>0-

Let (7,)nen and (0,)nen be arbitrary localizing sequences of stopping times for the
processes (M;)i>o and (Ni)>o, respectively. Then, using (4.7)-(4.8) and taking the
expectations with respect to Py, by means of the optional sampling theorem (see,
e.g., [19; Chapter I, Theorem 1.39]), we get:

TNTn
E. {b(l — Trnm, ) + / T ds + W(ﬁMTn)] (4.9)
0

> B Vi) + [ mads] 2 Vi) + B[] = Vi)

E, [ammn + /0 T = ) ds + V(M%)] (4.10)
> B, lW(onn) + /O T ) ds} > W (r) + Ey[Nona,] = W)

for all 7 € [0,1]. Hence, letting n go to infinity and using Fatou’s lemma, for any
stopping times 7 and ¢ such that E.[7V o] < oo we obtain that the inequalities:

E, [b(l )+ /O Crods+ W(m)] > V(1) (4.11)
E, {mro + /O (1= m)ds + V(m,)] > W(r) (4.12)

are satisfied for all 7 € [0, 1].

By virtue of the fact that the functions V(7)) and W () satisfy the system (2.19)-
(2.22) with the boundaries A, and B,, by the structure of the stopping times 7, in
(2.12) and o, in (2.13) as well as by the expressions (4.3) and (4.4) it follows that
the equalities:

T« NTn
V(WT*/\TTL) + / Ts ds = V(?T) + MT*/\Tn (413)
0
Ox/\Op,
W(opo, )+ [ (1= m)ds = W(m) + N, (4.14)
0

hold for all = € [0,1]. Note that, by means of standard arguments and using the
structure of the process (2.8) and of the stopping times (2.12) and (2.13), we have
E[r V o.] < oo for all = € [0,1]. Hence, letting n go to infinity in (4.13)-(4.14)
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and using conditions (2.21)-(2.22), by means of the Lebesgue bounded convergence
theorem, we obtain the equalities:

B, [5(1 — )+ /0 " rads+ W(wﬁ)} =V(m) (4.15)

E. [am* + /0 "= ds+ V(m,*)} — W) (4.16)

for all m € [0,1], that together with (4.11)-(4.12) directly imply the desired assertion.
U

Remark 4.2. By means of straightforward calculations from the previous sec-
tion it can be verified that in case p = 0 with Ay > A\; we have V/(B,—; B,) >
—b+ W/(B,—; A,), while in case p = 0 with Ay < A\; we have W/(A,+;A,) <
a + V'(A.+; By). According to the arguments in [22]-[23] such effects can be ex-
plained by the fact that in those cases the process (m);>¢ can pass through the
corresponding boundaries B, or A, only by jumping. According to the results in
|1| we may conclude that this property appears because of finite intensity of jumps
and exponential distribution of jump sizes of the compound Poisson process J.

Remark 4.3. The results formulated above show that the following sequential
procedure is optimal. Being based on the observations X = (X;);>o we construct
the sufficient statistic process (m;);>0 and stop the observations as soon as the latter
process comes into the region [0, A,] or [B,, 1] and then conclude that the continuous
Markov chain 6 = (6;);>¢ has switched from 1 to 0 or from 0 to 1, respectively.
Starting from one of those regions [0, A.] or [Bi, 1], we stop the observations as
soon as the process (m;);>0 comes to the opposite region and then conclude that
0 has switsched from 0 to 1 or from 1 to 0, respectively. Then we continue the
procedure from the beginning.
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