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Abstra
tThe multiple disorder problem 
onsists of �nding a sequen
e of stoppingtimes whi
h are as 
lose as possible to the (unknown) times of 'disorder' whenthe distribution of an observed pro
ess 
hanges its probability 
hara
teristi
s.We present a formulation and solution of the multiple disorder problem for aWiener and a 
ompound Poisson pro
ess with exponential jumps. The methodof proof is based on redu
ing the initial optimal swit
hing problems to the
orresponding 
oupled optimal stopping problems and solving the equivalent
oupled free-boundary problems by means of the smooth- and 
ontinuous-�t
onditions.1. Introdu
tionAssume that at time t = 0 we begin to observe a 
ontinuously updated pro
ess X =
(Xt)t≥0 whi
h probability 
hara
teristi
s 
hange at some unknown times (ηn)n∈Nwhen an unobservable (two-stated) 
ontinuous time Markov 
hain θ = (θt)t≥0 , 
alledthe disorder pro
ess, 
hanges its state from one to another. Throughout the paperit is assumed that the pro
ess θ starts at 0 with probability 1−π , starts at 1 withprobability π , and 
hanges its state with intensity λ > 0 . The multiple disorderproblem (or the problem of qui
kest multiple disorder dete
tion) is to de
ide byobserving the pro
ess X at whi
h time instants one should give alarms in order toindi
ate the o

urren
e of disorders (ηn)n∈N . In 
ontrast to the problem of singledisorder, in the multiple disorder problem one looks for an in�nite sequen
e of alarmtimes whi
h should be as 
lose as possible to the times (ηn)n∈N in the sense that thesum of probabilities of false alarms and the total average time between the o

urren
eof disorders and the alarms (when the latter are given 
orre
tly) should be minimal.The idea of 
onsideration of multiple disorder problems in su
h formulation is dueto A.N. Shiryaev. Note that the problem of qui
kest dete
tion admits di�erentformulations and appears in a number of applied s
ien
es (see, e.g., [20℄ or [5℄).The problem of dete
ting a 
hange in drift of a Wiener pro
ess was formulated andsolved by Shiryaev [26℄-[28℄ (see also [29℄ and [30; Chapter IV℄). Some parti
ular
ases of the problem of dete
ting a 
hange in the intensity of a Poisson pro
ess were
onsidered in Gal'
huk and Rozovskii [13℄ and in Davis [6℄. Peskir and Shiryaev [23℄presented a 
omplete solution of the disorder problem for a Poisson pro
ess in theBayesian formulation. A 
omplete solution to the problem for a 
ompound Poissonpro
ess with exponential jumps in the Bayesian and variational formulations wasderived in [14℄. Re
ently, Dayanik and Sezer [7℄ obtained a solution to the disorder1



problem for a general 
ompound Poisson pro
ess. A �nite horizon version of theWiener disorder problem was studied in [15℄. In the present paper we formulate andsolve the multiple disorder problem for observed Wiener and 
ompound Poissonpro
esses having exponentially distributed jumps. This problem 
an be redu
ed toan equivalent optimal swit
hing problem.Optimal swit
hing problems are extensions of optimal stopping problems and opti-mal stopping games where one is looking for an in�nite sequen
e optimal stoppingtimes. A general approa
h for studying su
h problems was developed in Bensoussanand Friedman [2℄-[3℄ and Friedman [11℄ (see also Friedman [12; Chapter XVI℄). Thisinvestigation was 
ontinued in Brekke and Øksendal [4℄, Du
kworth and Zervos [9℄,Hamadène and Jeanblan
 [17℄ for the 
ontinuous-time 
ase, and in Yushkevi
h [31℄and Yushkevi
h and Gordienko [32℄ for the dis
rete-time 
ase. A dire
t method forsolving optimal swit
hing problems for di�usion pro
esses is des
ribed in Dayanikand Egami [8℄.The paper is organized as follows. In Se
tion 2, we give a formulation of the multipledisorder problem for a Wiener and a 
ompound Poisson pro
ess with exponentialjumps, and redu
e it to the 
orresponding optimal swit
hing problem. Then, usingthe strong Markov property of the a posteriori probability pro
ess, we 
onstru
tan equivalent 
oupled optimal stopping problem and formulate the 
orresponding
oupled free-boundary problem. In Se
tion 3, we derive solutions to the 
oupledfree-boundary problems for the both 
ases of Wiener and 
ompound Poisson pro-
esses with exponential jumps, separately. In Se
tion 4, we formulate and provethe main assertion of the paper showing that the spe
i�ed solutions of the 
oupledfree-boundary problems turn out to be solutions of the initial 
oupled optimal stop-ping problems. The main results of the paper are formulated in Theorem 4.1. Theoptimal swit
hing pro
edure is displayed more expli
itly in Remark 4.3.2. Formulation of the problemIn order to simplify the further exposition, in this se
tion we formulate the multipledisorder problem for the observed sum of a Wiener and a 
ompound Poisson pro
esshaving exponentially distributed jumps (see [30; Chapter IV, Se
tions 3-4℄ and [23℄for the single disorder 
ase).2.1. For a pre
ise formulation of the problem, it is 
onvenient to assume that allour 
onsiderations take pla
e on a probability spa
e (Ω,F , Pπ) for π ∈ [0, 1]. Let
θ = (θt)t≥0 be a 
ontinuous time Markov 
hain with two states 0 and 1 , initialdistribution [1−π, π], transition-probability matrix [e−λt, 1−e−λt; 1−e−λt, e−λt] for
t ≥ 0 , and intensity-matrix [−λ, λ; λ,−λ] with λ > 0 . The pro
ess θ de�ned aboveis 
alled a 'telegraphi
 signal' (see [21; Chapter IX, Se
tion 4℄). It is assumed thatthe pro
ess θ is unobservable, so that, the swit
hing times ηn = inf{t ≥ ηn−1 | θt 6=
θηn−1

} , when the pro
ess θ swit
hes from 0 to 1 and from 1 to 0 , are unknown(i.e., they 
annot be observed dire
tly). 2



It is further assumed that we observe a pro
ess X = (Xt)t≥0 de�ned by:
Xt =

∫ t

0

θs− dX1
s +

∫ t

0

(1 − θs−) dX0
s (2.1)where X i

t = iµt + σWt +
∑N i

t

j=1 Y i
j for all t ≥ 0 . Here W = (Wt)t≥0 is a standardWiener pro
ess, N i = (N i

t )t≥0 are Poisson pro
esses with intensities 1/λi , and
(Y i

j )j∈N are sequen
es of independent random variables exponentially distributedwith parameters λi > 0 for i = 0, 1 , respe
tively. It is supposed that W , N i ,
(Y i

j )j∈N and θ are independent for i = 0, 1 .Based upon the 
ontinuous observation of X , our task is to �nd a (nonde
reasing)sequen
e of stopping times with respe
t to the natural �ltration FX
t = σ{Xs | 0 ≤

s ≤ t} generated by X for t ≥ 0 being 'as 
lose as possible' to the unknownswit
hing times of the pro
ess θ . More pre
isely, the problem 
onsists of 
omputingthe risk fun
tion:
R∗(π) = min{V∗(π), W∗(π)} (2.2)for π ∈ [0, 1], where

V∗(π) = inf
(τn)

∞
∑

n=1

(

bPπ[θτ2n−1
= 0] + aPπ[θτ2n

= 1] +

1
∑

i=0

Eπ

[

∫ τ2n−1+i

τ2n−2+i

I(θt = 1 − i) dt

])(2.3)
W∗(π) = inf

(σn)

∞
∑

n=1

(

aPπ[θσ2n−1
= 1] + bPπ[θσ2n

= 0] +
1
∑

i=0

Eπ

[

∫ σ2n−1+i

σ2n−2+i

I(θt = i) dt

])(2.4)and �nding the 
orresponding (nonde
reasing) sequen
es of optimal stopping times
(τ ∗

n)n∈N and (σ∗
n)n∈N at whi
h the in�mums in (2.3) and (2.4) are attained. Inorder to avoid di�
ulties with notations, we set τ0 = σ0 = 0 . Note that in (2.3)it is assumed that the pro
ess θ initially swit
hes from 0 to 1 �rst, while in (2.4)it is assumed that θ initially swit
hes from 1 to 0 �rst. Here Pπ[θτn

= i] is theprobability of a 'false alarm' and Eπ

[ ∫ τn

τn−1
I(θt = 1 − i)dt

] is the 'average delay'in dete
ting the 'disorder' 
orre
tly after giving the alarm τn−1 when the pro
ess θswit
hes from the state i to the state 1 − i for i = 0, 1 and n ∈ N, and a > 0 and
b > 0 are given 
onstants (
osts of false alarms). It follows that if V∗(π) < W∗(π)then (τ ∗

n)n∈N is the optimal strategy in (2.2), while if V∗(π) > W∗(π) then (σ∗
n)n∈Nis optimal in (2.2), and either solution is good if V∗(π) = W∗(π).2.2. Straightforward 
al
ulations based on the fa
t that (τn)n∈N is a nonde
reasingsequen
e of stopping times with respe
t to the �ltration (FX

t )t≥0 show that in (2.3)-(2.4) we have:
Eπ

[

∫ τn

τn−1

I(θt = i) dt

]

= Eπ

[
∫ ∞

0
I(τn−1 ≤ t)I(θt = i)I(t ≤ τn) dt

] (2.5)
= Eπ

[
∫ ∞

0
Eπ

[

I(τn−1 ≤ t)I(θt = i)I(t ≤ τn)
∣

∣FX
t

]

dt

]

= Eπ

[

∫ τn

τn−1

Pπ[θt = i | FX
t ] dt

]

3



for i = 0, 1 . Then, by means of similar arguments to those presented in [30;pages 195-197℄, one 
an redu
e the fun
tions (2.3)-(2.4) to the form:
V∗(π) = inf

(τn)
Eπ

[

∞
∑

n=1

(

b(1 − πτ2n−1
) + aπτ2n

+

∫ τ2n−1

τ2n−2

πt dt +

∫ τ2n

τ2n−1

(1 − πt) dt

)

](2.6)
W∗(π) = inf

(σn)
Eπ

[

∞
∑

n=1

(

aπσ2n−1
+ b(1 − πσ2n

) +

∫ σ2n−1

σ2n−2

(1 − πt) dt +

∫ σ2n

σ2n−1

πt dt

)

](2.7)where πt = Pπ[θt = 1 | FX
t ] for t ≥ 0 is the a posteriori probability pro
ess with

Pπ[π0 = π] = 1 , and we set τ0 = σ0 = 0 . Moreover, it is easily seen that thein�mums in (2.6) and (2.7) are taken over all sequen
es of stopping times (τn)n∈Nand (σn)n∈N su
h that Eπ[τn ∨ σn] < ∞ for all n ∈ N.2.3. It 
an be shown (see [21; Chapters IX, XVIII and XIX℄) that the a posterioriprobability pro
ess (πt)t≥0 solves the sto
hasti
 di�erential equation:
dπt = λ(1 − 2πt) dt +

µ

σ
πt(1 − πt) dW t (2.8)

+

∫ ∞

0

πt−(1 − πt−)(e−λ1x − e−λ0x)

πt−e−λ1x + (1 − πt−)e−λ0x

(

µX(dt, dx)

− (πt−e−λ1x + (1 − πt−)e−λ0x) dtdx
)

(π0 = π)where the innovation pro
ess W = (W t)t≥0 de�ned by:
W t =

1

σ

(

Xc
t − µ

∫ t

0

πs ds
) (2.9)is a standard Wiener pro
ess (see also [21; Chapter IX℄). Here Xc = (Xc

t )t≥0 denotesthe 
ontinuous part and µX(dt, dx) is the measure of jumps of the pro
ess X (see [19;Chapters I and II℄). It 
an be veri�ed that (πt)t≥0 is a time-homogeneous (strong)Markov pro
ess under Pπ with respe
t to its natural �ltration. As the latter 
learly
oin
ides with (FX
t )t≥0 , it is also 
lear that the in�mums in (2.6) and (2.7) 
anequivalently be taken over all stopping times of (πt)t≥0 . This shows that the pro
ess

(πt)t≥0 plays the role of a su�
ient statisti
 in the problems (2.6) and (2.7).2.4. Using the strong Markov property of the pro
ess (πt)t≥0 , we 
an redu
e thesystem (2.6)-(2.7) to the following 
oupled optimal stopping problem:
V∗(π) = inf

τ
Eπ

[

b(1 − πτ ) +

∫ τ

0

πt dt + W∗(πτ )

] (2.10)
W∗(π) = inf

σ
Eπ

[

aπσ +

∫ σ

0

(1 − πt) dt + V∗(πσ)

] (2.11)4



where the in�mums in (2.10) and (2.11) are taken over all stopping times τ and σsu
h that Eπ[τ ∨ σ] < ∞ , respe
tively. By using the arguments in [30; pages 197-198℄ and [23℄ it 
an be veri�ed that the fun
tion V∗(π) from (2.10) is 
on
ave andde
reasing, while the fun
tion W∗(π) from (2.11) is 
on
ave and in
reasing on [0, 1].Then it follows that the optimal stopping times in (2.10) and in (2.11) have the form:
τ∗ = inf{t ≥ 0 | πt ≥ B∗} (2.12)
σ∗ = inf{t ≥ 0 | πt ≤ A∗} (2.13)where B∗ is the smallest number π from [0, 1] su
h that V∗(π) = b(1 − π), and A∗is the largest number π from [0, 1] su
h that W∗(π) = aπ . Hen
e, we may 
on
ludethat the sequen
e of stopping times (τ ∗

n)n∈N given by:
τ ∗
2n−1 = inf{t ≥ τ ∗

2n−2 | πt ≥ B∗} (2.14)
τ ∗
2n = inf{t ≥ τ ∗

2n−1 | πt ≤ A∗} (2.15)is optimal in (2.6) and thus in (2.3), while the sequen
e of stopping times (σ∗
n)n∈Ngiven by:

σ∗
2n−1 = inf{t ≥ σ∗

2n−2 | πt ≤ A∗} (2.16)
σ∗

2n = inf{t ≥ σ∗
2n−1 | πt ≥ B∗} (2.17)is optimal in (2.7) and thus in (2.4). In order to avoid di�
ulties in notations, herewe set τ ∗

0 = σ∗
0 = 0 .It is also seen that there exist a unique point 0 < π∗ < 1 su
h that V∗(π∗) = W∗(π∗).Therefore, for a given number π from the interval [0, 1] it follows that if π∗ < π ≤ 1then the sequen
e (2.14)-(2.15) is optimal in the problem (2.2), while if 0 ≤ π < π∗then the sequen
e (2.16)-(2.17) is optimal in (2.2), and either solution is good if

π = π∗ .2.5. Standard arguments imply that the in�nitesimal operator L of the pro
ess
(πt)t≥0 a
ts on a fun
tion F ∈ C2([0, 1]) a

ording to the rule:
(LF )(π) =

(

λ(1 − 2π) −
λ0 − λ1

λ0λ1
π(1 − π)

)

F ′(π) +
µ2

2σ2
π2(1 − π)2F ′′(π) (2.18)

+

∫ ∞

0

[

F

(

πe−λ1x

πe−λ1x + (1 − π)e−λ0x

)

− F (π)

]

(πe−λ1x + (1 − π)e−λ0x) dxfor all π ∈ [0, 1]. In order to �nd the unknown value fun
tions V∗(π) and W∗(π)from (2.10) and (2.11) as well as the unknown boundaries A∗ and B∗ from (2.12) and(2.13), using the general theory of optimal stopping problems for 
ontinuous timeMarkov pro
esses (see, e.g., [16℄ and [30; Chapter III, Se
tion 8℄), we 
an formulate
5



the following 
oupled free-boundary problem:
(LW )(π) = −(1 − π) for A < π < 1, (LV )(π) = −π for 0 < π < B (2.19)

W (A+) = aA + V (A+), V (B−) = b(1 − B) + W (B−) (2.20)
W (π) = aπ + V (π) for 0 ≤ π < A, V (π) = b(1 − π) + W (π) for B < π ≤ 1(2.21)
W (π) < aπ + V (π) for A < π < 1, V (π) < b(1 − π) + W (π) for 0 < π < B(2.22)with 0 < A∗ < B∗ < 1 , where the 
onditions (2.20), whi
h are satis�ed by virtue ofthe 
on
avity arguments above, play the role of instantaneous-stopping 
onditions.Note that by the superharmoni
 
hara
terization of the value fun
tion (see [10℄ or[30℄) it follows that V∗(π) from (2.10) and W∗(π) from (2.11) are the largest fun
tionssatisfying (2.19)-(2.22). Moreover, we assume that the smooth-�t 
onditions:

(if µ 6= 0 or λ0 > λ1) W ′(A+) = a + V ′(A+), V ′(B−) = −b (2.23)
+ W ′(B−) (if µ 6= 0 or λ0 < λ1)are satis�ed. The latter 
an be explained by the fa
t that in these 
ases the pro
ess

(πt)t≥0 
an pass through the 
orresponding boundaries A∗ and B∗ 
ontinuously.Su
h property was earlier observed in [22℄-[23℄ by solving some other optimal stop-ping problems for jump pro
esses (see also [1℄ for ne
essary and su�
ient 
onditionsfor the o

urren
e of smooth �t and referen
es to the related literature, and [24℄ foran extensive overview).In order to �nd the optimal boundaries A∗ and B∗ , let us introdu
e the referen
e(di�eren
e) fun
tion U(π) = V (π)−W (π) for all π ∈ [0, 1]. Then from (2.19)-(2.22)and (2.23) it follows that U(π) solves the system:
(LU)(π) = 1 − 2π for A < π < B (2.24)

U(A+) = −aA, U(B−) = b(1 − B) (2.25)
U(π) = −aπ for 0 ≤ π < A, U(π) = b(1 − π) for B < π ≤ 1 (2.26)
U(π) > −aπ for A < π ≤ 1, U(π) < b(1 − π) for 0 ≤ π < B (2.27)and the following 
onditions hold:

(if µ 6= 0 or λ0 > λ1) U ′(A+) = −a, U ′(B−) = −b (if µ 6= 0 or λ0 < λ1).(2.28)3. Solutions of the 
oupled free-boundary problemIn this se
tion we solve the systems (2.24)-(2.27)+(2.28) and (2.19)-(2.22)+(2.23)for the both 
ases µ 6= 0 with λ0 = λ1 and µ = 0 with λ0 6= λ1 , separately.6



3.1. By means of straightforward 
al
ulations it 
an be 
he
ked that in 
ase µ 6= 0and λ0 = λ1 the solution of the system (2.24)-(2.26)+(2.28) takes the form:
U(π; A, B) =

b − a

F0(A) − F0(B)

∫ π

A

F0(x) dx +
π − A

λ
− aA (3.1)for all A∗ < π < B∗ and the boundaries A∗ and B∗ su
h that 0 < A∗ < B∗ < 1 areuniquely determined by the following 
oupled system of equations:

bF0(A) − aF0(B) =
1

λ

(

F0(B) − F0(A)
) (3.2)

(b − a)

∫ B

A

F0(x) dx =

(

aA + b(1 − B) −
1

λ
(B − A)

)

(

F0(A) − F0(B)
) (3.3)with the fun
tion F0(x) de�ned by:

F0(x) = exp
( 2λσ2

µ2x(1 − x)

) (3.4)for all 0 < x < 1 (see Figure 1 below).

-

6

U∗(π)

−a

b

A∗ B∗

V

π1

Figure 1: A 
omputer drawing of the referen
e (di�eren
e) fun
tion π 7→ U∗(π)on [0, 1].Therefore, solving equations (2.19) and using 
onditions (2.20) for A and B �xed(as well as taking into a

ount the fa
t that the value fun
tions should be bounded),7



we obtain the expressions:
V (π; B) = b(1 − B) +

2σ2

µ2

∫ B

π

∫ x

0

F0(x)

F0(y)

dy

y(1 − y)2
dx (3.5)

W (π; A) = aA +
2σ2

µ2

∫ π

A

∫ 1

x

F0(x)

F0(y)

dy

y2(1 − y)
dx (3.6)where the fun
tion F0(x) is de�ned in (3.4).3.2. Let us now assume that µ = 0 and λ0 6= λ1 . In this 
ase, by making straight-forward 
al
ulations it is shown that when λ0 > λ1 the solution of the system(2.24)-(2.26)+(2.28) takes the form:

U(π; A, B) = b(1 − B) −

∫ B

π

γλ1H1(x, B)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx (3.7)with

H1(x, B) =
1

D(x)

(

C1(x, B) −

∫ B

x

C1(y, B)G1(y, B)

D(y)G1(x, B)
dy

) (3.8)
C1(x, B) =

bB(1 − B)γ

γ(γ − 1)Bγ
−

λ0(1 − 2x)(1 − x)γ

γ(1 − x)xγ
(3.9)

D(x) =
x[λ′γ(γ − 1)(1 − 2x) − x(1 − x)]

(1 − x)(x + γ − 1)
(3.10)

G1(x, B) = exp

(

−

∫ B

x

dz

D(z)

) (3.11)and γ = λ0/(λ0 − λ1) > 1 , λ′ = λ0(λ0 − λ1) > 0 as well as the boundaries A∗ and
B∗ su
h that 0 < A∗ < B∗ < 1 are uniquely determined by the following 
oupledsystem of equations:

γλ1H1(A, B)(1 − A)Aγ

[λ1 + (λ0 − λ1)A](1 − A)γ
= −a (3.12)

∫ B

A

γλ1H1(x, B)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx = aA + b(1 − B) (3.13)and when λ0 < λ1 the fun
tion U(π; A, B) is given by:

U(π; A, B) = −aA +

∫ π

A

γλ1H2(x, A)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx (3.14)with

H2(x, A) =
1

D(x)

(

C2(x, A) +

∫ x

A

C2(y, A)G2(y, A)

D(y)G2(x, A)
dy

) (3.15)
C2(x, A) = −

aA(1 − A)γ

γ(γ − 1)Aγ
−

λ0(1 − 2x)(1 − x)γ

γ(1 − x)xγ
(3.16)

G2(x, A) = exp

(
∫ x

A

dz

D(z)

) (3.17)8



and γ = λ0/(λ0 − λ1) < 0 , λ′ = λ0(λ0 − λ1) < 0 as well as the boundaries A∗ and
B∗ su
h that 0 < A∗ < B∗ < 1 are uniquely determined by the following 
oupledsystem of equations:

γλ1H2(B, A)(1 − B)Bγ

[λ1 + (λ0 − λ1)B](1 − B)γ
= −b (3.18)

∫ B

A

γλ1H2(x, A)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx = aA + b(1 − B). (3.19)Therefore, solving equations (2.19) and using 
onditions (2.20) for A and B �xed(as well as taking into a

ount the fa
t that the value fun
tions should be bounded),we obtain the expressions:

V (π; B) = b(1 − B) −

∫ B

π

γλ1F1(x, B)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx (3.20)

W (π; A) = aA +

∫ π

A

γλ1F2(x, A)(1 − x)xγ

[λ1 + (λ0 − λ1)x](1 − x)γ
dx (3.21)where when λ0 > λ1 we have:

F1(x, B) =
1

D(x)

(

C3(x, B) −

∫ B

x

C3(y, B)G1(y, B)

D(y)G1(x, B)
dy

) (3.22)
F2(x, A) =

1

D(x)

(

C4(x, A) +

∫ x

A

C4(y, A)G2(y, A)

D(y)G2(x, A)
dy

) (3.23)
C3(x, B) =

bB(1 − B)γ

γ(γ − 1)Bγ
−

λ0x(1 − x)γ

γ(1 − x)xγ
(3.24)

C4(x, A) = −
aA(1 − A)γ

γ(γ − 1)Aγ
−

λ0x(1 − x)γ

γ(1 − x)xγ
(3.25)while when λ0 < λ1 we have:

F1(x, B) =
1

D(x)

(

C5(x, B) −

∫ B

x

C5(y, B)G1(y, B)

D(y)G1(x, B)
dy

) (3.26)
F2(x, A) =

1

D(x)

(

C6(x, A) +

∫ x

A

C6(y, A)G2(y, A)

D(y)G2(x, A)
dy

) (3.27)
C5(x, B) =

bB(1 − B)γ

γ(γ − 1)Bγ
−

λ0(1 − x)(1 − x)γ

γ(1 − x)xγ
(3.28)

C6(x, A) = −
aA(1 − A)γ

γ(γ − 1)Aγ
−

λ0(1 − x)(1 − x)γ

γ(1 − x)xγ
. (3.29)

4. Main result and proofTaking into a

ount the fa
ts proved above, we are now ready to formulate andprove the main assertion of the paper. 9
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V∗(π)
W∗(π)

a

b

A∗ B∗
π∗

V

π1Figure 2: A 
omputer drawing of the value fun
tions π 7→ V∗(π) and π 7→ W∗(π)for π ∈ [0, 1].Theorem 4.1. Let the pro
ess X = (Xt)t≥0 be given by (2.1) with µ 6= 0 or
λ0 6= λ1 . Then the value fun
tions (2.3) and (2.4) take the expressions:

V∗(π) =

{

V (π; B∗), if 0 ≤ π < B∗

b(1 − π), if B∗ ≤ π ≤ 1
(4.1)and

W∗(π) =

{

W (π; A∗), if A∗ < π ≤ 1

aπ, if 0 ≤ π ≤ A∗

(4.2)and the optimal stopping times (τ ∗
n)n∈N and (σ∗

n)n∈N have the stru
ture (2.14)-(2.15)and (2.16)-(2.17), where the fun
tions V (π; B) and W (π; A) and the boundaries A∗and B∗ are spe
i�ed as follows [see Figure 2 above℄:(i) if µ 6= 0 and λ0 = λ1 , then V (π; B) and W (π; A) are given by (3.5) and (3.6), aswell as the optimal boundaries A∗ and B∗ satisfy the inequalities 0 < A∗ < B∗ < 1and are uniquely determined by the 
oupled system of equations (3.2)-(3.3);(ii) if µ = 0 and λ0 > λ1 , then V (π; B) and W (π; A) are given by (3.20) and (3.21),as well as the optimal boundaries A∗ and B∗ satisfy the inequalities 0 < A∗ < B∗ <
1 and are uniquely determined by the 
oupled system of equations (3.12)-(3.13);(iii) if µ = 0 and λ0 < λ1 , then V (π; B) and W (π; A) are given by (3.20) and(3.21), as well as the optimal boundaries A∗ and B∗ satisfy the inequalities 0 <
A∗ < B∗ < 1 and are uniquely determined by the 
oupled system of equations (3.18)-(3.19).Proof. In order to verify the related assertions, it remains to show that the fun
tions(4.1) and (4.2) 
oin
ide with the value fun
tions (2.10) and (2.11), respe
tively, and10



the stopping times τ∗ and σ∗ from (2.12) and (2.13) with the boundaries A∗ and
B∗ spe
i�ed above are optimal. For this, let us denote by V (π) and W (π) theright-hand sides of the expressions (4.1) and (4.2), respe
tively. In these 
ases, bymeans of straightforward 
al
ulations and the assumptions above it follows that thefun
tions V (π) and W (π) solve the system (2.19)-(2.22), and 
onditions (2.23) aresatis�ed under the 
orresponding relationships on the parameters of the model. Notethat from the formulas of the previous se
tion it is seen that the both fun
tions V (π)and W (π) are 
on
ave on [0, 1]. The latter 
an be shown dire
tly by analyzing theexpressions (3.5)-(3.6) and (3.20)-(3.21). Then, applying It�-Tanaka-Meyer formula(see, e.g., [18; Chapter V, Theorem 5.52℄ or [25; Chapter IV, Theorem 51℄) to V (πt)and W (πt), we obtain:

V (πt) = V (π) +

∫ t

0

(LV )(πs) I(πs 6= B∗) ds + Mt (4.3)
W (πt) = W (π) +

∫ t

0

(LW )(πs) I(πs 6= A∗) ds + Nt (4.4)where the pro
esses (Mt)t≥0 and (Nt)t≥0 de�ned by:
Mt =

∫ t

0
V ′(πs)

µ

σ
πs(1 − πs) dW s (4.5)

+

∫ t

0

∫ ∞

0

[

V

(

πs−e−λ1x

πs−e−λ1x + (1 − πs−)e−λ0x

)

− V (πs−)

]

(

µX(ds, dx) − ν(ds, dx)
)

Nt =

∫ t

0
W ′(πs)

µ

σ
πs(1 − πs) dW s (4.6)

+

∫ t

0

∫ ∞

0

[

W

(

πs−e−λ1x

πs−e−λ1x + (1 − πs−)e−λ0x

)

− W (πs−)

]

(

µX(ds, dx) − ν(ds, dx)
)are lo
al martingales under the measure Pπ with respe
t to (FX

t )t≥0 and we set
ν(dt, dx) = (πt−e−λ1x + (1 − πt−)e−λ0x)dtdx.By the 
onstru
tion of V (π) and W (π) from the previous se
tions and by using thestraightforward 
al
ulations it 
an be 
he
ked that (LV )(π) ≥ −π for all B < π < 1and (LW )(π) ≥ −(1 − π) for all 0 < π < A. Moreover, by means of standardarguments it 
an be shown that the fun
tion V (π; B∗) is de
reasing, while thefun
tion W (π; A∗) is in
reasing on the intervals (0, B∗) and (A∗, 1), respe
tively,sin
e for their derivatives we have −b < V ′(π; B∗) < 0 and 0 < W ′(π; A∗) < a.Then the properties (2.22) also hold, that together with (2.20)-(2.21) yields V (π) ≤
b(1−π)+W (π) and W (π) ≤ aπ+V (π) for all π ∈ [0, 1]. Observe that by using (2.8)it is shown that the time spent by the pro
ess (πt)t≥0 at the points A∗ and B∗ is ofLebesgue measure zero. Hen
e, from the expressions (4.3)-(4.4) and the stru
tureof stopping times in (2.12)-(2.13), by using the fa
t that A∗ ≤ (aλ + 1)/(2aλ + 1),

11



B∗ ≥ bλ/(2bλ + 1) and 0 < A∗ < B∗ < 1 it follows that the inequalities:
b(1 − πτ ) +

∫ τ

0

πs ds + W (πτ ) ≥ V (πτ ) +

∫ τ

0

πs ds ≥ V (π) + Mτ (4.7)
aπσ +

∫ σ

0

(1 − πs) ds + V (πσ) ≥ W (πσ) +

∫ σ

0

(1 − πs) ds ≥ W (π) + Nσ (4.8)hold for any stopping times τ and σ of the pro
ess (πt)t≥0 .Let (τn)n∈N and (σn)n∈N be arbitrary lo
alizing sequen
es of stopping times for thepro
esses (Mt)t≥0 and (Nt)t≥0 , respe
tively. Then, using (4.7)-(4.8) and taking theexpe
tations with respe
t to Pπ , by means of the optional sampling theorem (see,e.g., [19; Chapter I, Theorem 1.39℄), we get:
Eπ

[

b(1 − πτ∧τn
) +

∫ τ∧τn

0

πs ds + W (πτ∧τn
)

] (4.9)
≥ Eπ

[

V (πτ∧τn
) +

∫ τ∧τn

0

πs ds

]

≥ V (π) + Eπ

[

Mτ∧τn

]

= V (π)

Eπ

[

aπσ∧σn
+

∫ σ∧σn

0

(1 − πs) ds + V (πσ∧σn
)

] (4.10)
≥ Eπ

[

W (πσ∧σn
) +

∫ σ∧σn

0

(1 − πs) ds

]

≥ W (π) + Eπ

[

Nσ∧σn

]

= W (π)for all π ∈ [0, 1]. Hen
e, letting n go to in�nity and using Fatou's lemma, for anystopping times τ and σ su
h that Eπ[τ ∨ σ] < ∞ we obtain that the inequalities:
Eπ

[

b(1 − πτ ) +

∫ τ

0

πs ds + W (πτ )

]

≥ V (π) (4.11)
Eπ

[

aπσ +

∫ σ

0

(1 − πs) ds + V (πσ)

]

≥ W (π) (4.12)are satis�ed for all π ∈ [0, 1].By virtue of the fa
t that the fun
tions V (π) and W (π) satisfy the system (2.19)-(2.22) with the boundaries A∗ and B∗ , by the stru
ture of the stopping times τ∗ in(2.12) and σ∗ in (2.13) as well as by the expressions (4.3) and (4.4) it follows thatthe equalities:
V (πτ∗∧τn

) +

∫ τ∗∧τn

0

πs ds = V (π) + Mτ∗∧τn
(4.13)

W (πσ∗∧σn
) +

∫ σ∗∧σn

0

(1 − πs) ds = W (π) + Nσ∗∧σn
(4.14)hold for all π ∈ [0, 1]. Note that, by means of standard arguments and using thestru
ture of the pro
ess (2.8) and of the stopping times (2.12) and (2.13), we have

Eπ[τ∗ ∨ σ∗] < ∞ for all π ∈ [0, 1]. Hen
e, letting n go to in�nity in (4.13)-(4.14)12



and using 
onditions (2.21)-(2.22), by means of the Lebesgue bounded 
onvergen
etheorem, we obtain the equalities:
Eπ

[

b(1 − πτ∗) +

∫ τ∗

0

πs ds + W (πτ∗)

]

= V (π) (4.15)
Eπ

[

aπσ∗
+

∫ σ∗

0

(1 − πs) ds + V (πσ∗
)

]

= W (π) (4.16)for all π ∈ [0, 1], that together with (4.11)-(4.12) dire
tly imply the desired assertion.
�Remark 4.2. By means of straightforward 
al
ulations from the previous se
-tion it 
an be veri�ed that in 
ase µ = 0 with λ0 > λ1 we have V ′(B∗−; B∗) >
−b + W ′(B∗−; A∗), while in 
ase µ = 0 with λ0 < λ1 we have W ′(A∗+; A∗) <
a + V ′(A∗+; B∗). A

ording to the arguments in [22℄-[23℄ su
h e�e
ts 
an be ex-plained by the fa
t that in those 
ases the pro
ess (πt)t≥0 
an pass through the
orresponding boundaries B∗ or A∗ only by jumping. A

ording to the results in[1℄ we may 
on
lude that this property appears be
ause of �nite intensity of jumpsand exponential distribution of jump sizes of the 
ompound Poisson pro
ess J .Remark 4.3. The results formulated above show that the following sequentialpro
edure is optimal. Being based on the observations X = (Xt)t≥0 we 
onstru
tthe su�
ient statisti
 pro
ess (πt)t≥0 and stop the observations as soon as the latterpro
ess 
omes into the region [0, A∗] or [B∗, 1] and then 
on
lude that the 
ontinuousMarkov 
hain θ = (θt)t≥0 has swit
hed from 1 to 0 or from 0 to 1 , respe
tively.Starting from one of those regions [0, A∗] or [B∗, 1], we stop the observations assoon as the pro
ess (πt)t≥0 
omes to the opposite region and then 
on
lude that
θ has swits
hed from 0 to 1 or from 1 to 0 , respe
tively. Then we 
ontinue thepro
edure from the beginning.A
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