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AbstratThe multiple disorder problem onsists of �nding a sequene of stoppingtimes whih are as lose as possible to the (unknown) times of 'disorder' whenthe distribution of an observed proess hanges its probability harateristis.We present a formulation and solution of the multiple disorder problem for aWiener and a ompound Poisson proess with exponential jumps. The methodof proof is based on reduing the initial optimal swithing problems to theorresponding oupled optimal stopping problems and solving the equivalentoupled free-boundary problems by means of the smooth- and ontinuous-�tonditions.1. IntrodutionAssume that at time t = 0 we begin to observe a ontinuously updated proess X =
(Xt)t≥0 whih probability harateristis hange at some unknown times (ηn)n∈Nwhen an unobservable (two-stated) ontinuous time Markov hain θ = (θt)t≥0 , alledthe disorder proess, hanges its state from one to another. Throughout the paperit is assumed that the proess θ starts at 0 with probability 1−π , starts at 1 withprobability π , and hanges its state with intensity λ > 0 . The multiple disorderproblem (or the problem of quikest multiple disorder detetion) is to deide byobserving the proess X at whih time instants one should give alarms in order toindiate the ourrene of disorders (ηn)n∈N . In ontrast to the problem of singledisorder, in the multiple disorder problem one looks for an in�nite sequene of alarmtimes whih should be as lose as possible to the times (ηn)n∈N in the sense that thesum of probabilities of false alarms and the total average time between the ourreneof disorders and the alarms (when the latter are given orretly) should be minimal.The idea of onsideration of multiple disorder problems in suh formulation is dueto A.N. Shiryaev. Note that the problem of quikest detetion admits di�erentformulations and appears in a number of applied sienes (see, e.g., [20℄ or [5℄).The problem of deteting a hange in drift of a Wiener proess was formulated andsolved by Shiryaev [26℄-[28℄ (see also [29℄ and [30; Chapter IV℄). Some partiularases of the problem of deteting a hange in the intensity of a Poisson proess wereonsidered in Gal'huk and Rozovskii [13℄ and in Davis [6℄. Peskir and Shiryaev [23℄presented a omplete solution of the disorder problem for a Poisson proess in theBayesian formulation. A omplete solution to the problem for a ompound Poissonproess with exponential jumps in the Bayesian and variational formulations wasderived in [14℄. Reently, Dayanik and Sezer [7℄ obtained a solution to the disorder1



problem for a general ompound Poisson proess. A �nite horizon version of theWiener disorder problem was studied in [15℄. In the present paper we formulate andsolve the multiple disorder problem for observed Wiener and ompound Poissonproesses having exponentially distributed jumps. This problem an be redued toan equivalent optimal swithing problem.Optimal swithing problems are extensions of optimal stopping problems and opti-mal stopping games where one is looking for an in�nite sequene optimal stoppingtimes. A general approah for studying suh problems was developed in Bensoussanand Friedman [2℄-[3℄ and Friedman [11℄ (see also Friedman [12; Chapter XVI℄). Thisinvestigation was ontinued in Brekke and Øksendal [4℄, Dukworth and Zervos [9℄,Hamadène and Jeanblan [17℄ for the ontinuous-time ase, and in Yushkevih [31℄and Yushkevih and Gordienko [32℄ for the disrete-time ase. A diret method forsolving optimal swithing problems for di�usion proesses is desribed in Dayanikand Egami [8℄.The paper is organized as follows. In Setion 2, we give a formulation of the multipledisorder problem for a Wiener and a ompound Poisson proess with exponentialjumps, and redue it to the orresponding optimal swithing problem. Then, usingthe strong Markov property of the a posteriori probability proess, we onstrutan equivalent oupled optimal stopping problem and formulate the orrespondingoupled free-boundary problem. In Setion 3, we derive solutions to the oupledfree-boundary problems for the both ases of Wiener and ompound Poisson pro-esses with exponential jumps, separately. In Setion 4, we formulate and provethe main assertion of the paper showing that the spei�ed solutions of the oupledfree-boundary problems turn out to be solutions of the initial oupled optimal stop-ping problems. The main results of the paper are formulated in Theorem 4.1. Theoptimal swithing proedure is displayed more expliitly in Remark 4.3.2. Formulation of the problemIn order to simplify the further exposition, in this setion we formulate the multipledisorder problem for the observed sum of a Wiener and a ompound Poisson proesshaving exponentially distributed jumps (see [30; Chapter IV, Setions 3-4℄ and [23℄for the single disorder ase).2.1. For a preise formulation of the problem, it is onvenient to assume that allour onsiderations take plae on a probability spae (Ω,F , Pπ) for π ∈ [0, 1]. Let
θ = (θt)t≥0 be a ontinuous time Markov hain with two states 0 and 1 , initialdistribution [1−π, π], transition-probability matrix [e−λt, 1−e−λt; 1−e−λt, e−λt] for
t ≥ 0 , and intensity-matrix [−λ, λ; λ,−λ] with λ > 0 . The proess θ de�ned aboveis alled a 'telegraphi signal' (see [21; Chapter IX, Setion 4℄). It is assumed thatthe proess θ is unobservable, so that, the swithing times ηn = inf{t ≥ ηn−1 | θt 6=
θηn−1

} , when the proess θ swithes from 0 to 1 and from 1 to 0 , are unknown(i.e., they annot be observed diretly). 2



It is further assumed that we observe a proess X = (Xt)t≥0 de�ned by:
Xt =

∫ t

0

θs− dX1
s +

∫ t

0

(1 − θs−) dX0
s (2.1)where X i

t = iµt + σWt +
∑N i

t

j=1 Y i
j for all t ≥ 0 . Here W = (Wt)t≥0 is a standardWiener proess, N i = (N i

t )t≥0 are Poisson proesses with intensities 1/λi , and
(Y i

j )j∈N are sequenes of independent random variables exponentially distributedwith parameters λi > 0 for i = 0, 1 , respetively. It is supposed that W , N i ,
(Y i

j )j∈N and θ are independent for i = 0, 1 .Based upon the ontinuous observation of X , our task is to �nd a (nondereasing)sequene of stopping times with respet to the natural �ltration FX
t = σ{Xs | 0 ≤

s ≤ t} generated by X for t ≥ 0 being 'as lose as possible' to the unknownswithing times of the proess θ . More preisely, the problem onsists of omputingthe risk funtion:
R∗(π) = min{V∗(π), W∗(π)} (2.2)for π ∈ [0, 1], where

V∗(π) = inf
(τn)

∞
∑

n=1

(

bPπ[θτ2n−1
= 0] + aPπ[θτ2n

= 1] +

1
∑

i=0

Eπ

[

∫ τ2n−1+i

τ2n−2+i

I(θt = 1 − i) dt

])(2.3)
W∗(π) = inf

(σn)

∞
∑

n=1

(

aPπ[θσ2n−1
= 1] + bPπ[θσ2n

= 0] +
1
∑

i=0

Eπ

[

∫ σ2n−1+i

σ2n−2+i

I(θt = i) dt

])(2.4)and �nding the orresponding (nondereasing) sequenes of optimal stopping times
(τ ∗

n)n∈N and (σ∗
n)n∈N at whih the in�mums in (2.3) and (2.4) are attained. Inorder to avoid di�ulties with notations, we set τ0 = σ0 = 0 . Note that in (2.3)it is assumed that the proess θ initially swithes from 0 to 1 �rst, while in (2.4)it is assumed that θ initially swithes from 1 to 0 �rst. Here Pπ[θτn

= i] is theprobability of a 'false alarm' and Eπ

[ ∫ τn

τn−1
I(θt = 1 − i)dt

] is the 'average delay'in deteting the 'disorder' orretly after giving the alarm τn−1 when the proess θswithes from the state i to the state 1 − i for i = 0, 1 and n ∈ N, and a > 0 and
b > 0 are given onstants (osts of false alarms). It follows that if V∗(π) < W∗(π)then (τ ∗

n)n∈N is the optimal strategy in (2.2), while if V∗(π) > W∗(π) then (σ∗
n)n∈Nis optimal in (2.2), and either solution is good if V∗(π) = W∗(π).2.2. Straightforward alulations based on the fat that (τn)n∈N is a nondereasingsequene of stopping times with respet to the �ltration (FX

t )t≥0 show that in (2.3)-(2.4) we have:
Eπ

[

∫ τn

τn−1

I(θt = i) dt

]

= Eπ

[
∫ ∞

0
I(τn−1 ≤ t)I(θt = i)I(t ≤ τn) dt

] (2.5)
= Eπ

[
∫ ∞

0
Eπ

[

I(τn−1 ≤ t)I(θt = i)I(t ≤ τn)
∣

∣FX
t

]

dt

]

= Eπ

[

∫ τn

τn−1

Pπ[θt = i | FX
t ] dt

]

3



for i = 0, 1 . Then, by means of similar arguments to those presented in [30;pages 195-197℄, one an redue the funtions (2.3)-(2.4) to the form:
V∗(π) = inf

(τn)
Eπ

[

∞
∑

n=1

(

b(1 − πτ2n−1
) + aπτ2n

+

∫ τ2n−1

τ2n−2

πt dt +

∫ τ2n

τ2n−1

(1 − πt) dt

)

](2.6)
W∗(π) = inf

(σn)
Eπ

[

∞
∑

n=1

(

aπσ2n−1
+ b(1 − πσ2n

) +

∫ σ2n−1

σ2n−2

(1 − πt) dt +

∫ σ2n

σ2n−1

πt dt

)

](2.7)where πt = Pπ[θt = 1 | FX
t ] for t ≥ 0 is the a posteriori probability proess with

Pπ[π0 = π] = 1 , and we set τ0 = σ0 = 0 . Moreover, it is easily seen that thein�mums in (2.6) and (2.7) are taken over all sequenes of stopping times (τn)n∈Nand (σn)n∈N suh that Eπ[τn ∨ σn] < ∞ for all n ∈ N.2.3. It an be shown (see [21; Chapters IX, XVIII and XIX℄) that the a posterioriprobability proess (πt)t≥0 solves the stohasti di�erential equation:
dπt = λ(1 − 2πt) dt +

µ

σ
πt(1 − πt) dW t (2.8)

+

∫ ∞

0

πt−(1 − πt−)(e−λ1x − e−λ0x)

πt−e−λ1x + (1 − πt−)e−λ0x

(

µX(dt, dx)

− (πt−e−λ1x + (1 − πt−)e−λ0x) dtdx
)

(π0 = π)where the innovation proess W = (W t)t≥0 de�ned by:
W t =

1

σ

(

Xc
t − µ

∫ t

0

πs ds
) (2.9)is a standard Wiener proess (see also [21; Chapter IX℄). Here Xc = (Xc

t )t≥0 denotesthe ontinuous part and µX(dt, dx) is the measure of jumps of the proess X (see [19;Chapters I and II℄). It an be veri�ed that (πt)t≥0 is a time-homogeneous (strong)Markov proess under Pπ with respet to its natural �ltration. As the latter learlyoinides with (FX
t )t≥0 , it is also lear that the in�mums in (2.6) and (2.7) anequivalently be taken over all stopping times of (πt)t≥0 . This shows that the proess

(πt)t≥0 plays the role of a su�ient statisti in the problems (2.6) and (2.7).2.4. Using the strong Markov property of the proess (πt)t≥0 , we an redue thesystem (2.6)-(2.7) to the following oupled optimal stopping problem:
V∗(π) = inf

τ
Eπ

[

b(1 − πτ ) +

∫ τ

0

πt dt + W∗(πτ )

] (2.10)
W∗(π) = inf

σ
Eπ

[

aπσ +

∫ σ

0

(1 − πt) dt + V∗(πσ)

] (2.11)4



where the in�mums in (2.10) and (2.11) are taken over all stopping times τ and σsuh that Eπ[τ ∨ σ] < ∞ , respetively. By using the arguments in [30; pages 197-198℄ and [23℄ it an be veri�ed that the funtion V∗(π) from (2.10) is onave anddereasing, while the funtion W∗(π) from (2.11) is onave and inreasing on [0, 1].Then it follows that the optimal stopping times in (2.10) and in (2.11) have the form:
τ∗ = inf{t ≥ 0 | πt ≥ B∗} (2.12)
σ∗ = inf{t ≥ 0 | πt ≤ A∗} (2.13)where B∗ is the smallest number π from [0, 1] suh that V∗(π) = b(1 − π), and A∗is the largest number π from [0, 1] suh that W∗(π) = aπ . Hene, we may onludethat the sequene of stopping times (τ ∗

n)n∈N given by:
τ ∗
2n−1 = inf{t ≥ τ ∗

2n−2 | πt ≥ B∗} (2.14)
τ ∗
2n = inf{t ≥ τ ∗

2n−1 | πt ≤ A∗} (2.15)is optimal in (2.6) and thus in (2.3), while the sequene of stopping times (σ∗
n)n∈Ngiven by:

σ∗
2n−1 = inf{t ≥ σ∗

2n−2 | πt ≤ A∗} (2.16)
σ∗

2n = inf{t ≥ σ∗
2n−1 | πt ≥ B∗} (2.17)is optimal in (2.7) and thus in (2.4). In order to avoid di�ulties in notations, herewe set τ ∗

0 = σ∗
0 = 0 .It is also seen that there exist a unique point 0 < π∗ < 1 suh that V∗(π∗) = W∗(π∗).Therefore, for a given number π from the interval [0, 1] it follows that if π∗ < π ≤ 1then the sequene (2.14)-(2.15) is optimal in the problem (2.2), while if 0 ≤ π < π∗then the sequene (2.16)-(2.17) is optimal in (2.2), and either solution is good if

π = π∗ .2.5. Standard arguments imply that the in�nitesimal operator L of the proess
(πt)t≥0 ats on a funtion F ∈ C2([0, 1]) aording to the rule:
(LF )(π) =

(

λ(1 − 2π) −
λ0 − λ1

λ0λ1
π(1 − π)

)

F ′(π) +
µ2

2σ2
π2(1 − π)2F ′′(π) (2.18)

+

∫ ∞

0

[

F

(

πe−λ1x

πe−λ1x + (1 − π)e−λ0x

)

− F (π)

]

(πe−λ1x + (1 − π)e−λ0x) dxfor all π ∈ [0, 1]. In order to �nd the unknown value funtions V∗(π) and W∗(π)from (2.10) and (2.11) as well as the unknown boundaries A∗ and B∗ from (2.12) and(2.13), using the general theory of optimal stopping problems for ontinuous timeMarkov proesses (see, e.g., [16℄ and [30; Chapter III, Setion 8℄), we an formulate
5



the following oupled free-boundary problem:
(LW )(π) = −(1 − π) for A < π < 1, (LV )(π) = −π for 0 < π < B (2.19)

W (A+) = aA + V (A+), V (B−) = b(1 − B) + W (B−) (2.20)
W (π) = aπ + V (π) for 0 ≤ π < A, V (π) = b(1 − π) + W (π) for B < π ≤ 1(2.21)
W (π) < aπ + V (π) for A < π < 1, V (π) < b(1 − π) + W (π) for 0 < π < B(2.22)with 0 < A∗ < B∗ < 1 , where the onditions (2.20), whih are satis�ed by virtue ofthe onavity arguments above, play the role of instantaneous-stopping onditions.Note that by the superharmoni haraterization of the value funtion (see [10℄ or[30℄) it follows that V∗(π) from (2.10) and W∗(π) from (2.11) are the largest funtionssatisfying (2.19)-(2.22). Moreover, we assume that the smooth-�t onditions:

(if µ 6= 0 or λ0 > λ1) W ′(A+) = a + V ′(A+), V ′(B−) = −b (2.23)
+ W ′(B−) (if µ 6= 0 or λ0 < λ1)are satis�ed. The latter an be explained by the fat that in these ases the proess

(πt)t≥0 an pass through the orresponding boundaries A∗ and B∗ ontinuously.Suh property was earlier observed in [22℄-[23℄ by solving some other optimal stop-ping problems for jump proesses (see also [1℄ for neessary and su�ient onditionsfor the ourrene of smooth �t and referenes to the related literature, and [24℄ foran extensive overview).In order to �nd the optimal boundaries A∗ and B∗ , let us introdue the referene(di�erene) funtion U(π) = V (π)−W (π) for all π ∈ [0, 1]. Then from (2.19)-(2.22)and (2.23) it follows that U(π) solves the system:
(LU)(π) = 1 − 2π for A < π < B (2.24)

U(A+) = −aA, U(B−) = b(1 − B) (2.25)
U(π) = −aπ for 0 ≤ π < A, U(π) = b(1 − π) for B < π ≤ 1 (2.26)
U(π) > −aπ for A < π ≤ 1, U(π) < b(1 − π) for 0 ≤ π < B (2.27)and the following onditions hold:

(if µ 6= 0 or λ0 > λ1) U ′(A+) = −a, U ′(B−) = −b (if µ 6= 0 or λ0 < λ1).(2.28)3. Solutions of the oupled free-boundary problemIn this setion we solve the systems (2.24)-(2.27)+(2.28) and (2.19)-(2.22)+(2.23)for the both ases µ 6= 0 with λ0 = λ1 and µ = 0 with λ0 6= λ1 , separately.6



3.1. By means of straightforward alulations it an be heked that in ase µ 6= 0and λ0 = λ1 the solution of the system (2.24)-(2.26)+(2.28) takes the form:
U(π; A, B) =

b − a

F0(A) − F0(B)

∫ π

A

F0(x) dx +
π − A

λ
− aA (3.1)for all A∗ < π < B∗ and the boundaries A∗ and B∗ suh that 0 < A∗ < B∗ < 1 areuniquely determined by the following oupled system of equations:

bF0(A) − aF0(B) =
1

λ

(

F0(B) − F0(A)
) (3.2)

(b − a)

∫ B

A

F0(x) dx =

(

aA + b(1 − B) −
1

λ
(B − A)

)

(

F0(A) − F0(B)
) (3.3)with the funtion F0(x) de�ned by:

F0(x) = exp
( 2λσ2

µ2x(1 − x)

) (3.4)for all 0 < x < 1 (see Figure 1 below).

-

6

U∗(π)

−a

b

A∗ B∗

V

π1

Figure 1: A omputer drawing of the referene (di�erene) funtion π 7→ U∗(π)on [0, 1].Therefore, solving equations (2.19) and using onditions (2.20) for A and B �xed(as well as taking into aount the fat that the value funtions should be bounded),7



we obtain the expressions:
V (π; B) = b(1 − B) +

2σ2

µ2

∫ B

π

∫ x

0

F0(x)

F0(y)

dy

y(1 − y)2
dx (3.5)

W (π; A) = aA +
2σ2

µ2

∫ π

A

∫ 1

x

F0(x)

F0(y)

dy

y2(1 − y)
dx (3.6)where the funtion F0(x) is de�ned in (3.4).3.2. Let us now assume that µ = 0 and λ0 6= λ1 . In this ase, by making straight-forward alulations it is shown that when λ0 > λ1 the solution of the system(2.24)-(2.26)+(2.28) takes the form:

U(π; A, B) = b(1 − B) −

∫ B

π

γλ1H1(x, B)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx (3.7)with

H1(x, B) =
1

D(x)

(

C1(x, B) −

∫ B

x

C1(y, B)G1(y, B)

D(y)G1(x, B)
dy

) (3.8)
C1(x, B) =

bB(1 − B)γ

γ(γ − 1)Bγ
−

λ0(1 − 2x)(1 − x)γ

γ(1 − x)xγ
(3.9)

D(x) =
x[λ′γ(γ − 1)(1 − 2x) − x(1 − x)]

(1 − x)(x + γ − 1)
(3.10)

G1(x, B) = exp

(

−

∫ B

x

dz

D(z)

) (3.11)and γ = λ0/(λ0 − λ1) > 1 , λ′ = λ0(λ0 − λ1) > 0 as well as the boundaries A∗ and
B∗ suh that 0 < A∗ < B∗ < 1 are uniquely determined by the following oupledsystem of equations:

γλ1H1(A, B)(1 − A)Aγ

[λ1 + (λ0 − λ1)A](1 − A)γ
= −a (3.12)

∫ B

A

γλ1H1(x, B)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx = aA + b(1 − B) (3.13)and when λ0 < λ1 the funtion U(π; A, B) is given by:

U(π; A, B) = −aA +

∫ π

A

γλ1H2(x, A)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx (3.14)with

H2(x, A) =
1

D(x)

(

C2(x, A) +

∫ x

A

C2(y, A)G2(y, A)

D(y)G2(x, A)
dy

) (3.15)
C2(x, A) = −

aA(1 − A)γ

γ(γ − 1)Aγ
−

λ0(1 − 2x)(1 − x)γ

γ(1 − x)xγ
(3.16)

G2(x, A) = exp

(
∫ x

A

dz

D(z)

) (3.17)8



and γ = λ0/(λ0 − λ1) < 0 , λ′ = λ0(λ0 − λ1) < 0 as well as the boundaries A∗ and
B∗ suh that 0 < A∗ < B∗ < 1 are uniquely determined by the following oupledsystem of equations:

γλ1H2(B, A)(1 − B)Bγ

[λ1 + (λ0 − λ1)B](1 − B)γ
= −b (3.18)

∫ B

A

γλ1H2(x, A)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx = aA + b(1 − B). (3.19)Therefore, solving equations (2.19) and using onditions (2.20) for A and B �xed(as well as taking into aount the fat that the value funtions should be bounded),we obtain the expressions:

V (π; B) = b(1 − B) −

∫ B

π

γλ1F1(x, B)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx (3.20)

W (π; A) = aA +

∫ π

A

γλ1F2(x, A)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx (3.21)where when λ0 > λ1 we have:

F1(x, B) =
1

D(x)

(

C3(x, B) −

∫ B

x

C3(y, B)G1(y, B)

D(y)G1(x, B)
dy

) (3.22)
F2(x, A) =

1

D(x)

(

C4(x, A) +

∫ x

A

C4(y, A)G2(y, A)

D(y)G2(x, A)
dy

) (3.23)
C3(x, B) =

bB(1 − B)γ

γ(γ − 1)Bγ
−

λ0x(1 − x)γ

γ(1 − x)xγ
(3.24)

C4(x, A) = −
aA(1 − A)γ

γ(γ − 1)Aγ
−

λ0x(1 − x)γ

γ(1 − x)xγ
(3.25)while when λ0 < λ1 we have:

F1(x, B) =
1

D(x)

(

C5(x, B) −

∫ B

x

C5(y, B)G1(y, B)

D(y)G1(x, B)
dy

) (3.26)
F2(x, A) =

1

D(x)

(

C6(x, A) +

∫ x

A

C6(y, A)G2(y, A)

D(y)G2(x, A)
dy

) (3.27)
C5(x, B) =

bB(1 − B)γ

γ(γ − 1)Bγ
−

λ0(1 − x)(1 − x)γ

γ(1 − x)xγ
(3.28)

C6(x, A) = −
aA(1 − A)γ

γ(γ − 1)Aγ
−

λ0(1 − x)(1 − x)γ

γ(1 − x)xγ
. (3.29)

4. Main result and proofTaking into aount the fats proved above, we are now ready to formulate andprove the main assertion of the paper. 9
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V∗(π)
W∗(π)

a

b

A∗ B∗
π∗

V

π1Figure 2: A omputer drawing of the value funtions π 7→ V∗(π) and π 7→ W∗(π)for π ∈ [0, 1].Theorem 4.1. Let the proess X = (Xt)t≥0 be given by (2.1) with µ 6= 0 or
λ0 6= λ1 . Then the value funtions (2.3) and (2.4) take the expressions:

V∗(π) =

{

V (π; B∗), if 0 ≤ π < B∗

b(1 − π), if B∗ ≤ π ≤ 1
(4.1)and

W∗(π) =

{

W (π; A∗), if A∗ < π ≤ 1

aπ, if 0 ≤ π ≤ A∗

(4.2)and the optimal stopping times (τ ∗
n)n∈N and (σ∗

n)n∈N have the struture (2.14)-(2.15)and (2.16)-(2.17), where the funtions V (π; B) and W (π; A) and the boundaries A∗and B∗ are spei�ed as follows [see Figure 2 above℄:(i) if µ 6= 0 and λ0 = λ1 , then V (π; B) and W (π; A) are given by (3.5) and (3.6), aswell as the optimal boundaries A∗ and B∗ satisfy the inequalities 0 < A∗ < B∗ < 1and are uniquely determined by the oupled system of equations (3.2)-(3.3);(ii) if µ = 0 and λ0 > λ1 , then V (π; B) and W (π; A) are given by (3.20) and (3.21),as well as the optimal boundaries A∗ and B∗ satisfy the inequalities 0 < A∗ < B∗ <
1 and are uniquely determined by the oupled system of equations (3.12)-(3.13);(iii) if µ = 0 and λ0 < λ1 , then V (π; B) and W (π; A) are given by (3.20) and(3.21), as well as the optimal boundaries A∗ and B∗ satisfy the inequalities 0 <
A∗ < B∗ < 1 and are uniquely determined by the oupled system of equations (3.18)-(3.19).Proof. In order to verify the related assertions, it remains to show that the funtions(4.1) and (4.2) oinide with the value funtions (2.10) and (2.11), respetively, and10



the stopping times τ∗ and σ∗ from (2.12) and (2.13) with the boundaries A∗ and
B∗ spei�ed above are optimal. For this, let us denote by V (π) and W (π) theright-hand sides of the expressions (4.1) and (4.2), respetively. In these ases, bymeans of straightforward alulations and the assumptions above it follows that thefuntions V (π) and W (π) solve the system (2.19)-(2.22), and onditions (2.23) aresatis�ed under the orresponding relationships on the parameters of the model. Notethat from the formulas of the previous setion it is seen that the both funtions V (π)and W (π) are onave on [0, 1]. The latter an be shown diretly by analyzing theexpressions (3.5)-(3.6) and (3.20)-(3.21). Then, applying It�-Tanaka-Meyer formula(see, e.g., [18; Chapter V, Theorem 5.52℄ or [25; Chapter IV, Theorem 51℄) to V (πt)and W (πt), we obtain:

V (πt) = V (π) +

∫ t

0

(LV )(πs) I(πs 6= B∗) ds + Mt (4.3)
W (πt) = W (π) +

∫ t

0

(LW )(πs) I(πs 6= A∗) ds + Nt (4.4)where the proesses (Mt)t≥0 and (Nt)t≥0 de�ned by:
Mt =

∫ t

0
V ′(πs)

µ

σ
πs(1 − πs) dW s (4.5)

+

∫ t

0

∫ ∞

0

[

V

(

πs−e−λ1x

πs−e−λ1x + (1 − πs−)e−λ0x

)

− V (πs−)

]

(

µX(ds, dx) − ν(ds, dx)
)

Nt =

∫ t

0
W ′(πs)

µ

σ
πs(1 − πs) dW s (4.6)

+

∫ t

0

∫ ∞

0

[

W

(

πs−e−λ1x

πs−e−λ1x + (1 − πs−)e−λ0x

)

− W (πs−)

]

(

µX(ds, dx) − ν(ds, dx)
)are loal martingales under the measure Pπ with respet to (FX

t )t≥0 and we set
ν(dt, dx) = (πt−e−λ1x + (1 − πt−)e−λ0x)dtdx.By the onstrution of V (π) and W (π) from the previous setions and by using thestraightforward alulations it an be heked that (LV )(π) ≥ −π for all B < π < 1and (LW )(π) ≥ −(1 − π) for all 0 < π < A. Moreover, by means of standardarguments it an be shown that the funtion V (π; B∗) is dereasing, while thefuntion W (π; A∗) is inreasing on the intervals (0, B∗) and (A∗, 1), respetively,sine for their derivatives we have −b < V ′(π; B∗) < 0 and 0 < W ′(π; A∗) < a.Then the properties (2.22) also hold, that together with (2.20)-(2.21) yields V (π) ≤
b(1−π)+W (π) and W (π) ≤ aπ+V (π) for all π ∈ [0, 1]. Observe that by using (2.8)it is shown that the time spent by the proess (πt)t≥0 at the points A∗ and B∗ is ofLebesgue measure zero. Hene, from the expressions (4.3)-(4.4) and the strutureof stopping times in (2.12)-(2.13), by using the fat that A∗ ≤ (aλ + 1)/(2aλ + 1),
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B∗ ≥ bλ/(2bλ + 1) and 0 < A∗ < B∗ < 1 it follows that the inequalities:
b(1 − πτ ) +

∫ τ

0

πs ds + W (πτ ) ≥ V (πτ ) +

∫ τ

0

πs ds ≥ V (π) + Mτ (4.7)
aπσ +

∫ σ

0

(1 − πs) ds + V (πσ) ≥ W (πσ) +

∫ σ

0

(1 − πs) ds ≥ W (π) + Nσ (4.8)hold for any stopping times τ and σ of the proess (πt)t≥0 .Let (τn)n∈N and (σn)n∈N be arbitrary loalizing sequenes of stopping times for theproesses (Mt)t≥0 and (Nt)t≥0 , respetively. Then, using (4.7)-(4.8) and taking theexpetations with respet to Pπ , by means of the optional sampling theorem (see,e.g., [19; Chapter I, Theorem 1.39℄), we get:
Eπ

[

b(1 − πτ∧τn
) +

∫ τ∧τn

0

πs ds + W (πτ∧τn
)

] (4.9)
≥ Eπ

[

V (πτ∧τn
) +

∫ τ∧τn

0

πs ds

]

≥ V (π) + Eπ

[

Mτ∧τn

]

= V (π)

Eπ

[

aπσ∧σn
+

∫ σ∧σn

0

(1 − πs) ds + V (πσ∧σn
)

] (4.10)
≥ Eπ

[

W (πσ∧σn
) +

∫ σ∧σn

0

(1 − πs) ds

]

≥ W (π) + Eπ

[

Nσ∧σn

]

= W (π)for all π ∈ [0, 1]. Hene, letting n go to in�nity and using Fatou's lemma, for anystopping times τ and σ suh that Eπ[τ ∨ σ] < ∞ we obtain that the inequalities:
Eπ

[

b(1 − πτ ) +

∫ τ

0

πs ds + W (πτ )

]

≥ V (π) (4.11)
Eπ

[

aπσ +

∫ σ

0

(1 − πs) ds + V (πσ)

]

≥ W (π) (4.12)are satis�ed for all π ∈ [0, 1].By virtue of the fat that the funtions V (π) and W (π) satisfy the system (2.19)-(2.22) with the boundaries A∗ and B∗ , by the struture of the stopping times τ∗ in(2.12) and σ∗ in (2.13) as well as by the expressions (4.3) and (4.4) it follows thatthe equalities:
V (πτ∗∧τn

) +

∫ τ∗∧τn

0

πs ds = V (π) + Mτ∗∧τn
(4.13)

W (πσ∗∧σn
) +

∫ σ∗∧σn

0

(1 − πs) ds = W (π) + Nσ∗∧σn
(4.14)hold for all π ∈ [0, 1]. Note that, by means of standard arguments and using thestruture of the proess (2.8) and of the stopping times (2.12) and (2.13), we have

Eπ[τ∗ ∨ σ∗] < ∞ for all π ∈ [0, 1]. Hene, letting n go to in�nity in (4.13)-(4.14)12



and using onditions (2.21)-(2.22), by means of the Lebesgue bounded onvergenetheorem, we obtain the equalities:
Eπ

[

b(1 − πτ∗) +

∫ τ∗

0

πs ds + W (πτ∗)

]

= V (π) (4.15)
Eπ

[

aπσ∗
+

∫ σ∗

0

(1 − πs) ds + V (πσ∗
)

]

= W (π) (4.16)for all π ∈ [0, 1], that together with (4.11)-(4.12) diretly imply the desired assertion.
�Remark 4.2. By means of straightforward alulations from the previous se-tion it an be veri�ed that in ase µ = 0 with λ0 > λ1 we have V ′(B∗−; B∗) >
−b + W ′(B∗−; A∗), while in ase µ = 0 with λ0 < λ1 we have W ′(A∗+; A∗) <
a + V ′(A∗+; B∗). Aording to the arguments in [22℄-[23℄ suh e�ets an be ex-plained by the fat that in those ases the proess (πt)t≥0 an pass through theorresponding boundaries B∗ or A∗ only by jumping. Aording to the results in[1℄ we may onlude that this property appears beause of �nite intensity of jumpsand exponential distribution of jump sizes of the ompound Poisson proess J .Remark 4.3. The results formulated above show that the following sequentialproedure is optimal. Being based on the observations X = (Xt)t≥0 we onstrutthe su�ient statisti proess (πt)t≥0 and stop the observations as soon as the latterproess omes into the region [0, A∗] or [B∗, 1] and then onlude that the ontinuousMarkov hain θ = (θt)t≥0 has swithed from 1 to 0 or from 0 to 1 , respetively.Starting from one of those regions [0, A∗] or [B∗, 1], we stop the observations assoon as the proess (πt)t≥0 omes to the opposite region and then onlude that
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