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1 Stationary energy models for semiconductor devices 1

Abstract

We discuss a stationary energy model from semiconductor modelling. We accept
the more realistic assumption that the continuity equations for electrons and holes
have to be considered only in a subdomain €y of the domain of definition 2 of the
energy balance equation and of the Poisson equation. Here {2y corresponds to the
region of semiconducting material, Q \ € represents passive layers. Metals serving as
contacts are modelled by Dirichlet boundary conditions.

We prove a local existence and uniqueness result for the two-dimensional stationary
energy model. For this purpose we derive a W1P-regularity result for solutions of
systems of elliptic equations with different regions of definition and use the Implicit
Function Theorem.

1 Stationary energy models for semiconductor devices

Semiconductor devices are heterostructures consisting of various materials (different semi-
conducting materials, passive layers and metals as contacts, for example). A typical sit-
uation is shown in Fig. 1. Metals used as contacts are substituted by Dirichlet boundary
conditions on a part I'p of the boundary of the semiconducting material. In the domain €2
involving the passive layer (€21) and semiconducting materials (€2y) we have to formulate
a Poisson equation for the electrostatic potential and an energy balance equation with
boundary conditions on I' := 9Q = I'p U T'nxg U I'y1, where the subscripts D and N
indicate the parts with Dirichlet and Neumann boundary conditions, respectively. Con-
tinuity equations for electrons and holes have to be taken into account only in the part
o, and here we must formulate boundary conditions on I'g := 9Qy = I'p U I'yo1 U I'nvo.
Especially on I'nyg1, which corresponds to the interface between semiconducting material
and passive layers, no-flux conditions have to be formulated. In this paper we restrict our
considerations to the case that the Dirichlet parts of I" and I'y coincide.

Let T and ¢ denote the lattice temperature and the electrostatic potential. Then the state
equations for electrons and holes are given by the following expressions

Cn+90_En(’aT) (p_QD‘FEp('vT)
T T

where n and p are the electron and hole densities, N and P are the effective densities of
state, ¢, and (, are the electrochemical potentials, I,, and £, are the energy band edges,
respectively. The function F' arises from a distribution function (e.g. F(y) = eV in the
case of Boltzmann statistics or F'(y) = F}/2(y) in the case of Fermi-Dirac statistics). The
electrostatic potential ¢ fulfils the Poisson equation

n:N(-,T)F< ) p:P(-,T)F( ) in Qo,

f—n—l—p iHQO

; o (1.1)

—V-(eVy) = {
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I'no

I'no

Figure 1: Schematic picture of a modelled semiconductor device

Here ¢ is the dielectric permittivity and f is a given doping profile. Mixed boundary
conditions on I' have to be prescribed. Next, we assume that the particle flux densities j,,
Jp and the total energy flux density j. have the form (see e.g. Albinus, Gajewski, Hiinlich

[11)

jn = (Un(aj,n,p,T) + O-np($an)p) T))(VCn + PTLVT)
- O-np(x) n,p, T)(VCP + vaT)a

jp - - O-np(x) n,p, T)(VCW + P”VT)
— (Up(x,n,p,T) + O-np(x)nap’T))(VCp + PPVT)’

L —/{(1‘, n,p, T)VT + Zi:mp(gi + PZT)]Z ) S QO
Je —k(z, T)VT, e’

(1.2)

with conductivities k, K, op, 0, > 0, 0pp > 0 and transported entropies P,, P,. The
particle fluxes j,, j, only occur in the domain €y of the semiconducting material. A
stationary energy model besides the Poisson equation (1.1) should contain two continuity
equations for the densities n and p and a balance of the total energy

Vejn=—R, V:-jp=—R on$Qy, V-je=0 onf, (1.3)
where the net recombination rate R has the form
R=r(x,n,p,T)(e+%)/T _ 1) in Q.

Suitable boundary conditions for (,, ¢, resp. jn,Jp on I'g should to be added. The energy
balance equation V - j. = 0 with the corresponding flux term from (1.2) should be valid
in the whole domain 2 and boundary conditions must be formulated on I'.

In (1.2) on Qg we used the fluxes (jn, jp, je) and the generalized forces (V(,, V(p, VT). In
this setting Onsager relations are not valid. But this can be achieved by choosing other
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generalized forces, namely (V[(,/T],V[(y/T],V[—1/T]). Then

Jn (on+0np)T  04pyT Pn VIGn/T)
gp | =~ | onpT (op+0np)T  pp VI(¢/T) on €Yo, (1.4)
Je Pn Pp KT? + pe VI[-1/T]
where
Pn (On + Onp)T oppT Cn + P, T

= y Pe = Pn(Cn+PnT)+pp(CP+PPT)'
Pp onpT (op + onp)T G+ BT

Now the matrix in (1.4) is symmetric and positive definite for non-degenerated states.

Based on the foregoing arguments we use the variables

Cn Cp _l (,0)
T|QO7 T|QO7 T’ )

z = (21, 22,23, 24) = (
where z3 and z4 live on 2 and z; and z9 are defined on €y only. With suitable functions
H,, H, we formulate the state equations on {1y in these new variables

—FE
n(z) = N(z, T)F(W#")

p(z) = P(z,T) F(CI}LT—FEP) = H,(z,2).

= Hn($7 Z)7

Also the rate of generation-recombination of electrons and holes R can be expressed in the
new variables

R =r(z,n,p, T) (/T 1) = r(z, H,(2), Hy(2), —1/23) (e — 1) = R(x, 2).
In summary, a stationary energy model for semiconductor devices can be written with

suitable coefficient functions a(z, 2), ajx: Qo x R? x (—00,0) x R — R, i,k = 1,...,3,
ass(x, z3), ass: Q1 X (—00,0) = Ry and e(x), e: Q@ — Ry as

a11(z) aiz2(z) aiz(z) O V2 —R(z)
v, a1 (z) ag(z) as(z) O V 2z _ —R(z) on Qo (L3)
az1(z) as(z) asz(z) 0O V23 0
0 0 0 € Vzy f—Hp(z) + Hp(2)
and
asz(z3) 0 V23 0



4 A. Glitzky, R. Hiinlich

Here we have omitted the additional argument x of the coefficient functions. We formulate
the boundary conditions in terms of z and the generalized forces Vz

z,-:zD 1=1,...,4, on I'p,

()
v- Z aip(x,2) Vo, = g% i=1,2,3, v-(eVz) = g% on 'y,
k=1,2,3
v-dgs(z3) = gt v (eVag) = gV on Ty,

v- Z aix(x,2)Vzp =0,i=1,2, on I'yoi.
k=1,2,3

Remark 1.1 Let us mention that for the energy model introduced above the 3 x 3-matrix
(a;k(x, 2)) for z € Qq is symmetric and possesses the property that for each compact subset
K C R? x (—00,0) x R there exists a constant ax > 0 such that

Z aix(z,2)GCe > ak ”t”%g, reQy zeK, (eR (1.8)

i,k=1,2,3

If no electron-hole scattering is involved in the model (this means o,, = 0), then the
relations aq2(x, z) = a91(x, z) = 0 are fulfilled.

2 Assumptions

Definition 2.1 Let V = R? x (—o0,0) x R. We say that a function b: Qo x V — R is of
the class (Dy) if it fulfils the following properties:

z — b(z, z) is continuously differentiable for almost all x € Q ,
x +— b(z, z) is measurable for all z € V.

For every compact subset K C V there exists an cx > 0 such that
|b(x, 2)| < ek and [|0,b(x, 2)|| < ck for all z € K and almost all z € Q.

For every compact subset K C V and € > 0 there exists a § > 0 such
that for all z, Z € K holds |z —Z| < 0 = |b(x, z) — b(x,Z)| < € and
|0,b(z, z) — 0.b(x,Z)| < € for almost all x € Q.

We say, a function b: ©; x V; — R is of the class (D) if in the previous definition V' is
substituted by V3 = (—o00,0) and Qg is replaced by €.

For the analytical investigations of (1.5), (1.6), (1.7) we formulate the following general
assumptions:

(A1) €, is a bounded Lipschitzian domain in R?, T'; := 9Q;, i = 0, 1,
Qo N :@, I'yvor CTgNTYy,
Q=:QyUQ UT'Ner is a bounded Lipschitzian domain in R?, T' := 99,
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I'nvo, I'nvo1, I'p are disjoint open subsets of I'g, mesI'p > 0,

Ton := I'no U T o1 U (Tvo NTvo1) is open in g,
Io=TonyUTpU(TonyNTp), Toxy NTp consists of finitely many points,
I'nvo, 'y, I'p are disjoint open subsets of T,

I'y :=TnoUTIyN1 U noNTx1) is openin T,

I'=TnyUTpU(CxyNTp), Ty NTp consists of finitely many points.

(A2) The functions a;; = ag;: Qo X V — R are of the class (Dy), i,k =1,2,3.

For every compact subset K C V there exists an ax > 0 such that
3

Z air(x, 2)€&, > ak||€]]® for all z € K, all £ € R? and f.a.a. x € Q.
ik=1

The function ass: 1 x V) — Ry is of the class (D).
For every k > 1 there exists an aj > 0 such that ass(z, z) > a for all

z € [-k,—1/k] and fa.a. x € Q.
(A3) € L®(Q),0<¢gy <e(x) <e’ <ooaee. in Q.

(A4) The functions H;: Qo x V — R4, i = n, p, are of the class (Dy), let
ho = H, — Hp: Q9 x V. — R, ho(x, 21, 22, 23, -) is monotonic increasing
for all (21,...,21) € R? x (—00,0) x R and f.a.a. = € Q.
lho(x, 21, . . ., 24)| < cpell for all (21, 29, 23) € [—k, k]? x [—k, —1/k],

z4 € R and f.a.a. x € Q.

(A5)  R(z,z) =7(x,z2)(e®*?2 — 1), where 7: Qo x V — Ry is of the class (Dy).

The data z”, gV, ¢! and f in the system (1.5), (1.6), (1.7) are assumed to have at least

1 0

the following properties. There exists a p > 2, functions le , 22D € WHP(Qp) and functions
2P 2P e WhP(Q), such that Z]-D|1"D = z]D, j=1,...,4, and 2§ < 0 in Q. Moreover we

suppose that gV € L®(T'no), i = 1,...,4, g¥t € L®(Tn1), i = 3,4, and f € L>=(Q).

3 Weak formulation
In abbreviation we set
Go=QUIgyw, G=QUTIy.

Due to (Al), Gy and G are regular in the sense of Groger [9]. In our analytical investi-
gations we introduce the following names for the needed function spaces. Let s € [1,00),
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1/s+1/s’" =1, then we define the spaces

= (W5*(Go))* x (Wy™(@))?,
X: (WH(Go))? x (WH(@))?
We = (W ()% x (WH(Q))?,
Yg (L*(20))%, V3 = (L*(2))?,
= (V3,)% x (¥3)?

0

with the norms

lelir, = oalynmay + o2l + sl + ol w € Wi,
lYllzs = lonll3s + w2l + lusllys + llyallg, v e £
Qo Qo Q Q

s/2
H’wa/Vl,s(Q) = /Q <w2+w§,1 +w§,2) dJZ, w e Wl’s(Q),
s 1,2 2,2 312 %/2 1.2 3 s
Iolis = [ (6124672 + 6PF) " des w=hatt) Vg

and similar for the function spaces working on )y. Note, that W15(Q2) and Y5 are equipped
with the norms used by Groger [9)].

We define the vectors
17"'7Z4D)7 g:(g{VO7”’7giVO7gi]‘}Vl7giVl)7 w:(2D7g7f)7
and we are looking for solutions of (1.5),(1.6),(1.7) in the form

z=7+ 2P,

where z” corresponds to a function fulfilling the Dirichlet boundary conditions and Z
represents the homogeneous part of the solution. Moreover, we use the notation H for the

space of data, namely

H =W, x L®(T no)? x L®(Tn1)? x L=(Q).
Definition 3.1 Let ¢ € (2,p] and 7 > 1. We define subsets M, » C X, x W), as follows,

My = {(2.27) € Xy x Wyt 124 2P| <7, i = 1,2, on .
R N (3.9)
—T < Z3+ 23 < |Z4—|—z4|<7'onQ}.

Because of the continuous embedding of WP, W14 in the space of continuous functions
the set M, is open in X, x W). Clearly, if g2 > ¢1 then My, , C My, r. Moreover, we
have M, C My, for 7 < 7.
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We define the operator Fy, ,: M, . x L®(Tno)? x L®(T'n1)? x L®(Q) — X by

(Fyr(Z,w), ¢ / { 23: aix (-, 2)Vzg - Vb +eVzy - V¢4}dx

i,k=1

# [ (RO )+ ol 2o [ o

+ / {633(-, 23)Vzg - Vibs +eVzy - V¢4}dx

-/ S 40, dr - / SN dr, e X,
I'no ;—1

N123

Here ¢’ = q/(q—1) denotes the dual exponent of ¢q. Using this notation a weak formulation
of the system (1.5), (1.6), (1.7) is

Problem (P):
Find (¢, 7, Z,w) such that ¢ € (2,p], 7 > 1, (Z,w) € X, x H,

E,(Zw) =0, (Z,2°)eM,,.

Obviously, if (¢, 7, Z,w) is a solution to (P) then (¢,7, Z,w) with ¢ € (2,q] and T > T is a
solution to (P), too.

4 Analytical results

Lemma 4.1 We assume (Al) — (A5). For all parameters T > 1, all exponents q €
(2,p] the operator Fy,: My, x L®(Tno)* x L®(Tn1)? x L®(Q) — Xy is continuously
differentiable.
Proof. Let g € (2,p] and 7 > 1 be fixed. We split up the operator F, , into a sum F, ; =
Yoo gy A+ A% 4 A 4 AT~ B, where AY, A3, AM| AL M, . — X7, B: L®(T'no)* x
L®(Tn1)? x L®(Q) — X7,
(A™(Z,2°),4)x,, :/ air (- 2)V (2 + 20) - Vpyde, i,k =1,2,3,
Qo
<Avs3(Z> ZD)7¢>X(1/ = /Q 633(',23)V(Z3 +Z§)) v¢3 d:Ev
1
(A*(2,2"),4)x, = / eV(Zy+ 28) - Vipy da,
Q

(A2, ), = [ {RE2)0 ) + ol s} o

4
) =/wa4dx+/F Zgﬁ%dm/ S M dr, g€ X,
NO j—1

L -

(B(g, f),¥)x
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where z = Z + 2P, Since ¢ > 2 the continuous differentiability of the operator A is a
direct consequence of the fact that 7 and hg are of the class (Dyg), see (A4), (A5). The
assertion for the operators A% and B is verified by standard arguments. Now we do, as
a representative of a non standard situation, the proof for a summand A*. First we show
continuity. Let (Z, 2P) € M, , and let (Z,ZP) — 0 in X, x W), then

|<A2k(Z + 77 ZD + ED) - Alk(Zv ZD)7¢>X(I/|

< / k(-2 +2) — ain(2 2)|[V (Zk + Zi + 22 + 20| V| dae
Qo

T /Q (- IV (Zs + 22|V da

0
< epllain (= +2) — ax() =0y (17 + Zllx, + 122 + 22w, ) [6]x,
+ cpllase(2) L=y (IZ1x, + 1220w, []1x,,-

Since the functions a;; belong to the class (Dy), see (A2), the continuity follows. Next, let
(Z,2P) € M, . be arbitrarily fixed. We prove that the operator ZM(Z, Py e £(Xx,, X);

A2 Z0)x, = | 0ain(2) 2V (Zi+ =) Viida
0

+/ ap(,2)VZ-Vpdz, € Xy,
Qo

is the Fréchet derivative of A%(Z, 2P) with respect to Z: Let Z — 0 in X,.

|<A2k(Z + 77 ZD) - AZk(Z> ZD) - Zlk(zv ZD)777/)>X(1/|
<| / (asslc. =+ Z)V ok + Zi) — ain(,2) Vo ) - Vi
Qo

_ /Q <8zaik(-7z) -2V 2, + aik(',Z)V7k> VY dx‘
0

< k"
<~ /QO |CL k( z +
—I—/Q lain(-, 2 + Z) — ain(-, 2)| IV Z1 || Vis] d

Z) —ai(+, 2) — Ozai(-, 2) -7Uv2kuv¢iy dx

< epllain(z +2) = ain(z) = zainl2) - Zll o) (1211, + 1221w, ) 11,
+ lain(z +Z) — ain() (@I Z1x, 1] x,

Exploiting, that a;; are of the class (Dg) and Z — 0 the last two lines converge to zero
and differentiability with respect to Z is shown. The continuity of this Fréchet derivative
is guaranteed since the functions a;; are of the class (Dg). Similarly one can prove the
continuous differentiability of A* with respect to zP. Substituting Qg by €; we obtain
the assertion for the operator A33 as a special case of the above if we take into account
that as3 belongs to the class (D). Thus the sum Fj ; of all the considered summands is
continuously differentiable. [
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Especially we have

3
<82FqT(Z w)Z ¢ Z {a,k VZk + 0, a,k( ) '7V2k} -V dx

04,k=1

{0-R(.2) - Z (0n + ) + 0:hol,2) - Z ha Jda
0 (4.10)

o4 _
{ 3(-,23)VZ3 + ;Z( 23)23V23}.V1/13da:

+ 4+
\:a\@\

Q1

5V74 - Vi de, (NS Xq/.

+
S~

We define a set of data, which is compatible with thermodynamic equilibrium,

Q= {w = (2P,9,f) € H: 2P = const, ¢ =0,i=1,2,3,
gt =0, P+ =0, 2% <O}.
Theorem 4.1 (Existence and uniqueness of thermodynamic equilibria). We make the
assumptions (A1) — (A5). Let w* = (2P*, g%, f*) € Q be given.
i) Then there exist a qo € (2,p], a constant T > 1 and a function Z} € Wol’qO(G)
such that (Z*,2P*) = ((0,0,0, Z;), 2P*) € My, » and Fy, - (Z*,w*) = 0.
In other words, (qo, T, Z*,w*) is a solution to (P).

i) 2" =2"+ 2P is a thermodynamzc equilibrium of (1.5), (1.6), (1.7).
i) If (§,7, Z,w*) is a solution to (P), then Z = Z* in X5 with ¢ = min{qo, ¢} holds.

Proof. 1. For w* = (2P*, g%, f*) € Q we define the function h;: Qg x R — R by

hi (2, ¢) = ho(x, (0,0,0,¢) + 27*(2))

and consider the operator £: H}(G) — H~Y(G),

€Dy = [ {906+ V5~ rFdot [ hi0)Tde

Qo
[ avGar- [ avear vae HyG).
T'no In1
For ¢1, ¢ € H(G) we have

(€(¢1) — E(2), 1 — d2) ()
= / e|V(g1 — ¢2) da +/ (h1(, #1) — ha(e, ¢2)) (1 — p2) da
Q Qo

and the properties (A1), (A3), (A4) of T'p, € and hy supply the strong monotonicity of the
operator £. Next we prove the hemicontinuity of £. We have to show that the mapping
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t— (E(p+ ta),@Hé(G) for arbitrarily given ¢, (E, ¢ € HY(G) is continuous on [0,1]. Let
tg € [0, 1], tn, — to, tn € [0, 1]. Then
(£ +tad) — E(&+100), )y )

~ ~ ~1— (4.11)
< cta = tll@l 3l +| [ [0+ 18 = hale6 -+ t00)] o]

~ ~

According to (A4) we have hi(x, ¢ + t,¢) — hi(x, ¢ + to¢) and

|hi(x, ¢ + tn(/b\)\ < FeCU9H2) for almost all € Q.

Now we use the embedding result of Trudinger [12] for two dimensional Lipschitzian do-
mains which tells us that

el 2 (0) < d(l[v]l () Yo € H' (Q0),

where d: Ry — R is a continuous, monotone increasing function with lim, . d(y) = occ.
Since ¢ € L?()) we get an integrable upper bound for the integrand in the last term
in (4.11) and Lebesgue’s Dominated Convergence Theorem leads to the hemicontinuity
of £. Since £ is strongly monotone and hemicontinuous, there exists a unique solution
¢ € Hy(G) of £(¢) = 0. Especially we have ||¢||1(q) < & where ¢ depends only on the
data w*.

2. Next we prove that this solution possesses more regularity. We define

(€0(9), D) 1) = /

Q

{sv¢-v$+¢$}dx,
<7,5>H5(G):/Q{—5VZAP*'V5+(JC*+¢)5}(1$—/Q hi(:, ¢)¢ da
+/F ng*adH/F gy edl Vo € Hy(G).

Since zP* € WIP(Q) is a fixed element there is a ¢ > 0 such that |2P*| < & From the
properties (A4) of hy we find |hy(z,¢)| < c(2P*) el el < E(zP*)ecCldl faa. z € Q.
Thus the embedding result of Trudinger mentioned in the first step of this proof yields

1 (- @) l2(00) < €(7%) d(lI9]l 1 () < E

Furthermore, using that (zP*, g%, f*) € H is fixed it results that 7 € W~5P(G). Thus
taking benefit from Grogers regularity result [9] applied to the equation & (¢) = 7 we
obtain a go € (2,p] such that ¢ € WH9(G) and [|¢[lyyra0 < g T [w-10(c)- Note that
our assumption concerning the domain €2 and its boundary ensure that G is regular in the
sense of Groger [9].

3. The continuous embedding W1 (Q) < C(Q2) ensures that [¢llc@) < clqo, w™). Setting
Z7 =0,1=1,23, Z] = ¢ and using that w* € @ we find a constant 7 > 1 such that
that (Z*,2P%) ¢ My, and Fy, -(Z*,w*) = 0. In other words, (qo, 7, Z*, w") is a solution
to Problem (P). Moreover, z* = Z* + zP* is a thermodynamic equilibrium of (1.5), (1.6),
(1.7).
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4. Uniqueness: Let (q,T, Z,w*) be a solution to Problem (P) and let z = Z + 2P*.
Then we have (Z*,2P*) € My, -, (Z,2P*) € Mgz and Fy, (Z*,w*) = Fz7(Z,w*) = 0.
Let § = min{qo,q}, 7 = max{7,7}. Then we have that (Z*, 2P*), (Z ZD*) € Mz7 and
Fo7(Z*,w*) = F@?(Zw*) = 0. We test the last equation with (Zl,ZQ,Zg,O). Since
w*, w* + (Z*,0,0) € Q we obtain

0= <F§,?(Zvvw*) - Fa,?(Z*7w>k)7 (Zvly 227 237 0)>Xq/

Q1

3
= / Z aik(-, :ZV)VZIC . VZZ da: —l—/ 633(',53)’V23‘2 da;
Q0 k=1
+/ 7, 2) (A% = 1) (Z + Zo) da.
Qo

Exploiting the assumption (A5) for 7 and the fact that (e¥ — 1)y > 0 we find

J

According to (A2) we have asgs(z,z) > c(A) > 0 and the matrix (ai(z,%2))ik=1,23 is
strongly elliptic. Therefore we obtain VZ; = 0, 7=1,2,3. And |I'p| > 0 supplies that
Z;i=0,i=1,2, on Qo and Z3 = 0 on €.

Finally, the test of F@?(Z,w ) — 5 2(Z%,w*) = 0 with (0,0,0, Zy— Z3) leads to Zy = zy,
since the operator £ is strongly monotone. In summary we find Z=2z *, which gives the
last assertion. [J

3
Z air(-,2)VZy - VZ; da +/ as3 (-, 23)|VZ3[* da < 0.
0 i k=1 U

Lemma 4.2 (Fredholm property of the linearization). We assume (A1) — (A5). Let w* =
(2P*, g%, f*) € Q be given. Let (qo, T, Z*,w*) be the equilibrium solution to Problem (P)
(see Theorem 4.1) and let z* = Z* + zP*. Then there exists a q1 € (2,qo] such that the
operator Oz Fy, -(Z*,w*) is a Fredholm operator of index zero.

Proof. Let q € (2,q0) and Z € X,. The linearization is given in (4.10) and has now to be
calculated at (Z*,w*). Since Vz} =0, i =1,2,3, e*17% =1 and

O.R(-,2") -7 = 0,7, 2*) - Z (ezf% - 1) YT, 2)e Y (Z) 4 7o),

we obtain according to (4.10) that

3
O2Fyr (2w Z,0)x,= | (32 aiwlo2 )V Vit e V24 Vi )do

i,k=1

(?(-, VT + Za) (b1 + 2) + Dsho(-, 2) .7¢4>dx (4.12)

0

\

+

S~ 55—

+ (533(-, Z§)V73 -Vips + EV74 . V1/14) dx

1
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Now we follow ideas in the proof of Theorem 4.1 of Recke [11]. For ¢ € (2, q] we write
Oz Fy(Z*,w*) as sum Oz Fy - (Z*,w*) = Lq+ Ky with operators Ly, Kq: Xq — X7/, where

3
(LaZ, ) x / (Z i 2V 2y - Vipi + eV Zy - V¢4+ZZ w,)dx
i,k=1 i=1
4
+ / (633(-, Z;)V?;), . Vl/)g +ée V74 . V¢4 + Z?Z w,>dx
951

1=3

4
K, Zovw, = [ {76t 2o+ va) + 0ol ) D=3 T f

/Q ZZ Yide, Pe Xy,

1 4=3

The operator K, is compact because of the compact embedding of W14(Q2) into L>(12).
The operator L, is injective. Next, we apply Theorem 5.1 from Section 5. We set d;, =
aik(',z*),zk—123 dypy = dga = 0, k = 1,2,3, dyg = ¢,d; = 1,1 =1,...,4, in
Qoandd33—a33( ) d43—d34—0 d44—€ d —1 ’L—34 IDQL Due to our
assumptions (A2), (A3) the properties (B) at the beginning of Section 5 are fulfilled.
Since L, is the restriction of A (see (5.18)) to X,, Theorem 5.1 guarantees the existence
of an exponent q; € (2,qo] such that the operator L, is surjective. Then by Banach’s
open mapping theorem and Nikolsky’s criterion for Fredholm operators the assertion of
the lemma follows. [

Lemma 4.3 (Injectivity of the linearization). We assume (A1) — (A5). Let the vector
of data w* = (2P*, g%, f*) € Q be given, and let (qo, T, Z*,w*) be the equilibrium solution
to Problem (P), and z* = Z* + zP* (see Theorem 4.1). Then the Fréchet derivative
OzFy, +(Z*,w*): X¢y — X:zk’l s injective, where q1 is chosen as in Lemma 4.2.

Proof. 1t is sufficient to prove the injectivity of the operator on Xs. The derivative has
the form (4.12). Let 9z F,, (Z*,w*)Z =0, Z € Xa.

We test this equation with ¢ = (Z1, Z2, Z3,0) and take into account the strong ellipticity
condition for (a;,(x,2*))i k=123, the fact that |I'p| > 0 and the property that 7(z*) > 0
and get that Z; = 0, i = 1,2, 3. Next, we use the test function ¥ = (0,0,0, Z,) and obtain

- 0 2
2 R .o =
/Q{»S|VZ4| + aZ4ho( 2 )Z4}dx 0.

Since hg is continuously differentiable and monotonic increasing in the argument z4 (see

(A4)) we have 8%4 ho(z,z*) > 0 a.e. on Q which together with € > ¢ a.e. on Q and

ITp| > 0 leads to Z, = 0. Thus the injectivity of 9z Fy, -(Z*,w*): X, — X7, follows,
1

too. [

Theorem 4.2 (Local existence and uniqueness of steady states). We assume (Al) —
(A5). Let w* = (2P*,g* f*) € Q be given, and let (qo,7, Z*,w*) be the equilibrium
solution to Problem (P), and z* = Z* + 2P* (see Theorem 4.1).
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Then there exists a q1 € (2,qo| such that the following assertion holds: There exist neigh-
bourhoods U C X,, of Z* and W C H of w* = (2P*,¢*, f*) and a C*-map ®: W — U
such that Z = ®(w) iff

Fp(Zw) =0, (Z,2°YeMy, . ZecU w= (g, f) ecW
Proof. According to Lemma 4.2 and Lemma 4.3 there exists a ¢; such that the operator

0zFy, +(Z*,w*): Xqy — X:Iki is an injective Fredholm Operator of index zero. Therefore

the assertion of the theorem is a direct consequence of the Implicit Function Theorem.
O

Finally, let us draw a conclusion from Theorem 4.2. First, we define the sets
Qr={w=("g.0) e g =0, i=123, g =0,

[P +pyar o, =P <o},

QzZ{w:(zD,g,f)eH:z§)<0}.

Obviously Q C @1 C @2 holds, but ()1 and )2 contain also elements which are not
compatible with thermodynamic equilibria.

Corollary 4.1 We assume (A1) — (Ab).
i) Let w = (2P, g, f) € Q1 be given. Then there are constants q € (2,p], 7 > 1, € > 0 such
that the following assertions hold: If

||VZ7JD||LP(90) <€, = 1727 ||VZ§)||LP(Q) <e€ (413)

then there exists a Z € X, such that (¢, 7, Z,w) is a solution to (P). This solution lies in
a neighbourhood of an equilibrium solution (q,7, Z*,w*) to (P), and in this neighbourhood
there are no solutions (q, T, Z,w) with Z # Z.

ii) Let w = (2P, g, f) € Q2 be given. Then there are constants q € (2,p], T > 1, € > 0 such
that the following assertions hold: If

IV2Plltry <€ i=1,2, V28| <e
Iz + 25 i rp) < & (4.14)
HgZNOHL‘X’(FNo) <e 1=123 Hg:]iVIHL"O(FNl) e

then there exists a Z € X, such that (¢, 7, Z,w) is a solution to (P). This solution lies in
a neighbourhood of an equilibrium solution (q,7, Z*,w*) to (P), and in this neighbourhood
there are no solutions (q, T, Z,w) with Z # Z.

Proof. 1. Let w = (2P, g, f) € Q1 be given. We define

1
ziD*:—/ Pdr, i =1,2,3, 2P =2P, w =P g, f)
Tpl Jrp
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and find that w* € Q. Let (qo, 7, Z*, w*) be the corresponding equilibrium solution to (P).
Because of Theorem 4.2 there exist constants g € (2,qg], € > 0 such that the equation
F, +(Z,w) = 0 has a locally unique solution Z € X if

2
lw = w*llee =l = 2P lwrnae) + 128 — 28 lwrnoy < €. (4.15)
=1

D

Since for ¢ = 1,2,3 the mean values of ziD — %z

inequality to obtain

*on I'p vanish we can apply the Friedrich

2P = 2P lwise) < V2P llr@o) i=1,2,

125" = 28 *lwrw@) < cllVaE |lr)-

Choosing € in (4.13) sufficiently small the inequality (4.15) can be fulfilled.

2. We decompose R?2 = S @ St, where S = span{(l,l)}, St = span{(l,—l)}. The
corresponding projection operators are denoted by Ig: R? — S and Ilg.: R? — St
Obviously, there is a constant ¢ > 0 such that

[N —Tlgi Mgz = [[TMsA|lge < c|A1 4+ A2| VA € R2 (4.16)
Let w = (2P, g, f) € Q2 be given. We define
1
P = _— | ZPdr,i=1,23,
TplJr,

Dt = (PP B 2P = (Mea (2P, 30), 20, P,

w* = (27%,(0,0,0,67°,0,00"), f)
and find again that w* € Q. Let (qo, 7, Z*,w*) be the corresponding equilibrium solution

to (P). Because of Theorem 4.2 there are constants q € (2,qo], € > 0 such that the
equation Fy -(Z,w) = 0 has a locally unique solution Z € X, if

2
o=l = 3 {12 = P oy + loil=ono

e (4.17)

+ |28 — Z:?*”WLP(Q) + Hgij’,VOHLOO(FNo) + ”géwHLOO(FNﬂ <€

From the Friedrich inequality and inequality (4.16) it follows that

2
hw = w e < e (Y- {IVPllni + 19 e  + 115 + 2 sy
i=1

192 ooy + 195z o) + 198 e ).

and € in (4.14) can be chosen such that (4.17) is fulfilled. O

The assertions of Corollary 4.1 can be interpreted as follows. Let the source terms for

the Poisson equation (i.e. f, zf , giv 0, gflv 1) be given. Then the stationary energy model
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has a solution, if the driving forces for the fluxes induced by the boundary data (i.e. the
gradients VzP V22 V2P), the driving forces for the generation-recombination of electrons
and holes on the boundary (i.e. the affinities 22 + 22 on T'p) and the prescribed fluxes
on the boundary (i.e. gi¥?, &% g&¥? and gi¥!) are small enough. This solution is locally
unique.

Remark 4.1 If all equations are defined on the same domain  and mixed boundary
conditions are formulated on I'p and I'yy analogous results concerning the stationary
energy model (1.5), (1.6), (1.7) are obtained by setting formally Qg = Q, Q@ =0, T'no1 =
Fle(D,FNOZFNaDdG(]:G.

Remark 4.2 Theorem 4.2 gives a local existence and uniqueness result for the station-
ary energy model (1.5), (1.6), (1.7) for semiconductor devices in two space dimensions.
Moreover, the different domains of definition of the relevant model equations are taken
into account. For the case that €2 and 2y coincide we have investigated an energy model
containing incompletely ionized impurities in [8] and a multi species version of the above
energy model in [7].

Remark 4.3 Groger, Recke [10] study quasilinear second order elliptic systems given on
the same domain, where for the divers equations the partition of the mixed boundary
conditions into Dirichlet and Neumann parts differs. There is shown that such boundary
value problems with triangular main part generate Fredholm maps between appropriate
Sobolev-Campanato spaces and that the Implicit Function Theorem can be applied to this
situation.

Remark 4.4 If in the energy model (1.1), (1.3) the temperature is considered as a con-
stant positive parameter and the balance equation for the density of the total energy is
omitted, then the remaining equations form a drift-diffusion model (van Roosbroeck equa-
tions). For the case that Q and Q coincide there is a lot of papers dealing with this model
(e.g. Chen, Jiingel [2] (here electron hole scattering is involved), [3, 4, 5] and papers cited
there). But Gajewski, Groger [6] considered the Poisson equation in a larger domain
containing the domain of definition €y C 2 of the continuity equations, too.

5 A surjectivity result for a system of second order linear
elliptic equations defined on different domains

First, we collect some results concerning equivalent norms on cross products of spaces,
its duals and on properties of the duality map on cross products (see Lemmata 5.1, 5.2,
5.3). These results enable us to adapt results of Groger [9] to systems of elliptic equations
with different domains of definition. Second, we state a surjectivity property of operators
related to strongly coupled linear elliptic equations with homogeneous mixed boundary
conditions and different domains of definition. We use the notation, spaces and norms of
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Section 3. We consider the operator A: Xy — X} defined by
4 4
<ZZ,?>X2 = / { Z dixVzr - VZ; + Z dizizi} dz
Qo " k=1 i=1

4 4
+ / { Z dixVzr - VZ; + Zdizizi} dz, 2,7z € Xo.
N k=3 i=3

(5.18)

Concerning the coefficient functions we suppose
(B) dik7 d; € LOO(QO)7 Z>k =1,...,4, &;k, (Z € LOO(Ql)y Zak =3,4.
There exist M, m > 0 such that

4 4 4
2
Z diptpts > m|t|§§4, Z ‘ Zdiktk‘ < M2|t|[2R4 vVt € R, ae. on Q,

ik=1 i=1 k=1

4 _ 4 4 _ 9
Z digtit; > m|t|ig, Z ‘ Zdiktk‘ < M2|t|[%&2 Vt € R?, ae. on Qy,
i k=3 =3 k=3

m<d; <M, i=1,...,4, a.e. on (), mgciigM, 1=3,4, a.e. on (.

For s > 2 the operator A maps X, continuously into X7 . In Theorem 5.1 we show that
for s > 2 and sufficiently near to 2 the operator A from X to X, is onto, too. We start
with some preliminary results.

Lemma 5.1 Let X be a Banach space with norm ||-||, and let ||-||o be an equivalent norm,
allull <llullo < callul|  Vu e X.
Let |||« and ||-||o« denote the canonical norms in the dual space X*. Then

bl < [Bllox < El|B]l« VR e X*.

= c1

Lemma 5.2 For allk € N, all a = (aq,...,ax) € R’i and all p € (1,00) there holds the
estimate

(M|
[N4S)

am)(da?) siﬁgmm( a?)*,
i=1

i=1 =1
where
p<2: alp)=1, calp) = k't
p=2: alp) =1, c(p) =1
p>2: ci(p) =k'"5, c(p) =1

Note that for every fixed k € N the functions ¢; and ¢y are continuous functions of p and
that ¢1(p), ca(p) — 1if p — 2.
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Lemma 5.3 Letp > 2, p' the dual exponent and let B,p, B? e i=1,...,m, be a scale of
Banach spaces. On the cross products B, = By, X -+ X By, ,, and B;, = Bip, X +ee X Bfn’p,
we use the norms

lulls, ZHWHP ., analogously By, ||h|

P’ S P’ *
By = Z; |7l . analogously B, .
P

Suppose that D;: B, — B, are linear continuous maps with ||D;| = M;p. Then
D: B — By, with Dh = (D1hi,...,Dyhy) is a linear continuous map with

I < max {M;, ).

Proof. Because of

1D = sup DR, = sup sup (¢, Dh)p,
heBy, Ihl:, <1 heBy, Ihllps, <LVEB;, ] 5 <1

and the estimate

(¢, Dh)p, = Z<w,,Dh )B.,, SZM,puw,

=1 =1

< r?ax MJ;ZH%HB* || s ||B*
i=1

1 m
< max M3 Il )7 (S Ind
i=1,...m ’ P
i=1 1=1

< max Mipll¢ls; k] s,

B
i,p

1
P p
B*
i,p/

we obtain || D| < maxj—i__n, M;,. O

Remember the definition of function spaces at the beginning of Section 3. We define

the operator Lg: Wol’z(G) — L2(Q)® = Y3 by Ley = (y,Vy), y € W01’2(G). Then
&L = Ja, where Ji denotes the duality map of the space Wol’z(G),

Uaw Ohyge = [ w6+ V- To)da, 3.6 € WiH(G).

If s > 2 then Lg maps VVO1 *(G) continuously into Y, and L¢, maps Y continuously into
VVOLS (G)*. Moreover, for s > 2 we obtain that J; maps WOI’S(G) into VVOLS (G)* and that
Jg is continuous as a map from VVO1 *(G) into VVO1 “(G)*. We use ME as abbreviation for

ME = sup {|lyllyaocy: ¥ € Wo (@), 16 yllyr . <1

Since by assumption (A1) the set G C R? is regular in the sense of Groger [9] there

exists rg > 2 such that Jg maps VV1 "¢ (@) onto Wol’TG(G)*. Moreover, M$ = 1, and for
s € [2,7¢] the mappings are onto, too, and we have
1-60 0

1
M < MTG ,  where @ is given by the relation - = ——+ — (5.19)
G s 2 e
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(see Sect. 3 and Lemma 1 in [9]).

Analogously we define for the regular set G operators L¢,, Jg, and obtain a corresponding
exponent rg, and quantities MEo. Now we define the four component operators L, .J
working componentwise

L:Xy— £2, Lz = (Lgozl,LGOZQ,Lng,ng4), z € Xo,
L*: L% — X35, L'u= (LZOU1,LZOUQ,L*GU3,LEU4), ue L2

J: X2 — X;, Jz = (JGth JGOZQ, ngg, JGz4), A Xg.

Note that for s > 2 the (restricted) operators L: Xy — L* as well as L*: L% — X, are
linear continuous maps with norm less or equal to one. Moreover, it results that J maps
X, into X7, and that J is continuous as a map from X into X}, too. We will use M, as
abbreviation for

M, = sup{HzHXs: z € X, HJZ”)(:, < 1}.

Let 7 := min{rg, rg,}. Then

g 1 6 1-6
?GO = (MT%O) , where = = — 4+ ——,
’ roTG 2 (5.20)
0 1 6 1-6
M?Gz (MTG) , where = = — + ——
G T ra 2

Lemma 5.4 We assume (Al). For 7 the map J is from Xz onto XZ%,. Moreover, for all
s € [2,7] the estimate

M, < max{( ?(;0)0, (M?C:)e} with % = g—k 1%9

18 fulfilled.
Proof. For s € [2,7] the onto-properties of Jg, and Jg supply the onto-property of the four

component map J. The proof of the inequality is based on Lemma 5.3 and uses (5.19),
(5.20). Setting m =4,

0
-1 .
Bi,s = WOLS(Go), Dz (JG()) . Bi,s’ — Bi,57 Mi,s = (M;«QO , 1= 1,2,
— 0
D;=(Ja) ' Biy — Bis, M= (M§> . i=3,4,

Bi,s = WOLS(G)7

where
1 60 1-0
s T 2
we can apply Lemma 5.3. Then the assertion of the lemma follows. [

According to Lemma 5.4 it results My = 1 and the quantity M, depends continuously on
s such that My — 1 as s — 2.
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We introduce the function b = (by, by, b3, by), where b;: Qg x (R®)* — R3, i =1,2, b;: Q x
(R3)* — R3, i = 3,4, are defined by

4
b (‘T 771777277737774 ( 77@7Zd2k 771%7Zd2k($)771§>7 1= 1727
k=1

4
(di(:n)nil,Zdik nk,Zd,k nk> if xe Qg

bi(x,m1,m2,M3,M1) = k1 i=3,4,

(@(w)n},zczk m,zdm m) if 2 € Q\Q,
k=3

n= (771777277737774) € (Rg) y i = (771777177713)7,5: 17"'74'

Here d;y, cjik, d; and d; are the coefficient functions from (5.18). R3 as well as (R3)*
considered with the usual Euclidean norm. Clearly, b is linear in the argument n and
according to assumption (B) the estimates

b(z,n) -n=m |77|%R3)47

(5.21)
|b($a77)|?R3)4 < M2|77|%R3)4 Va € Q,

ba(w,n) - 13+ ba(z,m) -na = m (|n3fs + nalis),
|3 (2, )7 + [ba(w,m)lGs < MP(|n3lgs + [malfs) Vo €
are fulfilled. We set o = m/M? and define on £? the operator By by

(Bay)(z) = y(z) — ablz,y(x), yeL

Now we restrict this operator By to the space £° with s > 2 and obtain a linear mapping
Bs = Bs|rs from L* into itself. In the next estimate we make use of an equivalent norm

of L%:

1/s
s/2
uyno,,;s:( [ Qo dn s [ (ool -+ oa(o)i) dx> Cyer
0 1

(5.22)

Using (5.21), (5.22) the norm of the mapping B, can be estimated as follows

s/2

Bl = [ (Ben)@)han) o+ | (1Beyala) +1(Boys(@)lia) o

951

= [ (it + 0 By o 200000 -9) "o

(3 (@ + oy = 20b00) -3:)) "

1=3,4
< (=T w20+ [ (1)l + @) ")
M?2 % (R3) o 2 2
m2\s/2 8
< B W) 116,25 Yy € L5,
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Lemma 5.2 ensures the estimate
A2yl g < Nylles < Ilylloce Wy € £°,

which leads to

m2\1/2
1Boylles < IBeyloce < (1= 35) " llyllo.co
212 (5.23)
<42 (1= 2 ) Vlylles Ve Lt

Theorem 5.1 We suppose (A1) and (B). Then, the operator A defined in (5.18) maps
X, onto the space X7, provided that s € [2,qo] and

_ m? 172
A (1= 25) ' <1

In particular, there exists a q1 € (2,qo] such that A maps X,, onto the space X;l,.

Proof. Here we adapt the proof of Theorem 1 in Groger [9] to strongly coupled systems
of elliptic equations with different domains of definition. Note that for z € X, we have
%J‘lz,z =z — J 'L*B,Lz. For every fixed h € X%, s € 2,q], we define the operator
Qn: X5 — X, by

Opz = J ! (L*Bst n %h) — 2 %J—l(zz —h), zeX,.

Due to the properties of the operators B, L, L* and J~! (in particular see (5.23) and
Lemma 5.4) we find

1@nz — @nZlx, < Ml|L™||zeo,x) 1 Bslloiee oo 1l (x| — 2]l x,

2\1/2
_ m _
§41/2 1/8M8<1_W) HZ—ZHXS.

Note that 41/2=1/s 0y, <1 — %)1/2 continuously depends on s and
1/2—1 m? 1/2 m? 1/2
g (1= 25 = (1= 25) P < L for s — 2.

Thus, there exists an exponent sg € (2, go] such that for all s € [2, s0), we have

2
1/2-1 moy1/2
P (1= 25) P <,
which guarantees that Qj: X; — X is strictly contractive. According to the definition of
Q), the fixed point z € X, is a solution of Az = h. Therefore A maps the space X, onto
Xy 0O
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