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Abstract

We discuss a stationary energy model from semiconductor modelling. We accept
the more realistic assumption that the continuity equations for electrons and holes
have to be considered only in a subdomain Ω0 of the domain of definition Ω of the
energy balance equation and of the Poisson equation. Here Ω0 corresponds to the
region of semiconducting material, Ω \Ω0 represents passive layers. Metals serving as
contacts are modelled by Dirichlet boundary conditions.

We prove a local existence and uniqueness result for the two-dimensional stationary
energy model. For this purpose we derive a W 1,p-regularity result for solutions of
systems of elliptic equations with different regions of definition and use the Implicit
Function Theorem.

1 Stationary energy models for semiconductor devices

Semiconductor devices are heterostructures consisting of various materials (different semi-
conducting materials, passive layers and metals as contacts, for example). A typical sit-
uation is shown in Fig. 1. Metals used as contacts are substituted by Dirichlet boundary
conditions on a part ΓD of the boundary of the semiconducting material. In the domain Ω
involving the passive layer (Ω1) and semiconducting materials (Ω0) we have to formulate
a Poisson equation for the electrostatic potential and an energy balance equation with
boundary conditions on Γ := ∂Ω = ΓD ∪ ΓN0 ∪ ΓN1, where the subscripts D and N
indicate the parts with Dirichlet and Neumann boundary conditions, respectively. Con-
tinuity equations for electrons and holes have to be taken into account only in the part
Ω0, and here we must formulate boundary conditions on Γ0 := ∂Ω0 = ΓD ∪ ΓN01 ∪ ΓN0.
Especially on ΓN01, which corresponds to the interface between semiconducting material
and passive layers, no-flux conditions have to be formulated. In this paper we restrict our
considerations to the case that the Dirichlet parts of Γ and Γ0 coincide.

Let T and ϕ denote the lattice temperature and the electrostatic potential. Then the state
equations for electrons and holes are given by the following expressions

n = N(·, T )F
(ζn + ϕ− En(·, T )

T

)
, p = P (·, T )F

(ζp − ϕ+ Ep(·, T )

T

)
in Ω0,

where n and p are the electron and hole densities, N and P are the effective densities of
state, ζn and ζp are the electrochemical potentials, En and Ep are the energy band edges,
respectively. The function F arises from a distribution function (e.g. F (y) = e y in the
case of Boltzmann statistics or F (y) = F1/2(y) in the case of Fermi-Dirac statistics). The
electrostatic potential ϕ fulfils the Poisson equation

−∇ · (ε∇ϕ) =

{
f − n+ p in Ω0

f in Ω1

. (1.1)
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Figure 1: Schematic picture of a modelled semiconductor device

Here ε is the dielectric permittivity and f is a given doping profile. Mixed boundary
conditions on Γ have to be prescribed. Next, we assume that the particle flux densities jn,
jp and the total energy flux density je have the form (see e.g. Albinus, Gajewski, Hünlich
[1])

jn = − (σn(x, n, p, T ) + σnp(x, n, p, T ))(∇ζn + Pn∇T )

− σnp(x, n, p, T )(∇ζp + Pp∇T ),

jp = − σnp(x, n, p, T )(∇ζn + Pn∇T )

− (σp(x, n, p, T ) + σnp(x, n, p, T ))(∇ζp + Pp∇T ),

je =

{
−κ(x, n, p, T )∇T +

∑
i=n,p(ζi + PiT )ji , x ∈ Ω0

−κ̃(x, T )∇T , x ∈ Ω1

,

(1.2)

with conductivities κ, κ̃, σn, σp > 0, σnp ≥ 0 and transported entropies Pn, Pp. The
particle fluxes jn, jp only occur in the domain Ω0 of the semiconducting material. A
stationary energy model besides the Poisson equation (1.1) should contain two continuity
equations for the densities n and p and a balance of the total energy

∇ · jn = −R, ∇ · jp = −R on Ω0, ∇ · je = 0 on Ω, (1.3)

where the net recombination rate R has the form

R = r(x, n, p, T )(e(ζn+ζp)/T − 1) in Ω0.

Suitable boundary conditions for ζn, ζp resp. jn, jp on Γ0 should to be added. The energy
balance equation ∇ · je = 0 with the corresponding flux term from (1.2) should be valid
in the whole domain Ω and boundary conditions must be formulated on Γ.

In (1.2) on Ω0 we used the fluxes (jn, jp, je) and the generalized forces (∇ζn,∇ζp,∇T ). In
this setting Onsager relations are not valid. But this can be achieved by choosing other
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generalized forces, namely (∇[ζn/T ],∇[ζp/T ],∇[−1/T ]). Then




jn

jp

je




= −




(σn + σnp)T σnpT ρn

σnpT (σp + σnp)T ρp

ρn ρp κT 2 + ρe







∇[ζn/T ]

∇[ζp/T ]

∇[−1/T ]




on Ω0, (1.4)

where


ρn

ρp


 =


 (σn + σnp)T σnpT

σnpT (σp + σnp)T




ζn + PnT

ζp + PpT


 , ρe = ρn(ζn+PnT )+ρp(ζp+PpT ).

Now the matrix in (1.4) is symmetric and positive definite for non-degenerated states.

Based on the foregoing arguments we use the variables

z = (z1, z2, z3, z4) =
( ζn
T |Ω0

,
ζp
T |Ω0

,−
1

T
,ϕ
)
,

where z3 and z4 live on Ω and z1 and z2 are defined on Ω0 only. With suitable functions
Hn, Hp we formulate the state equations on Ω0 in these new variables

n(x) = N(x, T )F
(ζn + ϕ−En

T

)
= Hn(x, z),

p(x) = P (x, T )F
(ζp − ϕ+ Ep

T

)
= Hp(x, z).

Also the rate of generation-recombination of electrons and holes R can be expressed in the
new variables

R = r(x, n, p, T )(e(ζn+ζp)/T − 1) = r(x,Hn(z),Hp(z),−1/z3)(e
z1+z2 − 1) = R(x, z).

In summary, a stationary energy model for semiconductor devices can be written with
suitable coefficient functions aik(x, z), aik : Ω0 × R

2 × (−∞, 0) × R → R, i, k = 1, . . . , 3,
ã33(x, z3), ã33 : Ω1 × (−∞, 0) → R+ and ε(x), ε : Ω → R+ as

−∇ ·




a11(z) a12(z) a13(z) 0

a21(z) a22(z) a23(z) 0

a31(z) a32(z) a33(z) 0

0 0 0 ε







∇z1

∇z2

∇z3

∇z4




=




−R(z)

−R(z)

0

f −Hn(z) +Hp(z)




on Ω0 (1.5)

and

−∇ ·


 ã33(z3) 0

0 ε




 ∇z3

∇z4


 =


 0

f


 on Ω1. (1.6)
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Here we have omitted the additional argument x of the coefficient functions. We formulate
the boundary conditions in terms of z and the generalized forces ∇z

zi = zDi , i = 1, . . . , 4, on ΓD,

ν ·
∑

k=1,2,3

aik(x, z)∇zk = gN0
i , i = 1, 2, 3, ν · (ε∇z4) = gN0

4 on ΓN0,

ν · ã33(z3) = gN1
3 , ν · (ε∇z4) = gN1

4 on ΓN1,

ν ·
∑

k=1,2,3

aik(x, z)∇zk = 0, i = 1, 2, on ΓN01.

(1.7)

Remark 1.1 Let us mention that for the energy model introduced above the 3×3-matrix
(aik(x, z)) for x ∈ Ω0 is symmetric and possesses the property that for each compact subset
K ⊂ R

2 × (−∞, 0) × R there exists a constant aK > 0 such that

∑

i,k=1,2,3

aik(x, z)ζiζk ≥ aK ‖t‖2
R3 , x ∈ Ω0, z ∈ K, ζ ∈ R

3. (1.8)

If no electron-hole scattering is involved in the model (this means σnp ≡ 0), then the
relations a12(x, z) = a21(x, z) = 0 are fulfilled.

2 Assumptions

Definition 2.1 Let V = R
2 × (−∞, 0) × R. We say that a function b : Ω0 × V → R is of

the class (D0) if it fulfils the following properties:

z 7→ b(x, z) is continuously differentiable for almost all x ∈ Ω0 ,
x 7→ b(x, z) is measurable for all z ∈ V .

For every compact subset K ⊂ V there exists an cK > 0 such that
|b(x, z)| ≤ cK and ‖∂zb(x, z)‖ ≤ cK for all z ∈ K and almost all x ∈ Ω0.

For every compact subset K ⊂ V and ǫ > 0 there exists a δ > 0 such
that for all z, z ∈ K holds |z − z| < δ ⇒ |b(x, z) − b(x, z)| < ǫ and
|∂zb(x, z) − ∂zb(x, z)| < ǫ for almost all x ∈ Ω0.

We say, a function b : Ω1 × V1 → R is of the class (D1) if in the previous definition V is
substituted by V1 = (−∞, 0) and Ω0 is replaced by Ω1.

For the analytical investigations of (1.5), (1.6), (1.7) we formulate the following general
assumptions:

(A1) Ωi is a bounded Lipschitzian domain in R
2, Γi := ∂Ωi, i = 0, 1,

Ω0 ∩ Ω1 = ∅, ΓN01 ⊂ Γ0 ∩ Γ1,

Ω =: Ω0 ∪ Ω1 ∪ ΓN01 is a bounded Lipschitzian domain in R
2, Γ := ∂Ω,
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ΓN0, ΓN01, ΓD are disjoint open subsets of Γ0, mes ΓD > 0,

Γ0N := ΓN0 ∪ ΓN01 ∪ (ΓN0 ∩ ΓN01) is open in Γ0,

Γ0 = Γ0N ∪ ΓD ∪ (Γ0N ∩ ΓD), Γ0N ∩ ΓD consists of finitely many points,

ΓN0, ΓN1, ΓD are disjoint open subsets of Γ,

ΓN := ΓN0 ∪ ΓN1 ∪ (ΓN0 ∩ ΓN1) is open in Γ,

Γ = ΓN ∪ ΓD ∪ (ΓN ∩ ΓD), ΓN ∩ ΓD consists of finitely many points.

(A2) The functions aik = aki : Ω0 × V → R are of the class (D0), i, k = 1, 2, 3.

For every compact subset K ⊂ V there exists an aK > 0 such that
3∑

i,k=1

aik(x, z)ξiξk ≥ aK‖ξ‖
2 for all z ∈ K, all ξ ∈ R

3 and f.a.a. x ∈ Ω0.

The function ã33 : Ω1 × V1 → R+ is of the class (D1).

For every k > 1 there exists an ãk > 0 such that ã33(x, z) ≥ ãk for all

z ∈ [−k,−1/k] and f.a.a. x ∈ Ω1.

(A3) ε ∈ L∞(Ω), 0 < ε0 ≤ ε(x) ≤ ε0 <∞ a.e. in Ω.

(A4) The functions Hi : Ω0 × V → R+, i = n, p, are of the class (D0), let

h0 = Hn −Hp : Ω0 × V → R, h0(x, z1, z2, z3, ·) is monotonic increasing

for all (z1, . . . , z4) ∈ R
2 × (−∞, 0) × R and f.a.a. x ∈ Ω0.

|h0(x, z1, . . . , z4)| ≤ cke
c|z4| for all (z1, z2, z3) ∈ [−k, k]2 × [−k,−1/k],

z4 ∈ R and f.a.a. x ∈ Ω0.

(A5) R(x, z) = r̃(x, z)
(
ez1+z2 − 1

)
, where r̃ : Ω0 × V → R+ is of the class (D0).

The data zDi , gN0
i , gN1

i and f in the system (1.5), (1.6), (1.7) are assumed to have at least
the following properties. There exists a p > 2, functions zD1 , z

D
2 ∈W 1,p(Ω0) and functions

zD3 , z
D
4 ∈ W 1,p(Ω), such that zDj |ΓD

= zDj , j = 1, . . . , 4, and zD3 < 0 in Ω. Moreover we

suppose that gN0
i ∈ L∞(ΓN0), i = 1, . . . , 4, gN1

i ∈ L∞(ΓN1), i = 3, 4, and f ∈ L∞(Ω).

3 Weak formulation

In abbreviation we set

G0 = Ω0 ∪ Γ0N , G = Ω ∪ ΓN .

Due to (A1), G0 and G are regular in the sense of Gröger [9]. In our analytical investi-
gations we introduce the following names for the needed function spaces. Let s ∈ [1,∞),
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1/s + 1/s′ = 1, then we define the spaces

Xs = (W 1,s
0 (G0))

2 × (W 1,s
0 (G))2,

X∗
s = (W−1,s′(G0))

2 × (W−1,s′(G))2

Ws = (W 1,s(Ω0))
2 × (W 1,s(Ω))2,

Y s
Ω0

= (Ls(Ω0))
3, Y sΩ = (Ls(Ω))3,

Ls = (Y s
Ω0

)2 × (Y s
Ω)2

with the norms

‖w‖sWs
= ‖w1‖

s
W 1,s(Ω0) + ‖w2‖

s
W 1,s(Ω0) + ‖w3‖

s
W 1,s(Ω) + ‖w4‖

s
W 1,s(Ω), w ∈Ws,

‖y‖sLs = ‖y1‖
s
Y s
Ω0

+ ‖y2‖
s
Y s
Ω0

+ ‖y3‖
s
Y s
Ω

+ ‖y4‖
s
Y s
Ω

, y ∈ Ls,

‖w‖sW 1,s(Ω) =

∫

Ω

(
w2 + w2

x1
+ w2

x2

)s/2
dx, w ∈W 1,s(Ω),

‖y‖sY s
Ω

=

∫

Ω

(
(y1)2 + (y2)2 + (y3)2

)s/2
dx, y = (y1, y2, y3) ∈ Y s

Ω

and similar for the function spaces working on Ω0. Note, thatW 1,s(Ω) and Y s
Ω are equipped

with the norms used by Gröger [9].

We define the vectors

zD = (zD1 , . . . , z
D
4 ), g = (gN0

1 , . . . , gN0
4 , gN1

3 , gN1
4 ), w = (zD, g, f),

and we are looking for solutions of (1.5), (1.6), (1.7) in the form

z = Z + zD,

where zD corresponds to a function fulfilling the Dirichlet boundary conditions and Z
represents the homogeneous part of the solution. Moreover, we use the notation H for the
space of data, namely

H = Wp × L∞(ΓN0)
4 × L∞(ΓN1)

2 × L∞(Ω).

Definition 3.1 Let q ∈ (2, p] and τ > 1. We define subsets Mq,τ ⊂ Xq ×Wp as follows,

Mq,τ =
{

(Z, zD) ∈ Xq ×Wp : |Zi + zDi | < τ, i = 1, 2, on Ω0,

− τ < Z3 + zD3 < −
1

τ
, |Z4 + zD4 | < τ on Ω

}
.

(3.9)

Because of the continuous embedding of W 1,p, W 1,q in the space of continuous functions
the set Mq,τ is open in Xq ×Wp. Clearly, if q2 > q1 then Mq2,τ ⊂ Mq1,τ . Moreover, we
have Mq,τ1 ⊂Mq,τ2 for τ1 < τ2.
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We define the operator Fq,τ : Mq,τ × L∞(ΓN0)
4 × L∞(ΓN1)

2 × L∞(Ω) → X∗
q′ by

〈Fq,τ (Z,w), ψ〉Xq′
=

∫

Ω0

{ 3∑

i,k=1

aik(·, z)∇zk · ∇ψi + ε∇z4 · ∇ψ4

}
dx

+

∫

Ω0

{
R(·, z)(ψ1 + ψ2) + h0(·, z)ψ4

}
dx−

∫

Ω
fψ4 dx

+

∫

Ω1

{
ã33(·, z3)∇z3 · ∇ψ3 + ε∇z4 · ∇ψ4

}
dx

−

∫

ΓN0

4∑

i=1

gN0
i ψi dΓ −

∫

ΓN1

4∑

i=3

gN1
i ψi dΓ, ψ ∈ Xq′ .

Here q′ = q/(q−1) denotes the dual exponent of q. Using this notation a weak formulation
of the system (1.5), (1.6), (1.7) is

Problem (P):

Find (q, τ, Z,w) such that q ∈ (2, p], τ > 1, (Z,w) ∈ Xq ×H,

Fq,τ (Z,w) = 0, (Z, zD) ∈Mq,τ .

Obviously, if (q, τ, Z,w) is a solution to (P) then (q̃, τ̃ , Z,w) with q̃ ∈ (2, q] and τ̃ ≥ τ is a
solution to (P), too.

4 Analytical results

Lemma 4.1 We assume (A1) – (A5). For all parameters τ > 1, all exponents q ∈
(2, p] the operator Fq,τ : Mq,τ × L∞(ΓN0)

4 × L∞(ΓN1)
2 × L∞(Ω) → X∗

q′ is continuously

differentiable.

Proof. Let q ∈ (2, p] and τ > 1 be fixed. We split up the operator Fq,τ into a sum Fq,τ =∑3
i,k=1A

ik + Ã33 +A44 +Al −B, where Aij , Ã33, A44, Al : Mq,τ → X∗
q′ , B : L∞(ΓN0)

4 ×

L∞(ΓN1)
2 × L∞(Ω) → X∗

q′ ,

〈Aik(Z, zD), ψ〉Xq′
=

∫

Ω0

aik(·, z)∇(Zk + zDk ) · ∇ψi dx, i, k = 1, 2, 3,

〈Ã33(Z, zD), ψ〉Xq′
=

∫

Ω1

ã33(·, z3)∇(Z3 + zD3 ) · ∇ψ3 dx,

〈A44(Z, zD), ψ〉Xq′
=

∫

Ω
ε∇(Z4 + zD4 ) · ∇ψ4 dx,

〈Al(Z, zD), ψ〉Xq′
=

∫

Ω0

{
R(·, z)(ψ1 + ψ2) + h0(·, z)ψ4

}
dx,

〈B(g, f), ψ〉Xq′
=

∫

Ω
fψ4 dx+

∫

ΓN0

4∑

i=1

gN0
i ψi dΓ +

∫

ΓN1

4∑

i=3

gN1
i ψi dΓ, ψ ∈ Xq′ ,
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where z = Z + zD. Since q > 2 the continuous differentiability of the operator Al is a
direct consequence of the fact that r̃ and h0 are of the class (D0), see (A4), (A5). The
assertion for the operators A44 and B is verified by standard arguments. Now we do, as
a representative of a non standard situation, the proof for a summand Aik. First we show
continuity. Let (Z, zD) ∈Mq,τ and let (Z, zD) → 0 in Xq ×Wp, then

|〈Aik(Z + Z, zD + zD) −Aik(Z, zD), ψ〉Xq′
|

≤

∫

Ω0

|aik(·, z + z) − aik(·, z)||∇(Zk + Zk + zDk + zDk )||∇ψi|dx

+

∫

Ω0

|aik(·, z)||∇(Zk + zDk )||∇ψi|dx

≤ cp‖aik
(
z + z) − aik(z)‖L∞(Ω0)(‖Z + Z‖Xq + ‖zD + zD‖Wp

)
‖ψ‖Xq′

+ cp‖aik(z)‖L∞(Ω0)

(
‖Z‖Xq + ‖zD‖Wp

)
‖ψ‖Xq′

.

Since the functions aik belong to the class (D0), see (A2), the continuity follows. Next, let

(Z, zD) ∈Mq,τ be arbitrarily fixed. We prove that the operator A
ik

(Z, zD) ∈ L(Xq,X
∗
q′),

〈A
ik

(Z, zD)Z,ψ〉Xq′
=

∫

Ω0

∂zaik(·, z) · Z∇(Zk + zDk ) · ∇ψi dx

+

∫

Ω0

aik(·, z)∇Zk · ∇ψi dx, ψ ∈ Xq′ ,

is the Fréchet derivative of Aik(Z, zD) with respect to Z: Let Z → 0 in Xq.

|〈Aik(Z + Z, zD) −Aik(Z, zD) −A
ik

(Z, zD)Z,ψ〉Xq′
|

≤
∣∣∣
∫

Ω0

(
aik(·, z + Z)∇(zk + Zk) − aik(·, z)∇zk

)
· ∇ψi dx

−

∫

Ω0

(
∂zaik(·, z) · Z∇zk + aik(·, z)∇Zk

)
· ∇ψi dx

∣∣∣

≤

∫

Ω0

∣∣aik(·, z + Z) − aik(·, z) − ∂zaik(·, z) · Z
∣∣|∇zk||∇ψi|dx

+

∫

Ω0

∣∣aik(·, z + Z) − aik(·, z)
∣∣|∇Zk||∇ψi|dx

≤ cp‖aik(z + Z) − aik(z) − ∂zaik(z) · Z‖L∞(Ω0)

(
‖Z‖Xq + ‖zD‖Wp

)
‖ψ‖Xq′

+ ‖aik(z + Z) − aik(z)‖L∞(Ω0)‖Z‖Xq‖ψ‖Xq′
.

Exploiting, that aik are of the class (D0) and Z → 0 the last two lines converge to zero
and differentiability with respect to Z is shown. The continuity of this Fréchet derivative
is guaranteed since the functions aik are of the class (D0). Similarly one can prove the
continuous differentiability of Aik with respect to zD. Substituting Ω0 by Ω1 we obtain
the assertion for the operator Ã33 as a special case of the above if we take into account
that ã33 belongs to the class (D1). Thus the sum Fq,τ of all the considered summands is
continuously differentiable. �



4 Analytical results 9

Especially we have

〈∂ZFq,τ (Z,w)Z,ψ〉Xq′
=

∫

Ω0

3∑

i,k=1

{
aik(·, z)∇Zk + ∂zaik(·, z) · Z∇zk

}
· ∇ψi dx

+

∫

Ω0

{
∂zR(·, z) · Z (ψ1 + ψ2) + ∂zh0(·, z) · Z ψ4

}
dx

+

∫

Ω1

{
ã33(·, z3)∇Z3 +

∂ã33

∂z3
(·, z3)Z3 ∇z3

}
· ∇ψ3 dx

+

∫

Ω
ε∇Z4 · ∇ψ4 dx, ψ ∈ Xq′ .

(4.10)

We define a set of data, which is compatible with thermodynamic equilibrium,

Q :=
{
w = (zD, g, f) ∈ H : zDi = const, gN0

i = 0, i = 1, 2, 3,

gN1
3 = 0, zD1 + zD2 = 0, zD3 < 0

}
.

Theorem 4.1 (Existence and uniqueness of thermodynamic equilibria). We make the

assumptions (A1) – (A5). Let w∗ = (zD∗, g∗, f∗) ∈ Q be given.

i) Then there exist a q0 ∈ (2, p], a constant τ > 1 and a function Z∗
4 ∈W 1,q0

0 (G)
such that (Z∗, zD∗) = ((0, 0, 0, Z∗

4 ), zD∗) ∈Mq0,τ and Fq0,τ (Z
∗, w∗) = 0.

In other words, (q0, τ, Z
∗, w∗) is a solution to (P).

ii) z∗ = Z∗ + zD∗ is a thermodynamic equilibrium of (1.5), (1.6), (1.7).
iii) If (q̃, τ̃ , Z̃, w∗) is a solution to (P), then Z̃ = Z∗ in Xq̂ with q̂ = min{q0, q̃} holds.

Proof. 1. For w∗ = (zD∗, g∗, f∗) ∈ Q we define the function h1 : Ω0 × R → R by

h1(x, φ) = h0(x, (0, 0, 0, φ) + zD∗(x))

and consider the operator E : H1
0 (G) → H−1(G),

〈E(φ), φ〉H1
0
(G) =

∫

Ω

{
ε∇(φ+ zD∗

4 ) · ∇φ − f∗φ
}

dx+

∫

Ω0

h1(·, φ)φ dx

−

∫

ΓN0

gN0∗
4 φdΓ −

∫

ΓN1

gN1∗
4 φdΓ ∀φ ∈ H1

0 (G).

For φ1, φ2 ∈ H1
0 (G) we have

〈E(φ1) − E(φ2), φ1 − φ2〉H1
0
(G)

=

∫

Ω
ε |∇(φ1 − φ2)|

2 dx+

∫

Ω0

(h1(·, φ1) − h1(·, φ2))(φ1 − φ2) dx,

and the properties (A1), (A3), (A4) of ΓD, ε and h0 supply the strong monotonicity of the
operator E . Next we prove the hemicontinuity of E . We have to show that the mapping
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t 7→ 〈E(φ + tφ̂), φ〉H1
0
(G) for arbitrarily given φ, φ̂, φ ∈ H1

0 (G) is continuous on [0, 1]. Let

t0 ∈ [0, 1], tn → t0, tn ∈ [0, 1]. Then

〈E(φ+ tnφ̂) − E(φ+ t0φ̂), φ〉H1
0
(G)

≤ c|tn − t0|‖φ̂‖H1‖φ‖H1 +
∣∣∣
∫

Ω0

[
h1(·, φ+ tnφ̂) − h1(·, φ + t0φ̂)

]
φdx

∣∣∣.
(4.11)

According to (A4) we have h1(x, φ+ tnφ̂) → h1(x, φ+ t0φ̂) and

|h1(x, φ+ tnφ̂)| ≤ c̃ ec̃ (|φ|+|φ̂|) for almost all x ∈ Ω0.

Now we use the embedding result of Trudinger [12] for two dimensional Lipschitzian do-
mains which tells us that

‖e|v|‖L2(Ω0) ≤ d(‖v‖H1(Ω0)) ∀v ∈ H1(Ω0),

where d : R+ → R+ is a continuous, monotone increasing function with limy→∞ d(y) = ∞.
Since φ ∈ L2(Ω0) we get an integrable upper bound for the integrand in the last term
in (4.11) and Lebesgue’s Dominated Convergence Theorem leads to the hemicontinuity
of E . Since E is strongly monotone and hemicontinuous, there exists a unique solution
φ ∈ H1

0 (G) of E(φ) = 0. Especially we have ‖φ‖H1(Ω) ≤ ĉ, where ĉ depends only on the
data w∗.

2. Next we prove that this solution possesses more regularity. We define

〈E0(φ), φ〉H1
0
(G) =

∫

Ω

{
ε∇φ · ∇φ+ φφ

}
dx,

〈T , φ〉H1
0
(G) =

∫

Ω

{
− ε∇zD∗

4 · ∇φ+
(
f∗ + φ

)
φ
}

dx−

∫

Ω0

h1(·, φ)φ dx

+

∫

ΓN0

gN0∗
4 φdΓ +

∫

ΓN1

gN1∗
4 φdΓ ∀φ ∈ H1

0 (G).

Since zD∗
4 ∈ W 1,p(Ω) is a fixed element there is a c > 0 such that |zD∗

4 | ≤ c. From the

properties (A4) of h0 we find |h1(x, φ)| ≤ c(zD∗) e c |z
D∗

4
+φ| ≤ c̃(zD∗) e c c |φ| f.a.a. x ∈ Ω0.

Thus the embedding result of Trudinger mentioned in the first step of this proof yields

‖h1(·, φ)‖L2(Ω0) ≤ c̃(zD∗) d(‖φ‖H1(Ω0)) ≤ ĉ.

Furthermore, using that (zD∗, g∗, f∗) ∈ H is fixed it results that T ∈ W−1,p(G). Thus
taking benefit from Grögers regularity result [9] applied to the equation E0(φ) = T we
obtain a q0 ∈ (2, p] such that φ ∈ W 1,q0(G) and ‖φ‖W 1,q0 ≤ cq0‖T ‖W−1,p(G). Note that
our assumption concerning the domain Ω and its boundary ensure that G is regular in the
sense of Gröger [9].

3. The continuous embeddingW 1,q0(Ω) →֒ C(Ω) ensures that ‖φ‖C(Ω) ≤ c(q0, w
∗). Setting

Z∗
i = 0, i = 1, 2, 3, Z∗

4 = φ and using that w∗ ∈ Q we find a constant τ > 1 such that
that (Z∗, zD∗) ∈ Mq0,τ and Fq0,τ (Z

∗, w∗) = 0. In other words, (q0, τ, Z
∗, w∗) is a solution

to Problem (P). Moreover, z∗ = Z∗ + zD∗ is a thermodynamic equilibrium of (1.5), (1.6),
(1.7).
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4. Uniqueness: Let (q̃, τ̃ , Z̃, w∗) be a solution to Problem (P) and let z̃ = Z̃ + zD∗.
Then we have (Z∗, zD∗) ∈ Mq0,τ , (Z̃, zD∗) ∈ Mq̃,τ̃ and Fq0,τ (Z

∗, w∗) = Fq̃,τ̃ (Z̃, w
∗) = 0.

Let q̂ = min{q0, q̃}, τ̂ = max{τ, τ̃}. Then we have that (Z∗, zD∗), (Z̃, zD∗) ∈ Mq̂,τ̂ and

Fq̂,τ̂ (Z
∗, w∗) = Fq̂,τ̂ (Z̃, w

∗) = 0. We test the last equation with (Z̃1, Z̃2, Z̃3, 0). Since
w∗, w∗ + (Z∗, 0, 0) ∈ Q we obtain

0 = 〈Fq̂,τ̂ (Z̃, w
∗) − Fq̂,τ̂ (Z

∗, w∗), (Z̃1, Z̃2, Z̃3, 0)〉Xq′

=

∫

Ω0

3∑

i,k=1

aik(·, z̃)∇Z̃k · ∇Z̃i dx+

∫

Ω1

ã33(·, z̃3)|∇Z̃3|
2 dx

+

∫

Ω0

r̃(·, z̃)
(
eZ̃1+Z̃2 − 1

)
(Z̃1 + Z̃2) dx.

Exploiting the assumption (A5) for r̃ and the fact that (ey − 1)y ≥ 0 we find

∫

Ω0

3∑

i,k=1

aik(·, z̃)∇Z̃k · ∇Z̃i dx+

∫

Ω1

ã33(·, z̃3)|∇Z̃3|
2 dx ≤ 0.

According to (A2) we have ã33(x, z̃) ≥ c(z̃) > 0 and the matrix (aik(x, z̃))i,k=1,2,3 is

strongly elliptic. Therefore we obtain ∇Z̃i = 0, i = 1, 2, 3. And |ΓD| > 0 supplies that
Z̃i = 0, i = 1, 2, on Ω0 and Z̃3 = 0 on Ω.

Finally, the test of Fq̂,τ̂ (Z̃, w
∗)−Fq̂,τ̂ (Z

∗, w∗) = 0 with (0, 0, 0, Z̃4 −Z∗
4 ) leads to Z̃4 = Z∗

4 ,

since the operator E is strongly monotone. In summary we find Z̃ = Z∗, which gives the
last assertion. �

Lemma 4.2 (Fredholm property of the linearization). We assume (A1) – (A5). Let w∗ =
(zD∗, g∗, f∗) ∈ Q be given. Let (q0, τ, Z

∗, w∗) be the equilibrium solution to Problem (P)
(see Theorem 4.1) and let z∗ = Z∗ + zD∗. Then there exists a q1 ∈ (2, q0] such that the

operator ∂ZFq1,τ (Z
∗, w∗) is a Fredholm operator of index zero.

Proof. Let q ∈ (2, q0] and Z ∈ Xq. The linearization is given in (4.10) and has now to be
calculated at (Z∗, w∗). Since ∇z∗i = 0, i = 1, 2, 3, ez

∗

1
+z∗

2 = 1 and

∂zR(·, z∗) · Z = ∂z r̃(·, z
∗) · Z

(
ez

∗

1
+z∗

2 − 1
)

+ r̃(·, z∗)ez
∗

1
+z∗

2 (Z1 + Z2),

we obtain according to (4.10) that

〈∂ZFq,τ (Z
∗, w∗)Z,ψ〉Xq′

=

∫

Ω0

( 3∑

i,k=1

aik(·, z
∗)∇Zk · ∇ψi + ε∇Z4 · ∇ψ4

)
dx

+

∫

Ω0

(
r̃(·, z∗)(Z1 + Z2)(ψ1 + ψ2) + ∂zh0(·, z

∗) · Z ψ4

)
dx

+

∫

Ω1

(
ã33(·, z

∗
3)∇Z3 · ∇ψ3 + ε∇Z4 · ∇ψ4

)
dx.

(4.12)



12 A. Glitzky, R. Hünlich

Now we follow ideas in the proof of Theorem 4.1 of Recke [11]. For q ∈ (2, q0] we write
∂ZFq,τ (Z

∗, w∗) as sum ∂ZFq,τ (Z
∗, w∗) = Lq+Kq with operators Lq, Kq : Xq → X∗

q′ , where

〈Lq Z,ψ〉Xq′
=

∫

Ω0

( 3∑

i,k=1

aik(·, z
∗)∇Zk · ∇ψi + ε∇Z4 · ∇ψ4 +

4∑

i=1

Zi ψi

)
dx

+

∫

Ω1

(
ã33(·, z

∗
3)∇Z3 · ∇ψ3 + ε∇Z4 · ∇ψ4 +

4∑

i=3

Zi ψi

)
dx,

〈Kq Z,ψ〉Xq′
=

∫

Ω0

{
r̃(·, z∗)(Z1 + Z2)(ψ1 + ψ2) + ∂zh0(·, z

∗) · Z ψ4 −
4∑

i=1

Zi ψi

}
dx

−

∫

Ω1

4∑

i=3

Zi ψi dx , ψ ∈ Xq′ .

The operator Kq is compact because of the compact embedding of W 1,q(Ω) into L∞(Ω).
The operator Lq is injective. Next, we apply Theorem 5.1 from Section 5. We set dik =
aik(·, z

∗), i, k = 1, 2, 3, d4k = dk4 = 0, k = 1, 2, 3, d44 = ε, di = 1, i = 1, . . . , 4, in
Ω0 and d̃33 = ã33(·, z

∗
3), d̃43 = d̃34 = 0, d̃44 = ε, d̃i = 1, i = 3, 4, in Ω1. Due to our

assumptions (A2), (A3) the properties (B) at the beginning of Section 5 are fulfilled.
Since Lq is the restriction of A (see (5.18)) to Xq, Theorem 5.1 guarantees the existence
of an exponent q1 ∈ (2, q0] such that the operator Lq1 is surjective. Then by Banach’s
open mapping theorem and Nikolsky’s criterion for Fredholm operators the assertion of
the lemma follows. �

Lemma 4.3 (Injectivity of the linearization). We assume (A1) – (A5). Let the vector

of data w∗ = (zD∗, g∗, f∗) ∈ Q be given, and let (q0, τ, Z
∗, w∗) be the equilibrium solution

to Problem (P), and z∗ = Z∗ + zD∗ (see Theorem 4.1). Then the Fréchet derivative

∂ZFq1,τ (Z
∗, w∗) : Xq1 → X∗

q′
1

is injective, where q1 is chosen as in Lemma 4.2.

Proof. It is sufficient to prove the injectivity of the operator on X2. The derivative has
the form (4.12). Let ∂ZFq1,τ (Z

∗, w∗)Z = 0, Z ∈ X2.

We test this equation with ψ = (Z1, Z2, Z3, 0) and take into account the strong ellipticity
condition for (aik(x, z

∗))i,k=1,2,3, the fact that |ΓD| > 0 and the property that r̃(z∗) ≥ 0
and get that Zi = 0, i = 1, 2, 3. Next, we use the test function ψ = (0, 0, 0, Z4) and obtain

∫

Ω

{
ε |∇Z4|

2 +
∂

∂z4
h0(·, z

∗)Z
2
4

}
dx = 0.

Since h0 is continuously differentiable and monotonic increasing in the argument z4 (see
(A4)) we have ∂

∂z4
h0(x, z

∗) ≥ 0 a.e. on Ω which together with ε ≥ ε0 a.e. on Ω and

|ΓD| > 0 leads to Z4 = 0. Thus the injectivity of ∂ZFq1,τ (Z
∗, w∗) : Xq1 → X∗

q′
1

follows,

too. �

Theorem 4.2 (Local existence and uniqueness of steady states). We assume (A1) –

(A5). Let w∗ = (zD∗, g∗, f∗) ∈ Q be given, and let (q0, τ, Z
∗, w∗) be the equilibrium

solution to Problem (P), and z∗ = Z∗ + zD∗ (see Theorem 4.1).
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Then there exists a q1 ∈ (2, q0] such that the following assertion holds: There exist neigh-

bourhoods U ⊂ Xq1 of Z∗ and W ⊂ H of w∗ = (zD∗, g∗, f∗) and a C1-map Φ: W → U
such that Z = Φ(w) iff

Fq1,τ (Z,w) = 0, (Z, zD) ∈Mq1,τ , Z ∈ U, w = (zD, g, f) ∈W.

Proof. According to Lemma 4.2 and Lemma 4.3 there exists a q1 such that the operator
∂ZFq1,τ (Z

∗, w∗) : Xq1 → X∗
q′
1

is an injective Fredholm Operator of index zero. Therefore

the assertion of the theorem is a direct consequence of the Implicit Function Theorem.
�

Finally, let us draw a conclusion from Theorem 4.2. First, we define the sets

Q1 =
{
w = (zD, g, f) ∈ H : gN0

i = 0, i = 1, 2, 3, gN1
3 = 0,

∫

ΓD

(zD1 + zD2 ) dΓ = 0, zD3 < 0
}
,

Q2 =
{
w = (zD, g, f) ∈ H : zD3 < 0

}
.

Obviously Q ⊂ Q1 ⊂ Q2 holds, but Q1 and Q2 contain also elements which are not
compatible with thermodynamic equilibria.

Corollary 4.1 We assume (A1) – (A5).
i) Let w = (zD, g, f) ∈ Q1 be given. Then there are constants q ∈ (2, p], τ > 1, ǫ > 0 such

that the following assertions hold: If

‖∇zDi ‖Lp(Ω0) < ǫ, i = 1, 2, ‖∇zD3 ‖Lp(Ω) < ǫ (4.13)

then there exists a Z ∈ Xq such that (q, τ, Z,w) is a solution to (P). This solution lies in

a neighbourhood of an equilibrium solution (q, τ, Z∗, w∗) to (P), and in this neighbourhood

there are no solutions (q, τ, Z̃, w) with Z̃ 6= Z.

ii) Let w = (zD, g, f) ∈ Q2 be given. Then there are constants q ∈ (2, p], τ > 1, ǫ > 0 such

that the following assertions hold: If

‖∇zDi ‖Lp(Ω0) < ǫ, i = 1, 2, ‖∇zD3 ‖Lp(Ω) < ǫ,

‖zD1 + zD2 ‖L1(ΓD) < ǫ,

‖gN0
i ‖L∞(ΓN0) ≤ ǫ, i = 1, 2, 3, ‖gN1

3 ‖L∞(ΓN1) ≤ ǫ,

(4.14)

then there exists a Z ∈ Xq such that (q, τ, Z,w) is a solution to (P). This solution lies in

a neighbourhood of an equilibrium solution (q, τ, Z∗, w∗) to (P), and in this neighbourhood

there are no solutions (q, τ, Z̃, w) with Z̃ 6= Z.

Proof. 1. Let w = (zD, g, f) ∈ Q1 be given. We define

zD∗
i =

1

|ΓD|

∫

ΓD

zDi dΓ, i = 1, 2, 3, zD∗
4 = zD4 , w∗ = (zD∗, g, f)
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and find that w∗ ∈ Q. Let (q0, τ, Z
∗, w∗) be the corresponding equilibrium solution to (P).

Because of Theorem 4.2 there exist constants q ∈ (2, q0], ǫ
′ > 0 such that the equation

Fq,τ (Z,w) = 0 has a locally unique solution Z ∈ Xq if

‖w − w∗‖H =

2∑

i=1

‖zDi − zD∗
i ‖W 1,p(Ω0) + ‖zD3 − zD∗

3 ‖W 1,p(Ω) < ǫ′. (4.15)

Since for i = 1, 2, 3 the mean values of zDi − zD∗
i on ΓD vanish we can apply the Friedrich

inequality to obtain

‖zDi − zD∗
i ‖W 1,p(Ω0) ≤ c ‖∇zDi ‖Lp(Ω0), i = 1, 2,

‖zD3 − zD∗
3 ‖W 1,p(Ω) ≤ c ‖∇zD3 ‖Lp(Ω).

Choosing ǫ in (4.13) sufficiently small the inequality (4.15) can be fulfilled.

2. We decompose R
2 = S ⊕ S⊥, where S = span

{
(1, 1)

}
, S⊥ = span

{
(1,−1)

}
. The

corresponding projection operators are denoted by ΠS : R
2 → S and ΠS⊥ : R

2 → S⊥.
Obviously, there is a constant c > 0 such that

‖λ− ΠS⊥λ‖R2 = ‖ΠSλ‖R2 ≤ c|λ1 + λ2| ∀λ ∈ R
2. (4.16)

Let w = (zD, g, f) ∈ Q2 be given. We define

zDi =
1

|ΓD|

∫

ΓD

zDi dΓ, i = 1, 2, 3,

zD∗ = (zD∗
1 , zD∗

2 , zD∗
3 , zD∗

4 ) =
(
ΠS⊥(zD1 , z

D
2 ), zD3 , z

D
4

)
,

w∗ = (zD∗, (0, 0, 0, gN0
4 , 0, gN1

4 ), f)

and find again that w∗ ∈ Q. Let (q0, τ, Z
∗, w∗) be the corresponding equilibrium solution

to (P). Because of Theorem 4.2 there are constants q ∈ (2, q0], ǫ
′ > 0 such that the

equation Fq,τ (Z,w) = 0 has a locally unique solution Z ∈ Xq if

‖w − w∗‖H =
2∑

i=1

{
‖zDi − zD∗

i ‖W 1,p(Ω0) + ‖gi‖L∞(ΓN0)

}

+ ‖zD3 − zD∗
3 ‖W 1,p(Ω) + ‖gN0

3 ‖L∞(ΓN0) + ‖gN1
3 ‖L∞(ΓN1) < ǫ′.

(4.17)

From the Friedrich inequality and inequality (4.16) it follows that

‖w − w∗‖H ≤ c
( 2∑

i=1

{
‖∇zDi ‖Lp(Ω0) + ‖gN0

i ‖L∞(ΓN0)

}
+ ‖zD1 + zD2 ‖L1(ΓD)

+ ‖∇zD3 ‖Lp(Ω) + ‖gN0
3 ‖L∞(ΓN0) + ‖gN1

3 ‖L∞(ΓN1)

)
,

and ǫ in (4.14) can be chosen such that (4.17) is fulfilled. �

The assertions of Corollary 4.1 can be interpreted as follows. Let the source terms for
the Poisson equation (i.e. f, zD4 , g

N0
4 , gN1

4 ) be given. Then the stationary energy model
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has a solution, if the driving forces for the fluxes induced by the boundary data (i.e. the
gradients ∇zD1 ,∇z

D
2 ,∇z

D
3 ), the driving forces for the generation-recombination of electrons

and holes on the boundary (i.e. the affinities zD1 + zD2 on ΓD) and the prescribed fluxes
on the boundary (i.e. gN0

1 , gN0
2 , gN0

3 and gN1
3 ) are small enough. This solution is locally

unique.

Remark 4.1 If all equations are defined on the same domain Ω and mixed boundary
conditions are formulated on ΓD and ΓN analogous results concerning the stationary
energy model (1.5), (1.6), (1.7) are obtained by setting formally Ω0 = Ω, Ω1 = ∅, ΓN01 =
ΓN1 = ∅, ΓN0 = ΓN and G0 = G.

Remark 4.2 Theorem 4.2 gives a local existence and uniqueness result for the station-
ary energy model (1.5), (1.6), (1.7) for semiconductor devices in two space dimensions.
Moreover, the different domains of definition of the relevant model equations are taken
into account. For the case that Ω and Ω0 coincide we have investigated an energy model
containing incompletely ionized impurities in [8] and a multi species version of the above
energy model in [7].

Remark 4.3 Gröger, Recke [10] study quasilinear second order elliptic systems given on
the same domain, where for the divers equations the partition of the mixed boundary
conditions into Dirichlet and Neumann parts differs. There is shown that such boundary
value problems with triangular main part generate Fredholm maps between appropriate
Sobolev-Campanato spaces and that the Implicit Function Theorem can be applied to this
situation.

Remark 4.4 If in the energy model (1.1), (1.3) the temperature is considered as a con-
stant positive parameter and the balance equation for the density of the total energy is
omitted, then the remaining equations form a drift-diffusion model (van Roosbroeck equa-
tions). For the case that Ω and Ω0 coincide there is a lot of papers dealing with this model
(e.g. Chen, Jüngel [2] (here electron hole scattering is involved), [3, 4, 5] and papers cited
there). But Gajewski, Gröger [6] considered the Poisson equation in a larger domain Ω
containing the domain of definition Ω0 ⊂ Ω of the continuity equations, too.

5 A surjectivity result for a system of second order linear

elliptic equations defined on different domains

First, we collect some results concerning equivalent norms on cross products of spaces,
its duals and on properties of the duality map on cross products (see Lemmata 5.1, 5.2,
5.3). These results enable us to adapt results of Gröger [9] to systems of elliptic equations
with different domains of definition. Second, we state a surjectivity property of operators
related to strongly coupled linear elliptic equations with homogeneous mixed boundary
conditions and different domains of definition. We use the notation, spaces and norms of
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Section 3. We consider the operator A : X2 → X∗
2 defined by

〈Az, z〉X2
=

∫

Ω0

{ 4∑

i,k=1

dik∇zk · ∇zi +
4∑

i=1

dizizi

}
dx

+

∫

Ω1

{ 4∑

i,k=3

d̃ik∇zk · ∇zi +
4∑

i=3

d̃izizi

}
dx, z, z ∈ X2.

(5.18)

Concerning the coefficient functions we suppose

(B) dik, di ∈ L∞(Ω0), i, k = 1, . . . , 4, d̃ik, d̃i ∈ L∞(Ω1), i, k = 3, 4.

There exist M, m > 0 such that
4∑

i,k=1

diktkti ≥ m|t|2
R4 ,

4∑

i=1

∣∣∣
4∑

k=1

diktk

∣∣∣
2
≤M2|t|2

R4 ∀t ∈ R
4, a.e. on Ω0,

4∑

i,k=3

d̃iktkti ≥ m|t|2
R2 ,

4∑

i=3

∣∣∣
4∑

k=3

d̃iktk

∣∣∣
2
≤M2|t|2

R2 ∀t ∈ R
2, a.e. on Ω1,

m ≤di≤M, i = 1, . . . , 4, a.e. on Ω0, m ≤ d̃i≤M, i = 3, 4, a.e. on Ω1.

For s ≥ 2 the operator A maps Xs continuously into X∗
s′ . In Theorem 5.1 we show that

for s ≥ 2 and sufficiently near to 2 the operator A from Xs to X∗
s′ is onto, too. We start

with some preliminary results.

Lemma 5.1 Let X be a Banach space with norm ‖·‖, and let ‖·‖0 be an equivalent norm,

c1‖u‖ ≤ ‖u‖0 ≤ c2‖u‖ ∀u ∈ X.

Let ‖·‖∗ and ‖·‖0∗ denote the canonical norms in the dual space X∗. Then

1
c2
‖h‖∗ ≤ ‖h‖0∗ ≤ 1

c1
‖h‖∗ ∀h ∈ X∗.

Lemma 5.2 For all k ∈ N, all a = (a1, . . . , ak) ∈ R
k
+ and all p ∈ (1,∞) there holds the

estimate

c1(p)
( k∑

i=1

a2
i

) p

2 ≤
k∑

i=1

api ≤ c2(p)
( k∑

i=1

a2
i

) p

2 ,

where

p < 2 : c1(p) = 1, c2(p) = k1− p

2

p = 2 : c1(p) = 1, c2(p) = 1

p > 2 : c1(p) = k1− p

2 , c2(p) = 1.

Note that for every fixed k ∈ N the functions c1 and c2 are continuous functions of p and
that c1(p), c2(p) → 1 if p→ 2.
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Lemma 5.3 Let p ≥ 2, p′ the dual exponent and let Bi,p, B
∗
i,p′, i = 1, . . . ,m, be a scale of

Banach spaces. On the cross products Bp = B1,p×· · ·×Bm,p and B∗
p′ = B∗

1,p′ ×· · ·×B∗
m,p′

we use the norms

‖u‖pBp
=

m∑

i=1

‖ui‖
p
Bi,p

analogously Bp′ , ‖h‖p
′

B∗
p

=

m∑

i=1

‖hi‖
p′

B∗

i,p
analogously B∗

p′ .

Suppose that Di : B
∗
i,p′ → Bi,p are linear continuous maps with ‖Di‖ = Mi,p. Then

D : B∗
p′ → Bp with Dh = (D1h1, . . . ,Dmhm) is a linear continuous map with

‖D‖ ≤ max
i=1,...,m

{
Mi,p

}
.

Proof. Because of

‖D‖ = sup
h∈B∗

p′
, ‖h‖B∗

p′
≤1

‖Dh‖Bp = sup
h∈B∗

p′
, ‖h‖B∗

p′
≤1

sup
ψ∈B∗

p , ‖ψ‖B∗
p
≤1
〈ψ,Dh〉Bp

and the estimate

〈ψ,Dh〉Bp =
m∑

i=1

〈ψi,Dihi〉Bi,p
≤

m∑

i=1

Mi,p‖ψi‖B∗

i,p
‖hi‖B∗

i,p′

≤ max
i=1,...,m

Mi,p

m∑

i=1

‖ψi‖B∗

i,p
‖hi‖B∗

i,p′

≤ max
i=1,...,m

Mi,p

( m∑

i=1

‖ψi‖
p′

B∗

i,p

) 1

p′
( m∑

i=1

‖hi‖
p
B∗

i,p′

) 1

p

≤ max
i=1,...,m

Mi,p‖ψ‖B∗
p
‖h‖B∗

p′

we obtain ‖D‖ ≤ maxi=1,...,mMi,p. �

Remember the definition of function spaces at the beginning of Section 3. We define
the operator LG : W 1,2

0 (G) → L2(Ω)3 = Y 2
Ω by LGy = (y,∇y), y ∈ W 1,2

0 (G). Then

L∗
GLG = JG, where JG denotes the duality map of the space W 1,2

0 (G),

〈JG y, φ〉W 1,2
0

(G)
=

∫

Ω
(yφ+ ∇y · ∇φ) dx, y, φ ∈W 1,2

0 (G).

If s > 2 then LG maps W 1,s
0 (G) continuously into Y s

Ω, and L∗
G maps Y s

Ω continuously into

W 1,s′

0 (G)∗. Moreover, for s > 2 we obtain that JG maps W 1,s
0 (G) into W 1,s′

0 (G)∗ and that

JG is continuous as a map from W 1,s
0 (G) into W 1,s′

0 (G)∗. We use MG
s as abbreviation for

MG
s = sup

{
‖y‖W 1,s

0
(G) : y ∈W 1,s

0 (G), ‖JG y‖W 1,s′

0
(G)∗

≤ 1
}
.

Since by assumption (A1) the set G ⊂ R
2 is regular in the sense of Gröger [9] there

exists rG > 2 such that JG maps W 1,rG
0 (G) onto W

1,r′
G

0 (G)∗. Moreover, MG
2 = 1, and for

s ∈ [2, rG] the mappings are onto, too, and we have

MG
s ≤MG

rG

θ
, where θ is given by the relation

1

s
=

1 − θ

2
+

θ

rG
(5.19)
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(see Sect. 3 and Lemma 1 in [9]).

Analogously we define for the regular set G0 operators LG0
, JG0

and obtain a corresponding
exponent rG0

and quantities MG0

s . Now we define the four component operators L, J
working componentwise

L : X2 → L2, Lz =
(
LG0

z1, LG0
z2, LGz3, LGz4

)
, z ∈ X2,

L∗ : L2 → X∗
2 , L∗u =

(
L∗
G0
u1, L

∗
G0
u2, L

∗
Gu3, L

∗
Gu4

)
, u ∈ L2,

J : X2 → X∗
2 , Jz =

(
JG0

z1, JG0
z2, JGz3, JGz4

)
, z ∈ X2.

Note that for s > 2 the (restricted) operators L : Xs → Ls as well as L∗ : Ls → X∗
s′ are

linear continuous maps with norm less or equal to one. Moreover, it results that J maps
Xs into X∗

s′ and that J is continuous as a map from Xs into X∗
s′ , too. We will use Ms as

abbreviation for

Ms = sup
{
‖z‖Xs : z ∈ Xs, ‖Jz‖X∗

s′
≤ 1
}
.

Let r̂ := min{rG, rG0
}. Then

MG0

r̂ =
(
MG0

rG0

)θ̂
, where

1

r̂
=

θ̂

rG0

+
1 − θ̂

2
,

MG
r̂ =

(
MG
rG

)θ̃
, where

1

r̂
=

θ̃

rG
+

1 − θ̃

2
.

(5.20)

Lemma 5.4 We assume (A1). For r̂ the map J is from Xr̂ onto X∗
r̂′ . Moreover, for all

s ∈ [2, r̂] the estimate

Ms ≤ max
{(
MG0

r̂

)θ
,
(
MG
r̂

)θ}
with

1

s
=
θ

r̂
+

1 − θ

2

is fulfilled.

Proof. For s ∈ [2, r̂] the onto-properties of JG0
and JG supply the onto-property of the four

component map J . The proof of the inequality is based on Lemma 5.3 and uses (5.19),
(5.20). Setting m = 4,

Bi,s = W 1,s
0 (G0), Di =

(
JG0

)−1
: B∗

i,s′ → Bi,s, Mi,s =
(
MG0

r̂

)θ
, i = 1, 2,

Bi,s = W 1,s
0 (G), Di =

(
JG
)−1

: B∗
i,s′ → Bi,s, Mi,s =

(
MG
r̂

)θ
, i = 3, 4,

where
1

s
=
θ

r̂
+

1 − θ

2

we can apply Lemma 5.3. Then the assertion of the lemma follows. �

According to Lemma 5.4 it results M2 = 1 and the quantity Ms depends continuously on
s such that Ms → 1 as s→ 2.
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We introduce the function b = (b1, b2, b3, b4), where bi : Ω0 × (R3)4 → R
3, i = 1, 2, bi : Ω ×

(R3)4 → R
3, i = 3, 4, are defined by

bi(x, η1, η2, η3, η4) =
(
di(x)η

1
i ,

4∑

k=1

dik(x)η
2
k,

4∑

k=1

dik(x)η
3
k

)
, i = 1, 2,

bi(x, η1, η2, η3, η4) =





(
di(x)η

1
i ,

4∑

k=1

dik(x)η
2
k,

4∑

k=1

dik(x)η
3
k

)
if x ∈ Ω0

(
d̃i(x)η

1
i ,

4∑

k=3

d̃ik(x)η
2
i ,

4∑

k=3

d̃ik(x)η
3
i

)
if x ∈ Ω \ Ω0,

i = 3, 4,

η = (η1, η2, η3, η4) ∈ (R3)4, ηi = (η1
i , η

2
i , η

3
i ), i = 1, . . . , 4.

Here dik, d̃ik, di and d̃i are the coefficient functions from (5.18). R
3 as well as (R3)4 is

considered with the usual Euclidean norm. Clearly, b is linear in the argument η and
according to assumption (B) the estimates

b(x, η) · η ≥ m |η|2(R3)4 ,

|b(x, η)|2(R3)4 ≤M2|η|2(R3)4 ∀x ∈ Ω0,
(5.21)

b3(x, η) · η3 + b4(x, η) · η4 ≥ m (|η3|
2
R3 + |η4|

2
R3),

|b3(x, η)|
2
R3 + |b4(x, η)|

2
R3 ≤M2(|η3|

2
R3 + |η4|

2
R3) ∀x ∈ Ω1

(5.22)

are fulfilled. We set α = m/M2 and define on L2 the operator B2 by

(B2 y)(x) = y(x) − α b(x, y(x)), y ∈ L2.

Now we restrict this operator B2 to the space Ls with s > 2 and obtain a linear mapping
Bs = B2|Ls from Ls into itself. In the next estimate we make use of an equivalent norm
of Ls:

‖y‖0,Ls =

(∫

Ω0

(|y(x)|2(R3)4)
s/2 dx+

∫

Ω1

(
|y3(x)|

2
R3 + |y4(x)|

2
R3

)s/2
dx

)1/s

, y ∈ Ls.

Using (5.21), (5.22) the norm of the mapping Bs can be estimated as follows

‖Bs y‖
s
0,Ls =

∫

Ω0

(|(Bs y)(x)|
2
(R3)4)

s/2 dx+

∫

Ω1

(
|(Bs y)3(x)|

2
R3 + |(Bs y)4(x)|

2
R3

)s/2
dx

=

∫

Ω0

(
|y|2(R3)4 + α2 |b(·, y(·))|2(R3)4 − 2α b(x, y(·)) · y

)s/2
dx

+

∫

Ω1

( ∑

i=3,4

(
|yi(x)|

2
R3 + α2 |bi(·, y(·))|

2
R3 − 2α bi(·, y(·)) · yi

))s/2
dx

≤
(
1 −

m2

M2

)s/2( ∫

Ω0

(|y(x)|2(R3)4)
s/2dx+

∫

Ω1

(
|y3(x)|

2
R3 + |y4(x)|

2
R3

)s/2
dx
)

≤
(
1 −

m2

M2

)s/2
‖y‖s0,Ls ∀y ∈ Ls.
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Lemma 5.2 ensures the estimate

41/s−1/2‖y‖0,Ls ≤ ‖y‖Ls ≤ ‖y‖0,Ls ∀y ∈ Ls,

which leads to

‖Bs y‖Ls ≤ ‖Bs y‖0,Ls ≤
(
1 −

m2

M2

)1/2
‖y‖0,Ls

≤ 41/2−1/s
(
1 −

m2

M2

)1/2
‖y‖Ls ∀y ∈ Ls.

(5.23)

Theorem 5.1 We suppose (A1) and (B). Then, the operator A defined in (5.18) maps

Xs onto the space X∗
s′ provided that s ∈ [2, q0] and

41/2−1/sMs

(
1 −

m2

M2

)1/2
< 1.

In particular, there exists a q1 ∈ (2, q0] such that A maps Xq1 onto the space X∗
q1′

.

Proof. Here we adapt the proof of Theorem 1 in Gröger [9] to strongly coupled systems
of elliptic equations with different domains of definition. Note that for z ∈ Xs we have
m
M2J

−1Az = z − J−1L∗BsLz. For every fixed h ∈ X∗
s′ , s ∈ [2, q], we define the operator

Qh : Xs → Xs by

Qhz := J−1
(
L∗BsLz +

m

M2
h
)

= z −
m

M2
J−1(Az − h), z ∈ Xs.

Due to the properties of the operators Bs, L, L∗ and J−1 (in particular see (5.23) and
Lemma 5.4) we find

‖Qhz −Qhz‖Xs ≤Ms‖L
∗‖L(Ls,X∗

s′
)‖Bs‖L(Ls,Ls)‖L‖L(Xs,Ls)‖z − z‖Xs

≤ 41/2−1/sMs

(
1 −

m2

M2

)1/2
‖z − z‖Xs .

Note that 41/2−1/sMs

(
1 − m2

M2

)1/2
continuously depends on s and

41/2−1/sMs

(
1 −

m2

M2

)1/2
→
(
1 −

m2

M2

)1/2
< 1 for s→ 2.

Thus, there exists an exponent s0 ∈ (2, q0] such that for all s ∈ [2, s0), we have

41/2−1/sMs

(
1 −

m2

M2

)1/2
< 1,

which guarantees that Qh : Xs → Xs is strictly contractive. According to the definition of
Qh the fixed point z ∈ Xs is a solution of Az = h. Therefore A maps the space Xs onto
X∗
s′ . �
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1. G. Albinus, H. Gajewski, and R. Hünlich, Thermodynamic design of energy models of

semiconductor devices, Nonlinearity 15 (2002), 367–383.
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