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Abstract

This note addresses a three-dimensional model for isothermal stress-induced
transformation in shape-memory polycrystalline materials. We treat the prob-
lem within the framework of the energetic formulation of rate-independent
processes and investigate existence and continuous dependence issues at both
the constitutive relation and quasi-static evolution level. Moreover, we focus
on time and space approximation as well as on regularization and parameter
asymptotics.

1 Introduction

Shape-memory materials are metallic alloys showing some surprising thermo-mechan-
ical behavior: severely deformed specimens with residual strain up to 15% regain
their original shape after a thermal cycle (shape-memory effect). Moreover, the
same materials are super-elastic (also called pseudo-elastic), namely, they recover
comparably large deformations during mechanical loading-unloading cycles at pre-
scribed temperatures (see, among others, [1, 6, 20, 22, 24, 44, 55]). These features,
which are not present (at least to this extent) in materials traditionally used in
engineering, are at the basis of the innovative and commercially valuable applica-
tions of shape-memory materials. Namely, shape-memory technologies are nowadays
exploited in a variety of different applicative contexts ranging from sensors and ac-
tuators (even microscopical), to robotics, to clamping and fixation devices, to space
applications (grippers, positioners), to damping devices (shock absorption) [54]. The
largest commercial success of shape-memory materials is however related to biomed-
ical applications. The combination of good bio-compatibility and interesting mate-
rial properties creates unique materials for medical tools and devices. Nowadays,
shape-memory materials are successfully used in orthodontics (archwires), ortho-
pedics (bone anchors, intromedullary fixations, bone staples), medical instruments,
minimal invasive surgery technology (catheters, endoguidewires, grippers, cutters),
drug delivery systems, and both intravascular (cardiovascular stenting, bronchial
biliary, aortic aneurysm, carotid stenosis) and extravascular scaffolding. In particu-
lar, shape-memory stents are the key tool in order to implement a variety of quite
successful non-invasive surgical techniques [14, 52, 53].

The present analysis is concerned with the quasi-static evolution of shape-memory
materials in the small-strain regime. In particular, we shall study a macroscopic phe-
nomenological model for shape-memory polycrystalline materials undergoing stress-
induced transformations that was originally proposed by Souza ET AL. [51]| and
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later addressed and extended by AURICCHIO & PETRINI [4, 5], and AURICCHIO ET
AL. [7]. Our aim is to focus on the isothermal situation at suitably high temper-
atures in order to capture the super-elastic material behavior. The understanding
and the efficient description of the super-elastic regime is clearly of a great applica-
tive interest. In particular, most of the biomedical applications enlisted above are
based on super-elastic deployment in situ and/or super-elastic kink resistance of
shape-memory materials.

Let us briefly recall here the basic features of the proposed model, the interested
reader is of course referred to the above-mentioned contributions for all the necessary
modeling details and motivations as well as for some computations and validation.
The formal character of this introduction is intended to serve for the purpose of a
general overview on the model and our results. In particular, (most of) the mathe-
matical details are here omitted and will be provided in the forthcoming sections.

Moving into the frame of Generalized Standard Materials (see MAUGIN [28|) and
within the small-strain regime, we additively decompose the linearized deformation
e = (gi) = (u;j +uj;)/2, (u being the displacement from a fixed reference configu-
ration €2 C R?) into the elastic part &, and the inelastic (or transformation) part
z as

€ =¢€a + 2. (1.1)

At the microscopic level the super-elastic effect is interpreted as the result of a
structural phase transition between different configurations of the material lattices,
namely the parent phase (austenite and twinned martensite) and its shared coun-
terpart termed product phase (detwinned martensite). In particular, the internal
variable z is assumed to be descriptive of the mechanical (tensorial) effect of the
detwinning observed in the material.

Denoting by W (e, z) the stored energy density of the system, the evolution of the
material will be described by the following classical relations

o = OW/oe, (1.2)
& = 0W/oz,
o= VD)

Here, ¢ denotes the thermodynamic force associated with z and (1.4) is the flow
rule for z where D* stands for the Legendre conjugate of the dissipation density
D (see below).

The material constitutive relations (1.2)-(1.4) may be conveniently rewritten in the
following equivalent subdifferential formulation

(ope) * (i) = (6) (15)

where D stands for the dissipation density and the symbol 0 denotes subdifferen-
tials in the sense of Convex Analysis (see below).



The evolution problem (1.5) may be set within the frame of energetic formulations of
rate-independent processes recently proposed by MIELKE ET AL. |27, 40, 42|. The
notion of energetic solution (discussed in some detail in the forthcoming Section 2)
is based on equivalently recasting the subdifferential problem (1.5) as the coupling
of a global stability condition and an energy conservation relation. In particular,
the subdifferential relation (1.5) is rewritten as

(stability) @@J@EAggmoyﬁﬂ—dﬂ€+m}%@»ﬂm
(energy equality) W (e(t),z(t)) —o(t) : e(t) + Dissp(z, [0,t])

:W@M@ﬂmy%—éd@w@@wu)

for all ¢ > 0. Here, we assume to be given some suitable initial data (gg,29) and
the stress ¢ — o(t) and denote the total dissipation of the system on [0,?] as

DiSSD(Z, [0, t]) = sup {ﬁ:D(Z(tl)—Z(tl_l)) : {O =tlo<hi1<... <tn_1<lny = t}} s

where the supremum is taken with respect to all finite partitions of [0,¢]. Ener-
getic formulations were originally developed for shape-memory alloys in MIELKE &
THEIL and MIELKE ET AL. [40, 41, 42|, and have shown to be extremely well-suited
for a variety of different rate-independent situations. In particular, they have been
successfully considered in connection with elasto-plasticity [12, 32, 33, 34, 35|, dam-
age |38|, brittle fractures |13], delamination |27|, ferro-electricity |43|, shape-memory
alloys |37, 40, 42|, and vortex pinning in superconductors [50|. The reader is referred
to MIELKE [36] for a comprehensive survey of the mathematical theory.

Let us now introduce the precise form of W we will deal with. Namely, we choose
1 v
Wie, z) = 5@(5 —2): (e —2) +eilz| + ez + 1(2) + §\Vz\2. (1.8)

Here, C is the elasticity tensor and the positive parameters ¢; and ¢y are given.
Indeed, in [51] the constant ¢; is assumed to depend explicitly on the temperature
of the specimen while here temperature effects are neglected. On the other hand, ¢,
measures the occurrence of some hardening phenomenon with respect to the internal
variable z. The function I is the indicator of a fixed closed ball of radius ¢3 > 0.
In particular, c3 represents the maximum modulus of transformation strain that
can be obtained by alignment (detwinning) of the martensitic variants. Finally, the
positive coefficient v is expected to measure some nonlocal interaction effect for the
internal variable z and Vz stands for the usual gradient with respect to to spatial
variables. Indeed, gradients of inelastic strains have already been considered in the
frame of shape-memory materials by FREMOND [19] and the reader is referred also
to ARNDT ET AL. [2|, FRIED & GURTIN [21|, KRUZIK ET AL. [25], MIELKE &
ROUBICEK [37], ROUBICEK [48, 49| for examples and discussions on nonlocal energy
contributions of z.



The proposed model is capable of describing the main features of the super-elastic
evolution of shape-memory materials. In particular, the internal variable tensorial
character of the model allows for taking into account the so-called single-variant
martensite reorientation phenomenon. Namely, also in the case the material is fully
transformed into product phase (i.e. |z| = ¢3), inelastic strain changes can still be
experienced due to variant reorientation (2 # 0). This fact is experimentally ob-
served and turns out to be crucial with respect to applications. Moreover, whenever
not restricted to the isothermal situation, the model turns out the be thermodynam-
ically consistent in the sense that the Second Law of Thermodynamics is satisfied
in the form of the Clausius-Duhem inequality.

As for the full quasi-static evolution of the material we shall couple the constitutive
relation (1.5) with the equilibrium equation

dive+ f=0 in (1.9)

where f is a given body force, suitably complemented with some prescribed bound-
ary displacement and boundary traction in distinguished parts of the boundary of

Q.

The first issue of this paper is that of adapting the above referred abstr act theory
for energetic formulations to the quasi-static evolution problem and obtain that
(Theorem 6.1)

(existence) the quasi-static problem admits at least one energetic solution

t = (u(t), 2(1)).

We shall be concerned with some specific regularization of the original quasi-static
model. Namely, some smooth variant of the potential W above turns out to be
better suited for the sake of numerical considerations. In particular, we will consider
a regularized version of the model by posing

W,(e, 2) = %(C(a —2): (e = 2) + Fy(a) + | VAP, (1.10)

where F, is some regularization of Fy : z — ¢|z| + ca|2|? + I(2) obtained by
penalization and smoothing and depending on the regularization parameter p > 0.
This regularization is exactly the starting point of AURICCHIO & PETRINI [4, 5],
and has been exploited in AURICCHIO ET AL. |7| as well (in all these papers v =0
though).

A second focus of the present contribution is on unique solvability of the regularized
model. In particular, we check that

(uniqueness for p > 0) for p>0, the quasi-static problem has a unique solution.

This uniqueness result was proved in an abstract frame by MIELKE & THEIL [40, 41]
and is here reconsidered in the specific situation of the regularized version of the
quasi-static problem.



A quite natural approach to rate-independent evolution problems relies on implicit
time-discretization. This perspective is here investigated and complemented with
some space approximation technique. In particular, the main novelty of this paper is
the convergence analysis for the discretized-regularized model. Namely, we consider
the (possibly joint) limits with respect to the time-steps 7 of time partitions (here
considered to be constant for simplicity), the space mesh size h (conforming finite
elements are exploited), and the regularization parameter p. In particular, denot-
ing by (u,z),,5 the unique solution to the space-time discrete problem with the
parameter-choice p > 0 (time-interpolant, piecewise constant on the time-partition)
and by (u,z), the time-continuous solution to the problem for p > 0, we prove the
following (Theorem 7.8)

(convergence for p > 0) for p>0, (u, 2),,, converges to (u, z), as (7,h) — (0,0),

(full convergence) up to a subsequence, (u,2),.n — (u, z)oas(p, 7,h) — (0,0,0).

Of course the topologies under which the latter convergences hold true will be spec-
ified in the forthcoming sections.

Indeed much more is true and we are in the position of giving a full picture of
convergences for the model subsequently. Moving from Section 2 where the math-
ematical formulation of the problem is presented, we shall organize our results by
successively increasing complexity. Section 3 addresses the analysis of the constitu-
tive relation problem (1.5), namely the zero-dimensional problem. In particular, we
prove well-posedness and convergence of time-discrete approximations. Then, the
three-dimensional minimum problem arising from time-discretization is addressed
in Section 4 where we also investigate well-posedness and convergence of space ap-
proximations along with suitable error bounds. Some a priori bounds and a pre-
liminary convergence result for the incremental solutions to the problem in case the
time-partition is fixed are discussed in Section 5. Finally, the three-dimensional
quasi-static evolution problem is tackled in Section 6 where we provide the above
mentioned existence, uniqueness, and convergence results for the space-time dis-
crete solutions. Finally, Section 7 deals with convergence issues with respect to
parameters and discretizations in full generality.

2 Mathematical formulation

Tensors. We will denote by R?;yxr?;l the space of symmetric 3 X 3 tensors endowed

with the natural scalar product a : b := tr(ab) = a;;b;; (summation convention) and

the corresponding norm |a* := a : a for all a, b € RY<3. The space R is or-
3x3 _ Tp3x3
sym Rdev

thogonally decomposed as R @R 1,5, where R 15 is the subspace spanned

by the identity 2-tensor 1, and ]R‘zif is the subspace of deviatoric symmetric 3 x 3
tensors. In particular, for all a € R?X3 we have that a = age, + tr(a)ly/3. For

sym>
all uw € HL (R*R?) we let e(u) € L. (R3R3*3) denote the standard symmetric
gradient.

loc sym



Reference configuration. We shall assume {2 to be a non-empty, bounded, and
connected open set in R? with a Lipschitz continuous boundary. The space dimen-
sion 3 plays essentially no role throughout the analysis and we would be in the
position of reformulating our results in R¢ with no particular intricacy. We assume
that the boundary 0f) is partitioned in two disjoint open sets I';, and I'p;, with
Il'y, = Ol'pir (in 0R). We ask I'p;, to be such that there exists a positive constant
¢o depending on I'p;, and €2 such that the Korn inequality

collulinazy < lullaqy iz + 1@ ggasa (2.1
holds true for all u € H'(Q;R3). It would indeed suffice to impose I'p;; to have a
positive surface measure (see, e.g., [15, Thm. 3.1, p. 110|).

Prescribed boundary displacement. We will prescribe some non-homogeneous
Dirichlet boundary conditions on Tp;. To this end, we will assign u”' € C*([0, T7;
HY2(Tpir, R?)) or, equivalently, uP'™ € C1([0, T]; H'(2, R3)) whose trace on I'p; is
the prescribed boundary value for the displacement u. On I';, some time-dependent
traction will be prescribed instead.

Elastic energy. Let C be the elasticity tensor. The latter is regarded as a sym-
metric positive definite linear map C : R¥> — R%%3. We shall assume that the
orthogonal subspaces R?*? and R 1, are invariant under C. This amounts to say
that indeed

Ca = Cyeyagey + K tr(a)ls,

for a given Cgev : R%S? — R and a constant x, and all a € RY3. The case
of isotropic materials is given by Cge, = 2G(14 — 15 ® 15/3) and G and k are
respectively the shear and the bulk moduli. The latter decomposition is not exploited

in our analysis but it is clearly suggested by the mechanical application.

We will make use of the stored elastic energy functional C : L*(£; R3*3) — [0, +-00)

sym
defined as .

Cla) == 5/9@(@:@(1:5.

Inelastic energy. As for the stored inelastic (or transformation) energy we shall

prescribe the function F : R%? — [0, +o0] as

F(a) = c1la| + colal* + I(a),

where I : R¥? — [0, +00] is the indicator function of the ball {a € R¥?
la| < c3} and the positive constants ¢;, co, and ¢z are given. Moreover, the stored

inelastic energy functional is defined as F : L2(; R%?) — [0, +00] as

Fl(a) ::/QF(a) dr if F(a) € L'(Q) and F(a) = +oo otherwise.
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The well-posedness and time discretization issues discussed here do not rely on the
particular form of F' and could be adapted to any uniformly convex, proper, and
lower semicontinuous function. We however prefer to stick to the actual modeling
choice for the sake of clarity. In the forthcoming of the paper we will address some
suitable regularization of F. Indeed, we introduce an approximation parameter
p > 0 and some functions

F, € C*Y(R%?) with VF, bounded, V?F, > cy1y4, and F,(0) =0, (2.2)

and define Fy := F. An example in the direction of (2.2) is

Fy(a) == c1(v/p? +al? = p) + calal* + o(|a])/p
for o € C*'(R), ¢ € L®([R), ¢" >0, o(r)=0 iff r <cs. (2.3)

Exactly as above, for all p > 0 we let the regularized stored inelastic energy func-
tional F, : L*(£; ]R3X3) — [0,400) be defined as

dev

and F( := F. Finally, we shall be considering also some space-regularized situation.
To this end, let p, v > 0 and define F,, : L*(; R3X3) — [0, +o00] as

dev

Fpula) = /Q <Fp(a') + %|Va|2) dx

where (Va);jx = O0a;; /0y, is the usual gradient in the distributional sense and | - |
denotes here the Euclidean norm.

Stored energy. Following the above introductory discussion, we define the stored
(Helmholtz free) energy functional for p, v > 0 as

W,(u, z) :==Cle(u) — 2) + F,.(2).

Load and traction. We assume to be given the body force f € Wh1(0,T; L*(Q; R?))
and a surface traction g € WH'(0,T; L*(T',; R?)). In particular, one can define the
total load ¢ € W0, T; (H'(2;R3))) (the prime denotes here the dual) as

((t),u) ::/f-udzv+/ g-udH?* Yue H'(Q;R?), t €0,7],
Q 1—‘tr

where H? is the 2-dimensional Hausdorff measure and (-,-) denotes the duality
pairing between (H'(;R3)) and H'(Q;R?).



State space. We set our problem by letting

VW =UxZ":=H (Q,R?) x HW(Q:R33).

dev

Here j(v) =0 for v = 0 and j(v) = 1 otherwise. For all w € H'(Q;R?), let us
define V¥ (u) C Y as

V() :={(u,z) €Y’ : u=u on Ipy},

Then, for all ¢ € [0, 7], we shall define the phase space of the process as V" (u""(t)).
For the sake of later purposes (see also (1.8)) let us denote by W, : R x R%T
[0,400) the function

1
W,(e, z) = 5@(5 —2) (e —2)+ Fy(2),
by A, : V" — [0,00) the quadratic form
A, (u,z) . =Cle(u) — 2) + 02/ |22 dx + %/ \Vz|?dr V(u,z) € V¥
Q Q

and by « > 0 the corresponding uniform ellipticity constant (depending on C, cs,
and v).

Dissipation potential. The quasi-static evolution of the material is described by
means of an appropriate dissipation mechanism, see (1.5). To this aim, we choose
the dissipation (pseudo)-potential D : R%** — [0, +00) to be lower semi-continuous,
positively 1—homogeneous, and to fulfill the triangle inequality

D(a) < D(b) + D(c) whenever a=10b+c. (2.4)
Moreover, we ask for some constant c¢p > 0 such that

cpla| < D(a) Va € RY?

dev *

Under the current assumptions on D, the latter non-degeneracy condition is indeed
equivalent to the fact that the set {a : D(a) < 1} is bounded or that D does not
vanish except in 0. Let us stress that D turns out to be convex (see (2.4)) and that
there exists a second constant Cp > 0 such that

D(a) < Cpla| Va € R¥:3

dev

We define the corresponding dissipation functional D : L'(Q; R?*3) — [0, +00) as

dev

D(a):/QD(a) dzx.



One shall stress that indeed, since D is obviously positively 1-homogeneous, a rate-
independent evolution follows. Moreover, we recall here that, for all z : [0,T] —

R332, we let

Dissp (2, [s,t]) := sup {Z D(z(t;)—2(tiy)) : {s = to<t1 <.. .<ty_1<ty = t}} :

(2.5)
the supremum being chosen on the set of all finite partitions of [s,¢] C [0,7]. Finally
the analogous notion Dissp(z, [s,t]) will be used for functions which take values in

LY RYD).

dev

State space approximation. Henceforth we will be interested in some space
approximation procedure. Indeed, we assume to be given a suitable sequence of
approximating closed subspaces YV := U x Z; C V¥ depending on some parameter
h > 0 which is intended to go to zero in the limit. We shall collect and comment
here the abstract assumptions which will be exploited in the following. Of course the
main application we have in mind are conforming finite elements on a shape regular
and quasi-optimal mesh |8| with size h on the polyhedral domain 2. We will firstly
ask )y to be non-decreasing and such that U~} is dense in Y”. Moreover, we
restrict from the very beginning to the special case when yg = y; c Yl

Now let py : V¥ — Y} the Galerkin projector corresponding to the scalar product
induced by the quadratic form A,. In particular, by introducing the bilinear form
B, : YY" x Y — R defined by
1
B, (w1, 1), (us, 22)) = 3 / Cle(ur) — z1) = (e(ug) — 2z2) + 02/
Q

14
z1Z2+—/Vz1-Vz2
Q 2 Q

for (u1,21), (ug, z2) € Y, we have that, for all (u,z) € Y”, the projection pY(u, z)
may be uniquely determined by

BV((”? Z) - pZ(U, Z)> (uha Zh)) =0 ‘v’(uh, Zh) € y;: (26)

Namely, one has that
Ay (Ph(u, 2)) = By (p(u, 2), ph(u, 2)) < Ay(u, z)  Y(u,z) € V" (2.7)

Let us explicitly observe that pj is pointwise converging in Y to the identity as
h — 0.

Next, let us introduce a pair of operators g, : U — U, and r} : Z¥ — Z; and ask
them to be pointwise converging to the identity as h — 0. More specifically, we will
ask for

h—0,v—0 = r/(z)—z VzeZ

Moreover, we require that

z€ 2% and |z|<c3 ae in Q = [r/(2)] <c3 ae in Q, (2.8)
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and that r) : Z' — Z' maps bounded sets into bounded sets. As for r? an example
of operator fulfilling the assumptions is the component-wise Clément interpolant
from L*(Q;R%*?) to the space of piecewise linear functions [9]. In this case, relation
(2.8) follows from Jensen’s inequality.

3 Analysis of the constitutive relation

Let us start our analysis by focusing on the constitutive material relation. Namely,
we neglect for the moment the coupling of the material model with the equilibrium
problem (1.9). Assuming to be given a tension history, we solve for the elastic and
the inelastic strain starting from a given state. The understanding of this simplified
(reduced) problem will be crucial. First of all, a detailed study of the constitutive
relation is surely an important step in the direction of the investigation of the full
quasi-static evolution problem. This in especially true with respect to numerics.
Indeed, the efficient solution of the constitutive relation is the key ingredient for
a full discretization procedure. Secondly, the full equilibrium system might reduce
to a zero-dimensional problem under specific yet common geometric restrictions
or symmetries. Finally, we aim to give in this somehow (notationally) simplified
situation the main points of our analysis.

Assuming to be given o : [0,7] — ]R?;;‘:’l, we shall determine ¢ : [0,7] — ]R?;;;z’l
and 2z : [0,T] — R%? starting from (g0, 29) and fulfilling (1.5). Of course, since
the transformation strain z is assumed to be deviatoric and the elasticity tensor
C decomposes as above, the problem could be easily reformulated in the deviatoric
subspace R%ﬁf only. We however prefer not to exploit this simplification for the

sake of consistency with the forthcoming analysis.

Let p > 0 be fixed throughout this section. We shall be concerned with the energy
function W,(e, 2) — o(t) : € which is defined for all (t,e,2) € [0,T] x RY3 x R
Moreover, let us define the set of stable states at time ¢t € [0,7] as

S(t) = {(e,2) € RS x RED such that, V(z,7) € RS x RS,
W,(e,2) — o(t) e < W,(5,2) — ot) : 2+ D(z — z)}, (3.1)
and S = Ute[O,T}(t> S(t))

As for an energetic solution of (1.5) we mean a pair (e, z) : [0,T] — R%3 x R33

such that the function ¢+ (¢) : £(t) is integrable and, for all t € [0, 77,

(e(t), 2(t)) € S(¢), (3.2)
W,(e(t),2(t)) — o(t) : e(t) + Dissp(z, [0,1])

= W,(c0,20) —0(0) : g9 — /0 a(s) :e(s)ds. (3.3)

Let us now comment on the equivalence between (1.5) and the energetic formulation
(3.2)-(3.3). To this end we will focus for simplicity on the smooth case p > 0.

10



Indeed, the argument for the situation p = 0 is just slightly less straightforward
from a notational viewpoint. Using the definition of the subdifferential 0D(Z),
relation (1.5) turns out to be equivalent to

(OW,(e,2) —0): (v—¢)+0.W,(e,2) : (w—2)+ D(w) — D(2) > 0
V(v,w) € R¥3 x R¥3  ae. in (0,7). (3.4)

sym dev?

Now, by respectively choosing (v, w) = (kv, kw) and letting k — +o00 or (v,w) =
(0,0) in the latter relation we easily get that

(0W,y(e,2) —0): 0+ 0, W,(e,2) :w+ D(w) >0
V(0,w) € R¥? x R¥3 ae. in (0,7), (3.5)

sym dev>

(OW,(e,2) =) €+ 0,W,(e,2) : 24+ D(2) <0 ae. in (0,7). (3.6)

Of course (3.4) and (3.5)-(3.6) are equivalent. Now, since W, is strictly convex, we
have that (£(t), z(t)) is the almost everywhere unique minimizer of

(2,2) — W,(E,Z2) —0o : €+ D(Z — 2(1)).

In particular, by assuming ¢, z, and o to be absolutely continuous (see below), we
readily check that (3.2) holds. Moreover (3.5)-(3.6) imply that

(0 W,(e,2) —0) 64+ 0.Wy(e,2): 2+ D(2) =0 ae. in (0,7,

which can be rewritten as

d

E(I/I/'p((cg,,z) —0: 5) =—6:e—D(2) ae. in (0,7).

Hence, by integrating the latter on (0,¢) for t € [0, 7], we readily deduce (3.3). Vice
versa, (3.3) allows us to recover (3.5)-(3.6) at once by differentiating and exploiting

(3.2).

The main advantage of the energetic formulation (3.2)-(3.3) is that it does involve
neither derivatives of constitutive quantities nor of the solution. It is hence par-
ticularly well-suited for the aim of proving well-posedness results and it simply
generalizes to possibly non-convex situations.

The aim of this section is to exploit here the abstract existence theory for energetic
formulations developed in [16, 27] and adapt it to the current modeling situation.

The incremental problem. In order to find an energetic solution to (3.2)-(3.3)
we shall consider an implicit time discretization procedure. At first, let us observe
that, for all 7 € RY? and ¢ € [0,7], the function (g,2) — W,(g,2) — o(t) :
£+ D(z — Z) has a unique minimum since it is uniformly convex and coercive. Let
now the partition P := {0 =ty < t; < -+ < ty_1 < txy = T} be given with
diameter 7 = max;—1__nt; — t;_1. Moreover, let (g, z) € S(0) be a given initial

datum. One should consider that, for any given z5 € ]R?;f!s’, there exists a unique
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g0 = Lzy, where £ = id here, with (g¢, z9) € S(0). Hence, we solve iteratively the
minimum problem

(ei,2) €  ArgMin  (W,(e,z)—o(t;) : e+ D(2—2-1)) for i=1,...,N. (3.7)

3x3  m3x3
(6,2)ERym xR GLY

We shall refer to the latter as the incremental problem associated with (3.2)-(3.3).
Let us explicitly observe that, by the triangle inequality, any solution (&;,2;) to
(3.7) solves also

(ei,z) €  ArgMin ~ (W,(e,2) —o(t;) :e+ D(z — z)) for i=1,...,N. (3.8)

3x3 _m3x3
(€,2)ERgym xRZ2

Error propagation. We shall start by providing a continuous dependence result
for the single-step minimum problem in (3.7). Referring to the forthcoming time-
stepping procedure, the following estimate can be seen as some error propagation
control.

Lemma 3.1 (Continuous dependence). Let (07,77) € R3S x R § = 1,2, be

given and (&7, 27) := ArgMin, ,)cpaxa gixs(Wy(e, 2) — 07 1e + D(z — 7). Then

1 4
e =P+ |2 = 2P < o' - o2+ —D(z' - 7). (3.9)

Proof. Since (e',z') is minimal and W), is uniformly convex of constant « one has
that

aleg! =P +alzt =227 < W,(e% ) —o' 2+ D(2* -7
— W,(e", 2" )Y+ o' 1! = D(z' = 7).
On the other hand, the minimality of (¢2,2?) entails that
0<W,(e ") —o?:e' + D(z' —7%) — W,(e%,2%) + 0% : * — D(2* — 7°).

Taking the sum of the latter relations and exploiting the triangle inequality (2.4)
we get that

ale! —e*P +alzt — 2P < (o' —0?) 1 (e' — %) +2D(z), — 7o),

whence the assertion follows. O

The evolution problem. We shall now provide the main result of this section
which follows by passing to the limit in the above described time-discrete approxi-
mation.

sym

S(0) there exists an energetic solution (g,z) to (3.2)-(3.3) such that (£(0),z(0))
(0, 20). Moreover (g,2) € WHH0, T R332 x R3P).

sym dev

Theorem 3.2 (Existence for p > 0). Given o € WH(0, T;R2X3) and (9, 20) €

12



Proof. Let us choose a sequence of partitions P" = {0 = ¢ < ! < -+ <
Yoy < thn = T} with diameters 7" = max;—y = (" — ¢! ;) going to zero.
Owing to the above discussion, we uniquely determine a sequence of solutions
{(g?, 2}, to the corresponding incremental problems (3.7) such that (&8, 28) =
(€0,20). We shall denote by (", 2") the incremental solution, i.e. the right-
continuous piecewise-constant interpolant of {(¢7,27)}Y on the partition P",
and by 7" s" : [0,7] — [0,7T] the functions 7"(¢t) := ¢? for t € (¢’ ,,t"], and

i—19 Y5
s'(t) =7, for t € [t} ,t7),i=1...,N"

i—17 %1
Since {(e?, 2) Y solves (3.8) with z!' replacing z;, one directly gets that (g7, 21') €
S(tl) forall i =1,..., N™. Moreover, from (3.7) and the minimality of (7', 2"), we
compute that

Wolei', z') —a(t)) e = W,(eiy, 5ily) +o(tily) ey

1™ 7

+D(2 = 2iy) < —(o(tf) —o(tiy)) &ty

Next, taking the sum of the latter relation for + = 1,...,m and m < N", we get
that
Wo(em, zm) — o(ty) c en, — Wy(eo, 20) + 0(0) : &g

m)Tm m

+3 Dz =20 y) < —/ & e ds. (3.10)
i=1 0

Hence, it suffices to apply the discrete Gronwall lemma and exploit the coercivity
of W, in order to check that

sup W,(e"(t),2"(t)) and Dissp(2z",[0,7]) are bounded independently of n.
te[0,T
(3.11)

Indeed, the latter bound depends on W(go, 20) and ||o|[y1.0¢0rg3xs) only.

sym
In order to pass to the limit with n we exploit Helly’s selection principle and find a
(not relabeled) subsequence of partitions and a non-decreasing function ¢ : [0,7] —
[0,400) such that

2"(t) — 2(t), Dissp(z",[0,t]) — ¢(t) forall t e [0,T], (3.12)

and Dissp(z, [s,t]) < o(t) — o(s) Vs, t] € [0,T]. (3.13)

Consequently, for all ¢ € [0, 7], we readily find the unique limit £(t) = L£z(t) since
e™(t) = Lz,(t) — L2(t).

Next, we check that S is closed. Indeed, let the sequence (ty, e, zx) € S converge
to (t,e,2) in [0,T] x R3*3 x R¥*?. Then, since W, is lower semicontinuous and o

sym dev*
is continuous, for all (2,%) € REZ x RYS,

W,(e,z) —o(t) :e < llimjnf (W(e, z) — o(ty) : k)

< lzirfl?of (Wy(2,2) —o(ty) :E+ D(Z — z)) = W,(5,2) —o(t) : £+ D(z — 2).
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Namely (t,e,2) € S. We shall exploit the latter closure property in order to prove
that (e(t), z(t)) is a stable state. Indeed, recalling that ¢ € [0, 7] is fixed, one readily
checks that the sequence 7"(t) converges to t and is such that (e"(7"(t)), z2"(7"(t)))
converges to (£(t),z(t)) by definition. Hence, relation (3.2) follows since (7"(¢),

e™(t™(t)), 2"(7"(t))) € S. In particular, we have proved that (e(t), 2(t)) solves (see

(3.8))
(e(t),2(t)) € ArgMin (W,(e,z) —o(t) : e + D(z — 2(1))).

(e,2) ERYS S xR3X3

Moreover, by construction, we have (£(0),2(0)) = (o, 20)-

We are left to prove that indeed (e, z) fulfills the energy identity (3.3). Relation
(3.10) can be rewritten as

W,(e"(t), 2"(t)) — a(r"(t)) : €"(t) + Dissp(z", [0, 7"(t)])

(1)
< W,(g0,20) —(0) : g9 — / o:eds. (3.14)
0

Hence, passing to the liminf in the latter relation and exploiting once again the
lower semicontinuity of W,, the integrability of &, the boundedness of " (see
(3.11)), and (3.13), we readily check by Lebesgue dominated convergence that

W,(e(t), 2(t)) — o(t) : e(t) + Dissp(z, [0, ])

t
S Wp(€0, Zo) — 0’(0) &0 — / o :eds. (315)
0

Some more precise convergence for the energy can be deduced. Indeed, from the

stability condition (¢™(t),2"(t)) € S(s™(t)), the lower semicontinuity of W,, and

the continuity of o one checks that

Wo(e(t),2(t) —o(t) s e(t) = lim (W, (e(t), (1) — o(s"(¢)) : e(t) + D(=(t) — 2" (1))
> limsup (Wp(en(t), 2"(t)) — o(s"(t)) : En(t)) > W,(e(t), 2(t)) — o(t) - e(t). (3.16)

n—-+o0o

In particular, we have proved that W,(¢™(t),2"(t)) converges to W,(e(t), 2(t)).

Our next step will be that of proving that (g, z) is absolutely continuous. Indeed
this follows at once from the stability condition (3.2), the upper energy estimate
(3.15), the uniform convexity of W,, and the absolute continuity of o. Let us fix
[s,t] € [0,T]. Owing to (e(s), z(s)) € S(s) and the uniform convexity of W, with
constant « one readily gets that

ale(t) —e(s)|* + alz(t) — 2(s)[?

W,(e(t), 2(t)) — o(s) : €(t) + D(=(t) — 2(s)) — W,(e(s), 2(s)) + o(s) : £(s)

W,(e(t), 2(t)) — o(t) : e(t) + Dissp(z, [s, t])

(s):e(s) = (o(s) —o(t)) : &(t)
t))

|
E%
—~
™
4~/
V)
S—
2
—~
»
S—
SN—
+
q
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Hence, by means of Gronwall’s lemma, one checks that

le(t) —e(s)| + |2(t) — 2(s)| < 04/ |1, (3.17)

where the positive constant ¢, depends just on «. The absolute continuity of ¢
and z follows.

We are now in the position of proving the converse inequality to (3.15), namely, the
lower energy estimate. Indeed, for all t € [0, 77,

W,(e(t), 2(t)) — o(t) : e(t) + Dissp(z, [0, ])

t
Z Wp(€0, Zo) — 0’(0) &0 — / 0 :eds. (318)
0

Indeed, let suitable partitions Q™ = {0 = s’ < s7" < -+ < sWym_y < Shym =t}
be given such that the diameters max;—; Mm(s;-” sy 1) go to zero. By exploiting

-----

again the stability (e(s}",), 2(s}";)) € S(s}*,) for j=1,..., M™, we obtain that

W, (e(s7"), 2(s7")) — a(s5") : e(s7") + D(2(s7") = 2(s721))

J Jj—1

j
> Wp(e(siiy), 2(sf1)) — a(sihy)  e(sfly) — (o(s)") — o(sfy)) - e(s]")
We shall take the sum above for j =1,..., M™ and obtain that

W,(e(t), 2(t)) — o(t) : e(t) + Dissp(z, [0, ])
> W,(g0,20) = 0(0) s 69 — > _(a(s]") — o(s]")) = £(s]"). (3.19)

J=1

Then, relation (3.18) follows at once from Lebesgue dominated convergence since

Sty ot ety = [ (f o) 0t as

where we used a standard notation for the piecewise mean on the partition Q™.
In fact, € o7™ and JﬁQmo"dr converge to ¢ and ¢ at least almost everywhere,

respectively, and ¢ o 7 is uniformly bounded. Once (3.18) is established, it is a
standard matter to check that indeed Dissp(z,[0,t]) = ¢(¢t) for all t € [0,7]. O

Finally, an early consequence of (3.17) entails the following Lipschitz regularity
result.

Corollary 3.3 (Lipschitz continuity). Under the assumptions of Theorem 3.2, if
o€ Wh(0,T;R33), then we have (e,z) € Wh(0, T; R3S x RYSY).
We shall complement the above detailed existence analysis by providing a local

Lipschitz continuous dependence result for the smooth case p > 0 (see [41, Thm.
7.4]).
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Theorem 3.4 (Continuous dependence for p > 0). Let the assumptions of Theo-
rem 3.2 hold p >0, oy, 0 € WH(0,T; R?;yxri), suitably stable initial data (€01, 201)
and (go2,202) be given and (1, z1) and (2, 22) be two corresponding energetic so-
lutions to (3.2)-(3.3). Then, there exists a positive constant ¢ depending only on
a, [[Wll cza gaxs R3x3), 0nd loillwiiaorgexsy for t=1,2 such that

sym X sym

(1 = e2) (O + (21 — 2) ()

<c <‘50,1 - 50,2|2 + |201 — Zo,2|2 + o — 0'2||?;V1,1(0,t;R3x3)> vt e [0,T].  (3.20)

sym

Proof. Let us start by introducing some convenient notation. In particular, let

R  (O0Wy(ei )
yz T (Zz) ’ VWZ T <8ZWp(€i7 Zz)) ’
aeswp(5i7 Zi) 852Wp(5i7 Zi)

2717, . —
v WZ ' (aezwp(€i7 Zi) azsz(gia Zi)

) for i=1,2.

Next, by exploiting the above mentioned equivalence between (3.2)-(3.3) and (3.4),
one readily checks that

(VWl - VWQ) . (y1 - yg) S (0'1 - 0'2) : (81 — 62) a.e. in (O,T), (321)

where of course - is the scalar product in ]R‘Z;;:’l x R¥3. Moreover, we shall use

E =€ —¢€9, Z := z1 — 25 and so on. Within this proof, the symbol ¢ will
denote any positive constant possibly depending on «, ||WPHC«2,1(RBS;<I%XR%>;3), and on
loillwiiorpexs) for i =1,2. Let us define

sym

v i=0W e+ 0.W :z > ol + ofz* = of7]’,

where we also used the uniform convexity of W,. Now, by differentiating ~ with
respect to time and exploiting the smoothness of W,, one gets that

§o= (VWL = VWy + V2IWG) - g1 — (VW) — VW, + V2IWog) - gy
< 2(VWy = VW) - (41 — i)
+ | = VWi + VW, + VW [ih] + | — VWy + VW, — V2L |1
< 26 :E+c(|lin] + )P ae. in (0,T).

By collecting the above computation we check that, for all ¢ € [0, 7],

() = 7(0)+/0t7d5§7(0)+25(t) 1 2(t)—27(0) : §g—2 /Oté : Eds+c/0t(\yl|+\y2|)7ds
v

< 570+ (Rl + ol + 0+ 100 + [ (1] + il ).

The assertion follows by Gronwall’s lemma. O
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Properties of the approximations. The above detailed existence proof exploits
a discrete construction which is interesting in itself. Let us condense in the following
lemma the above proved results on the discrete scheme. Note that the result is less
sharp for p = 0 since we do not know whether the solutions are unique in this case.

Lemma 3.5 (Convergence). Under the assumptions of Theorem 3.2, the incremen-
tal solutions (g™, 2") of problem (3.7) for partitions P"™ with diameters ™" going to
zero are such that, possibly extracting a not relabeled subsequence, for all t € [0,T],

2" — z  uniformly in [0,T],
Dissp(z", [0,t]) — Dissp(z, [0,¢]),
e"(t) — (1),

Wi(e™(t), 2" (1)) — Wy(e(t), 2(2)),

for some pair (e, z) which solves (3.2)-(3.3). As p > 0 the whole sequence (", z")
converges.

We conclude this section by recalling from [41] (see also [36]) an a priori error
estimate of order 1/2 for the above discussed discrete approximations. The latter
error bound is however restricted the smooth situation p > 0.

Lemma 3.6 (Error). Under the assumptions of Lemma 3.5, let p > 0. Then
there exists a positive constant ¢ depending on «, ||Wp“02,1(R?;;<‘iXR%X3); (€0, 20), and

||O_||W1’1(07T;R?;;,<ri) Such th(],t
(e =)+ 1(z = 2" (B)] < e(7)? Ve € [0,T]. (3.22)

We shall not provide here a proof of the above lemma. Indeed, in case o €
Whee(0, T; RE3) it suffices to rewrite in the current setting the argument of [36,

Thm. 4.3|. Moreover, the proof can be adapted with little additional intricacy for

the current absolutely continuous case o € Wh(0,T;R35?) as well.

4 Incremental minimization for the boundary
value problem

In this section we focus on a minimum problem which arises from the time incre-
mental approximation of the quasi-static evolution. Since we are actually dealing
with a rate-independent evolution, this minimum problem is of course the basic tool
for understanding the phenomenon. Moreover, the study of the time discrete seems
to be heavily addressed by the engineering community [23, 29, 30, 31, 45, 46, 47|.
Finally, the time incremental situation will turn out to be better suited than the
time-continuous one in order to prove convergence of space approximations.
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The data of the minimum problem are the current value z € L?(Q,R%?) of the
inelastic strain and the updated values uP™ € H({;R?) of the boundary displace-
ment and ¢ € (H'(Q;R?))" of the total load. We shall be interested in solving the

following

(u,2) € ArgMin (W, (v,w) — ({,v) + D(w — 7)). (4.1)

(v,w) eV (uPir)

The existence of minimizers to the latter problem is a straightforward application of
the Direct Method of the Calculus of Variations [10]. Indeed, (v, w) — W, (v, w)+
D(w —Z) — (£, v) is trivially coercive and lower semicontinuous with respect to the
weak topology in Y” and Y*(uP™) is convex and closed. As far as uniqueness is
concerned one should observe that W, , is uniformly convex for all p, v > 0.

Let us state here a preliminary lemma whose proof can be obtained by means of
standard computations on the quadratic form C.

Lemma 4.1 (Change of boundary conditions). Let uP" vP" € H(Q;R3), 7z €
L2(Q,R¥3), and £ € (H'(;R3)) be given. Moreover, let (u*,z*) € V¥ (uP™) solve

dev
(4.1) and v* =u* —uP" + 0" Then (v*,z*) solves

(v*,2") € ArgMin (Wp,y(v,z)—i—/

C(e(v)—2) : e(uPr—vP)—(¢, v)—l—D(z—E)) :
(v,2)€YY (vPir) Q

4.2)
On the other hand let (v*,2*) solve (4.2). Then (v* — vP" +uP'" 2*) solves (4.1).

Problem (4.1) is Holder continuously stable with respect to perturbations on the
data Z, P, and (. Indeed, we have the following generalization of Lemma 3.1.

Lemma 4.2 (Continuous dependence). Let p, v > 0 be fired and Z, Zo € L*(Q, R%:3),

) . dev
udt ud e HY(Q;R3), and by, o € (H'(;R3)) be given. Moreover, let (u;, 2;) €
VY (uP) solve (4.1) with uP™ = uP™ z =%, and € = {; for i = 1,2. Then, there
exists a constant ¢ depending on cy,«, Cp, and C such that

[Jur — u2||?{1(Q;R3) + |21 — Z2||iz(Q;Ra;l§3) + vz — 22||§{1(Q;R3£3)
<c <||u]1)i’r — uy "3 ey + 71 — Zoll ey + 11 — 52“%1{1(9;11@3))/) : (4.3)

Proof. We simply adapt the argument of Lemma 3.1 Owing to the minimality of
(u1,z1) and the uniform convexity of W,, we readily deduce that, for any (vy,w) €
Y (uy™),
O‘H‘C:(ul - Ul)”i%g;[@;‘z) + O‘H'zl - wl”i%g;ﬂg%{éf) + OU/H'zl - wl”?{l(g;[@dﬁ)
<W, (v, w1) — (€1, v1) + D(wy — Z)
W, (u1, z1) + (b1, u1) — D(21 — Z1).
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On the other hand, the minimality of (us, 25) entails that, for all (vy, wy) € V¥ (ud"),
0 S pr(vg,wg) — <fg,’lig> + D(wg — 52) — WPW('U/Q, 22) + <€2,u2) — D(Zg — 52).

By choosing (vy,w;) = (uy — ud™ + up™, 25) and (ve, ws) = (ug — ud™ + ud", 21)
and taking the sum of the corresponding inequalities one easily deduces that

a||6(u1—u2)—6( Dir__ DII')

< 2C(e(ud™ — ud')) — / C(s(ul —ug) — (21 — 22)) e(ul™ — uy™)
Q
+2D(§1 — 52) + <€1 — fg,ul — U2> — <£ 62, Dir UQDH>.

||L2(Q R3%3) +a||z1_z2 ||iz(Q;R3dxe3)+OéV”Zl_Z2 ||?’—[1(Q;R%§3)

Hence, we readily find a positive constant ¢ depending on «, Cp, and C in such
a way that

lle(u; — )||L2(Q r3x2) T |21 — 22||iz(Q.R3x3 + vz — z2||§{1(Q;R3d§3)
<c <||uD” Dl]r||Hl QR3) T 121 — Z2||L1(Q R3x3) + 16 — €2||%H1(Q;R3))’) :

Whence, the assertion follows from Korn’s inequality (2.1). O

Convergence of space approximations. Let us now turn our attention to some
space approximation procedure and recall the material of Section 2. We denote by
Vi the set Yy, = Yy N Y’(0). Given (u,Z) = pjy(u,z) we shall also denote by
phalu, 2) == @ and pj ,(u, z) == Z. For the sake of completeness, we shall consider
also some approximate situation. Indeed, we ask that for each (" Z) € ¥ and
¢ e (HY(;R?))), there exist (up™™,z,) € V¢ and £, € (H(Q;R3))" such that

(up)™, Z,) — (uP™,Z) strongly in H'(Q;R?) x L'(Q;R%3),

dev

and ¢, — ¢ strongly in (H*(Q;R?)). (4.4)
We shall be concerned with the approximating minimum problem

(un, z1) € Arg Min (W, (u, z) = (lh,u) + D(z — Z1)). (4.5)

(u—up L2)EV

The latter problem is of course uniquely solvable since (u, 2) —= W, (u, 2) — (€5, u) +
D(z — %) is again uniformly convex, coercive, and lower semicontinuous in )} and
Vi, is convex and closed.

Assuming (4.4) and letting (u,z) and (up,z,) solve the minimum problem (4.1)
and (4.5), respectively, the main issue of this section is that of proving that (u, z)
converges to (u, z) strongly in Y. More precisely, in the case p > 0, some quanti-
tative error estimates can be obtained.

Lemma 4.3 (Error for p > 0). Let p >0, v > 0 be given and (u,z) and (up, zp)
solve (4.1) and (4.5), respectively. Moreover, let

(h,v —pp1(v,w)) =0 forall (v,w) €Y’ and h>0. (4.6)
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Then, there exists a positive constant ¢ depending on p, ¢y, o, Cp, and C such
that

lu = unlln o) + 112 = 2nll72qmsxsy + ¥112 = 20l s,
< e (1P = w3 sy + 17 = Znll s )
e (116 = Gl sy + 112 = Phalv, 2) @ ) - (4.7)
Let us comment that (4.6) turns out to be fulfilled in the frame of conforming finite

elements. Considering for simplicity the case where pj ; does not depend on w, a
fairly usual choice for ¢, is

{lh,v) = (L;pia(v)) Vv el,

whence (4.6) follows.

Proof. The estimate follows by carefully reconsidering the continuous dependence
proof of Lemma 4.2 and exploiting Galerkin’s orthogonality (2.6). Indeed, making
use of Lemma 4.1, one obtains for v = u —u”" and v, = uj, — up™,

2 2 2
O‘HE(U - Uh)”LZ(Q;R'O;;I%) + Oé”Z - ZhHLz(Q;R?;;S) + OU/HZ - ZhHHl(Q;R?éf)

< Ay (v, zn) + G,o(2n) + /Q Cle(vy) — z1) 1 €(uP™) +D(2z, — 2) — (L, v, — V)

—A,(v,2) = G,(2) — /QC(E(U) —2) :e(uP") = D(z —72) (4.8)

where we have denoted by G, : L*(Q,R%?) — [0, +0oc] the convex functional

Gol2) = Fylz) = C2||Z||2L2(Q,Ri§v3)'

Moreover, arguing exactly as in Lemma 4.2 and defining (0, 2) := p}/(v, 2), we readily
check that

0< A (5,2) +G)(2) + /Q@(e(f;) S 5) o) £ D(E — Zn) — (O, T — v)

—.Al,(vh, Zh) — gp(Zh) — / C(&(Uh) — Zh) : €(u5ir) — D(Zh — Eh). (49)

Q

Taking the sum of the latter inequalities and exploiting (2.7), (4.6), and (u}™,0) €
Yy, we easily check that

O‘HE(U - Uh)”i%g;[g%;g) + O./”Z - Zh”i%g;[@?éf) + OU/HZ - Zh”?{l(g;[g'ﬁf)
< / Cle(vy —v) — (2 — 2)) : e(uP" —up™) +2D(Z — 7))
Q
(= lh,v = vn) +G,(2) = G,(2) + D(z = 2),

and the assertion follows. O
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We shall now turn to some (necessarily weaker) quantitative convergence estimate
for the specific case p = 0.

Lemma 4.4 (Convergence for p = 0). Under the assumptions of Lemma 4.3, let
p = 0. Moreover, let (0,2) := ph(u—uP" 2) and (0,2) = (qn(u — u"),r%(w)).
Then, there exists a positive constant ¢ depending on ¢ and the same constant of
(4.7) such that

lu — uh”%ﬂ(ﬂ;ﬂ@) + 1z - Zh“iﬂ(g;[@%if) + vz - Zh||§{1(Q;R3d§V3)

<c <||uDir_UEir||§{1(Q;R3X3)+||§_Eh||L1(Q;]R3;l§3)+||£_€h||%Hl(Q;R3))’+||Z_2||L1(Q;]R3X3)>

+e (Au(ﬁ, 2) Sy_mA,,(f:, Z)+ /Q@(g(@ o (a3 e(ugir)) fer

+e <<£h, T—0)+ |2 — 2||L1(Q;R3dxeg)) . (4.10)

Since of course pp(v,w) — (gn(v),r}(w)) strongly converges to zero in )", esti-
mate (4.10) proves in particular that, assuming (4.4), the strong convergence of the
approximations holds.

Proof. This proof follows the same lines of Lemma 4.3. We shall however replace
(4.9) as follows.

0< Ay(6,2) + a2l s g, + / Cle(d) = 2) : e(ul™) + D(2 = 2) — (b, — v3)
v Q
—Aufon, ) = el — [ €)= 2) (W) — Dl = 31),
Q

and again take its sum with (4.8). In order to reduce to the situation of Lemma 4.3
one needs to simply add and subtract the term Z in most of the occurrences of 2.
This procedure of course produces the extra residual terms that appear in the last
two lines of (4.10). O

5 The incremental problem.

We shall prepare here some material in the direction of the full time-stepping
procedure. To this aim, we assume to be given a partition P := {0 = ¢, <
ty < -+ < ty-1 < ty = T} with diameter 7 = max;—;__n(t; — t;—1) and data
[uP}Y, € (HY QRN {6}Y, € (H'(QR)))¥, and (uo, z0) € V*(uf").
Hence, we find iteratively the unique solutions {(u;,z;)}Y, to the problem

(ui,z) € ArgMin (W, ,(u,2) — (l;,u) + D(z — z-1)) for i=1,...,N.

(u,2) €YY (u™™)

(5.11)
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We shall denote by (u, z) the incremental solution which interpolates right-continuously
the values (u;, z;) on the partition P. Hence, the following a priori estimate holds
true.

Lemma 5.1 (A priori bounds). Let p, v > 0. Then there exists a positive constant
¢ depending on o, W, (uo, 20), (Lo, ug), and ST, [0 — €; Ul rsyy such that

W, . (u, z) + Dissp(z, [0,T]) < c. (5.12)

Proof. From the minimality of (u;, z;) in (5.11) one has that

W, (i, 2i) — (Ui, wi) + D(2 — 2-1)
<W, (Wi, zic1) — (Cica, wim1) — (G — Gy, ui—q).

Taking the sum in the latter relation for ¢ =1,...,m, m < N, one has that

W, (U Zm) — (L, Uim) +ZD —Zi 1)
i=1

m
SWpJ/(uO)ZO) fo,’do Z - z 1, Ui— 1>

i=1

and the assertion follows from the uniform convexity of W,, and the Gronwall
lemma. O

Let us collect here some remark on the incremental problem (5.11) in the space
discretized situation. To this aim we shall refer to the notation introduced in Sec-
tion 2 and assume to be given, for all h > 0, suitable data {ul}I¥, € (Uy)" ',
{lin}ilo € (HY(Q;R?))NFL, and (ugp, 20,4) such that (uon — ugy, zon) € Vi
Hence, by solving iteratively the minimum problem, we define the right-continuous
piecewise constant incremental solutions (up, 2).

First of all, one should notice that the a priori bound of Lemma 5.1 holds for (uy, z)
as well (of course the dependences of the constant are referred to the approximating
data). Secondly, we are in the position of obtaining for (us,z,) the same contin-
uous dependence as in Lemma 4.2. This fact entails the convergence of the space
approximated incremental problem in N steps to the corresponding limit. In par-
ticular, employing Lemma 4.3 or 4.4, respectively, and performing an induction over
t=1,..., N, we have the following result.

Lemma 5.2 (Convergence for N steps as h — 0). Under the above assumptions,

let the parameters p,v > 0, N € N be fived and assume that u?}f — ul’" in

HY (O R3), iy — 4 in (Hl(Q,R3)) . and (uon, 200) — (uo, 20) in H'Y(Q; R3)
LY R23) as h — 0. Then, we have that u;j, — u; in H(;R3) as well, for all

dev

1=1,...,N.

Indeed, we would be in the position of stating a more precise quantitative bound for
the error maxi<j<n ||t; — Uip||gr(@rs) in terms of data. This bound will however
deteriorate and eventually explode as N — +o0.
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6 The evolution problem

We shall finally turn to the study of the time-continuous problem. In particular, we
are interested in energetic solutions to (1.5)-(1.9) along with the above prescribed
boundary displacement and boundary traction conditions. Namely, our solutions
will be functions t — (u(t), z(t)) € Y*(uP*(t)) such that t — ((t),u(t)) is inte-
grable and, for all ¢ € [0, 77,

(u(t), 2(t)) € L (u, 2) € Y*(uP"(t)) such that, (@, z) € Y"(uP(t)),
W (1, 2)— (0(t), u) < pr(ﬂ,i)—(ﬁ(t),ﬂ>+D(z—E)}, (6.1)
W (u(t), 2(t)) — (£(t), u(t)) + Dissp(z, [0,])
= W, (u(0), 2(0)) — (£(0),(0)) —/0t<f(8),U(S)>d8- (6.2)

Following the argument of Section 3, we are in the position of proving the equivalence
of the two formulations (1.5)-(1.9) and (6.1)-(6.2) as soon as the above mentioned
boundary condition (plus an extra homogeneous Neumann type condition for z
when v > 0) are considered and the solutions are assumed to be at least absolutely
continuous. The latter is of course a quite natural regularity requirement and we
will readily recover it in our framework.

The main issue of this section is to fix ¥ > 0 and exploit the analysis of [42, 41]
in order to obtain some existence, uniqueness, and convergence of approximations
result. Apart from infinite dimensions, the arguments involved here are quite close
to those of Section 3. Owing to this consideration, we will mainly sketch the proofs of
the forthcoming results by heavily referring to the corresponding material in Section
3.

An equivalent problem. It is convenient to introduce yet another equivalent
formulation of problem (6.1)-(6.2) by replacing the variable u by v = u — uP™.
The main advantage of this change of variables is that the energetic formulation for
(v,z) takes values in the fixed phase space Y§ := Y”(0). Indeed, in the same spirit
of Lemma 4.1, one readily computes that

W1 2) =) = W0, 20+ | Clel)=2) : eu) = (o)) =, ™)
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Hence, one checks that (u,z) is an energetic solution if and only if (v,2) : ¢ +— V¥
is such that, for all ¢ € [0, T,

uw%w»eaﬂ:{m@eygmmﬂm,w@ae%g

Wou(v,2) = (L(t), (v, 2)) <W,.,(v,Z) = (L), (E?)>+D(z—?)>}, (6.3)

( )
Wow(0(t), 2(8)) = (L(2), (v(t), 2(t))) + g(t) + Dissp(z, [0, ¢])
v(0),2(0)) = (L(0), (v(0), 2(0))) + ¢(0)

t

(of
- [t oy as = [ . (o) as (6.4)

0

where we have denoted by L :[0,7] — ()§)’ the functional

@@ﬁm»:—ACMM—@wMWm+M@m>Wudexwenﬂ.

/

Here (-,-) is used for the duality pairing between ())})
the function ¢ :[0,7] — R is defined as

and ), as well. Moreover,

q(t) = C(u"(t)) — (€(t),u"" (1)) ¥t € [0,T].

We shall explicitly observe that uP*e W11 (0,T;H (;R3)) and £e WL (0,T;(H (Q,R?)))
entail that L € WH(0,7T;()y)") and g € WH1(0,T).

From now on, we will focus on problem (6.3)-(6.4) and leave to the reader the
straightforward interpretation of the forthcoming results for our original variable wu.
Let us start from the following existence result.

Theorem 6.1 (Existence for v > 0). Let v > 0 and p > 0. Given L €
W0, T;(Y7(0))), q € WH(0,T), and (v, 29) € S(0), there exists an energetic
solution (v,z) to (6.3)-(6.4) such that (v(0),2(0)) = (vo, 20). Moreover (v,z) €
WEH0,T; V).

We shall not provide here a full proof of this result. Indeed, it suffices to suitably
adapt the machinery of Lemma 3.2 to the situation of (6.3)-(6.4). In particular,
we argue again by discretizing the problem on a sequence of partitions P" with
diameter going to zero. The corresponding incremental problems

(vi, ;) € ArgMin (W, (v, z) — (L(t}),u) + D(z — z];)) for i=1,...,N", (6.5)
(v,2)€V§

will turn out to be solvable by means of the results of Section 4. Namely, we can
introduce some right-continuous and piecewise constant interpolant (v™,2™) of the
discrete solution on the partition P". Moreover, we exploit Lemma 5.1 which entails
that

sup W, (v"(t),2"(t)) and Varg(2") are bounded independently of n.
te€[0,T
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Indeed, the latter bound depends now on W, ,(vo, 20), ||L|lwt.10.1;0v0))), and
lallwio.)-
As for the limit, we will make use of some extended version of Helly’s principle [27,

Thm. 3.1| and find a (not relabeled) subsequence of partitions and a non-decreasing
function ¢ : [0,7] — [0, +00) such that

2"(t) — z(t) weakly in H'(;R%3) and Dissp(z",[0,t]) — ¢(t) for all t € [0, T],

dev

Dissp(z, [s,t]) < o(t) — o(s) V[s,t] C [0,T].

Indeed, here we have used in a crucial way that v > 0, i.e., the sublevels of W, ,
are compact in L*(Q; R33) x L?(Q; RYSY). Moreover, we have that o"(t) = L£2"(t),
L being linear, and Lz"(t) — Lz(t) = v(t) weakly in H'(;R3) for all t € [0,T],
where (v(t),0) € V.

The set of stable trajectories S := Uycpor)(t,S(t)) is closed with respect to the
weak topology of )”. Namely, letting (g, vg, zx) € S with ¢, — ¢t and (vg, z,) —
(v,2) weakly in ), we readily exploit the lower semicontinuity of W, ,. the weak
continuity of D in H'(;R%*?), and the continuity of L and get that

W (v, 2) + (L(1), (v, 2)) < liminf (W, (vg, 2¢) + (L(t), (0%, 2)))
< lim inf W, (0, 2)+(L(ty), (0,2))+D(2k—2)) = W,,(0,2)+(L(t), (V,2))+D(2—%)

— 400

for all (v,Z) € V§. Namely, (¢t,v,2) € S and the stability condition (6.3) easily
follows. Moreover, the initial condition is fulfilled by construction and the uniform
convexity of W, , along with stability entail that the whole sequence e(v"(t)) ac-
tually converges to e(v(t)).

As for to prove that (v, z) fulfills (6.4) we readily deduce from the above stated
convergences and lower semicontinuity arguments (see (3.14)) that the equivalent of
(3.15) holds. Indeed we have that

W (0™ (1), 2" (t)) = (L(7" (1)), (0" (), 2" (1)) + q(7"(¢)) + Dissp (2", [0, 7" (¢)])
< W (w0, 20) = (L(0), (vo, 20)) + q(0)

[ eeyas [Cioaoe 6o
and we simply pass to the liminf as n — +oo in order to get that
W (00), 2(6)) — (E(2), (0(8),2(6))) + a(t) + Dissp(z, [0.])
Wpalina) (L0 e +(0)~ [ o)t [ ()76 s (67

Moreover, again by stability, one has that W, ,(v"(t),2"(t)) — W,.(v(t), 2(1))
as well (see (3.16)). As a by-product, the above stated weak convergence for
(v™(t),z"(t)) turns out to be actually strong in Y”.
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Exactly as in Theorem 3.2, the absolute continuity of (v, z) follows at once from
that of L and ¢, relation (6.7), the uniform convexity of W, ,, and stability (6.3). In
particular, we are in the position of reproducing the same argument as in (3.19) and,
exploiting once more stability and the continuity of data, obtain the upper energy
estimate as well. Namely, one has that ¢(t) = Dissp(z, [0,t]) for all ¢ € [0,T]. The
existence proof is hence complete.

Again, energetic solutions corresponding to Lipschitz continuous data turn out to
be Lipschitz continuous as well.

Lemma 6.2 (Lipschitz continuity). Under the assumptions of Theorem 6.1, when-
ever L € WH(0,T;(Vy)) and g € Wh=(0,T), we have (g,z) € Wh(0,T; Vy).

Existence by smoothness. The above sketched existence proof exploits in a
crucial way the compactness of the sublevels of W, , for v > 0 in the weak topology
of HY(Q;R3) x HY(Q;R%?) and works for any p > 0. An alternative approach to
existence of solutions of the energetic formulation is however available in the smooth
situation p > 0 by means of the construction of [41, Sec. 7|, for instance. A possible
advantage of this perspective is that of gaining explicit convergence rates. We shall

address this issue elsewhere.

In the above mentioned smooth situation p > 0 no compactness is assumed for
energy-bounded states but the energy functional W,, : YV — [0, +00) is required to
be C?%1 This again forces
v > 0. Namely, given h € C*'(R) with h” € L>(R), one has that the functional
H: L*(Q;R%?) — R defined by

dev

Hu = / h(u(z))dz for u € L*(Q;R%?)
Q
is C*! if and only if h is quadratic (and in this case H € C'*°). On the other hand,
H is C%' on H'(Q;R%:?). This fact entails that W,, is C*! on Y” if and only
it v > 0.

Continuous dependence. We are in the position of reproducing the continuous
dependence result of Section 3 in the present framework and for p, v > 0. Once
again continuous dependence relies on uniform convexity and C%! continuity of the
energy functional. In particular, the assumption v > 0, which of course plays no
role in Lemma 3.4, is actually needed here (see above).

Properties of the approximations. The time discretization technique described
above has of course some interest in itself. Let us collect for convenience some related
result in the following.

Lemma 6.3. Let v > 0. Under the assumptions of Theorem 6.1, the incremental
solutions (v™,2™) of problem (6.5) for partitions P™ with diameters " going to 0
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are such that, possibly extracting a not relabeled subsequence, for all t € [0,T],

2" — 2 strongly in C([0, T]; H'(Q; R3:3Y),
Dissp(z",[0,t]) — Dissp(z, [0,1]),

v (t) — v(t)  strongly in H'(Q;R?),

W (0"(1), 2" (1)) = Wy (v(t), 2(1)),

for some (v, z) which solves (6.3)-(6.4). As p >0 the whole sequence is convergent
to the unique energetic solution (v,z) and there exists a positive constant c de-

pending on o, [[W,,llc2agpry, (vo,20), [|Lllwiiororoy), and |qllwiaor) such
that

10 = o)D)l @irs) + 12 = 2V Ol o qmesy < (72 V€ [0,T). (6.8)

dev

Full space-time approximations. We conclude this analysis by commenting on
the possibility of performing a full space-time approximation of the problem. To this
aim let us refer to the above introduced notations, consider some approximation
parameter h > 0, and reduce the energetic formulation (6.3)-(6.4) to the spaces
Vi o exhausting ). We shall be considering in particular some discrete values
{(vps, 21t )}y defined inductively from suitable initial data (vao,2n0) € Vi by
letting (vy, 28) = (vn0, 2n0) and solving the following incremental problem

(Vp s 2hs) € ArgMin (W, (v, 2) — (L), u) + D(z — z,_,)) for i=1,... . N"™
(v,z)ey}’io

(6.9)

Again, the unique solvability of the latter problems is ensured by uniform convexity
and lower semicontinuity, i.e., it is independent of h. We will denote as usual by
(vp, zp) the corresponding incremental solutions.

Our first observation is that, arguing exactly as above, whenever the assumptions of
Theorem 6.1 are fulfilled and the initial data are bounded in energy independently
of h, the usual bound

sup W, ,(v;(t), z;(t)) and Dissp(z;,[0,7]) are bounded indep. of n and h,
te[0,7
(6.10)

can be obtained.

Convergence for the space-discretized problem. Assume h > 0. Then, we
are in the position of reproducing the argument of Theorem 6.1 and deduce the
existence of a limiting space-approximated energetic solution (v, z). To this aim,
the restriction v > 0 could even be avoided whenever )} are chosen to be finite
dimensional, for instance. Moreover, the fully discrete solution (v}, z}') converges to
(v, z,) in the sense of Lemma 6.3 as n — +o0o. We shall not give a detailed proof
of these facts but rather limit ourselves in observing that the energetic formulation
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(6.3)-(6.4) can be rewritten in )}, with no intricacy. In particular, estimate (6.10)
is again the starting point for the limit procedure.

Once the energetic solution (v, 2,) : [0,7] — Yy is found (uniqueness again follows
in case p > 0) we are in the condition of considering the limit as h goes to zero
as well. To this aim, we shall assume that the corresponding initial data converge
together with their energies, namely

W (0,0, 2n,0) = (L(0), (va(0), 2(0))) — W, (o, 20) = (L(0), (v0, 20))-

In this case, it is straightforward to check that the bound (6.10) is preserved while
passing to the limit in h. Assuming v > 0, this entails the possibility of extracting
a (not relabeled) subsequence pointwise converging to an energetic solution (v, z) :
[0,7] — )¥. In case p > 0, the latter is indeed the unique energetic solution whose
existence is stated in Theorem 6.1. In order to check this we briefly comment on
relations (6.3)-(6.4). As for (6.3), let us fix ¢t € [0,7] and any (7,%Z) € Y} and
exploit the stability of (vp(t), z4(f)) in order to get that, for all (v,%) € V",

W (un(t), z(t)) = (L(2), (vn(t), z(1)))
S W (0h(0,2)) = (L(8), (7, 2))) + D(2n — P} 2(0, 2)).

Hence, the stability of (v(t),z(t)) follows by passing to the limit in h. As for the
upper energy estimate we fix a uniform partition Q™ := {sgn, 13=0,...,.M : s =

j
jt/m}, exploit the upper energy estimate for (wvy, zp), and get that

Wou (0n(t), 20 () = (L(1), (on(t), 20 (1)) + a(t) + Y D(zn(s]) = zn(s71))

Jj=

1
< W, 0 (Uh0, 2h0) — (L(0), (vn0, 2n0)) + q(0)

- [t ds— [ i)y as

It hence suffices to pass to the limit in h first and then in m in order to get
the upper energy estimate for (v,z). Finally, the lower energy estimate for (v, z)
follows as above from the upper energy estimate, stability, uniform convexity of
W, ., and the continuity of L and ¢. We refer to [39] for a full proof of the above
convergence argument. However, we shall remark that no quantitative estimates for
the approximations are given.

Convergence for the time-discretized problem. Let us consider now the limit
as h goes to 0 first. Owing to Lemma 5.2 we are in the position of establishing a
(quantitative) strong convergence result for the corresponding time discretized solu-
tions (v™, 2"). Indeed, one could exhibit some explicit error control which however
explodes with n. Moreover, in the case v > 0, since (v",z") are uniquely deter-
mined, the subsequent limit in n can be taken exactly as above and the convergence
to an energetic solution (v, z) is ensured.
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Joint convergence. Assume now v > 0. Owing to (6.10) we are of course in
the position of passing to the limit with respect to both n and A simultaneously
in (v}, zp). By arguing as above the stability of the limit (v, z) will follow at once
by using the closedness of & and the convergence of projections. As for the upper
energy estimate, we combine the above exploited techniques and pass to the liminf
in the following relation (see (6.6))

W (i (1), 25 (1) — (L(7" (1)), (vy (1), 21, (1)) + q(7"(¢)) + Dissp(2y, [0, 7"(1)])
< W, (von, z0,n) — (L(0), (von, 204)) + q(0)

() ()
—/0 <€(s),vZ(s)>ds—/0 (0(s),u(s)) ds. (6.11)

Once the upper energy estimate is established, the uniform convexity of W, , the
continuity of L and ¢, and the stability of (v, z) entail that also the lower energy
estimate holds. Namely, (v, z) is an energetic solution to (6.3)-(6.4) and it is unique
as p > 0.

Of course, whenever p > 0 we would be able to show some convergence of order
1/2 in time. On the other hand, by passing to the limit in time we loose the chance
to estimate the error in space (see above). Hence, so far we are not able to provide
an explicit space-time error bound for the joint limit procedure.

7 The limits p,v — 0.

Up to this point, the parameters p and v have been systematically assumed to
be fixed throughout the analysis. The limit ¥ — 0 is however of some interest
since it describes the behavior of the model toward its non-regularized limit. As for
p we have to mention that our modeling choice corresponds to the limit situation
p = 0. On the other hand the smooth situation p > 0 is better suited for numerical
implementation. Moreover, all problems are continuously dependent on data for
p > 0 while energetic evolutions are not known to be unique for p = 0.

In this section we shall discuss the possibility of obtaining suitable asymptotic results
for p and (possibly) v going to zero within the constitutive relation, the minimum
problem, the incremental problem, and the evolution problem. We will explicitly
treat the space approximated case and discuss joint limits of parameters and time
and/or space approximations.

As a general remark, one should notice that the choice p = v = 0 does not affect
the well-posedness of the minimum problems since the uniform convexity of the
corresponding functionals is preserved, this being true also for space approximations.
Secondly, a priori bounds on sequences of solutions (either minimizing, incremental,
or energetic) are usually available independently of the parameters. Whenever the
compactness of sequences of solutions is obtained, the crucial feature in order to
identify the limit of some possibly extracted subsequence is the I'-convergence (see
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below) of the approximating functionals W, (in the zero-dimensional case) and
W, (in three dimensions).

I'-convergence issues. Let us collect here some preliminary remarks on the con-
vergence properties of functions and functionals under consideration. The basic
notion in this direction is of course that of I'-convergence [17, 18]. The reader is
referred to the monographs [3, 11| for a comprehensive discussion. Let us however
recall here that, given a metric space X and functions g,, g : X — (—00, 00|, we
say that ¢, — ¢ in the sense of ['—convergence in X iff

g(x) < liminfgn(arn) Va, — 2 and (7.12)
Vo € X there exists x, — x such that g¢(z) > limsup g,(x,). (7.13)
n—-+00

We shall classically refer to (7.12) as I'-liminf inequality and to x, in (7.13) as
the recovery sequence for x. Moreover, letting X be a Banach space, we say that
gn — ¢ in the sense of Mosco [3] if g, — ¢ in the sense of I'-convergence with
respect to both the strong and weak topology of X.

Let us mention that the issue of the convergence of rate-independent evolution prob-
lems under approximation is indeed a crucial one. A general abstract theory of
[-convergence for rate-independent systems is detailed in [39].

Henceforth, we shall refer to the current choice (2.3) and explicitly ask the function
f to be convex and non-decreasing. This entails in particular that F, — F point-
wise and non-decreasing. The smoothness of F, and the latter convergence entail
by means of |3, Thm. 2.40, p. 198] that F, — F in the sense of I'-convergence in
R®*3 As a consequence and by using [3, Thm. 2.15, p. 138], we have that

dev -

W, — Wy in the sense of I-convergence in R?X} x R*? (7.14)

sym dev

As for the three-dimensional situation, let us start by observing that F, — F in
the sense of I'-convergence with respect to both the strong and the weak topology
in L2(Q;R%?) (namely, F, converges to Fy in the sense of Mosco [3]). This fact
follows at once from |3, Thm. 2.40, p. 198] and the convexity of F,. For all v > 0
fixed, we readily deduce in a quite similar way that F,, converges to Fg, in the
sense of Mosco in H'(Q;R**3). Let us make precise the latter statement with the

dev
following.

Lemma 7.1 (I'-convergence of the inelastic energy). Let pp — p >0 and vy — v >
0 be non-increasing. Then F, . — F,, in the sense of Mosco in HI™ (Q; R3%3).
Proof. The above discussion may be readily extended in order to cover the case
v, — v > 0. Let us turn to the situation ¥ = 0 and 1, > 0 instead. Of course,
the I'—liminf inequality (7.12) easily follows from the I'-convergence F, — F,
and lower semicontinuity considerations. As for the recovery sequence, letting z €
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L2(Q;R%:3) be fixed, we shall define 2z, as the unique solution to the singular

perturbation problem

Zr + Vszk — 2 1in (Hl(Q;R3X3))”

dev
where J: HY(Q;RY3) — (HY(Q; R23)) is the Riesz map. We have that (see, e.g.,
LIONS |26])
2z, — 2 strongly in L*(Q;R%?)  and %/ |V 2| — 0.
Q

Moreover, whenever |z| < ¢3 almost everywhere in €2, the same bound holds for all
zr by the maximum principle. Hence, we readily check that

fpkﬂ/k (Zk) - p,O(Z)

and the assertion follows. O

We shall now turn our attention to the convergence of stored energies and state the
following.

Lemma 7.2 (I'-convergence of the stored energy). Let p, — p >0 and vy, — v >0
be non-increasing. Then W,, ,, — W, , in the sense of Mosco in Y*.

We will not provide the reader with a detailed proof. Of course, the argument can
be easily reproduced by arguing along the lines of the proof of Lemma 7.1.

7.1 Constitutive relation

Let us denote by (e, z2),, the incremental solution to the constitutive relation on
the partition P := {0 = ty) < t; < -+- < ty_1 < ty = T} with diameter 7,
namely the right-continuous piecewise constant interpolant on the time partition of
the solutions {(g}, 2})} to

(e, z) e ArgMin  (W,(e,2) —o(t;) ;e +D(z—2,")) i=1,...,N,

e,2)ER3X3 xR3X3
y

dev

where o € W0, T;REE) and (),2)) = (0, 20) are given. Moreover, for all
p > 0, we will denote by (e, z2),0 a solution for the time-continuous constitutive
relation. Of course we would be in the position of considering approximating data
0,7 and (o, 20),, as well. We limit ourselves to the above situation just for the

sake of simplicity. The main result of this subsection is the following.

Theorem 7.3 (Convergence for the constitutive relation). Let pp, — p > 0 and
T — T > 0 either being constant or converging to 0. Then, possibly up to the
extraction of a subsequence in the case (p,7) = (0,0), we have that

(€,2) (o) — (6:2)pr pointwise in [0, T].
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Indeed much more is true since the convergence of the component z(, ), is uniform
and we have convergences also of energies and dissipations. Moreover, one could
consider the limits pp — p > 0 and/or 7, — 7 > 0 as well (which we however
believe to be less interesting). We limit ourselves to the above statement for the
sake of clarity.

The situation of Theorem 7.3 is described in Figure 1 below where every parameter
choice (p,7) in the p X 7 square gives rise to a solution either of the incremental
problem (for 7 > 0) or the time-continuous problem (7 = 0). Of course this solution
is unique if (p,7) # (0,0). Theorem 7.3 entails that all the depicted limits (arrows)
can be performed.

(0,0) p

Figure 1: Convergences for the constitutive relation

Proof. By referring to Figure 1, we shall proceed by discussing limits of type a, b,
¢, and d.

Limits of type a, namely (p,7)r — (p,0). These limits follow directly from Theorem
3.2.

Limits of type b, namely (p,7) — (0,7) with 7 > 0. Since the time partition
is fixed, the convergence of the whole sequence (e, z2)(,, ) to the corresponding
incremental solution (e, 2)(,- is ensured by the I'-convergence of the corresponding
energy functionals, their equi-coercivity with respect to p, the continuity of R, and
the continuous dependence of the incremental problem for p > 0.

The limit ¢, namely (p,7)r — (0,0). Let us now turn to the joint limit. Again, the
usual energy and dissipation bounds may be obtained and, by suitably choosing not
relabeled subsequences, we find (g,z) : [0,7] — R3S x R%<? such that z(,.), (£) —
z(t) and €, ), (t) — (t) forall t € [0,T]. Asfor to prove the stability of (e(t), z(t))
we simply need to specialize the closure argument in Theorem 3.2 by considering
the parameter dependence on p. Here, the I'—convergence (7.14) is again crucial.

In particular, let us redefine (see (3.1)), for all p > 0,

sym sym

Spy(t) := {(5, z) € RYE x RY? such that, V(5,%) € R¥3 x R¥<3

W,(e,2) —o(t) 1 e < W,(5,Z) — ot) : 5+ D(Z — z)}, (7.15)
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and S, := Usejor)(t, S,(t)). Owing to the I'—convergence (7.14) and the continuity
of o we readily check that, for all (¢,,¢,,2,) € S, such that (¢,,¢,,2,) converges to
(to,€0,20) as p — 0 one has that (tg, €0, 20) € So. As for the upper energy estimate,
we readily pass to the liminf in the discrete upper equality estimate (3.14) by means
of the I'-convergence (7.14) and the fact that W, — W, pointwise. Finally, the full
energy equality follows again from stability.

The limit d, namely (p,0); — (0,0). We shall not discuss this limit in detail since
it follows easily along the lines of limit ¢ above. O

7.2 The minimum problem

We investigate for simplicity the situation of fixed data «P* € H*(;R3), ¢ €
(HY(Q;R?)), and z € L2(;R%?). Of course, some more general situation of
parameter-dependent data could be considered as well (see also the forthcoming
Lemma 7.6). Moreover, let us introduce for the purposes of this section the notation
T,y Y — (—00,+00] as

Z,o(u,z) =W, (u,2) — (l,u) + D(z —2) Y(u,2) €,

for all p, v > 0. Problem (4.1) has a unique solution (u,z),, € Y"(uP") for all
given parameters p, v > 0. Moreover, we readily check that W, ,((u, 2),,) turns
out to be bounded independently of p and v. Hence, (u, z),, is weakly precompact
in Y.

Moreover, we shall consider the space approximated situation described by the mesh-
size h > 0. For the sake of notational simplicity, we reduce ourselves to the over-
simplified situation of data independent of hA. In particular, we assume uP" € U,
for h small enough and define Yy (uP") := Yy ;4 (uP",0). As for the general case,
the following discussion has to be restricted to the situation where convergence (4.4)
holds for the approximating data u})™, ¢, and zj,. Consequently, we will make use
of the notation

Tyun(u,2):=17,,(u,z) for (u,z) €)Yy and + oo otherwise in Y.

We shall start by providing the following convergence result.

Lemma 7.4 (I-convergence of Z,, ). Let pp — p >0, vy — v >0, and h > 0.
Then

Zow — Ly in the sense of Mosco in )", (7.16)
ZLowvih — Lpun in the sense of Mosco in Y. (7.17)

Moreover, let hy — 0. Then

Liowhye = Lpy in the sense of Mosco in Y”. (7.18)
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Proof. The convergence in (7.16) follows directly from Lemma 7.2 and the strong
continuity of D in L?(Q, R%3).

dev

Convergence (7.17) is also straightforward. Namely, the liminf inequality for weakly
converging sequences is immediate and the construction of recovery sequences fol-
lows at once from pointwise convergence (recall that y,? = y; hence no singular
perturbation is needed here).

The full convergence situation of (7.18) deserves some comment. Given any (u, z) €
V¥, we define
(u> Z)(p,u,h)k = (Qhk (u)> TZi (Z))
Owing to the convergence and boundedness properties of the projectors ¢, and
Tt (see Section 1), we readily deduce that (u,2)(un), — (u,2) strongly in Y
and
Wipwmyi (s 2) o)) = W (u, 2).

The liminf inequality follows once again from lower semicontinuity. O

The main result of this subsection concerns the possibility of considering (possibly
joint) limits in the parameters p, v, and h and is graphically represented in Figure
2 below.

: L | L

(0,0,0) p

Figure 2: Convergences for the minimum problem

Theorem 7.5 (Convergence for the minimum problem). Let pp — p > 0, vy —
v >0, and hy — h > 0 either being constant or converging to 0. Then

(U, 2) (prhy — (U, 2)ppn weakly in Y* (Vy if h>0).

This result, whose proof is not reported, follows at once from Lemma 7.4 and the
equi-coercivity and uniform convexity of the functionals. The limits (p,v,h) —
(p,,0) where already discussed in detail in Section 4.

7.3 The incremental problem

We shall extend the latter asymptotics for the minimum problem to the situation
of the incremental problem on the fixed partition P := {0 = t; < t; < -+ <
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ty_1 <ty =T}. To this aim let the data {uPT 3N - {/}N ) and the initial datum
(u®, 2°) be suitably given independently of p and v (for simplicity). Then, for all
p, v > 0 we are entitled to solve the incremental problem and find a solution vector

{(ul .2 ,)} o Now, arguing as above, we easily obtain that W,,(u! ,,z,,) is

bounded independently of p, v, and i. For all given p, v > 0 1=1,...,N, and

z € L2(Q;R%?), we introduce the functionals Ty, (7)Y — (o0, —l—oo] as
Ty, 2,2) = Wy (u, 2) = (€', u) + D(z = %) V(u,2) € V"

Moreover, possibly taking into account the space-approximated situation, one would
need to introduce space approximated data {u)""}N {2 }N  and the initial da-
tum (u), z)). Let us however restrict ourselves to the (over)simplified situation
where the latter can be assumed to be independent of h. For all p, v > 0,
h>0,i=1,....,N, and z € LY(Q;R?3), we shall make use of the functionals

jff,u,h('a 'aE) Y — (_OO, ‘I‘OO] defined as
jpi,u,h(uu 2,Z) 1= jpi,,,(u,z,i) if (u,z) €)Yy and + oo otherwise.

Let us start from the following I'-convergence result.

Lemma 7.6 (I'-convergence of Jp,j n)e Let pp —p>0, vy — v >0, and h > 0.
Moreover, let Z, — Z strongly in L'(Q;R%®). Then, for all i=1,..., N,

dev

Tio o Z) = T, (%) in the sense of Mosco in 3", (7.19)
jﬁikﬂlk,h('7 '>zk) - jpi,l/,h('a 'aE) in the sense Of Mosco in y;j (720)

Moreover, let hy, — 0. Then, for all i=1,..., N,

‘7(ip,v7h)k('7 Zk) — J,,(.Z) in the sense of Mosco in V" (7.21)

We are not reporting here the proof of the latter lemma for the sake of brevity.
Indeed, the argument may be easily adapted from that of Lemma 7.4 by exploiting
the strong continuity of D in L'(€; R%?) its lower semicontinuity in L2(Q; R?*3),
and the triangle inequality (2.4).

By using Lemma 7.6 and denoting by (u,2),, and (u, z),,,, the incremental solu-
tions related to the parameter choice (p,v) and, possibly, the space approximation,
the main result of this subsection reads as follows.

Theorem 7.7 (Convergence for the incremental problem for v > 0). Let v > 0 be
fized and pp — p, and hy — h > 0 either being constant of converging to 0. Then,
for all t €[0,T],

(W(t), 2(8)) pei — (W(t), 2(E))pse strongly in V",
Of course, we would be in the position of considering the case v, — v, pp — p > 0,

and/or hy — h > 0 as well. We however restrict to the above situation for the sake
of clarity.
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Lemma 7.6 entails the convergence of the incremental solutions as soon as the strong
convergence of z, , or z, ,n. in L R%*3) is ensured. In order to obtain the
latter from the boundedness of energy through compactness we are forced once again
to restrict our attention to the case v > 0. The proof of Theorem 7.7 follows then

by simply taking steps in 1.

7.4 The evolution problem

Owing to the latter discussion on the incremental problem (see Lemma 7.6), we shall
restrict ourselves to the situation v > 0 from the very beginning (note that existence
is not known for v = 0). For all p, h > 0, let us denote by (v, z),:[0,7] — )} and
(v,2)pn [0, T] — Vg, the solutions to the corresponding energetic formulations for
h =0 and h > 0 (here and in what follows we have assumed the data L, ¢, and the
initial datum (v°, 2°) to be fixed independently of all approximations). The latter
solutions are known to exists and turn out to be unique for p > 0. Moreover, let
(v,2),- and (v, 2),, denote the unique incremental solutions to the problem on

a given partition with diameter 7.

A variety of convergence results for (v, z),, (v,2)pn, (v, 2),, and (v,2),,, have
already been obtained. This subsection will complement the above discussions and
complete the picture of convergence results for the time-continuous evolution prob-
lem. In particular, as soon as v > 0 is fixed, we are entitled to take (possibly joint)
limits in (p, 7, h) as it is graphically depicted in Figure 3 below.

a
T a a
a
a
b b . dd . o
b b
h d
C d C /

(0,0,0) p !

Figure 3: Convergences for the evolution problem (v > 0)

The main result of this subsection reads as follows.

Theorem 7.8 (Convergence for the evolution problem for v > 0). Let v > 0 be
fized and p, — p, 7 — 7 >0, and hy — h > 0 either being constant of converging
to 0. Then, possibly extracting not-relabeled subsequences if (p,7) = (0,0), for all
t 0,17,

(U(t)’ Z(t))(p;r,h);c - ('U(t)> Z(t))p;r,h stmngly in y(IJ/

Sketch of the proof. Referring to Figure 3, let us start by observing that the limits of
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type a and b were already obtained in Theorem 7.7 and Theorem 6.1, respectively.
Moreover, the limits of type ¢ have been discussed at the end of Section 6.

Limits of type d. This limits can be established by simply adapting to the current
three-dimensional situation the argument of Theorem 7.3. In case h > 0, the latter
adaptation is even simplified by finite-dimensionality and the convergence result
would hold for v =0 as well.

The limit e. By suitably extracting (not-relabeled) subsequences we readily find
(v,2):[0,T] — Y§ such that, for all ¢ € [0,T],

(0(8), 2(0) e — (0(8), 2(8))  weakly in ¥,
Z(prh)(t) — 2(t)  strongly in L2(Q;]R3X3). (7.22)

dev

Hence, we are left to prove that indeed (v, z) is a solution of the evolution problem,
i.e., check for the stability condition (6.1) and the energy equality (6.2).

As for the former, we exploit Lemma 7.2 and, for all (7,%z) € ), by letting (7, 2); :=
(qn,,(©), 77, (%)) we check that

Wou (0(t). 2(1)) — (L(0), (0(2), 2(1))
< timinf (Wyu((0(ta), 2(6)) o) = (LlEn), (00t2), 200 o))

< 111I—I>1i£lof <ka7u((5, Z)k) — (L(tr,), (0, 2)x) + D(Zn — Z(pmh)k)>
= W()’V(@,E) - <L(t)> (67 §)> + 1)(E - Z(t))

where we used some obvious notation for the point ¢, on the time-partition of
diameter 7, such that 0 <t —1t, <7, Lemma 7.2, the stability of (v, 2)(,7n), at
time t,,, and the strong continuity of D in L?(Q;R%<?).

dev
The upper energy estimate (and hence (6.2)) follows by simply passing to the lim inf
as (p,7,h)r — (0,0,0) in the discrete upper energy estimate (6.6).

The limit f. This limit can be obtained along the same lines of limit e above, the
argument being even simplified by the fact that here 7, = 0 and the upper energy
estimate follows by passing to the liminf as (p,h)r — (0,0) in the time-continuous
upper energy estimate (6.7). O
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