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Abstra
tThis note addresses a three-dimensional model for isothermal stress-indu
edtransformation in shape-memory poly
rystalline materials. We treat the prob-lem within the framework of the energeti
 formulation of rate-independentpro
esses and investigate existen
e and 
ontinuous dependen
e issues at boththe 
onstitutive relation and quasi-stati
 evolution level. Moreover, we fo
uson time and spa
e approximation as well as on regularization and parameterasymptoti
s.1 Introdu
tionShape-memory materials are metalli
 alloys showing some surprising thermo-me
han-i
al behavior: severely deformed spe
imens with residual strain up to 15% regaintheir original shape after a thermal 
y
le (shape-memory e�e
t). Moreover, thesame materials are super-elasti
 (also 
alled pseudo-elasti
), namely, they re
over
omparably large deformations during me
hani
al loading-unloading 
y
les at pre-s
ribed temperatures (see, among others, [1, 6, 20, 22, 24, 44, 55℄). These features,whi
h are not present (at least to this extent) in materials traditionally used inengineering, are at the basis of the innovative and 
ommer
ially valuable appli
a-tions of shape-memory materials. Namely, shape-memory te
hnologies are nowadaysexploited in a variety of di�erent appli
ative 
ontexts ranging from sensors and a
-tuators (even mi
ros
opi
al), to roboti
s, to 
lamping and �xation devi
es, to spa
eappli
ations (grippers, positioners), to damping devi
es (sho
k absorption) [54℄. Thelargest 
ommer
ial su

ess of shape-memory materials is however related to biomed-i
al appli
ations. The 
ombination of good bio-
ompatibility and interesting mate-rial properties 
reates unique materials for medi
al tools and devi
es. Nowadays,shape-memory materials are su

essfully used in orthodonti
s (ar
hwires), ortho-pedi
s (bone an
hors, intromedullary �xations, bone staples), medi
al instruments,minimal invasive surgery te
hnology (
atheters, endoguidewires, grippers, 
utters),drug delivery systems, and both intravas
ular (
ardiovas
ular stenting, bron
hialbiliary, aorti
 aneurysm, 
arotid stenosis) and extravas
ular s
a�olding. In parti
u-lar, shape-memory stents are the key tool in order to implement a variety of quitesu

essful non-invasive surgi
al te
hniques [14, 52, 53℄.The present analysis is 
on
erned with the quasi-stati
 evolution of shape-memorymaterials in the small-strain regime. In parti
ular, we shall study a ma
ros
opi
 phe-nomenologi
al model for shape-memory poly
rystalline materials undergoing stress-indu
ed transformations that was originally proposed by Souza et al. [51℄ and1



later addressed and extended by Auri

hio & Petrini [4, 5℄, and Auri

hio etal. [7℄. Our aim is to fo
us on the isothermal situation at suitably high temper-atures in order to 
apture the super-elasti
 material behavior. The understandingand the e�
ient des
ription of the super-elasti
 regime is 
learly of a great appli
a-tive interest. In parti
ular, most of the biomedi
al appli
ations enlisted above arebased on super-elasti
 deployment in situ and/or super-elasti
 kink resistan
e ofshape-memory materials.Let us brie�y re
all here the basi
 features of the proposed model, the interestedreader is of 
ourse referred to the above-mentioned 
ontributions for all the ne
essarymodeling details and motivations as well as for some 
omputations and validation.The formal 
hara
ter of this introdu
tion is intended to serve for the purpose of ageneral overview on the model and our results. In parti
ular, (most of) the mathe-mati
al details are here omitted and will be provided in the forth
oming se
tions.Moving into the frame of Generalized Standard Materials (see Maugin [28℄) andwithin the small-strain regime, we additively de
ompose the linearized deformation
ε = (εij) = (ui,j + uj,i)/2, (u being the displa
ement from a �xed referen
e 
on�gu-ration Ω ⊂ R3) into the elasti
 part εel and the inelasti
 (or transformation) part
z as

ε = εel + z. (1.1)At the mi
ros
opi
 level the super-elasti
 e�e
t is interpreted as the result of astru
tural phase transition between di�erent 
on�gurations of the material latti
es,namely the parent phase (austenite and twinned martensite) and its shared 
oun-terpart termed produ
t phase (detwinned martensite). In parti
ular, the internalvariable z is assumed to be des
riptive of the me
hani
al (tensorial) e�e
t of thedetwinning observed in the material.Denoting by W (ε, z) the stored energy density of the system, the evolution of thematerial will be des
ribed by the following 
lassi
al relations
σ = ∂W/∂ε, (1.2)

−ξ = ∂W/∂z, (1.3)
ż = ∇D∗(ξ). (1.4)Here, ξ denotes the thermodynami
 for
e asso
iated with z and (1.4) is the �owrule for z where D∗ stands for the Legendre 
onjugate of the dissipation density

D (see below).The material 
onstitutive relations (1.2)-(1.4) may be 
onveniently rewritten in thefollowing equivalent subdi�erential formulation
(

0

∂D(ż)

)

+

(

∂εW (ε, z)

∂zW (ε, z)

)

∋

(

σ

0

)

. (1.5)where D stands for the dissipation density and the symbol ∂ denotes subdi�eren-tials in the sense of Convex Analysis (see below).2



The evolution problem (1.5) may be set within the frame of energeti
 formulations ofrate-independent pro
esses re
ently proposed by Mielke et al. [27, 40, 42℄. Thenotion of energeti
 solution (dis
ussed in some detail in the forth
oming Se
tion 2)is based on equivalently re
asting the subdi�erential problem (1.5) as the 
ouplingof a global stability 
ondition and an energy 
onservation relation. In parti
ular,the subdi�erential relation (1.5) is rewritten as(stability) (ε(t), z(t))∈Arg Min
(ε,z)

(

W (ε, z)−σ(t) : ε+D(z−z(t))
)(1.6)(energy equality) W (ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [0, t])

= W (ε0, z0) − σ(0) : ε0 −

∫ t

0

σ̇(s) : ε(s) ds, (1.7)for all t ≥ 0. Here, we assume to be given some suitable initial data (ε0, z0) andthe stress t 7→ σ(t) and denote the total dissipation of the system on [0, t] asDissD(z, [0, t]) := sup

{

N
∑

i=1

D(z(ti)−z(ti−1)) : {0 = t0<t1<. . . < tN−1<tN = t}

}

,where the supremum is taken with respe
t to all �nite partitions of [0, t]. Ener-geti
 formulations were originally developed for shape-memory alloys in Mielke &Theil andMielke et al. [40, 41, 42℄, and have shown to be extremely well-suitedfor a variety of di�erent rate-independent situations. In parti
ular, they have beensu

essfully 
onsidered in 
onne
tion with elasto-plasti
ity [12, 32, 33, 34, 35℄, dam-age [38℄, brittle fra
tures [13℄, delamination [27℄, ferro-ele
tri
ity [43℄, shape-memoryalloys [37, 40, 42℄, and vortex pinning in super
ondu
tors [50℄. The reader is referredto Mielke [36℄ for a 
omprehensive survey of the mathemati
al theory.Let us now introdu
e the pre
ise form of W we will deal with. Namely, we 
hoose
W (ε, z) =

1

2
C(ε − z) : (ε − z) + c1|z| + c2|z|

2 + I(z) +
ν

2
|∇z|2. (1.8)Here, C is the elasti
ity tensor and the positive parameters c1 and c2 are given.Indeed, in [51℄ the 
onstant c1 is assumed to depend expli
itly on the temperatureof the spe
imen while here temperature e�e
ts are negle
ted. On the other hand, c2measures the o

urren
e of some hardening phenomenon with respe
t to the internalvariable z. The fun
tion I is the indi
ator of a �xed 
losed ball of radius c3 > 0.In parti
ular, c3 represents the maximum modulus of transformation strain that
an be obtained by alignment (detwinning) of the martensiti
 variants. Finally, thepositive 
oe�
ient ν is expe
ted to measure some nonlo
al intera
tion e�e
t for theinternal variable z and ∇z stands for the usual gradient with respe
t to to spatialvariables. Indeed, gradients of inelasti
 strains have already been 
onsidered in theframe of shape-memory materials by Frémond [19℄ and the reader is referred alsoto Arndt et al. [2℄, Fried & Gurtin [21℄, Kruºík et al. [25℄, Mielke &Roubí£ek [37℄, Roubí£ek [48, 49℄ for examples and dis
ussions on nonlo
al energy
ontributions of z. 3



The proposed model is 
apable of des
ribing the main features of the super-elasti
evolution of shape-memory materials. In parti
ular, the internal variable tensorial
hara
ter of the model allows for taking into a

ount the so-
alled single-variantmartensite reorientation phenomenon. Namely, also in the 
ase the material is fullytransformed into produ
t phase (i.e. |z| = c3), inelasti
 strain 
hanges 
an still beexperien
ed due to variant reorientation (ż 6= 0). This fa
t is experimentally ob-served and turns out to be 
ru
ial with respe
t to appli
ations. Moreover, whenevernot restri
ted to the isothermal situation, the model turns out the be thermodynam-i
ally 
onsistent in the sense that the Se
ond Law of Thermodynami
s is satis�edin the form of the Clausius-Duhem inequality.As for the full quasi-stati
 evolution of the material we shall 
ouple the 
onstitutiverelation (1.5) with the equilibrium equationdivσ + f = 0 in Ω, (1.9)where f is a given body for
e, suitably 
omplemented with some pres
ribed bound-ary displa
ement and boundary tra
tion in distinguished parts of the boundary of
Ω.The �rst issue of this paper is that of adapting the above referred abstr a
t theoryfor energeti
 formulations to the quasi-stati
 evolution problem and obtain that(Theorem 6.1)(existen
e) the quasi-stati
 problem admits at least one energeti
 solution

t 7→ (u(t), z(t)).We shall be 
on
erned with some spe
i�
 regularization of the original quasi-stati
model. Namely, some smooth variant of the potential W above turns out to bebetter suited for the sake of numeri
al 
onsiderations. In parti
ular, we will 
onsidera regularized version of the model by posing
Wρ(ε, z) =

1

2
C(ε − z) : (ε − z) + Fρ(z) +

ν

2
|∇z|2, (1.10)where Fρ is some regularization of F0 : z 7→ c1|z| + c2|z|

2 + I(z) obtained bypenalization and smoothing and depending on the regularization parameter ρ ≥ 0.This regularization is exa
tly the starting point of Auri

hio & Petrini [4, 5℄,and has been exploited in Auri

hio et al. [7℄ as well (in all these papers ν = 0though).A se
ond fo
us of the present 
ontribution is on unique solvability of the regularizedmodel. In parti
ular, we 
he
k that(uniqueness for ρ > 0) for ρ>0, the quasi-stati
 problem has a unique solution.This uniqueness result was proved in an abstra
t frame byMielke & Theil [40, 41℄and is here re
onsidered in the spe
i�
 situation of the regularized version of thequasi-stati
 problem. 4



A quite natural approa
h to rate-independent evolution problems relies on impli
ittime-dis
retization. This perspe
tive is here investigated and 
omplemented withsome spa
e approximation te
hnique. In parti
ular, the main novelty of this paper isthe 
onvergen
e analysis for the dis
retized-regularized model. Namely, we 
onsiderthe (possibly joint) limits with respe
t to the time-steps τ of time partitions (here
onsidered to be 
onstant for simpli
ity), the spa
e mesh size h (
onforming �niteelements are exploited), and the regularization parameter ρ. In parti
ular, denot-ing by (u, z)ρ,τ,h the unique solution to the spa
e-time dis
rete problem with theparameter-
hoi
e ρ ≥ 0 (time-interpolant, pie
ewise 
onstant on the time-partition)and by (u, z)ρ the time-
ontinuous solution to the problem for ρ ≥ 0, we prove thefollowing (Theorem 7.8)(
onvergen
e for ρ > 0) for ρ>0, (u, z)ρ,τ,h 
onverges to (u, z)ρ as (τ, h) → (0, 0),(full 
onvergen
e) up to a subsequen
e, (u, z)ρ,τ,h → (u, z)0as(ρ, τ, h) → (0, 0, 0).Of 
ourse the topologies under whi
h the latter 
onvergen
es hold true will be spe
-i�ed in the forth
oming se
tions.Indeed mu
h more is true and we are in the position of giving a full pi
ture of
onvergen
es for the model subsequently. Moving from Se
tion 2 where the math-emati
al formulation of the problem is presented, we shall organize our results bysu

essively in
reasing 
omplexity. Se
tion 3 addresses the analysis of the 
onstitu-tive relation problem (1.5), namely the zero-dimensional problem. In parti
ular, weprove well-posedness and 
onvergen
e of time-dis
rete approximations. Then, thethree-dimensional minimum problem arising from time-dis
retization is addressedin Se
tion 4 where we also investigate well-posedness and 
onvergen
e of spa
e ap-proximations along with suitable error bounds. Some a priori bounds and a pre-liminary 
onvergen
e result for the in
remental solutions to the problem in 
ase thetime-partition is �xed are dis
ussed in Se
tion 5. Finally, the three-dimensionalquasi-stati
 evolution problem is ta
kled in Se
tion 6 where we provide the abovementioned existen
e, uniqueness, and 
onvergen
e results for the spa
e-time dis-
rete solutions. Finally, Se
tion 7 deals with 
onvergen
e issues with respe
t toparameters and dis
retizations in full generality.2 Mathemati
al formulationTensors. We will denote by R3×3sym the spa
e of symmetri
 3× 3 tensors endowedwith the natural s
alar produ
t a : b := tr(ab) = aijbij (summation 
onvention) andthe 
orresponding norm |a|2 := a : a for all a, b ∈ R
3×3sym. The spa
e R

3×3sym is or-thogonally de
omposed as R3×3sym = R
3×3dev ⊕R 12, where R 12 is the subspa
e spannedby the identity 2-tensor 12 and R

3×3dev is the subspa
e of deviatori
 symmetri
 3×3tensors. In parti
ular, for all a ∈ R3×3sym, we have that a = adev + tr(a)12/3. Forall u ∈ H1lo
(R3; R3) we let ε(u) ∈ L2lo
(R3; R3×3sym) denote the standard symmetri
gradient. 5



Referen
e 
on�guration. We shall assume Ω to be a non-empty, bounded, and
onne
ted open set in R3 with a Lips
hitz 
ontinuous boundary. The spa
e dimen-sion 3 plays essentially no role throughout the analysis and we would be in theposition of reformulating our results in Rd with no parti
ular intri
a
y. We assumethat the boundary ∂Ω is partitioned in two disjoint open sets Γtr and ΓDir with
∂Γtr = ∂ΓDir (in ∂Ω). We ask ΓDir to be su
h that there exists a positive 
onstant
c0 depending on ΓDir and Ω su
h that the Korn inequality

c0‖u‖
2
H1(Ω;R3) ≤ ‖u‖2

L2(ΓDir;R3) + ‖ε(u)‖2
L2(Ω;R3×3sym)

, (2.1)holds true for all u ∈ H1(Ω; R3). It would indeed su�
e to impose ΓDir to have apositive surfa
e measure (see, e.g., [15, Thm. 3.1, p. 110℄).Pres
ribed boundary displa
ement. We will pres
ribe some non-homogeneousDiri
hlet boundary 
onditions on ΓDir. To this end, we will assign uDir ∈ C1([0, T ];
H1/2(ΓDir, R3)) or, equivalently, uDir ∈ C1([0, T ]; H1(Ω, R3)) whose tra
e on ΓDir isthe pres
ribed boundary value for the displa
ement u. On Γtr some time-dependenttra
tion will be pres
ribed instead.Elasti
 energy. Let C be the elasti
ity tensor. The latter is regarded as a sym-metri
 positive de�nite linear map C : R3×3sym → R3×3sym. We shall assume that theorthogonal subspa
es R

3×3dev and R 12 are invariant under C. This amounts to saythat indeed
Ca = Cdevadev + κ tr(a)12,for a given Cdev : R

3×3dev → R
3×3dev and a 
onstant κ, and all a ∈ R3×3sym. The 
aseof isotropi
 materials is given by Cdev = 2G(14 − 12 ⊗ 12/3) and G and κ arerespe
tively the shear and the bulk moduli. The latter de
omposition is not exploitedin our analysis but it is 
learly suggested by the me
hani
al appli
ation.We will make use of the stored elasti
 energy fun
tional C : L2(Ω; R3×3sym) → [0, +∞)de�ned as
C(a) :=

1

2

∫

Ω

C(a) : a dx.Inelasti
 energy. As for the stored inelasti
 (or transformation) energy we shallpres
ribe the fun
tion F : R
3×3dev → [0, +∞] as

F (a) = c1|a| + c2|a|
2 + I(a),where I : R

3×3dev → [0, +∞] is the indi
ator fun
tion of the ball {a ∈ R
3×3dev :

|a| ≤ c3} and the positive 
onstants c1, c2, and c3 are given. Moreover, the storedinelasti
 energy fun
tional is de�ned as F : L2(Ω; R3×3dev) → [0, +∞] as
F(a) :=

∫

Ω

F (a) dx if F (a) ∈ L1(Ω) and F(a) = +∞ otherwise.6



The well-posedness and time dis
retization issues dis
ussed here do not rely on theparti
ular form of F and 
ould be adapted to any uniformly 
onvex, proper, andlower semi
ontinuous fun
tion. We however prefer to sti
k to the a
tual modeling
hoi
e for the sake of 
larity. In the forth
oming of the paper we will address somesuitable regularization of F . Indeed, we introdu
e an approximation parameter
ρ ≥ 0 and some fun
tions

Fρ ∈ C2,1(R3×3dev) with ∇Fρ bounded, ∇2Fρ ≥ c214, and Fρ(0) = 0, (2.2)and de�ne F0 := F . An example in the dire
tion of (2.2) is
Fρ(a) := c1(

√

ρ2 + |a|2 − ρ) + c2|a|
2 + ϕ(|a|)/ρfor ϕ ∈ C2,1(R), ϕ′ ∈ L∞(R), ϕ′′ ≥ 0, ϕ(r) = 0 i� r ≤ c3. (2.3)Exa
tly as above, for all ρ ≥ 0 we let the regularized stored inelasti
 energy fun
-tional Fρ : L2(Ω; R3×3dev) → [0, +∞) be de�ned as

Fρ(a) :=

∫

Ω

Fρ(a) dx,and F0 := F . Finally, we shall be 
onsidering also some spa
e-regularized situation.To this end, let ρ, ν ≥ 0 and de�ne Fρ,ν : L2(Ω; R3×3dev) → [0, +∞] as
Fρ,ν(a) :=

∫

Ω

(

Fρ(a) +
ν

2
|∇a|2

)

dx,where (∇a)ijk = ∂aij/∂xk is the usual gradient in the distributional sense and | · |denotes here the Eu
lidean norm.Stored energy. Following the above introdu
tory dis
ussion, we de�ne the stored(Helmholtz free) energy fun
tional for ρ, ν ≥ 0 as
Wρ,ν(u, z) := C(ε(u) − z) + Fρ,ν(z).Load and tra
tion. We assume to be given the body for
e f ∈ W 1,1(0, T ; L2(Ω; R3))and a surfa
e tra
tion g ∈ W 1,1(0, T ; L2(Γtr; R3)). In parti
ular, one 
an de�ne thetotal load ℓ ∈ W 1,1(0, T ; (H1(Ω; R3))′) (the prime denotes here the dual) as

〈ℓ(t), u〉 :=

∫

Ω

f · u dx +

∫

Γtr g · u dH2 ∀u ∈ H1(Ω; R3), t ∈ [0, T ],where H2 is the 2-dimensional Hausdor� measure and 〈·, ·〉 denotes the dualitypairing between (H1(Ω; R3))′ and H1(Ω; R3).
7



State spa
e. We set our problem by letting
Yν = U × Zν := H1(Ω, R3) × Hj(ν)(Ω; R3×3dev).Here j(ν) = 0 for ν = 0 and j(ν) = 1 otherwise. For all u ∈ H1(Ω; R3), let usde�ne Yν(u) ⊂ Yν as
Yν(u) := {(u, z) ∈ Yν : u = u on ΓDir},Then, for all t ∈ [0, T ], we shall de�ne the phase spa
e of the pro
ess as Yν(uDir(t)).For the sake of later purposes (see also (1.8)) let us denote by Wρ : R3×3sym ×R

3×3dev →
[0, +∞) the fun
tion

Wρ(ε, z) :=
1

2
C(ε − z) : (ε − z) + Fρ(z),by Aν : Yν → [0,∞) the quadrati
 form

Aν(u, z) := C(ε(u) − z) + c2

∫

Ω

|z|2dx +
ν

2

∫

Ω

|∇z|2dx ∀(u, z) ∈ Yνand by α > 0 the 
orresponding uniform ellipti
ity 
onstant (depending on C, c2,and ν).Dissipation potential. The quasi-stati
 evolution of the material is des
ribed bymeans of an appropriate dissipation me
hanism, see (1.5). To this aim, we 
hoosethe dissipation (pseudo)-potential D : R
3×3dev → [0, +∞) to be lower semi-
ontinuous,positively 1−homogeneous, and to ful�ll the triangle inequality

D(a) ≤ D(b) + D(c) whenever a = b + c. (2.4)Moreover, we ask for some 
onstant cD > 0 su
h that
cD|a| ≤ D(a) ∀a ∈ R

3×3dev .Under the 
urrent assumptions on D, the latter non-degenera
y 
ondition is indeedequivalent to the fa
t that the set {a : D(a) ≤ 1} is bounded or that D does notvanish ex
ept in 0. Let us stress that D turns out to be 
onvex (see (2.4)) and thatthere exists a se
ond 
onstant CD > 0 su
h that
D(a) ≤ CD|a| ∀a ∈ R

3×3dev .We de�ne the 
orresponding dissipation fun
tional D : L1(Ω; R3×3dev) → [0, +∞) as
D(a) =

∫

Ω

D(a) dx.

8



One shall stress that indeed, sin
e D is obviously positively 1-homogeneous, a rate-independent evolution follows. Moreover, we re
all here that, for all z : [0, T ] →
R

3×3dev , we letDissD(z, [s, t]) := sup

{

N
∑

i=1

D(z(ti)−z(ti−1)) : {s = t0<t1<. . .<tN−1<tN = t}

}

,(2.5)the supremum being 
hosen on the set of all �nite partitions of [s, t] ⊂ [0, T ]. Finallythe analogous notion DissD(z, [s, t]) will be used for fun
tions whi
h take values in
L1(Ω; R3×3dev).State spa
e approximation. Hen
eforth we will be interested in some spa
eapproximation pro
edure. Indeed, we assume to be given a suitable sequen
e ofapproximating 
losed subspa
es Yν

h := Uh×Zν
h ⊂ Yν depending on some parameter

h > 0 whi
h is intended to go to zero in the limit. We shall 
olle
t and 
ommenthere the abstra
t assumptions whi
h will be exploited in the following. Of 
ourse themain appli
ation we have in mind are 
onforming �nite elements on a shape regularand quasi-optimal mesh [8℄ with size h on the polyhedral domain Ω. We will �rstlyask Yν
h to be non-de
reasing and su
h that ∪h>0Y

ν
h is dense in Yν . Moreover, werestri
t from the very beginning to the spe
ial 
ase when Y0

h ≡ Y1
h ⊂ Y1.Now let pν

h : Yν → Yν
h the Galerkin proje
tor 
orresponding to the s
alar produ
tindu
ed by the quadrati
 form Aν . In parti
ular, by introdu
ing the bilinear form

Bν : Yν ×Yν → R de�ned by
Bν

(

(u1, z1), (u2, z2)
)

:=
1

2

∫

Ω

C(ε(u1) − z1) : (ε(u2) − z2) + c2

∫

Ω

z1 z2 +
ν

2

∫

Ω

∇z1 · ∇z2for (u1, z1), (u2, z2) ∈ Yν , we have that, for all (u, z) ∈ Yν , the proje
tion pν
h(u, z)may be uniquely determined by

Bν

(

(u, z) − pν
h(u, z), (uh, zh)

)

= 0 ∀(uh, zh) ∈ Yν
h . (2.6)Namely, one has that

Aν(p
ν
h(u, z)) = Bν(p

ν
h(u, z), pν

h(u, z)) ≤ Aν(u, z) ∀(u, z) ∈ Yν . (2.7)Let us expli
itly observe that pν
h is pointwise 
onverging in Yν to the identity as

h → 0.Next, let us introdu
e a pair of operators qh : U → Uh and rν
h : Zν → Zν

h and askthem to be pointwise 
onverging to the identity as h → 0. More spe
i�
ally, we willask for
h → 0, ν → 0 ⇒ rν

h(z) → z ∀z ∈ Zν .Moreover, we require that
z ∈ Z0 and |z| ≤ c3 a.e. in Ω ⇒ |rν

h(z)| ≤ c3 a.e. in Ω, (2.8)9



and that r0
h : Z1 → Z1 maps bounded sets into bounded sets. As for rν

h an exampleof operator ful�lling the assumptions is the 
omponent-wise Clément interpolantfrom L1(Ω; R3×3dev) to the spa
e of pie
ewise linear fun
tions [9℄. In this 
ase, relation(2.8) follows from Jensen's inequality.3 Analysis of the 
onstitutive relationLet us start our analysis by fo
using on the 
onstitutive material relation. Namely,we negle
t for the moment the 
oupling of the material model with the equilibriumproblem (1.9). Assuming to be given a tension history, we solve for the elasti
 andthe inelasti
 strain starting from a given state. The understanding of this simpli�ed(redu
ed) problem will be 
ru
ial. First of all, a detailed study of the 
onstitutiverelation is surely an important step in the dire
tion of the investigation of the fullquasi-stati
 evolution problem. This in espe
ially true with respe
t to numeri
s.Indeed, the e�
ient solution of the 
onstitutive relation is the key ingredient fora full dis
retization pro
edure. Se
ondly, the full equilibrium system might redu
eto a zero-dimensional problem under spe
i�
 yet 
ommon geometri
 restri
tionsor symmetries. Finally, we aim to give in this somehow (notationally) simpli�edsituation the main points of our analysis.Assuming to be given σ : [0, T ] → R3×3sym, we shall determine ε : [0, T ] → R3×3symand z : [0, T ] → R
3×3dev starting from (ε0, z0) and ful�lling (1.5). Of 
ourse, sin
ethe transformation strain z is assumed to be deviatori
 and the elasti
ity tensor

C de
omposes as above, the problem 
ould be easily reformulated in the deviatori
subspa
e R
3×3dev only. We however prefer not to exploit this simpli�
ation for thesake of 
onsisten
y with the forth
oming analysis.Let ρ ≥ 0 be �xed throughout this se
tion. We shall be 
on
erned with the energyfun
tion Wρ(ε, z) − σ(t) : ε whi
h is de�ned for all (t, ε, z) ∈ [0, T ] × R

3×3sym × R
3×3dev .Moreover, let us de�ne the set of stable states at time t ∈ [0, T ] as

S(t) :=
{

(ε, z) ∈ R
3×3sym × R

3×3dev su
h that, ∀(ε, z) ∈ R
3×3sym × R

3×3dev ,
Wρ(ε, z) − σ(t) : ε ≤ Wρ(ε, z) − σ(t) : ε + D(z − z)

}

, (3.1)and S := ∪t∈[0,T ](t, S(t)).As for an energeti
 solution of (1.5) we mean a pair (ε, z) : [0, T ] → R
3×3sym × R

3×3devsu
h that the fun
tion t 7→ σ̇(t) : ε(t) is integrable and, for all t ∈ [0, T ],
(ε(t), z(t)) ∈ S(t), (3.2)
Wρ(ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [0, t])

= Wρ(ε0, z0) − σ(0) : ε0 −

∫ t

0

σ̇(s) : ε(s) ds. (3.3)Let us now 
omment on the equivalen
e between (1.5) and the energeti
 formulation(3.2)-(3.3). To this end we will fo
us for simpli
ity on the smooth 
ase ρ > 0.10



Indeed, the argument for the situation ρ = 0 is just slightly less straightforwardfrom a notational viewpoint. Using the de�nition of the subdi�erential ∂D(ż),relation (1.5) turns out to be equivalent to
(∂εWρ(ε, z) − σ) : (v − ε̇) + ∂zWρ(ε, z) : (w − ż) + D(w) − D(ż) ≥ 0

∀(v, w) ∈ R
3×3sym × R

3×3dev , a.e. in (0, T ). (3.4)Now, by respe
tively 
hoosing (v, w) = (kv, kw) and letting k → +∞ or (v, w) =
(0, 0) in the latter relation we easily get that

(∂εWρ(ε, z) − σ) : v + ∂zWρ(ε, z) : w + D(w) ≥ 0

∀(v, w) ∈ R
3×3sym × R

3×3dev , a.e. in (0, T ), (3.5)
(∂εWρ(ε, z) − σ) : ε̇ + ∂zWρ(ε, z) : ż + D(ż) ≤ 0 a.e. in (0, T ). (3.6)Of 
ourse (3.4) and (3.5)-(3.6) are equivalent. Now, sin
e Wρ is stri
tly 
onvex, wehave that (ε(t), z(t)) is the almost everywhere unique minimizer of

(ε, z) 7→ Wρ(ε, z) − σ : ε + D(z − z(t)).In parti
ular, by assuming ε, z, and σ to be absolutely 
ontinuous (see below), wereadily 
he
k that (3.2) holds. Moreover (3.5)-(3.6) imply that
(∂εWρ(ε, z) − σ) : ε̇ + ∂zWρ(ε, z) : ż + D(ż) = 0 a.e. in (0, T ),whi
h 
an be rewritten as

d

dt

(

Wρ(ε, z) − σ : ε
)

= −σ̇ : ε − D(ż) a.e. in (0, T ).Hen
e, by integrating the latter on (0, t) for t ∈ [0, T ], we readily dedu
e (3.3). Vi
eversa, (3.3) allows us to re
over (3.5)-(3.6) at on
e by di�erentiating and exploiting(3.2).The main advantage of the energeti
 formulation (3.2)-(3.3) is that it does involveneither derivatives of 
onstitutive quantities nor of the solution. It is hen
e par-ti
ularly well-suited for the aim of proving well-posedness results and it simplygeneralizes to possibly non-
onvex situations.The aim of this se
tion is to exploit here the abstra
t existen
e theory for energeti
formulations developed in [16, 27℄ and adapt it to the 
urrent modeling situation.The in
remental problem. In order to �nd an energeti
 solution to (3.2)-(3.3)we shall 
onsider an impli
it time dis
retization pro
edure. At �rst, let us observethat, for all z ∈ R
3×3dev and t ∈ [0, T ], the fun
tion (ε, z) 7→ Wρ(ε, z) − σ(t) :

ε + D(z − z) has a unique minimum sin
e it is uniformly 
onvex and 
oer
ive. Letnow the partition P := {0 = t0 < t1 < · · · < tN−1 < tN = T} be given withdiameter τ = maxi=1,...,N ti − ti−1. Moreover, let (ε0, z0) ∈ S(0) be a given initialdatum. One should 
onsider that, for any given z0 ∈ R
3×3dev , there exists a unique11



ε0 = Lz0, where L = id here, with (ε0, z0) ∈ S(0). Hen
e, we solve iteratively theminimum problem
(εi, zi) ∈ Arg Min

(ε,z)∈R
3×3sym×R

3×3dev (

Wρ(ε, z)−σ(ti) : ε+D(z−zi−1)
) for i = 1, . . . , N. (3.7)We shall refer to the latter as the in
remental problem asso
iated with (3.2)-(3.3).Let us expli
itly observe that, by the triangle inequality, any solution (εi, zi) to(3.7) solves also

(εi, zi) ∈ Arg Min
(ε,z)∈R

3×3sym×R
3×3dev (

Wρ(ε, z) − σ(ti) : ε + D(z − zi)
) for i = 1, . . . , N. (3.8)Error propagation. We shall start by providing a 
ontinuous dependen
e resultfor the single-step minimum problem in (3.7). Referring to the forth
oming time-stepping pro
edure, the following estimate 
an be seen as some error propagation
ontrol.Lemma 3.1 (Continuous dependen
e). Let (σj, zj) ∈ R3×3sym × R

3×3dev j = 1, 2, begiven and (εj , zj) := Arg Min(ε,z)∈R
3×3sym×R

3×3dev (Wρ(ε, z) − σj : ε + D(z − zj)). Then
|ε1 − ε2|2 + |z1 − z2|2 ≤

1

α2
|σ1 − σ2|2 +

4

α
D(z1 − z2). (3.9)Proof. Sin
e (ε1, z1) is minimal and Wρ is uniformly 
onvex of 
onstant α one hasthat

α|ε1 − ε2|2 + α|z1 − z2|2 ≤ Wρ(ε
2, z2) − σ1 : ε2 + D(z2 − z1)

− Wρ(ε
1, z1) + σ1 : ε1 − D(z1 − z1).On the other hand, the minimality of (ε2, z2) entails that

0 ≤ Wρ(ε
1, z1) − σ2 : ε1 + D(z1 − z2) − Wρ(ε

2, z2) + σ2 : ε2 − D(z2 − z2).Taking the sum of the latter relations and exploiting the triangle inequality (2.4)we get that
α|ε1 − ε2|2 + α|z1 − z2|2 ≤ (σ1 − σ2) : (ε1 − ε2) + 2D(z1 − z2),when
e the assertion follows.The evolution problem. We shall now provide the main result of this se
tionwhi
h follows by passing to the limit in the above des
ribed time-dis
rete approxi-mation.Theorem 3.2 (Existen
e for ρ ≥ 0). Given σ ∈ W 1,1(0, T ; R3×3sym) and (ε0, z0) ∈

S(0) there exists an energeti
 solution (ε, z) to (3.2)-(3.3) su
h that (ε(0), z(0)) =
(ε0, z0). Moreover (ε, z) ∈ W 1,1(0, T ; R3×3sym × R

3×3dev).12



Proof. Let us 
hoose a sequen
e of partitions P n := {0 = tn0 < tni < · · · <
tnNn−1 < tnNn = T} with diameters τn = maxi=1,...,Nn(tni − tni−1) going to zero.Owing to the above dis
ussion, we uniquely determine a sequen
e of solutions
{(εn

i , z
n
i )}Nn

i=0 to the 
orresponding in
remental problems (3.7) su
h that (εn
0 , z

n
0 ) =

(ε0, z0). We shall denote by (εn, zn) the in
remental solution, i.e. the right-
ontinuous pie
ewise-
onstant interpolant of {(εn
i , z

n
i )}Nn

i=0 on the partition P n,and by τn, sn : [0, T ] → [0, T ] the fun
tions τn(t) := tni for t ∈ (tni−1, t
n
i ], and

sn(t) := tni−1 for t ∈ [tni−1, t
n
i ), i = 1 . . . , Nn.Sin
e {(εn

i , z
n
i )}Nn

i=0 solves (3.8) with zn
i repla
ing zi, one dire
tly gets that (εn

i , z
n
i ) ∈

S(tni ) for all i = 1, . . . , Nn. Moreover, from (3.7) and the minimality of (εn
i , z

n
i ), we
ompute that

Wρ(ε
n
i , z

n
i ) − σ(tni ) : εn

i − Wρ(ε
n
i−1, z

n
i−1) + σ(tni−1) : εn

i−1

+D(zn
i − zn

i−1) ≤ −(σ(tni ) − σ(tni−1)) : εn
i−1.Next, taking the sum of the latter relation for i = 1, . . . , m and m ≤ Nn, we getthat

Wρ(ε
n
m, zn

m) − σ(tnm) : εn
m − Wρ(ε0, z0) + σ(0) : ε0

+
m

∑

i=1

D(zn
i − zn

i−1) ≤ −

∫ tnm

0

σ̇ : εn ds. (3.10)Hen
e, it su�
es to apply the dis
rete Gronwall lemma and exploit the 
oer
ivityof Wρ in order to 
he
k that
sup

t∈[0,T ]

Wρ(ε
n(t), zn(t)) and DissD(zn, [0, T ]) are bounded independently of n.(3.11)Indeed, the latter bound depends on Wρ(ε0, z0) and ‖σ‖W 1,1(0,T ;R3×3sym) only.In order to pass to the limit with n we exploit Helly's sele
tion prin
iple and �nd a(not relabeled) subsequen
e of partitions and a non-de
reasing fun
tion φ : [0, T ] →

[0, +∞) su
h that
zn(t) → z(t), DissD(zn, [0, t]) → φ(t) for all t ∈ [0, T ], (3.12)and DissD(z, [s, t]) ≤ φ(t) − φ(s) ∀[s, t] ⊂ [0, T ]. (3.13)Consequently, for all t ∈ [0, T ], we readily �nd the unique limit ε(t) = Lz(t) sin
e

εn(t) = Lzn(t) → Lz(t).Next, we 
he
k that S is 
losed. Indeed, let the sequen
e (tk, εk, zk) ∈ S 
onvergeto (t, ε, z) in [0, T ]×R
3×3sym×R

3×3dev . Then, sin
e Wρ is lower semi
ontinuous and σis 
ontinuous, for all (ε, z) ∈ R3×3sym × R
3×3dev ,

Wρ(ε, z) − σ(t) : ε ≤ lim inf
k→+∞

(

Wρ(εk, zk) − σ(tk) : εk

)

≤ lim inf
k→+∞

(

Wρ(ε, z) − σ(tk) : ε + D(z − zk)
)

= Wρ(ε, z) − σ(t) : ε + D(z − z).13



Namely (t, ε, z) ∈ S. We shall exploit the latter 
losure property in order to provethat (ε(t), z(t)) is a stable state. Indeed, re
alling that t ∈ [0, T ] is �xed, one readily
he
ks that the sequen
e τn(t) 
onverges to t and is su
h that (εn(τn(t)), zn(τn(t)))
onverges to (ε(t), z(t)) by de�nition. Hen
e, relation (3.2) follows sin
e (τn(t),
εn(τn(t)), zn(τn(t))) ∈ S. In parti
ular, we have proved that (ε(t), z(t)) solves (see(3.8))

(ε(t), z(t)) ∈ Arg Min
(ε,z)∈R

3×3sym×R
3×3dev (

Wρ(ε, z) − σ(t) : ε + D(z − z(t))
)

.Moreover, by 
onstru
tion, we have (ε(0), z(0)) = (ε0, z0).We are left to prove that indeed (ε, z) ful�lls the energy identity (3.3). Relation(3.10) 
an be rewritten as
Wρ(ε

n(t), zn(t)) − σ(τn(t)) : εn(t) + DissD(zn, [0, τn(t)])

≤ Wρ(ε0, z0) − σ(0) : ε0 −

∫ τn(t)

0

σ̇ : εn ds. (3.14)Hen
e, passing to the lim inf in the latter relation and exploiting on
e again thelower semi
ontinuity of Wρ, the integrability of σ̇, the boundedness of εn (see(3.11)), and (3.13), we readily 
he
k by Lebesgue dominated 
onvergen
e that
Wρ(ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [0, t])

≤ Wρ(ε0, z0) − σ(0) : ε0 −

∫ t

0

σ̇ : ε ds. (3.15)Some more pre
ise 
onvergen
e for the energy 
an be dedu
ed. Indeed, from thestability 
ondition (εn(t), zn(t)) ∈ S(sn(t)), the lower semi
ontinuity of Wρ, andthe 
ontinuity of σ one 
he
ks that
Wρ(ε(t), z(t)) − σ(t) : ε(t) = lim

n→+∞

(

Wρ(ε(t), z(t)) − σ(sn(t)) : ε(t) + D(z(t) − zn(t))
)

≥ lim sup
n→+∞

(

Wρ(ε
n(t), zn(t)) − σ(sn(t)) : εn(t)

)

≥ Wρ(ε(t), z(t)) − σ(t) : ε(t). (3.16)In parti
ular, we have proved that Wρ(ε
n(t), zn(t)) 
onverges to Wρ(ε(t), z(t)).Our next step will be that of proving that (ε, z) is absolutely 
ontinuous. Indeedthis follows at on
e from the stability 
ondition (3.2), the upper energy estimate(3.15), the uniform 
onvexity of Wρ, and the absolute 
ontinuity of σ. Let us �x

[s, t] ⊂ [0, T ]. Owing to (ε(s), z(s)) ∈ S(s) and the uniform 
onvexity of Wρ with
onstant α one readily gets that
α|ε(t) − ε(s)|2 + α|z(t) − z(s)|2

≤ Wρ(ε(t), z(t)) − σ(s) : ε(t) + D(z(t) − z(s)) − Wρ(ε(s), z(s)) + σ(s) : ε(s)

≤ Wρ(ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [s, t])

−Wρ(ε(s), z(s)) + σ(s) : ε(s) − (σ(s) − σ(t)) : ε(t)

≤ −

∫ t

s

σ̇(r) : (ε(r) − ε(t)) dr. 14



Hen
e, by means of Gronwall's lemma, one 
he
ks that
|ε(t) − ε(s)| + |z(t) − z(s)| ≤ c4

∫ t

s

|σ̇|, (3.17)where the positive 
onstant c4 depends just on α. The absolute 
ontinuity of εand z follows.We are now in the position of proving the 
onverse inequality to (3.15), namely, thelower energy estimate. Indeed, for all t ∈ [0, T ],
Wρ(ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [0, t])

≥ Wρ(ε0, z0) − σ(0) : ε0 −

∫ t

0

σ̇ : ε ds. (3.18)Indeed, let suitable partitions Qm = {0 = sm
0 < sm

1 < · · · < sm
Mm−1 < sm

Mm = t}be given su
h that the diameters maxj=1,...,Mm(sm
j − sm

j−1) go to zero. By exploitingagain the stability (ε(sm
j−1), z(sm

j−1)) ∈ S(sm
j−1) for j = 1, . . . , Mm, we obtain that

Wρ(ε(s
m
j ), z(sm

j )) − σ(sm
j ) : ε(sm

j ) + D(z(sm
j ) − z(sm

j−1))

≥ Wρ(ε(s
m
j−1), z(sm

j−1)) − σ(sm
j−1) : ε(sm

j−1) − (σ(sm
j ) − σ(sm

j−1)) : ε(sm
j )We shall take the sum above for j = 1, . . . , Mm and obtain that

Wρ(ε(t), z(t)) − σ(t) : ε(t) + DissD(z, [0, t])

≥ Wρ(ε0, z0) − σ(0) : ε0 −

Mm
∑

j=1

(σ(sm
j ) − σ(sm

j−1)) : ε(sm
j ). (3.19)Then, relation (3.18) follows at on
e from Lebesgue dominated 
onvergen
e sin
e

−
Mm
∑

j=1

(σ(sm
j ) − σ(sm

j−1)) : ε(sm
j ) = −

∫ t

0

(

−

∫

Qm

σ̇ dr

)

(s) : ε(τm(s)) ds,where we used a standard notation for the pie
ewise mean on the partition Qm.In fa
t, ε ◦ τm and −
∫

Qm σ̇ dr 
onverge to ε and σ̇ at least almost everywhere,respe
tively, and ε ◦ τm is uniformly bounded. On
e (3.18) is established, it is astandard matter to 
he
k that indeed DissD(z, [0, t]) = φ(t) for all t ∈ [0, T ].Finally, an early 
onsequen
e of (3.17) entails the following Lips
hitz regularityresult.Corollary 3.3 (Lips
hitz 
ontinuity). Under the assumptions of Theorem 3.2, if
σ ∈ W 1,∞(0, T ; R3×3sym), then we have (ε, z) ∈ W 1,∞(0, T ; R3×3sym × R

3×3dev).We shall 
omplement the above detailed existen
e analysis by providing a lo
alLips
hitz 
ontinuous dependen
e result for the smooth 
ase ρ > 0 (see [41, Thm.7.4℄). 15



Theorem 3.4 (Continuous dependen
e for ρ > 0). Let the assumptions of Theo-rem 3.2 hold ρ > 0, σ1, σ2 ∈ W 1,1(0, T ; R3×3sym), suitably stable initial data (ε0,1, z0,1)and (ε0,2, z0,2) be given and (ε1, z1) and (ε2, z2) be two 
orresponding energeti
 so-lutions to (3.2)-(3.3). Then, there exists a positive 
onstant c depending only on
α, ‖Wρ‖C2,1(R3×3sym×R

3×3dev ), and ‖σi‖W 1,1(0,T ;R3×3sym) for i = 1, 2 su
h that
|(ε1 − ε2)(t)|

2 + |(z1 − z2)(t)|
2

≤ c
(

|ε0,1 − ε0,2|
2 + |z0,1 − z0,2|

2 + ‖σ1 − σ2‖
2
W 1,1(0,t;R3×3sym)

)

∀t ∈ [0, T ]. (3.20)Proof. Let us start by introdu
ing some 
onvenient notation. In parti
ular, let
yi :=

(

εi

zi

)

, ∇Wi :=

(

∂εWρ(εi, zi)

∂zWρ(εi, zi)

)

,

∇2Wi :=

(

∂εεWρ(εi, zi) ∂εzWρ(εi, zi)

∂εzWρ(εi, zi) ∂zzWρ(εi, zi)

) for i = 1, 2.Next, by exploiting the above mentioned equivalen
e between (3.2)-(3.3) and (3.4),one readily 
he
ks that
(∇W1 −∇W2) · (ẏ1 − ẏ2) ≤ (σ1 − σ2) : (ε̇1 − ε̇2) a.e. in (0, T ), (3.21)where of 
ourse · is the s
alar produ
t in R3×3sym × R

3×3dev . Moreover, we shall use
ε := ε1 − ε2, z := z1 − z2 and so on. Within this proof, the symbol c willdenote any positive 
onstant possibly depending on α, ‖Wρ‖C2,1(R3×3sym×R

3×3dev ), and on
‖σi‖W 1,1(0,T ;R3×3sym) for i = 1, 2. Let us de�ne

γ := ∂εW : ε + ∂zW : z ≥ α|ε|2 + α|z|2 = α|y|2,where we also used the uniform 
onvexity of Wρ. Now, by di�erentiating γ withrespe
t to time and exploiting the smoothness of Wρ, one gets that
γ̇ = (∇W1 −∇W2 + ∇2W1y) · ẏ1 − (∇W1 −∇W2 + ∇2W2y) · ẏ2

≤ 2(∇W1 −∇W2) · (ẏ1 − ẏ2)

+ | − ∇W1 + ∇W2 + ∇2W1y| |ẏ1| + | − ∇W2 + ∇W1 −∇2W2y| |ẏ2|

≤ 2σ : ε̇ + c(|ẏ1| + |ẏ2|)|y|
2 a.e. in (0, T ).By 
olle
ting the above 
omputation we 
he
k that, for all t ∈ [0, T ],

γ(t) = γ(0)+

∫ t

0

γ ds≤γ(0)+2σ(t) : ε(t)−2σ(0) : ε0−2

∫ t

0

σ̇ : ε ds+c

∫ t

0

(|ẏ1|+|ẏ2|) γ ds

≤
1

2
γ(t) + c

(

|ε0|
2 + |z0|

2 + |σ(t)|2 + |σ(0)|2 +

∫ t

0

(|ẏ1| + |ẏ2|)γ ds

)

.The assertion follows by Gronwall's lemma.16



Properties of the approximations. The above detailed existen
e proof exploitsa dis
rete 
onstru
tion whi
h is interesting in itself. Let us 
ondense in the followinglemma the above proved results on the dis
rete s
heme. Note that the result is lesssharp for ρ = 0 sin
e we do not know whether the solutions are unique in this 
ase.Lemma 3.5 (Convergen
e). Under the assumptions of Theorem 3.2, the in
remen-tal solutions (εn, zn) of problem (3.7) for partitions P n with diameters τn going tozero are su
h that, possibly extra
ting a not relabeled subsequen
e, for all t ∈ [0, T ],
zn → z uniformly in [0, T ],DissD(zn, [0, t]) → DissD(z, [0, t]),

εn(t) → ε(t),

Wρ(ε
n(t), zn(t)) → Wρ(ε(t), z(t)),for some pair (ε, z) whi
h solves (3.2)-(3.3). As ρ > 0 the whole sequen
e (εn, zn)
onverges.We 
on
lude this se
tion by re
alling from [41℄ (see also [36℄) an a priori errorestimate of order 1/2 for the above dis
ussed dis
rete approximations. The lattererror bound is however restri
ted the smooth situation ρ > 0.Lemma 3.6 (Error). Under the assumptions of Lemma 3.5, let ρ > 0. Thenthere exists a positive 
onstant c depending on α, ‖Wρ‖C2,1(R3×3sym×R

3×3dev ), (ε0, z0), and
‖σ‖W 1,1(0,T ;R3×3sym) su
h that

|(ε − εn)(t)| + |(z − zn)(t)| ≤ c(τn)1/2 ∀t ∈ [0, T ]. (3.22)We shall not provide here a proof of the above lemma. Indeed, in 
ase σ ∈
W 1,∞(0, T ; R3×3sym) it su�
es to rewrite in the 
urrent setting the argument of [36,Thm. 4.3℄. Moreover, the proof 
an be adapted with little additional intri
a
y forthe 
urrent absolutely 
ontinuous 
ase σ ∈ W 1,1(0, T ; R3×3sym) as well.4 In
remental minimization for the boundaryvalue problemIn this se
tion we fo
us on a minimum problem whi
h arises from the time in
re-mental approximation of the quasi-stati
 evolution. Sin
e we are a
tually dealingwith a rate-independent evolution, this minimum problem is of 
ourse the basi
 toolfor understanding the phenomenon. Moreover, the study of the time dis
rete seemsto be heavily addressed by the engineering 
ommunity [23, 29, 30, 31, 45, 46, 47℄.Finally, the time in
remental situation will turn out to be better suited than thetime-
ontinuous one in order to prove 
onvergen
e of spa
e approximations.17



The data of the minimum problem are the 
urrent value z ∈ L2(Ω, R3×3dev) of theinelasti
 strain and the updated values uDir ∈ H1(Ω; R3) of the boundary displa
e-ment and ℓ ∈ (H1(Ω; R3))′ of the total load. We shall be interested in solving thefollowing
(u, z) ∈ Arg Min

(v,w)∈Yν(uDir) (Wρ,ν(v, w) − 〈ℓ, v〉 + D(w − z)
)

. (4.1)The existen
e of minimizers to the latter problem is a straightforward appli
ation ofthe Dire
t Method of the Cal
ulus of Variations [10℄. Indeed, (v, w) 7→ Wρ,ν(v, w)+
D(w − z) − 〈ℓ, v〉 is trivially 
oer
ive and lower semi
ontinuous with respe
t to theweak topology in Yν and Yν(uDir) is 
onvex and 
losed. As far as uniqueness is
on
erned one should observe that Wρ,ν is uniformly 
onvex for all ρ, ν ≥ 0.Let us state here a preliminary lemma whose proof 
an be obtained by means ofstandard 
omputations on the quadrati
 form C.Lemma 4.1 (Change of boundary 
onditions). Let uDir, vDir ∈ H1(Ω; R3), z ∈
L2(Ω, R3×3dev), and ℓ ∈ (H1(Ω; R3))′ be given. Moreover, let (u∗, z∗) ∈ Yν(uDir) solve(4.1) and v∗ = u∗ − uDir + vDir. Then (v∗, z∗) solves
(v∗, z∗) ∈ Arg Min

(v,z)∈Yν(vDir) (Wρ,ν(v, z)+

∫

Ω

C(ε(v)−z) : ε(uDir−vDir)−〈ℓ, v〉+D(z−z)

)

.(4.2)On the other hand let (v∗, z∗) solve (4.2). Then (v∗ − vDir + uDir, z∗) solves (4.1).Problem (4.1) is Hölder 
ontinuously stable with respe
t to perturbations on thedata z, uDir, and ℓ. Indeed, we have the following generalization of Lemma 3.1.Lemma 4.2 (Continuous dependen
e). Let ρ, ν ≥ 0 be �xed and z1, z2 ∈ L2(Ω, R3×3dev),
uDir

1 , uDir
2 ∈ H1(Ω; R3), and ℓ1, ℓ2 ∈ (H1(Ω; R3))′ be given. Moreover, let (ui, zi) ∈

Yν(uDir
i ) solve (4.1) with uDir = uDir

i , z = zi, and ℓ = ℓi for i = 1, 2. Then, thereexists a 
onstant c depending on c0, α, CD, and C su
h that
‖u1 − u2‖

2
H1(Ω;R3) + ‖z1 − z2‖

2
L2(Ω;R3×3dev )

+ ν‖z1 − z2‖
2
H1(Ω;R3×3dev )

≤ c
(

‖uDir
1 − uDir

2 ‖2
H1(Ω;R3) + ‖z1 − z2‖L1(Ω;R3×3dev ) + ‖ℓ1 − ℓ2‖

2
(H1(Ω;R3))′

)

. (4.3)Proof. We simply adapt the argument of Lemma 3.1 Owing to the minimality of
(u1, z1) and the uniform 
onvexity of Wρ,ν we readily dedu
e that, for any (v1, w1) ∈
Yν(uDir

1 ),
α‖ε(u1 − v1)‖

2
L2(Ω;R3×3sym)

+ α‖z1 − w1‖
2
L2(Ω;R3×3dev )

+ αν‖z1 − w1‖
2
H1(Ω;R3×3dev )

≤ Wρ,ν(v1, w1) − 〈ℓ1, v1〉 + D(w1 − z1)

−Wρ,ν(u1, z1) + 〈ℓ1, u1〉 − D(z1 − z1).18



On the other hand, the minimality of (u2, z2) entails that, for all (v2, w2) ∈ Yν(uDir
2 ),

0 ≤ Wρ,ν(v2, w2) − 〈ℓ2, v2〉 + D(w2 − z2) −Wρ,ν(u2, z2) + 〈ℓ2, u2〉 − D(z2 − z2).By 
hoosing (v1, w1) = (u2 − uDir
2 + uDir

1 , z2) and (v2, w2) = (u1 − uDir
1 + uDir

2 , z1)and taking the sum of the 
orresponding inequalities one easily dedu
es that
α‖ε(u1−u2)−ε(uDir

1 −uDir
2 )‖2

L2(Ω;R3×3sym)
+α‖z1−z2‖

2
L2(Ω;R3×3dev )

+αν‖z1−z2‖
2
H1(Ω;R3×3dev )

≤ 2C(ε(uDir
1 − uDir

2 )) −

∫

Ω

C
(

ε(u1 − u2) − (z1 − z2)
)

: ε(uDir
1 − uDir

2 )

+2D(z1 − z2) + 〈ℓ1 − ℓ2, u1 − u2〉 − 〈ℓ1 − ℓ2, u
Dir
1 − uDir

2 〉.Hen
e, we readily �nd a positive 
onstant c depending on α, CD, and C in su
ha way that
‖ε(u1 − u2)‖

2
L2(Ω;R3×3sym)

+ ‖z1 − z2‖
2
L2(Ω;R3×3dev )

+ ν‖z1 − z2‖
2
H1(Ω;R3×3dev )

≤ c
(

‖uDir
1 − uDir

2 ‖2
H1(Ω;R3) + ‖z1 − z2‖L1(Ω;R3×3dev ) + ‖ℓ1 − ℓ2‖

2
(H1(Ω;R3))′

)

.When
e, the assertion follows from Korn's inequality (2.1).Convergen
e of spa
e approximations. Let us now turn our attention to somespa
e approximation pro
edure and re
all the material of Se
tion 2. We denote by
Yν

h,0 the set Yν
h,0 := Yν

h ∩ Yν(0). Given (ũ, z̃) = pν
h(u, z) we shall also denote by

pν
h,1(u, z) := ũ and pν

h,2(u, z) := z̃. For the sake of 
ompleteness, we shall 
onsideralso some approximate situation. Indeed, we ask that for ea
h (uDir, z) ∈ Yν and
ℓ ∈ (H1(Ω; R3))′), there exist (uDir

h , zh) ∈ Yν
h and ℓh ∈ (H1(Ω; R3))′ su
h that

(uDir
h , zh) → (uDir, z) strongly in H1(Ω; R3) × L1(Ω; R3×3dev),and ℓh → ℓ strongly in (H1(Ω; R3))′. (4.4)We shall be 
on
erned with the approximating minimum problem

(uh, zh) ∈ Arg Min
(u−uDir

h
,z)∈Yν

h,0

(

Wρ,ν(u, z) − 〈ℓh, u〉 + D(z − zh)
)

. (4.5)The latter problem is of 
ourse uniquely solvable sin
e (u, z) 7→ Wρ,ν(u, z)−〈ℓh, u〉+
D(z − z) is again uniformly 
onvex, 
oer
ive, and lower semi
ontinuous in Yν

h and
Yν

h,0 is 
onvex and 
losed.Assuming (4.4) and letting (u, z) and (uh, zh) solve the minimum problem (4.1)and (4.5), respe
tively, the main issue of this se
tion is that of proving that (uh, zh)
onverges to (u, z) strongly in Yν . More pre
isely, in the 
ase ρ > 0, some quanti-tative error estimates 
an be obtained.Lemma 4.3 (Error for ρ > 0). Let ρ > 0, ν ≥ 0 be given and (u, z) and (uh, zh)solve (4.1) and (4.5), respe
tively. Moreover, let
〈ℓh, v − pν

h,1(v, w)〉 = 0 for all (v, w) ∈ Yν and h > 0. (4.6)19



Then, there exists a positive 
onstant c depending on ρ, c0, α, CD, and C su
hthat
‖u − uh‖

2
H1(Ω;R3) + ‖z − zh‖

2
L2(Ω;R3×3dev )

+ ν‖z − zh‖
2
H1(Ω;R3×3dev )

≤ c
(

‖uDir − uDir
h ‖2

H1(Ω;R3) + ‖z − zh‖L1(Ω;R3×3dev )

)

+c
(

‖ℓ − ℓh‖
2
(H1(Ω;R3))′ + ‖z − pν

h,2(v, z)‖L1(Ω;R3×3dev )

)

. (4.7)Let us 
omment that (4.6) turns out to be ful�lled in the frame of 
onforming �niteelements. Considering for simpli
ity the 
ase where pν
h,1 does not depend on w, afairly usual 
hoi
e for ℓh is

〈ℓh, v〉 := 〈ℓ, pν
h,1(v)〉 ∀v ∈ U ,when
e (4.6) follows.Proof. The estimate follows by 
arefully re
onsidering the 
ontinuous dependen
eproof of Lemma 4.2 and exploiting Galerkin's orthogonality (2.6). Indeed, makinguse of Lemma 4.1, one obtains for v = u − uDir and vh = uh − uDir

h ,
α‖ε(v − vh)‖

2
L2(Ω;R3×3sym)

+ α‖z − zh‖
2
L2(Ω;R3×3dev )

+ αν‖z − zh‖
2
H1(Ω;R3×3dev )

≤ Aν(vh, zh) + Gρ(zh) +

∫

Ω

C(ε(vh) − zh) : ε(uDir) + D(zh − z) − 〈ℓ, vh − v〉

−Aν(v, z) − Gρ(z) −

∫

Ω

C(ε(v) − z) : ε(uDir) −D(z − z) (4.8)where we have denoted by Gρ : L2(Ω, R3×3dev) → [0, +∞] the 
onvex fun
tional
Gρ(z) := Fρ(z) − c2‖z‖

2
L2(Ω,R3×3dev )

.Moreover, arguing exa
tly as in Lemma 4.2 and de�ning (ṽ, z̃) := pν
h(v, z), we readily
he
k that

0 ≤ Aν(ṽ, z̃) + Gρ(z̃) +

∫

Ω

C(ε(ṽ) − z̃) : ε(uDir
h ) + D(z̃ − zh) − 〈ℓh, ṽ − vh〉

−Aν(vh, zh) − Gρ(zh) −

∫

Ω

C(ε(vh) − zh) : ε(uDir
h ) −D(zh − zh). (4.9)Taking the sum of the latter inequalities and exploiting (2.7), (4.6), and (uDir

h , 0) ∈
Yν

h , we easily 
he
k that
α‖ε(v − vh)‖

2
L2(Ω;R3×3sym)

+ α‖z − zh‖
2
L2(Ω;R3×3dev )

+ αν‖z − zh‖
2
H1(Ω;R3×3dev )

≤

∫

Ω

C(ε(vh − v) − (zh − z)) : ε(uDir − uDir
h ) + 2D(z − zh)

+〈ℓ − ℓh, v − vh〉 + Gρ(z̃) − Gρ(z) + D(z − z̃),and the assertion follows. 20



We shall now turn to some (ne
essarily weaker) quantitative 
onvergen
e estimatefor the spe
i�
 
ase ρ = 0.Lemma 4.4 (Convergen
e for ρ = 0). Under the assumptions of Lemma 4.3, let
ρ = 0. Moreover, let (ṽ, z̃) := pν

h(u − uDir, z) and (v̂, ẑ) := (qh(u − uDir), rν
h(w)).Then, there exists a positive 
onstant c depending on c1 and the same 
onstant of(4.7) su
h that

‖u − uh‖
2
H1(Ω;R3) + ‖z − zh‖

2
L2(Ω;R3×3dev )

+ ν‖z − zh‖
2
H1(Ω;R3×3dev )

≤ c
(

‖uDir−uDir
h ‖2

H1(Ω;R3×3sym)
+‖z−zh‖L1(Ω;R3×3dev )+‖ℓ−ℓh‖

2
(H1(Ω;R3))′+‖z−z̃‖L1(Ω;R3×3dev )

)

+c

(

Aν(v̂, ẑ) −Aν(ṽ, z̃) +

∫

Ω

C(ε(v̂ − ṽ) − (ẑ − z̃)) : ε(uDir
h )

)

+c
(

〈ℓh, ṽ − v̂〉 + ‖ẑ − z̃‖L1(Ω;R3×3dev )

)

. (4.10)Sin
e of 
ourse ph(v, w) − (qh(v), rν
h(w)) strongly 
onverges to zero in Yν , esti-mate (4.10) proves in parti
ular that, assuming (4.4), the strong 
onvergen
e of theapproximations holds.Proof. This proof follows the same lines of Lemma 4.3. We shall however repla
e(4.9) as follows.

0 ≤ Aν(v̂, ẑ) + c1‖ẑ‖L1(Ω;R3×3dev ) +

∫

Ω

C(ε(v̂) − ẑ) : ε(uDir
h ) + D(ẑ − zh) − 〈ℓh, v̂ − vh〉

−Aν(vh, zh) − c1‖zh‖L1(Ω;R3×3dev ) −

∫

Ω

C(ε(vh) − zh) : ε(uDir
h ) −D(zh − zh),and again take its sum with (4.8). In order to redu
e to the situation of Lemma 4.3one needs to simply add and subtra
t the term z̃ in most of the o

urren
es of ẑ.This pro
edure of 
ourse produ
es the extra residual terms that appear in the lasttwo lines of (4.10).5 The in
remental problem.We shall prepare here some material in the dire
tion of the full time-steppingpro
edure. To this aim, we assume to be given a partition P := {0 = t0 <

t1 < · · · < tN−1 < tN = T} with diameter τ = maxi=1,...,N(ti − ti−1) and data
{uDir

i }N
i=0 ∈ (H1(Ω; R3))N+1, {ℓi}

N
i=0 ∈ ((H1(Ω; R3))′)N+1, and (u0, z0) ∈ Yν(uDir

0 ).Hen
e, we �nd iteratively the unique solutions {(ui, zi)}
N
i=1 to the problem

(ui, zi) ∈ Arg Min
(u,z)∈Yν(uDiri )

(

Wρ,ν(u, z) − 〈ℓi, u〉 + D(z − zi−1)
) for i = 1, . . . , N.(5.11)21



We shall denote by (u, z) the in
remental solution whi
h interpolates right-
ontinuouslythe values (ui, zi) on the partition P . Hen
e, the following a priori estimate holdstrue.Lemma 5.1 (A priori bounds). Let ρ, ν ≥ 0. Then there exists a positive 
onstant
c depending on α, Wρ,ν(u0, z0), 〈ℓ0, u0〉, and ∑N

i=1 ‖ℓi − ℓi−1‖(H1(Ω;R3))′ su
h that
Wρ,ν(u, z) + DissD(z, [0, T ]) ≤ c. (5.12)Proof. From the minimality of (ui, zi) in (5.11) one has that

Wρ,ν(ui, zi) − 〈ℓi, ui〉 + D(zi − zi−1)

≤ Wρ,ν(ui−1, zi−1) − 〈ℓi−1, ui−1〉 − 〈ℓi − ℓi−1, ui−1〉.Taking the sum in the latter relation for i = 1, . . . , m, m ≤ N , one has that
Wρ,ν(um, zm) − 〈ℓm, um〉 +

m
∑

i=1

D(zi − zi−1)

≤ Wρ,ν(u0, z0) − 〈ℓ0, u0〉 −

m
∑

i=1

〈ℓi − ℓi−1, ui−1〉.and the assertion follows from the uniform 
onvexity of Wρ,ν and the Gronwalllemma.Let us 
olle
t here some remark on the in
remental problem (5.11) in the spa
edis
retized situation. To this aim we shall refer to the notation introdu
ed in Se
-tion 2 and assume to be given, for all h > 0, suitable data {uDir
i,h }

N
i=0 ∈ (Uh)

N+1,
{ℓi,h}

N
i=0 ∈ ((H1(Ω; R3))′)N+1, and (u0,h, z0,h) su
h that (u0,h − uDir

0,h , z0,h) ∈ Yν
0,h.Hen
e, by solving iteratively the minimum problem, we de�ne the right-
ontinuouspie
ewise 
onstant in
remental solutions (uh, zh).First of all, one should noti
e that the a priori bound of Lemma 5.1 holds for (uh, zh)as well (of 
ourse the dependen
es of the 
onstant are referred to the approximatingdata). Se
ondly, we are in the position of obtaining for (uh, zh) the same 
ontin-uous dependen
e as in Lemma 4.2. This fa
t entails the 
onvergen
e of the spa
eapproximated in
remental problem in N steps to the 
orresponding limit. In par-ti
ular, employing Lemma 4.3 or 4.4, respe
tively, and performing an indu
tion over

i = 1, . . . , N , we have the following result.Lemma 5.2 (Convergen
e for N steps as h → 0). Under the above assumptions,let the parameters ρ, ν ≥ 0, N ∈ N be �xed and assume that uDir
i,h → uDir

i in
H1(Ω; R3), ℓi,h → ℓi in (H1(Ω; R3))′, and (u0,h, z0,h) → (u0, z0) in H1(Ω; R3) ×
L1(Ω; R3×3dev) as h → 0. Then, we have that ui,h → ui in H1(Ω; R3) as well, for all
i = 1, . . . , N .Indeed, we would be in the position of stating a more pre
ise quantitative bound forthe error max1≤i≤N ‖ui − ui,h‖H1(Ω;R3) in terms of data. This bound will howeverdeteriorate and eventually explode as N → +∞.22



6 The evolution problemWe shall �nally turn to the study of the time-
ontinuous problem. In parti
ular, weare interested in energeti
 solutions to (1.5)-(1.9) along with the above pres
ribedboundary displa
ement and boundary tra
tion 
onditions. Namely, our solutionswill be fun
tions t 7→ (u(t), z(t)) ∈ Yν(uDir(t)) su
h that t 7→ 〈ℓ̇(t), u(t)〉 is inte-grable and, for all t ∈ [0, T ],
(u(t), z(t)) ∈

{

(u, z) ∈ Yν(uDir(t)) su
h that, ∀(u, z) ∈ Yν(uDir(t)),
Wρ,ν(u, z)−〈ℓ(t), u〉 ≤ Wρ,ν(u, z)−〈ℓ(t), u〉+D(z−z)

}

, (6.1)
Wρ,ν(u(t), z(t)) − 〈ℓ(t), u(t)〉 + DissD(z, [0, t])

= Wρ,ν(u(0), z(0)) − 〈ℓ(0), u(0)〉 −

∫ t

0

〈ℓ̇(s), u(s)〉 ds. (6.2)Following the argument of Se
tion 3, we are in the position of proving the equivalen
eof the two formulations (1.5)-(1.9) and (6.1)-(6.2) as soon as the above mentionedboundary 
ondition (plus an extra homogeneous Neumann type 
ondition for zwhen ν > 0) are 
onsidered and the solutions are assumed to be at least absolutely
ontinuous. The latter is of 
ourse a quite natural regularity requirement and wewill readily re
over it in our framework.The main issue of this se
tion is to �x ν > 0 and exploit the analysis of [42, 41℄in order to obtain some existen
e, uniqueness, and 
onvergen
e of approximationsresult. Apart from in�nite dimensions, the arguments involved here are quite 
loseto those of Se
tion 3. Owing to this 
onsideration, we will mainly sket
h the proofs ofthe forth
oming results by heavily referring to the 
orresponding material in Se
tion3.An equivalent problem. It is 
onvenient to introdu
e yet another equivalentformulation of problem (6.1)-(6.2) by repla
ing the variable u by v = u − uDir.The main advantage of this 
hange of variables is that the energeti
 formulation for
(v, z) takes values in the �xed phase spa
e Yν

0 := Yν(0). Indeed, in the same spiritof Lemma 4.1, one readily 
omputes that
Wρ,ν(u, z)−〈ℓ, u〉 = Wρ,ν(v, z)+

∫

Ω

C(ε(v)−z) : ε(uDir)−〈ℓ, v〉+C(ε(uDir))−〈ℓ, uDir〉.
23



Hen
e, one 
he
ks that (u, z) is an energeti
 solution if and only if (v, z) : t 7→ Yν
0is su
h that, for all t ∈ [0, T ],

(v(t), z(t)) ∈ S(t) :=
{

(v, z) ∈ Yν
0 su
h that, ∀(v, z) ∈ Yν

0 ,

Wρ,ν(v, z) − 〈L(t), (v, z)〉 ≤ Wρ,ν(v, z) − 〈L(t), (v, z)〉 + D(z − z)〉
}

, (6.3)
Wρ,ν(v(t), z(t)) − 〈L(t), (v(t), z(t))〉 + q(t) + DissD(z, [0, t])

= Wρ,ν(v(0), z(0)) − 〈L(0), (v(0), z(0))〉 + q(0)

−

∫ t

0

〈ℓ̇(s), v(s)〉 ds−

∫ t

0

〈ℓ̇(s), uDir(s)〉 ds, (6.4)where we have denoted by L : [0, T ] → (Yν
0 )′ the fun
tional

〈L(t), (v, z)〉 := −

∫

Ω

C(ε(v) − z) : ε(uDir(t)) + 〈ℓ(t), v〉 ∀(v, z) ∈ Yν
0 , t ∈ [0, T ].Here 〈·, ·〉 is used for the duality pairing between (Yν

0 )′ and Yν
0 , as well. Moreover,the fun
tion q : [0, T ] → R is de�ned as

q(t) := C(uDir(t)) − 〈ℓ(t), uDir(t)〉 ∀t ∈ [0, T ].We shall expli
itly observe that uDir∈W 1,1(0,T ;H1(Ω;R3)) and ℓ∈W 1,1(0,T ;(H1(Ω,R3))′)entail that L ∈ W 1,1(0, T ; (Yν
0 )′) and q ∈ W 1,1(0, T ).From now on, we will fo
us on problem (6.3)-(6.4) and leave to the reader thestraightforward interpretation of the forth
oming results for our original variable u.Let us start from the following existen
e result.Theorem 6.1 (Existen
e for ν > 0). Let ν > 0 and ρ ≥ 0. Given L ∈

W 1,1(0, T ; (Yν(0))′), q ∈ W 1,1(0, T ), and (v0, z0) ∈ S(0), there exists an energeti
solution (v, z) to (6.3)-(6.4) su
h that (v(0), z(0)) = (v0, z0). Moreover (v, z) ∈
W 1,1(0, T ;Yν

0 ).We shall not provide here a full proof of this result. Indeed, it su�
es to suitablyadapt the ma
hinery of Lemma 3.2 to the situation of (6.3)-(6.4). In parti
ular,we argue again by dis
retizing the problem on a sequen
e of partitions P n withdiameter going to zero. The 
orresponding in
remental problems
(vi, zi) ∈ Arg Min

(v,z)∈Yν
0

(

Wρ,ν(v, z)− 〈L(tni ), u〉+D(z − zn
i−1)

) for i = 1, . . . , Nn, (6.5)will turn out to be solvable by means of the results of Se
tion 4. Namely, we 
anintrodu
e some right-
ontinuous and pie
ewise 
onstant interpolant (vn, zn) of thedis
rete solution on the partition P n. Moreover, we exploit Lemma 5.1 whi
h entailsthat
sup

t∈[0,T ]

Wρ,ν(v
n(t), zn(t)) and Var[0,T ](z

n) are bounded independently of n.24



Indeed, the latter bound depends now on Wρ,ν(v0, z0), ‖L‖W 1,1(0,T ;(Yν(0)))′), and
‖q‖W 1,1(0,T ).As for the limit, we will make use of some extended version of Helly's prin
iple [27,Thm. 3.1℄ and �nd a (not relabeled) subsequen
e of partitions and a non-de
reasingfun
tion φ : [0, T ] → [0, +∞) su
h that
zn(t) → z(t) weakly in H1(Ω; R3×3dev) and DissD(zn, [0, t]) → φ(t) for all t ∈ [0, T ],DissD(z, [s, t]) ≤ φ(t) − φ(s) ∀[s, t] ⊂ [0, T ].Indeed, here we have used in a 
ru
ial way that ν > 0, i.e., the sublevels of Wρ,νare 
ompa
t in L2(Ω; R3×3sym)×L2(Ω; R3×3dev). Moreover, we have that vn(t) = Lzn(t),
L being linear, and Lzn(t) → Lz(t) = v(t) weakly in H1(Ω; R3) for all t ∈ [0, T ],where (v(t), 0) ∈ Yν

0 .The set of stable traje
tories S := ∪t∈[0,T ](t,S(t)) is 
losed with respe
t to theweak topology of Yν . Namely, letting (tk, vk, zk) ∈ S with tk → t and (vk, zk) →
(v, z) weakly in Yν

0 , we readily exploit the lower semi
ontinuity of Wρ,ν , the weak
ontinuity of D in H1(Ω; R3×3dev), and the 
ontinuity of L and get that
Wρ,ν(v, z) + 〈L(t), (v, z)〉 ≤ lim inf

k→+∞

(

Wρ,ν(vk, zk) + 〈L(tk), (vk, zk)〉
)

≤ lim inf
k→+∞

(

Wρ,ν(v, z)+〈L(tk), (v, z)〉+D(zk−z)
)

= Wρ,ν(v, z)+〈L(t), (v, z)〉+D(z−z)for all (v, z) ∈ Yν
0 . Namely, (t, v, z) ∈ S and the stability 
ondition (6.3) easilyfollows. Moreover, the initial 
ondition is ful�lled by 
onstru
tion and the uniform
onvexity of Wρ,ν along with stability entail that the whole sequen
e ε(vn(t)) a
-tually 
onverges to ε(v(t)).As for to prove that (v, z) ful�lls (6.4) we readily dedu
e from the above stated
onvergen
es and lower semi
ontinuity arguments (see (3.14)) that the equivalent of(3.15) holds. Indeed we have that

Wρ,ν(v
n(t), zn(t)) − 〈L(τn(t)), (vn(t), zn(t))〉 + q(τn(t)) + DissD(zn, [0, τn(t)])

≤ Wρ,ν(v0, z0) − 〈L(0), (v0, z0)〉 + q(0)

−

∫ τn(t)

0

〈ℓ̇(s), vn(s)〉 ds −

∫ τn(t)

0

〈ℓ̇(s), u(s)〉 ds. (6.6)and we simply pass to the lim inf as n → +∞ in order to get that
Wρ,ν(v(t), z(t)) − 〈L(t), (v(t), z(t))〉 + q(t) + DissD(z, [0, t])

≤Wρ,ν(v0,z0)−〈L(0),(v0,z0)〉+q(0)−

∫ t

0

〈ℓ̇(s),v(s)〉ds−

∫ t

0

〈ℓ̇(s),u(s)〉,ds (6.7)Moreover, again by stability, one has that Wρ,ν(v
n(t), zn(t)) → Wρ,ν(v(t), z(t))as well (see (3.16)). As a by-produ
t, the above stated weak 
onvergen
e for

(vn(t), zn(t)) turns out to be a
tually strong in Yν .25



Exa
tly as in Theorem 3.2, the absolute 
ontinuity of (v, z) follows at on
e fromthat of L and q, relation (6.7), the uniform 
onvexity of Wρ,ν , and stability (6.3). Inparti
ular, we are in the position of reprodu
ing the same argument as in (3.19) and,exploiting on
e more stability and the 
ontinuity of data, obtain the upper energyestimate as well. Namely, one has that φ(t) = DissD(z, [0, t]) for all t ∈ [0, T ]. Theexisten
e proof is hen
e 
omplete.Again, energeti
 solutions 
orresponding to Lips
hitz 
ontinuous data turn out tobe Lips
hitz 
ontinuous as well.Lemma 6.2 (Lips
hitz 
ontinuity). Under the assumptions of Theorem 6.1, when-ever L ∈ W 1,∞(0, T ; (Yν
0 )′) and q ∈ W 1,∞(0, T ), we have (ε, z) ∈ W 1,∞(0, T ;Yν

0 ).Existen
e by smoothness. The above sket
hed existen
e proof exploits in a
ru
ial way the 
ompa
tness of the sublevels of Wρ,ν for ν > 0 in the weak topologyof H1(Ω; R3) × H1(Ω; R3×3dev) and works for any ρ > 0. An alternative approa
h toexisten
e of solutions of the energeti
 formulation is however available in the smoothsituation ρ > 0 by means of the 
onstru
tion of [41, Se
. 7℄, for instan
e. A possibleadvantage of this perspe
tive is that of gaining expli
it 
onvergen
e rates. We shalladdress this issue elsewhere.In the above mentioned smooth situation ρ > 0 no 
ompa
tness is assumed forenergy-bounded states but the energy fun
tional Wρ,ν : Yν → [0, +∞) is required tobe C2,1. This again for
es
ν > 0. Namely, given h ∈ C2,1(R) with h′′ ∈ L∞(R), one has that the fun
tional
H : L2(Ω; R3×3dev) → R de�ned by

Hu :=

∫

Ω

h(u(x))dx for u ∈ L2(Ω; R3×3dev)is C2,1 if and only if h is quadrati
 (and in this 
ase H ∈ C∞). On the other hand,
H is C2,1 on H1(Ω; R3×3dev). This fa
t entails that Wρ,ν is C2,1 on Yν if and onlyif ν > 0.Continuous dependen
e. We are in the position of reprodu
ing the 
ontinuousdependen
e result of Se
tion 3 in the present framework and for ρ, ν > 0. On
eagain 
ontinuous dependen
e relies on uniform 
onvexity and C2,1 
ontinuity of theenergy fun
tional. In parti
ular, the assumption ν > 0, whi
h of 
ourse plays norole in Lemma 3.4, is a
tually needed here (see above).Properties of the approximations. The time dis
retization te
hnique des
ribedabove has of 
ourse some interest in itself. Let us 
olle
t for 
onvenien
e some relatedresult in the following.Lemma 6.3. Let ν > 0. Under the assumptions of Theorem 6.1, the in
rementalsolutions (vn, zn) of problem (6.5) for partitions P n with diameters τn going to 026



are su
h that, possibly extra
ting a not relabeled subsequen
e, for all t ∈ [0, T ],
zn → z strongly in C([0, T ]; H1(Ω; R3×3dev)),DissD(zn, [0, t]) → DissD(z, [0, t]),

vn(t) → v(t) strongly in H1(Ω; R3),

Wρ,ν(v
n(t), zn(t)) → Wρ,ν(v(t), z(t)),for some (v, z) whi
h solves (6.3)-(6.4). As ρ > 0 the whole sequen
e is 
onvergentto the unique energeti
 solution (v, z) and there exists a positive 
onstant c de-pending on α, ‖Wρ,ν‖C2,1(Yν
0
;R), (v0, z0), ‖L‖W 1,1(0,T ;(Yν(0))′), and ‖q‖W 1,1(0,T ) su
hthat

‖(v − vn)(t)‖H1(Ω;R3) + ‖(z − zn)(t)‖Hν(Ω;R3×3dev ) ≤ c(τn)1/2 ∀t ∈ [0, T ]. (6.8)Full spa
e-time approximations. We 
on
lude this analysis by 
ommenting onthe possibility of performing a full spa
e-time approximation of the problem. To thisaim let us refer to the above introdu
ed notations, 
onsider some approximationparameter h > 0, and redu
e the energeti
 formulation (6.3)-(6.4) to the spa
es
Yν

h,0 exhausting Yν
0 . We shall be 
onsidering in parti
ular some dis
rete values

{(vn
h,i, z

n
h,i)}

Nn

i=0 de�ned indu
tively from suitable initial data (vh,0, zh,0) ∈ Yν
h,0 byletting (vn

0 , zn
0 ) = (vh,0, zh,0) and solving the following in
remental problem

(vn
h,i, z

n
h,i) ∈ Arg Min

(v,z)∈Yν
h,0

(

Wρ,ν(v, z) − 〈L(tni ), u〉 + D(z − zn
h,i−1)

) for i = 1, . . . , Nn.(6.9)Again, the unique solvability of the latter problems is ensured by uniform 
onvexityand lower semi
ontinuity, i.e., it is independent of h. We will denote as usual by
(vn

h , zn
h) the 
orresponding in
remental solutions.Our �rst observation is that, arguing exa
tly as above, whenever the assumptions ofTheorem 6.1 are ful�lled and the initial data are bounded in energy independentlyof h, the usual bound

sup
t∈[0,T ]

Wρ,ν(v
n
h(t), zn

h(t)) and DissD(zn
h , [0, T ]) are bounded indep. of n and h,(6.10)
an be obtained.Convergen
e for the spa
e-dis
retized problem. Assume h > 0. Then, weare in the position of reprodu
ing the argument of Theorem 6.1 and dedu
e theexisten
e of a limiting spa
e-approximated energeti
 solution (vh, zh). To this aim,the restri
tion ν > 0 
ould even be avoided whenever Yν

h are 
hosen to be �nitedimensional, for instan
e. Moreover, the fully dis
rete solution (vn
h , zn

h) 
onverges to
(vh, zh) in the sense of Lemma 6.3 as n → +∞. We shall not give a detailed proofof these fa
ts but rather limit ourselves in observing that the energeti
 formulation27



(6.3)-(6.4) 
an be rewritten in Yν
h,0 with no intri
a
y. In parti
ular, estimate (6.10)is again the starting point for the limit pro
edure.On
e the energeti
 solution (vh, zh) : [0, T ] → Yν

h,0 is found (uniqueness again followsin 
ase ρ > 0) we are in the 
ondition of 
onsidering the limit as h goes to zeroas well. To this aim, we shall assume that the 
orresponding initial data 
onvergetogether with their energies, namely
Wρ,ν(vh,0, zh,0) − 〈L(0), (vh(0), zh(0))〉 → Wρ,ν(v0, z0) − 〈L(0), (v0, z0)〉.In this 
ase, it is straightforward to 
he
k that the bound (6.10) is preserved whilepassing to the limit in h. Assuming ν > 0, this entails the possibility of extra
tinga (not relabeled) subsequen
e pointwise 
onverging to an energeti
 solution (v, z) :

[0, T ] → Yν
0 . In 
ase ρ > 0, the latter is indeed the unique energeti
 solution whoseexisten
e is stated in Theorem 6.1. In order to 
he
k this we brie�y 
omment onrelations (6.3)-(6.4). As for (6.3), let us �x t ∈ [0, T ] and any (v, z) ∈ Yν

0 andexploit the stability of (vh(t), zh(t)) in order to get that, for all (v, z) ∈ Yν ,
Wρ,ν(vh(t), zh(t)) − 〈L(t), (vh(t), zh(t))〉

≤ Wρ,ν(p
ν
h(v, z)) − 〈L(t), pν

h(v, z))〉 + D(zh − pν
h,2(v, z)).Hen
e, the stability of (v(t), z(t)) follows by passing to the limit in h. As for theupper energy estimate we �x a uniform partition Qm := {sm

j , j = 0, . . . , M : sm
j =

jt/m}, exploit the upper energy estimate for (vh, zh), and get that
Wρ,ν(vh(t), zh(t)) − 〈L(t), (vh(t), zh(t))〉 + q(t) +

m
∑

j=1

D(zh(s
m
j ) − zh(s

m
j−1))

≤ Wρ,ν(vh,0, zh,0) − 〈L(0), (vh,0, zh,0)〉 + q(0)

−

∫ t

0

〈ℓ̇(s), vh(s)〉 ds −

∫ t

0

〈ℓ̇(s), u(s)〉 ds.It hen
e su�
es to pass to the limit in h �rst and then in m in order to getthe upper energy estimate for (v, z). Finally, the lower energy estimate for (v, z)follows as above from the upper energy estimate, stability, uniform 
onvexity of
Wρ,ν , and the 
ontinuity of L and q. We refer to [39℄ for a full proof of the above
onvergen
e argument. However, we shall remark that no quantitative estimates forthe approximations are given.Convergen
e for the time-dis
retized problem. Let us 
onsider now the limitas h goes to 0 �rst. Owing to Lemma 5.2 we are in the position of establishing a(quantitative) strong 
onvergen
e result for the 
orresponding time dis
retized solu-tions (vn, zn). Indeed, one 
ould exhibit some expli
it error 
ontrol whi
h howeverexplodes with n. Moreover, in the 
ase ν > 0, sin
e (vn, zn) are uniquely deter-mined, the subsequent limit in n 
an be taken exa
tly as above and the 
onvergen
eto an energeti
 solution (v, z) is ensured.28



Joint 
onvergen
e. Assume now ν > 0. Owing to (6.10) we are of 
ourse inthe position of passing to the limit with respe
t to both n and h simultaneouslyin (vn
h , zn

h). By arguing as above the stability of the limit (v, z) will follow at on
eby using the 
losedness of S and the 
onvergen
e of proje
tions. As for the upperenergy estimate, we 
ombine the above exploited te
hniques and pass to the lim infin the following relation (see (6.6))
Wρ,ν(v

n
h(t), zn

h(t)) − 〈L(τn(t)), (vn
h(t), zn

h(t))〉 + q(τn(t)) + DissD(zn
h , [0, τn(t)])

≤ Wρ,ν(v0,h, z0,h) − 〈L(0), (v0,h, z0,h)〉 + q(0)

−

∫ τn(t)

0

〈ℓ̇(s), vn
h(s)〉 ds −

∫ τn(t)

0

〈ℓ̇(s), u(s)〉 ds. (6.11)On
e the upper energy estimate is established, the uniform 
onvexity of Wρ,ν the
ontinuity of L and q, and the stability of (v, z) entail that also the lower energyestimate holds. Namely, (v, z) is an energeti
 solution to (6.3)-(6.4) and it is uniqueas ρ > 0.Of 
ourse, whenever ρ > 0 we would be able to show some 
onvergen
e of order
1/2 in time. On the other hand, by passing to the limit in time we loose the 
han
eto estimate the error in spa
e (see above). Hen
e, so far we are not able to providean expli
it spa
e-time error bound for the joint limit pro
edure.7 The limits ρ, ν → 0.Up to this point, the parameters ρ and ν have been systemati
ally assumed tobe �xed throughout the analysis. The limit ν → 0 is however of some interestsin
e it des
ribes the behavior of the model toward its non-regularized limit. As for
ρ we have to mention that our modeling 
hoi
e 
orresponds to the limit situation
ρ = 0 . On the other hand the smooth situation ρ > 0 is better suited for numeri
alimplementation. Moreover, all problems are 
ontinuously dependent on data for
ρ > 0 while energeti
 evolutions are not known to be unique for ρ = 0.In this se
tion we shall dis
uss the possibility of obtaining suitable asymptoti
 resultsfor ρ and (possibly) ν going to zero within the 
onstitutive relation, the minimumproblem, the in
remental problem, and the evolution problem. We will expli
itlytreat the spa
e approximated 
ase and dis
uss joint limits of parameters and timeand/or spa
e approximations.As a general remark, one should noti
e that the 
hoi
e ρ = ν = 0 does not a�e
tthe well-posedness of the minimum problems sin
e the uniform 
onvexity of the
orresponding fun
tionals is preserved, this being true also for spa
e approximations.Se
ondly, a priori bounds on sequen
es of solutions (either minimizing, in
remental,or energeti
) are usually available independently of the parameters. Whenever the
ompa
tness of sequen
es of solutions is obtained, the 
ru
ial feature in order toidentify the limit of some possibly extra
ted subsequen
e is the Γ-
onvergen
e (see29



below) of the approximating fun
tionals Wρ (in the zero-dimensional 
ase) and
Wρ,ν (in three dimensions).
Γ-
onvergen
e issues. Let us 
olle
t here some preliminary remarks on the 
on-vergen
e properties of fun
tions and fun
tionals under 
onsideration. The basi
notion in this dire
tion is of 
ourse that of Γ-
onvergen
e [17, 18℄. The reader isreferred to the monographs [3, 11℄ for a 
omprehensive dis
ussion. Let us howeverre
all here that, given a metri
 spa
e X and fun
tions gn, g : X → (−∞, +∞], wesay that gn → g in the sense of Γ−
onvergen
e in X i�

g(x) ≤ lim inf
n→+∞

gn(xn) ∀xn → x and (7.12)
∀x ∈ X there exists xn → x su
h that g(x) ≥ lim sup

n→+∞

gn(xn). (7.13)We shall 
lassi
ally refer to (7.12) as Γ-liminf inequality and to xn in (7.13) asthe re
overy sequen
e for x. Moreover, letting X be a Bana
h spa
e, we say that
gn → g in the sense of Mos
o [3℄ if gn → g in the sense of Γ-
onvergen
e withrespe
t to both the strong and weak topology of X.Let us mention that the issue of the 
onvergen
e of rate-independent evolution prob-lems under approximation is indeed a 
ru
ial one. A general abstra
t theory of
Γ-
onvergen
e for rate-independent systems is detailed in [39℄.Hen
eforth, we shall refer to the 
urrent 
hoi
e (2.3) and expli
itly ask the fun
tion
f to be 
onvex and non-de
reasing. This entails in parti
ular that Fρ → F point-wise and non-de
reasing. The smoothness of Fρ and the latter 
onvergen
e entailby means of [3, Thm. 2.40, p. 198℄ that Fρ → F in the sense of Γ-
onvergen
e in
R

3×3dev . As a 
onsequen
e and by using [3, Thm. 2.15, p. 138℄, we have that
Wρ → W0 in the sense of Γ-
onvergen
e in R

3×3sym × R
3×3dev . (7.14)As for the three-dimensional situation, let us start by observing that Fρ → F inthe sense of Γ-
onvergen
e with respe
t to both the strong and the weak topologyin L2(Ω; R3×3dev) (namely, Fρ 
onverges to F0 in the sense of Mos
o [3℄). This fa
tfollows at on
e from [3, Thm. 2.40, p. 198℄ and the 
onvexity of Fρ. For all ν > 0�xed, we readily dedu
e in a quite similar way that Fρ,ν 
onverges to F0,ν in thesense of Mos
o in H1(Ω; R3×3dev). Let us make pre
ise the latter statement with thefollowing.Lemma 7.1 (Γ-
onvergen
e of the inelasti
 energy). Let ρk → ρ ≥ 0 and νk → ν ≥

0 be non-in
reasing. Then Fρk,νk
→ Fρ,ν in the sense of Mos
o in Hj(ν)(Ω; R3×3dev).Proof. The above dis
ussion may be readily extended in order to 
over the 
ase

νk → ν > 0. Let us turn to the situation ν = 0 and νk > 0 instead. Of 
ourse,the Γ−liminf inequality (7.12) easily follows from the Γ-
onvergen
e Fρk
→ Fρand lower semi
ontinuity 
onsiderations. As for the re
overy sequen
e, letting z ∈30



L2(Ω; R3×3dev) be �xed, we shall de�ne zk as the unique solution to the singularperturbation problem
zk + νkJzk = z in (H1(Ω; R3×3dev))′,where J : H1(Ω; R3×3dev) → (H1(Ω; R3×3dev))′ is the Riesz map. We have that (see, e.g.,Lions [26℄)

zk → z strongly in L2(Ω; R3×3dev) and νk

2

∫

Ω

|∇zk|
2 → 0.Moreover, whenever |z| ≤ c3 almost everywhere in Ω, the same bound holds for all

zk by the maximum prin
iple. Hen
e, we readily 
he
k that
Fρk,νk

(zk) → Fρ,0(z)and the assertion follows.We shall now turn our attention to the 
onvergen
e of stored energies and state thefollowing.Lemma 7.2 (Γ-
onvergen
e of the stored energy). Let ρk → ρ ≥ 0 and νk → ν ≥ 0be non-in
reasing. Then Wρk ,νk
→ Wρ,ν in the sense of Mos
o in Yν.We will not provide the reader with a detailed proof. Of 
ourse, the argument 
anbe easily reprodu
ed by arguing along the lines of the proof of Lemma 7.1.7.1 Constitutive relationLet us denote by (ε, z)ρ,τ the in
remental solution to the 
onstitutive relation onthe partition P := {0 = t0 < t1 < · · · < tN−1 < tN = T} with diameter τ ,namely the right-
ontinuous pie
ewise 
onstant interpolant on the time partition ofthe solutions {(εi

ρ, z
i
ρ)} to

(εi
ρ, z

i
ρ) ∈ Arg Min

(ε,z)∈R
3×3sym×R

3×3dev (

Wρ(ε, z) − σ(ti) : ε + D(z − zi−1
ρ )

)

i = 1, . . . , N,where σ ∈ W 1,1(0, T ; R3×3sym) and (ε0
ρ, z

0
ρ) = (ε0, z0) are given. Moreover, for all

ρ ≥ 0, we will denote by (ε, z)ρ,0 a solution for the time-
ontinuous 
onstitutiverelation. Of 
ourse we would be in the position of 
onsidering approximating data
σρ,τ and (ε0, z0)ρ,τ as well. We limit ourselves to the above situation just for thesake of simpli
ity. The main result of this subse
tion is the following.Theorem 7.3 (Convergen
e for the 
onstitutive relation). Let ρk → ρ ≥ 0 and
τk → τ ≥ 0 either being 
onstant or 
onverging to 0. Then, possibly up to theextra
tion of a subsequen
e in the 
ase (ρ, τ) = (0, 0), we have that

(ε, z)(ρ,τ)k
→ (ε, z)ρ,τ pointwise in [0, T ].31



Indeed mu
h more is true sin
e the 
onvergen
e of the 
omponent z(ρ,τ)k
is uniformand we have 
onvergen
es also of energies and dissipations. Moreover, one 
ould
onsider the limits ρk → ρ > 0 and/or τk → τ > 0 as well (whi
h we howeverbelieve to be less interesting). We limit ourselves to the above statement for thesake of 
larity.The situation of Theorem 7.3 is des
ribed in Figure 1 below where every parameter
hoi
e (ρ, τ) in the ρ × τ square gives rise to a solution either of the in
rementalproblem (for τ > 0) or the time-
ontinuous problem (τ = 0). Of 
ourse this solutionis unique if (ρ, τ) 6= (0, 0). Theorem 7.3 entails that all the depi
ted limits (arrows)
an be performed.PSfrag repla
ements

ρ

τ

(0, 0)

aa

b

b

c

Figure 1: Convergen
es for the 
onstitutive relationProof. By referring to Figure 1, we shall pro
eed by dis
ussing limits of type a, b,
, and d.Limits of type a, namely (ρ, τ)k → (ρ, 0). These limits follow dire
tly from Theorem3.2.Limits of type b, namely (ρ, τ)k → (0, τ) with τ > 0. Sin
e the time partitionis �xed, the 
onvergen
e of the whole sequen
e (ε, z)(ρk,τ) to the 
orrespondingin
remental solution (ε, z)(0,τ) is ensured by the Γ-
onvergen
e of the 
orrespondingenergy fun
tionals, their equi-
oer
ivity with respe
t to ρ, the 
ontinuity of R, andthe 
ontinuous dependen
e of the in
remental problem for ρ ≥ 0.The limit 
, namely (ρ, τ)k → (0, 0). Let us now turn to the joint limit. Again, theusual energy and dissipation bounds may be obtained and, by suitably 
hoosing notrelabeled subsequen
es, we �nd (ε, z) : [0, T ] → R3×3sym ×R
3×3dev su
h that z(ρ,τ)k

(t) →
z(t) and ε(ρ,τ)k

(t) → ε(t) for all t ∈ [0, T ]. As for to prove the stability of (ε(t), z(t))we simply need to spe
ialize the 
losure argument in Theorem 3.2 by 
onsideringthe parameter dependen
e on ρ. Here, the Γ−
onvergen
e (7.14) is again 
ru
ial.In parti
ular, let us rede�ne (see (3.1)), for all ρ ≥ 0,
Sρ(t) :=

{

(ε, z) ∈ R
3×3sym × R

3×3dev su
h that, ∀(ε, z) ∈ R
3×3sym × R

3×3dev ,
Wρ(ε, z) − σ(t) : ε ≤ Wρ(ε, z) − σ(t) : ε + D(z − z)

}

, (7.15)32



and Sρ := ∪t∈[0,T ](t, Sρ(t)). Owing to the Γ−
onvergen
e (7.14) and the 
ontinuityof σ we readily 
he
k that, for all (tρ, ερ, zρ) ∈ Sρ su
h that (tρ, ερ, zρ) 
onverges to
(t0, ε0, z0) as ρ → 0 one has that (t0, ε0, z0) ∈ S0. As for the upper energy estimate,we readily pass to the lim inf in the dis
rete upper equality estimate (3.14) by meansof the Γ-
onvergen
e (7.14) and the fa
t that Wρ → W0 pointwise. Finally, the fullenergy equality follows again from stability.The limit d, namely (ρ, 0)k → (0, 0). We shall not dis
uss this limit in detail sin
eit follows easily along the lines of limit 
 above.7.2 The minimum problemWe investigate for simpli
ity the situation of �xed data uDir ∈ H1(Ω; R3), ℓ ∈
(H1(Ω; R3))′, and z ∈ L2(Ω; R3×3dev). Of 
ourse, some more general situation ofparameter-dependent data 
ould be 
onsidered as well (see also the forth
omingLemma 7.6). Moreover, let us introdu
e for the purposes of this se
tion the notation
Iρ,ν : Yν → (−∞, +∞] as

Iρ,ν(u, z) := Wρ,ν(u, z) − 〈ℓ, u〉 + D(z − z) ∀(u, z) ∈ Yν ,for all ρ, ν ≥ 0. Problem (4.1) has a unique solution (u, z)ρ,ν ∈ Yν(uDir) for allgiven parameters ρ, ν ≥ 0. Moreover, we readily 
he
k that Wρ,ν((u, z)ρ,ν) turnsout to be bounded independently of ρ and ν. Hen
e, (u, z)ρ,ν is weakly pre
ompa
tin Yν .Moreover, we shall 
onsider the spa
e approximated situation des
ribed by the mesh-size h > 0. For the sake of notational simpli
ity, we redu
e ourselves to the over-simpli�ed situation of data independent of h . In parti
ular, we assume uDir ∈ Uhfor h small enough and de�ne Yν
h(uDir) := Yν

h,0 + (uDir, 0). As for the general 
ase,the following dis
ussion has to be restri
ted to the situation where 
onvergen
e (4.4)holds for the approximating data uDir
h , ℓh, and zh. Consequently, we will make useof the notation

Iρ,ν,h(u, z) := Iρ,ν(u, z) for (u, z) ∈ Yν
h and + ∞ otherwise in Yν .We shall start by providing the following 
onvergen
e result.Lemma 7.4 (Γ-
onvergen
e of Iρ,ν,h). Let ρk → ρ ≥ 0, νk → ν ≥ 0, and h > 0.Then

Iρk,νk
→ Iρ,ν in the sense of Mos
o in Yν , (7.16)

Iρk,νk,h → Iρ,ν,h in the sense of Mos
o in Yν
h . (7.17)Moreover, let hk → 0. Then

I(ρ,ν,h)k
→ Iρ,ν in the sense of Mos
o in Yν . (7.18)33



Proof. The 
onvergen
e in (7.16) follows dire
tly from Lemma 7.2 and the strong
ontinuity of D in L2(Ω, R3×3dev).Convergen
e (7.17) is also straightforward. Namely, the lim inf inequality for weakly
onverging sequen
es is immediate and the 
onstru
tion of re
overy sequen
es fol-lows at on
e from pointwise 
onvergen
e (re
all that Y0
h = Y1

h hen
e no singularperturbation is needed here).The full 
onvergen
e situation of (7.18) deserves some 
omment. Given any (u, z) ∈
Yν , we de�ne

(u, z)(ρ,ν,h)k
:= (qhk

(u), rνk

hk
(z)).Owing to the 
onvergen
e and boundedness properties of the proje
tors qhk

and
rνk

hk
(see Se
tion 1), we readily dedu
e that (u, z)(ρ,ν,h)k

→ (u, z) strongly in Yνand
W(ρ,ν,h)k

((u, z)(ρ,ν,h)k
) → Wρ,ν(u, z).The lim inf inequality follows on
e again from lower semi
ontinuity.The main result of this subse
tion 
on
erns the possibility of 
onsidering (possiblyjoint) limits in the parameters ρ, ν, and h and is graphi
ally represented in Figure2 below.
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es for the minimum problemTheorem 7.5 (Convergen
e for the minimum problem). Let ρk → ρ ≥ 0, νk →
ν ≥ 0, and hk → h ≥ 0 either being 
onstant or 
onverging to 0. Then

(u, z)(ρ,ν,h)k
→ (u, z)ρ,ν,h weakly in Yν (Yν

h if h > 0).This result, whose proof is not reported, follows at on
e from Lemma 7.4 and theequi-
oer
ivity and uniform 
onvexity of the fun
tionals. The limits (ρ, ν, h) →
(ρ, ν, 0) where already dis
ussed in detail in Se
tion 4.7.3 The in
remental problemWe shall extend the latter asymptoti
s for the minimum problem to the situationof the in
remental problem on the �xed partition P := {0 = t0 < t1 < · · · <34



tN−1 < tN = T}. To this aim let the data {uDir,i}N
i=0, {ℓi}N

i=0 and the initial datum
(u0, z0) be suitably given independently of ρ and ν (for simpli
ity). Then, for all
ρ, ν ≥ 0 we are entitled to solve the in
remental problem and �nd a solution ve
tor
{(ui

ρ,ν, z
i
ρ,ν)}

N
i=0. Now, arguing as above, we easily obtain that Wρ,ν(u

i
ρ,ν, z

i
ρ,ν) isbounded independently of ρ, ν, and i. For all given ρ, ν ≥ 0, i = 1, . . . , N , and

z ∈ L2(Ω; R3×3dev), we introdu
e the fun
tionals J i
ρ,ν(·, ·, z) : Yν → (−∞, +∞] as

J i
ρ,ν(u, z, z) := Wρ,ν(u, z) − 〈ℓi, u〉 + D(z − z) ∀(u, z) ∈ YνMoreover, possibly taking into a

ount the spa
e-approximated situation, one wouldneed to introdu
e spa
e approximated data {uDir,i

h }N
i=0, {ℓi

h}
N
i=0 and the initial da-tum (u0

h, z
0
h). Let us however restri
t ourselves to the (over)simpli�ed situationwhere the latter 
an be assumed to be independent of h. For all ρ, ν ≥ 0,

h > 0, i = 1, . . . , N , and z ∈ L1(Ω; R3×3dev), we shall make use of the fun
tionals
J i

ρ,ν,h(·, ·, z) : Yν → (−∞, +∞] de�ned as
J i

ρ,ν,h(u, z, z) := J i
ρ,ν(u, z, z) if (u, z) ∈ Yν

h and + ∞ otherwise.Let us start from the following Γ-
onvergen
e result.Lemma 7.6 (Γ-
onvergen
e of J i
ρ,ν,h). Let ρk → ρ ≥ 0, νk → ν ≥ 0, and h > 0.Moreover, let zk → z strongly in L1(Ω; R3×3dev). Then, for all i = 1, . . . , N ,

J i
ρk,νk

(·, ·, zk) → J i
ρ,ν(·, ·, z) in the sense of Mos
o in Yν , (7.19)

J i
ρk,νk,h(·, ·, zk) → J i

ρ,ν,h(·, ·, z) in the sense of Mos
o in Yν
h . (7.20)Moreover, let hk → 0. Then, for all i = 1, . . . , N ,

J i
(ρ,ν,h)k

(·, ·, zk) → J i
ρ,ν(·, ·, z) in the sense of Mos
o in Yν . (7.21)We are not reporting here the proof of the latter lemma for the sake of brevity.Indeed, the argument may be easily adapted from that of Lemma 7.4 by exploitingthe strong 
ontinuity of D in L1(Ω; R3×3dev), its lower semi
ontinuity in L2(Ω; R3×3dev),and the triangle inequality (2.4).By using Lemma 7.6 and denoting by (u, z)ρ,ν and (u, z)ρ,ν,h the in
remental solu-tions related to the parameter 
hoi
e (ρ, ν) and, possibly, the spa
e approximation,the main result of this subse
tion reads as follows.Theorem 7.7 (Convergen
e for the in
remental problem for ν > 0). Let ν > 0 be�xed and ρk → ρ, and hk → h ≥ 0 either being 
onstant of 
onverging to 0. Then,for all t ∈ [0, T ],

(u(t), z(t))ρk ,ν,hk
→ (u(t), z(t))ρ,ν,h strongly in Yν .Of 
ourse, we would be in the position of 
onsidering the 
ase νk → ν, ρk → ρ > 0,and/or hk → h > 0 as well. We however restri
t to the above situation for the sakeof 
larity. 35



Lemma 7.6 entails the 
onvergen
e of the in
remental solutions as soon as the strong
onvergen
e of zρk,ν or zρk ,ν,hk
in L1(Ω; R3×3dev) is ensured. In order to obtain thelatter from the boundedness of energy through 
ompa
tness we are for
ed on
e againto restri
t our attention to the 
ase ν > 0. The proof of Theorem 7.7 follows thenby simply taking steps in i.7.4 The evolution problemOwing to the latter dis
ussion on the in
remental problem (see Lemma 7.6), we shallrestri
t ourselves to the situation ν > 0 from the very beginning (note that existen
eis not known for ν = 0). For all ρ, h ≥ 0, let us denote by (v, z)ρ : [0, T ] → Yν

0 and
(v, z)ρ,h : [0, T ] → Yν

0,h the solutions to the 
orresponding energeti
 formulations for
h = 0 and h > 0 (here and in what follows we have assumed the data L, q, and theinitial datum (v0, z0) to be �xed independently of all approximations). The lattersolutions are known to exists and turn out to be unique for ρ > 0. Moreover, let
(v, z)ρ,τ and (v, z)ρ,τ,h denote the unique in
remental solutions to the problem ona given partition with diameter τ .A variety of 
onvergen
e results for (v, z)ρ, (v, z)ρ,h, (v, z)ρ,τ , and (v, z)ρ,τ,h havealready been obtained. This subse
tion will 
omplement the above dis
ussions and
omplete the pi
ture of 
onvergen
e results for the time-
ontinuous evolution prob-lem. In parti
ular, as soon as ν > 0 is �xed, we are entitled to take (possibly joint)limits in (ρ, τ, h) as it is graphi
ally depi
ted in Figure 3 below.PSfrag repla
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Figure 3: Convergen
es for the evolution problem (ν > 0)The main result of this subse
tion reads as follows.Theorem 7.8 (Convergen
e for the evolution problem for ν > 0). Let ν > 0 be�xed and ρk → ρ, τk → τ ≥ 0, and hk → h ≥ 0 either being 
onstant of 
onvergingto 0. Then, possibly extra
ting not-relabeled subsequen
es if (ρ, τ) = (0, 0), for all
t ∈ [0, T ],

(v(t), z(t))(ρ,τ,h)k
→ (v(t), z(t))ρ,τ,h strongly in Yν

0 .Sket
h of the proof. Referring to Figure 3, let us start by observing that the limits of36



type a and b were already obtained in Theorem 7.7 and Theorem 6.1, respe
tively.Moreover, the limits of type c have been dis
ussed at the end of Se
tion 6.Limits of type d. This limits 
an be established by simply adapting to the 
urrentthree-dimensional situation the argument of Theorem 7.3. In 
ase h > 0, the latteradaptation is even simpli�ed by �nite-dimensionality and the 
onvergen
e resultwould hold for ν = 0 as well.The limit e. By suitably extra
ting (not-relabeled) subsequen
es we readily �nd
(v, z) : [0, T ] → Yν

0 su
h that, for all t ∈ [0, T ],
(v(t), z(t))(ρ,τ,h)k

→ (v(t), z(t)) weakly in Yν
0 ,

z(ρ,τ,h)k
(t) → z(t) strongly in L2(Ω; R3×3dev). (7.22)Hen
e, we are left to prove that indeed (v, z) is a solution of the evolution problem,i.e., 
he
k for the stability 
ondition (6.1) and the energy equality (6.2).As for the former, we exploit Lemma 7.2 and, for all (v, z) ∈ Yν

0 , by letting (v, z)k :=
(qhk

(v), rν
hk

(z)) we 
he
k that
W0,ν(v(t), z(t)) − 〈L(t), (v(t), z(t))〉

≤ lim inf
k→+∞

(

Wρk ,ν((v(tτk
), z(tτk

))(ρ,τ,h)k
) − 〈L(tτk

), ((v(tτk
), z(tτk

))(ρ,τ,h)k
)
)

≤ lim inf
k→+∞

(

Wρk,ν((v, z)k) − 〈L(tτk
), ((v, z)k) + D(zh − z(ρ,τ,h)k

)
)

= W0,ν(v, z) − 〈L(t), (v, z)〉 + D(z − z(t))where we used some obvious notation for the point tτk
on the time-partition ofdiameter τk su
h that 0 ≤ t − tτk

< τk, Lemma 7.2, the stability of (v, z)(ρ,τ,h)k
attime tτk

, and the strong 
ontinuity of D in L2(Ω; R3×3dev).The upper energy estimate (and hen
e (6.2)) follows by simply passing to the lim infas (ρ, τ, h)k → (0, 0, 0) in the dis
rete upper energy estimate (6.6).The limit f. This limit 
an be obtained along the same lines of limit e above, theargument being even simpli�ed by the fa
t that here τk = 0 and the upper energyestimate follows by passing to the lim inf as (ρ, h)k → (0, 0) in the time-
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