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Abstra
tA general abstra
t approximation s
heme for rate-independent pro
esses inthe energeti
 formulation is proposed and its 
onvergen
e is proved under var-ious rather mild data quali�
ations. The abstra
t theory is illustrated on sev-eral examples: plasti
ity with isotropi
 hardening, damage, debonding, mag-netostri
tion, and two models of martensiti
 transformation in shape-memoryalloys.1 Introdu
tionRate independent pro
esses o

ur (after 
ertain, and usually ne
essary, simpli�-
ations) in various physi
al (mainly me
hani
al but not only) systems exhibitinghystereti
 response during isothermal evolution pro
esses. Mathemati
al analysis ofsu
h pro
esses, based on the notion of energeti
 solutions introdu
ed in [40, 42℄, hasbeen intensively s
rutinized and develop in parti
ular in [31, 35, 36, 37, 38, 41, 43, 53℄.However, ex
ept for some parti
ular attempts [7, 18, 32, 54℄, there has been no nu-meri
al analysis developed for su
h pro
esses so far.This paper �lls the gap of a universally-appli
able numeri
al s
heme in the 
ontext ofrate-independent pro
esses and its analysis. After introdu
ing the energeti
 formu-lation in Se
t. 2, a fairly general 
on
eptual numeri
al dis
retization is proposed andits 
onvergen
e is analyzed in Se
t. 3. Then, in Se
t. 4, the generality is redu
edto problems based on Bana
h spa
es and with dissipation distan
es governed bydegree-1 homogeneous potentials, whi
h in turn allows for various spe
i�
 
onstru
-tions dire
tly appli
able in 
on
rete situations. This is demonstrated in Se
t. 5 onvarious examples from 
ontinuum me
hani
s of deformable bodies, namely plasti
itywith hardening, two models of martensiti
 transformation, damage, debonding, andmagnetostri
tion.In parti
ular, it a

ompanies a large variety of existing models by 
on
eptual �nite-element dis
retizations supported by rigorous analysis as far as 
onvergen
e 
on-
erns, and in some 
ases o�ers new results or improves known results as far as mereexisten
e of solutions 
on
erns.2 An abstra
t setting: energeti
 solutionWe 
onsider a state spa
e Q (independent of time) as a topologi
al spa
e. Typi
ally,it is subset of a lo
ally 
onvex spa
e. We will distinguish between a �non-dissipative�1




omponent u ∈ U and a �dissipative� 
omponent z ∈ Z of the state q = (u, z) ∈
Q := U × Z.For a �xed time horizon T > 0, we 
onsider a Gibbs-type stored energy E : [0, T ] ×
Q → R ∪ {+∞}. The further ingredient is a (time-independent but not ne
essarilysymmetri
) dissipation distan
e D : Z ×Z → R∪ {+∞} whi
h will later determinethe dissipated energy and whi
h is assumed to satisfy

∀z1, z2, z3∈Z : D(z1, z1) = 0 & D(z1, z3) ≤ D(z1, z2) + D(z3, z3). (2.1)Let us agree to write o

asionally D(q1, q2) with the meaning D(z1, z2) for q1 =
(u1, z1) and q2 = (u2, z2).In 
ase of Q having a linear stru
ture, D(z1, z2) := R(z2 − z1) (as in Se
t. 4 below)and 
onvexity of both E and R, we want to address an evolution of q = q(t) governedby the doubly nonlinear in
lusion

∂R
(∂q

∂t

)

+ ∂qE(t, q) ∋ 0 (2.2)where �∂� denotes the subdi�erential. Under some additional quali�
ation, it isequivalent (see [36, 41℄) to the energeti
 formulation based on De�nition 2.1 belowwhi
h, however, works under mu
h weaker data quali�
ation where (2.2) loses anysense. In fa
t, this de�nition is based on a global-minimization hypothesis 
ompetingwith the maximum-dissipation prin
iple (or rather Levitas' realizability prin
iple[33℄). In mathemati
al terms, it means stability
∀q̃ ∈ Q : E

(

t, q(t)
)

≤ E(t, q̃) + D
(

q(t), q̃
)

, (2.3)and energy equality
E(t, q(t)) + VarD(q; s, t) = E(s, q(s)) +

∫ t

s

P(r, q(r)) dr, (2.4)where
P(t, q) :=

∂

∂t
E(t, q) and (2.5)

VarD(q; s, t) := sup

j
∑

i=1

D
(

q(ti−1), q(ti)
) (2.6)with the supremum taken over all j ∈ N and over all partitions of [s, t] in the form

s = t0 < t1 < ... < tj−1 < tj = t. The parti
ular terms in (2.4) represent the storedenergy at time t, the energy dissipated by 
hanges of the internal variable duringthe time interval [s, t], the stored energy at the initial time s, and the work done byexternal loadings during the time interval [s, t]; P is then the power.De�nition 2.1 The pro
ess q : [0, T ] → Q is 
alled an energeti
 solution to theinitial-value problem given by the triple (E ,D, q0) if2



(i) it is stable in the sense that (2.3) holds for all t ∈ [0, T ],(ii) the energy balan
e (2.4) holds for any 0 ≤ s < t ≤ T , in parti
ular
t 7→ P(t, q(t)) is in L1(0, T ), and(iii) the initial 
ondition q(0) = q0 holds.For the analysis of the rate-independent problems, it is 
onvenient to introdu
e thesets of stable states S(t) for any t ∈ [0, T ] by putting

S(t) :=
{

q∈Q; E(t, q) <+∞ & ∀q̃∈Q : E(t, q) ≤ E(t, q̃) + D(q, q̃)
}

. (2.7)This allows us to re
ast the stability 
ondition (i) in De�nition 2.1 in the form
q(t) ∈ S(t) for all t ∈ [0, T ]. Yet, more importantly, we may address 
losednessproperties of S(t).In Se
t. 4, we will spe
ialize this setting by introdu
ing an additional linear stru
ture,i.e. Q will be (a subset of) a Bana
h spa
e equipped with the weak or the normtopology. This will allow us to make the abstra
t properties more spe
i�
.3 An abstra
t approximationFor an abstra
t approximation, we 
onsider three positive parameters τ , h, and
ε. Here τ > 0 represents the �neness of a time dis
retization by a partition (notne
essarily equidistant) of the time interval [0, T ]. The parameter h > 0 denotes aspatial dis
retization of the state spa
e Q by a subset Qh again having the stru
ture
Qh := Uh × Zh. Moreover, ε > 0 is used for a possible approximation of thefun
tionals E and D to be implemented more easily when restri
ted on Qh (see alsoRemark 3.10 below) or just to guarantee the 
onvergen
e in some more 
ompli
ated
ases. Typi
ally, a penalization of some 
onstraints may be involved by this way,
f. Se
t.5. These last approximations lead to Eε : [0, T ] × ⋃

h>0 Qh → R ∪ {+∞}and Dε :
⋃

h>0(Zh × Zh) → R ∪ {+∞}.Using the indi
ator fun
tion δQh
: Q → {0,+∞}, i.e. δQh

= 0 on Qh and δQh
= +∞on Q\Qh, it will o

asionally be 
onvenient to introdu
e the restri
tion to Qh alsoby repla
ing Eε and Dε respe
tively by

Eε,h = Eε + δQh
and Dε,h : (q, q̃) 7→ Dε(q, q̃) + δQh

(q) + δQh
(q̃). (3.1)3.1 Basi
 assumptionsWe �rst 
olle
t a few basi
 assumptions. We assume (2.1) also for ea
h Dε, i.e. forall ε > 0:

∀z1, z2, z3∈Z : Dε(z1, z1) = 0 & Dε(z1, z3) ≤ Dε(z1, z2) + Dε(z3, z3). (3.2)3



For proving existen
e results we will need the following lower semi-
ontinuity and
ompa
tness results:
∀ ε, h > 0 : Dε : Qh×Qh → R∞ are lower semi-
ontinuous, (3.3)
∀ ε, h > 0 ∀ t∈ [0, T ] ∀ a∈R :the sublevels { q∈Qh ; Eε(t, q)≤a } are sequentially 
ompa
t in Q. (3.4)To pass to the limit will need a uniform inf-
ompa
tness of the 
olle
tion

(Eε,h(t, ·))ε,h>0, t∈[0,T ]:
∀ a∈R ∀ ε, h > 0, θ∈ [0, T ], qh,ε∈Qh : Eε(θ, qh,ε) ≤ a

=⇒ ∃ q∈Q ∃ subsequen
e {qhn,εn}n∈N : q = lim
n→∞

qhn,εn. (3.5)Next we need a �Γ-liminf estimate� for the family (Dε)ε>0 on (Qh×Qh)h>0 in thelimit ε, h→ 0:
z∈Z, zh,ε∈Zh, z = lim

(h,ε)→(0,0)
zh,ε

z̃∈Z, z̃h,ε∈Zh, z̃ = lim
(h,ε)→(0,0)

z̃h,ε







⇒ D(z, z̃) ≤ lim inf
(h,ε)→(0,0)

Dε(zh,ε, z̃h,ε). (3.6)The limit fun
tional D has to satisfy a positivity 
ondition:
∀ z∈Z ∀K ⊂ Z sequentially 
ompa
t ∀ zn∈K :
lim

n→∞
min{D(zn, z),D(z, zn)} = 0

}

⇒ z = lim
n→∞

zn. (3.7)Like for Dε we also need a �Γ-liminf estimate� for the family (Eε(t, ·))ε>0, t∈[0,T ] on
(Qh)h>0:

∀ q∈Q ∀ qh,ε∈Qh with q = lim
(h,ε)→(0,0)

qh,ε: E(t, q) ≤ lim inf
(h,ε,θ)→(0,0,t)

Eε(θ, qh,ε). (3.8)Note that (3.6) and (3.8) are only �lower� Γ-liminf estimates for (Dε,h)ε,h>0 and
(Eε,h(t, ·))ε,h>0, t∈[0,T ]. The 
orresponding upper estimates are 
onsequen
es of the
entral 
ondition (3.16) whi
h postulates the existen
e of joint re
overy sequen
es.So far all 
onditions above relate to stati
 
on
epts. The next three 
onditionsrelate to the time dependen
e, whi
h involves the power of external for
es Pε(t, q) =
∂
∂t
Eε(t, q). The �rst assumption provides a uniform energeti
 
ontrol of the power

Pε, viz.,
∃ c0, c1∈R ∀ ε, h > 0 ∀q∈Qh :

(

∃t0∈ [0, T ] : Eε(t0, q) < +∞
)

=⇒
Eε(·, q) ∈ C1([0, T ]) and (3.9a)
∀ t∈ [0, T ] :

∣

∣Pε(t, q)
∣

∣ ≤ c1
(

Eε(t, q)+c0
)

. (3.9b)Using a Gronwall estimate we immediately obtain the growth restri
tions
∀ s, t ∈ [0, T ] : Eε(s, q) + c0 ≤ ec1|t−s|

(

Eε(t, q)+c0
)

. (3.10)4



The se
ond assumption is a 
onditioned (with respe
t to sublevels of E) equi- (withrespe
t to q) uniform (with respe
t to t) 
ontinuity of P(·, q):
∀ a∈R ∀σ > 0 ∃ δ > 0 ∀s, t∈ [0, T ] ∀q∈Q :if E(0, q) ≤ a and |t−s| < δ, then ∣

∣P(s, q) −P(t, q)
∣

∣ < σ. (3.11)The third assumption on Pε,h 
on
erns the 
onvergen
e of Pε,h for ε, h → 0. It is a�
ontinuous 
onvergen
e� but 
onditioned by the fa
t that the 
onsidered argumentsare in the asso
iated sets of stable states
Sε,h(t) :=

{

q∈Qh; Eε(t, q) <+∞ &

∀q̃∈Qh : Eε(t, q) ≤ Eε(t, q̃) + Dε(q, q̃)
}

, (3.12)and that the energies are bounded:If (εn, hn, tn) → (0, 0, t), qn ∈ Sεn,hn(tn), qn → q, and
sup
n∈N

Eεn,hn(tn, qn) < +∞, then lim
n→∞

Pεn(tn, qn) = P(t, q). (3.13)Re
all that Dε and D only depend on the z-
omponent of q = (u, z) and we haveagreed to write o

asionally, as e.g. in (3.12), Dε(q, q̃) in the meaning of Dε(z, z̃).An essential ingredient for the 
onvergen
e analysis is the abstra
t version of Helly'ssele
tion prin
iple, whi
h has been proved in the Appendix of [39℄ generalizing [35,Theorem 3.2℄.Lemma 3.1 (Abstra
t Helly's sele
tion prin
iple [39℄.) Under the 
onditions(2.1), (3.6) and (3.7), for every sequen
e zn : [0, T ] → Z, n ∈ N satisfying
∃C > 0 ∀n ∈ N : VarDεn,hn

(zn; 0, T ) ≤ C, (3.14a)
∃K ⊂ Z sequentially 
ompa
t ∀n ∈ N ∀ t∈ [0, T ] : zn(t) ∈ K, (3.14b)there exists a subsequen
e (znj

)j∈N, a nonde
reasing fun
tion D : [0, T ] → R, and alimit pro
ess z : [0, T ] → Z su
h that we have
∀ t∈ [0, T ] : z(t) = lim

j→∞
znj

(t), D(t) = lim
j→∞

VarDεnj ,hnj
(znj

; 0, t), and (3.15a)
∀ s, t ∈ [0, T ] with s ≤ t : VarD(z; s, t) ≤ D(t) − D(s). (3.15b)Remark 3.2 (Weakening (3.13) on Bana
h spa
es.) In the appli
ations presentedin this paper we will not make use of the full strength of the �
onditioned� 
ontinuous
onvergen
e. However, we refer to [14℄, where a setting is 
onsidered where Q is aBana
h spa
e equipped with its weak topology. It is shown that the assumptionsin (3.13) �rst imply the energy 
onvergen
e Eεn,hn(tn, qn) → E(t, q). This, togetherwith the weak 
onvergen
e qn ⇀ q, 
an then be used to improve the 
onvergen
einto the strong 
onvergen
e. Hen
e, in that 
ase the 
onditioning implies that onlystrongly 
onvergent sequen
es have to be 
onsidered for the 
ontinuous 
onvergen
ein (3.13). 5



3.2 Stability of sets of stable statesAll the assumptions of the previous subse
tion are either on the family (Dε,h)ε,h>0 oron the family (Eε,h)ε,h>0. The �nal 
ondition links the behavior of these two familiesand thus provide the upper Γ-limit estimates whi
h are needed to 
omplement thelower Γ-limit estimate for D in (3.6) and for E in (3.8). Sometimes, in parti
ularwhen some holonomi
-type 
onstraints are involved in E , it o

urs that a 
onvergen
e
riterion of the type h ≤ H(ε), for some H : R+ → R+ monotone and satisfying
H(ε) → 0 for ε→ 0, is needed.The following 
entral 
ondition states the existen
e of a �joint re
overy sequen
e�under suitable quali�
ations:

∀ q, q̃∈Q ∀tn∈ [0, T ] with tn → t ∀ εn, hn → 0+ with hn ≤ H(εn)

∀qn ∈ Sεn,hn(tn) with qn → q and supn∈N
Eεn,hn(tn, qn) < +∞

∃ q̃n ∈ Qhn with q̃n → q̃ :

lim sup
n→∞

(

Eεn,hn(tn, q̃n)+Dεn,hn(qn, q̃n)−Eεn,hn(tn, qn)
)

≤ E(t, q̃)+D(q, q̃)−E(t, q). (3.16)The following assertion says, in other words, that the graph of the set-valuedmapping S : [0, T ] ⇉ Q 
ontains Kuratowski's limes superior of the graphs of
Sε,h : [0, T ] ⇉ Qh at least if restri
ted to states with bounded energy as in (3.5) andif h ≤ H(ε) is taken into a

ount. This upper semi
ontinuity result establishes a
ertain stability of sets of stable states that is 
ru
ial for the 
onvergen
e analysis.Lemma 3.3 (Conditioned upper semi-
ontinuity of the sets of stablestates.) Let (3.8) and (3.16) hold and tn, εn, hn, qn and q = lim

n→∞
qn be as in (3.16).Then q∈S(t).Proof. By (3.8), we have

E(t, q) ≤ lim inf
n→∞

Eεn,hn(tn, qn) ≤ sup
n∈N

Eεn,hn(tn, qn) < +∞, (3.17)where the last inequality is assumed in (3.16). Next, for q̃ ∈ Q arbitrary, 
hoose
q̃n ∈ Qhn as in (3.16). By de�nition (3.12), qn ∈ Sεn,hn(tn) says that Eεn,hn(tn, q̃n) +
Dεn,hn(qn, q̃n)−Eεn,hn(tn, qn) ≥ 0. Using now the limsup estimate in (3.16) we obtain

0 ≤ lim sup
n→∞

Eεn,hn(tn, q̃n) + Dεn,hn(qn, q̃n) − Eεn,hn(tn, qn)

≤ E(t, q̃) + D(q, q̃) − E(t, q). (3.18)Sin
e q̃ was arbitrary, de�nition (2.7) gives q ∈ S(t). 2Remark 3.4 (Weakening of (3.16).) In this proof the 
ondition q̃n → q̃ was notused. Thus, in prin
iple assumption (3.16) 
ould be weakened by dropping this ad-ditional request. However, in doing so, the limsup estimate in (3.16) degenerates in6



the sense that the two sides in this estimate no longer depend on ea
h other. In fa
t,the best 
hoi
e for making the left-hand side small is, by re
alling stability, the 
hoi
e
q̃n = qn, whi
h makes ea
h member in the sequen
e identi
al 0. Sin
e this is inde-pendent of q̃, the weakened 
ondition (3.16) just means 0 ≤ E(t, q̃)+D(q, q̃)−E(t, q),whi
h is the desired stability of q. As we will see in the appli
ations in Se
tion 5,the strengthened 
ondition is useful, sin
e properly 
hosen joint re
overy sequen
esallow us to prove

0 ≤
(

Eεn,hn(tn, q̃n)+Dεn,hn(qn, q̃n)−Eεn,hn(tn, qn)
)

→ E(t, q̃)+D(q, q̃)−E(t, q),from whi
h we then 
on
lude stability. See [39℄ for more dis
ussion of this point.Example 3.5 Quite typi
al way how the quali�
ation (3.16) 
an be ensured is thesituation when Dε,h 
onverges 
ontinuously to D in the sense
lim

ε→0, h→0
qh,ε→q, q̃h,ε→q̃
qh,ε,q̃h,ε∈Qh

Dε(qh,ε, q̃h,ε) = D(q, q̃) (3.19)and, in addition,
∀q̃∈Q ∀h, ε > 0 ∃q̃h,ε∈Qh : lim

(h,ε)→(0,0)
q̃h,ε = q̃ and

lim sup
h≤H(ε)

(h,ε,θ)→(0,0,t)

Eε(θ, q̃h,ε) ≤ E(t, q̃). (3.20)Then (3.16) holds: indeed, it su�
es to sum (3.20) used for q̃n = q̃hn,εn with (3.19)used for qn = qhn,εn and q̃n = q̃hn,εn and subtra
t (3.8) used for qn = qhn,εn, andeventually estimate the sum of limits superior from below by limits superior of thesum. Let us still remark that (3.20) together with (3.8) is just the 
onditioned
Γ-
onvergen
e (sometimes also 
alled epi-
onvergen
e) of the 
olle
tion (Eε,h(θ, ·) +
δQh

)h,ε>0, θ∈[0,T ] to E if (h, ε, θ) → (0, 0, t) 
onditioned by h ≤ H(ε).3.3 Approximate solutionsWe 
onsider now τ > 0, and a partition 0 = t0τ < t1τ < ... < tkτ
τ = T with

tτi − tτi−1 ≤ τ for i = 1, ..., kτ . (3.21)We do not assume this partition to be equidistant. Further, we 
onsider an ap-proximation [q0]h,ε of the initial 
ondition q0 and the following re
ursive in
rementalformula: we put q0
τ,h,ε = [q0]h,ε a given initial 
ondition, and, for k = 1, ..., kτ wede�ne qk

τ,h,ε, an approximation of a solution at time tkτ , to be any solution of theminimization problemMinimize Eε,h(t
k
τ , q) + Dε,h(z

k−1
τ,h,ε, z)subje
t to q = (u, z)∈Qh.

} (3.22)7



We de�ne the approximate solution qτ,h,ε : [0, T ] → Q as a pie
ewise 
onstantapproximation, namely
qτ,h,ε(t) :=

{

qk
τ,h,ε for tk−1

τ < t ≤ tkτ , k = 1, ..., kτ ,

q0
τ,h,ε = [q0]h,ε for t = 0.

(3.23)We also need the �retarded� approximate solution qRτ,h,ε : [0, T ] → Q with
qRτ,h,ε(t) :=

{

qk
τ,h,ε for tk−1

τ ≤ t < tkτ , k = 1, ..., kτ ,

qkτ
τ,h,ε for t = T,

(3.24)Proposition 3.6 (Dis
rete stability and energy inequalities.) Let (3.2), thelower semi
ontinuity (3.3)�(3.4) of the approximate stored and the dissipated ener-gies, and smoothness of external for
ing (3.9a) hold. Then (3.22) has a solution
qk
τ,h,ε for any k = 1, ..., kτ and qτ,h,ε is stable in the sense

qτ,h,ε(t) ∈ Sε,h(t
k
τ ) for any t ∈ (tk−1

τ , tkτ ], k = 0, ..., kτ , (3.25)and satis�es the dis
rete upper energy inequality
Eε,h(s, qτ,h,ε(s)) + VarDε,h

(qτ,h,ε; r, s) − Eε,h(r, qτ,h,ε(r)) ≤
∫ s

r

∂Eε,h

∂t

(

t, qRτ,h,ε(t)
)

dt(3.26)for r = tk1
τ and s = tk2

τ with any k1, k2 ∈ N ∪ {0}, 0 ≤ k1 ≤ k2 ≤ kτ , as well as asimilar dis
rete lower energy inequality
Eε,h(s, qτ,h,ε(s)) + VarDε,h

(qτ,h,ε; r, s) − Eε,h(r, qτ,h,ε(r)) ≥
∫ s

r

∂Eε,h

∂t

(

t, qτ,h,ε(t)
)

dt(3.27)for r = tk1
τ and s = tk2

τ but now only with k1, k2 ∈ N, 1 ≤ k1 ≤ k2 ≤ kτ .Proof. The existen
e of qk
τ,h,ε solving (3.22) follows from (3.3) and (3.4) via a re
ursiveargument for k = 1, ..., kτ . Hen
e qτ,h,ε and qRτ,h,ε exist, too.The dis
rete stability 
ondition (3.25) follows by using su

essively that qk

τ,h,ε is asolution to (3.22) and the triangle inequality (2.1) for Dε,h:
Eε,h(t

k
τ , q

k
τ,h,ε) ≤ Eε,h(t

k
τ , q̃) + Dε,h(q

k−1
τ,h,ε, q̃) −Dε,h(q

k−1
τ,h,ε, q

k
τ,h,ε)

≤ Eε,h(t
k
τ , q̃) + Dε,h(q

k
τ,h,ε, q̃) (3.28)for any k = 1, ..., kτ .As to (3.26), we again use that qk

τ,h,ε solves (3.22) and, 
omparing it with qk−1
τ,h,ε, weget

Eε,h(t
k
τ , q

k
τ,h,ε) − Eε,h

(

tk−1
τ , qk−1

τ,h,ε

)

+ Dε,h

(

qk−1
τ,h,ε, q

k
τ,h,ε

)

≤ Eε,h

(

tkτ , q
k−1
τ,h,ε

)

− Eε,h

(

tk−1
τ , qk−1

τ,h,ε

)

=

∫ tkτ

tk−1
τ

∂Eε,h(t, q
k−1
τ,h,ε)

∂t
dt. (3.29)8



Now the estimate (3.26) follows after a summation for k = k1+1, ..., k2. As to theestimate (3.27), by the stability (3.28) written for qk−1
τ,h,ε q̃ = qk

τ,h,ε, we �nd
Eε,h

(

tkτ , q
k
τ,h,ε

)

− Eε,h

(

tk−1
τ , qk−1

τ,h,ε

)

+ Dε,h

(

qk−1
τ,h,ε, q

k
τ,h,ε

)

≥ Eε,h

(

tkτ , q
k
τ,h,ε

)

− Eε,h

(

tk−1
τ , qk

τ,h,ε

)

=

∫ tkτ

tk−1
τ

∂Eε,h(t, q
k
τ,h,ε)

∂t
dt. (3.30)By a summation for k = k1+1, ..., k2, we obtain (3.27). 2Remark 3.7 (Approximation of initial 
onditions.) Note that (3.30) does not workfor k = 1 be
ause we (intentionally) did not assume �numeri
al� stability of theapproximate initial 
ondition, i.e. [q0]h,ε ∈ Sε,h(0) whi
h would only very hardly beguaranteed in 
on
rete numeri
al s
hemes. This is also why (3.27) does not holdwith r = 0, unlike (3.26).3.4 Convergen
e of the approximate solutionsNow we investigate the asymptoti
s for τ → 0, h → 0, and ε → 0. Like forspa
e dis
retization, we do not assume the partition of the time interval [0, T ] to benested, but we assume that both time and spa
e dis
retization re�nes when τ → 0and h → 0, respe
tively. Namely (3.21) for the time dis
retization while, for thespatial dis
retization, this re�nement requirement is impli
itly 
ontained in (3.16);later it will be assumed expli
itly (4.2) to prove (3.16).Theorem 3.8 Let the assumptions (2.1), (3.2)� (3.9), (3.13), (3.16) and (3.21)hold. Assume that the initial 
ondition q0 is stable, i.e.

q0 ∈ S(0), (3.31)and is approximated by [q0]h,ε ∈ Qh in the sense
[q0]h,ε → q0 and Eε(0, [q0]h,ε) → E(0, q0). (3.32)Then, there exists a subsequen
e {(τn, hn, εn)}n∈N with (τn, hn, εn) → (0, 0, 0) for

n → ∞ satisfying the 
onvergen
e 
riterion hn ≤ H(εn) from 
ondition (3.16) anda pro
ess q : [0, T ] → Q being an energeti
 solution a

ording to De�nition 2.1 su
hthat the following holds:(i) for all t ∈ [0, T ] we have Eεn(t, qn(t)) → E(t, q(t)),(ii) for all t ∈ [0, T ] we have VarDεn
(qn; 0, t) → VarD(q; 0, t),(iii) for all t ∈ [0, T ] we have zn(t) → z(t) in Z,(iv) ∂

∂t
Eεn(·, qn(·)) → ∂

∂t
E(·, q(·)) in L1(0, T ),(v) for all t ∈ [0, T ] there is a subsequen
e {nl}l∈N su
h that liml→∞ unl

(t) =
u(t) in U , hen
e liml→∞ qnl

(t) = q(t) in Q,where we wrote shortly qn = (un, zn) for qRτn,hn,εn
= (uRτn,hn,εn

, zRτn,hn,εn
).9



Proof. We follow the steps for the existen
e proof formulated in [14, 39℄. However,we are more general than [14, 39℄ as we do not require [q0]h,ε to be stable.Let us abbreviate
Gτ,h,ε(t) := Eε,h(t, q

R
τ,h,ε(t)), Dτ,h,ε(t) := VarDε,h

(qRτ,h,ε; 0, t). (3.33)Step 1: A priori estimates. By (3.9) and (3.10), we 
an estimate the right-hand sideof (3.29) as
∫ tkτ

tk−1
τ

∂Eε,h(t, q
k−1
τ,h,ε)

∂t
dt ≤

∫ tkτ

tk−1
τ

c1
(

Eε,h(t, q
k−1
τ,h,ε) + c0

)

dt

≤
∫ tkτ

tk−1
τ

c1e
c1(t−tk−1

τ )
(

Eε,h(t
k−1
τ , qk−1

τ,h,ε) + c0
)

dt

=
(

ec1(tkτ−tk−1
τ ) − 1

)(

Eε,h(t
k−1
τ , qk−1

τ,h,ε) + c0
)

. (3.34)Forgetting, for a moment, Dε,h in (3.29) and linking it with (3.34) yields
Eε,h(t

k
τ , q

k
τ,h,ε) + c0 ≤ ec1(tkτ−tk−1

τ )(Eε,h(t
k−1
τ , qk−1

τ,h,ε) + c0) from whi
h, by indu
tion for
k = 1, 2, ..., kτ we get

Eε,h(t
k
τ , q

k
τ,h,ε) ≤ ec1tkτ

(

Eε,h(0, q
0
τ,h,ε) + c0

)

− c0. (3.35)By (3.32), we 
on
lude that Eε,h(t
k
τ , q

k
τ,h,ε) is upper bounded independently of k, h,

τ , and ε. By (3.9b) we 
an bound Gτ,h,ε(t) from below and, by (3.35) with (3.10)after some still some 
al
ulations from above:
−c0 ≤ Gτ,h,ε(t) ≤ a∗e

c1t − c0 with a∗ := c0 + sup
τ,h,ε

Eε,h(0, q
0
τ,h,ε), (3.36)where the �sup� is 
onsidered for (τ, h, ε) small enough. Note that a∗ < +∞ due to(3.32) with the assumption E(0, q0) < +∞.Using (3.35) again for (3.34) but summed for k = 1, ..., kτ , we obtain

∫ T

0

∂Eε,h(t, q
R
τ,h,ε)

∂t
dt =

kτ
∑

k=1

∫ tkτ

tk−1
τ

∂Eε,h(t, q
k−1
τ,h,ε)

∂t
dt

≤
(

Eε,h(0, q
0
τ,h,ε) + c0

)

kτ
∑

k=1

(

ec1tkτ − ec1tk−1
τ

)

=
(

Eε,h(0, q
0
τ,h,ε) + c0

)(

ec1T − 1
)

. (3.37)Coming ba
k to (3.29) and 
ombining it with the lower bound (3.9b) for Eε,h(T, q
kτ
τ,h,ε)and with (3.37), we now 
an estimate the total variation of Dτ,h,ε as

Var(Dτ,h,ε; 0, T ) =
kτ

∑

k=1

Dε,h

(

qk−1
τ,h,ε, q

k
τ,h,ε

)

≤ Eε,h(0, q
0
τ,h,ε) + c0 +

(

Eε,h(0, q
0
τ,h,ε) + c0

)(

ec1T−1
)

=
(

Eε,h(0, q
0
τ,h,ε) + c0

)

ec1T ≤ a∗e
c1T (3.38)10



with a∗ from (3.36). We 
an now estimate also the total variation of Gτ,h,ε simplyby (3.9b) and (3.10) as
Var(Gτ,h,ε; 0, T ) =

∫ T

0

∣

∣

∣

∂Eε,h(t, q
R
τ,h,ε)

∂t

∣

∣

∣
dt+

kτ
∑

k=1

∣

∣Eε,h(t
k
τ , q

k
τ,h,ε) − Eε,h(t

k
τ , q

k−1
τ,h,ε)

∣

∣

≤
∫ T

0

c1
(

Gτ,h,ε(t) + c0
)

dt+

kτ
∑

k=1

∣

∣Eε,h(t
k
τ , q

k
τ,h,ε) − Eε,h(t

k−1
τ , qk−1

τ,h,ε)
∣

∣

+
kτ

∑

k=1

∫ tkτ

tk−1
τ

∣

∣

∣

∂Eε,h(t, q
k−1
τ,h,ε)

∂t

∣

∣

∣
dt =: T1 + T2 + T3. (3.39)The term T1 is bounded sin
e we have already proved |Gτ,h,ε(t)| a-priori bounded,and also T3 ≤ T1, see (3.37), so it remains to bound T2. By (3.29) and (3.30), we
an estimate

T2 ≤ Var(Gτ,h,ε; 0, T ) + max

(

T1,

∫ T

0

∣

∣

∣

∂Eε,h(t, qτ,h,ε)

∂t

∣

∣

∣
dt

)

+ max
(

0, Eε,h(0, q
0
τ,h,ε) − Eε,h(t

1
τ , q

1
τ,h,ε)

) (3.40)and, again by (3.9b) and (3.10),
∫ T

0

∣

∣

∣

∂Eε,h(t, qτ,h,ε)

∂t

∣

∣

∣
dt ≤

∫ T

0

c1
(

Eε,h(t, qτ,h,ε) + c0
)

dt

=
kτ

∑

k=1

∫ tkτ

tk−1
τ

c1
(

Eε,h(t, q
k
τ,h,ε)+c0

)

dt ≤
kτ

∑

k=1

∫ tkτ

tk−1
τ

c1e
c1(tkτ−t)

(

Eε,h(t
k
τ , q

k
τ,h,ε)+c0

)

dt

=

kτ
∑

k=1

(

ec1(tkτ−tk−1
τ )−1

)(

Eε,h(t
k
τ , q

k
τ,h,ε) + c0

)

≤
kτ

∑

k=1

(

ec1(tkτ−tk−1
τ )−1

)

ec1tk−1
τ a∗e

τ

=

kτ
∑

k=1

(

ec1tkτ − ec1tk−1
τ

)

a∗e
τ =

(

ec1T − 1
)

a∗e
τ , (3.41)where we also used, by (3.35)�(3.36), the estimate

Eε,h(t
k
τ , q

k
τ,h,ε) + c0 ≤ ec1tkτa∗ ≤ ec1tk−1

τ a∗e
τ ,and eventually the last term in (3.40) 
an be estimated simply be
ause, by (3.9b)and (3.32), Eε,h(t

1
τ , q

1
τ,h,ε) ≥ −c0 and Eε,h(0, q

0
τ,h,ε) ≤ a∗ − c0, hen
e this last term isbounded from above by a∗ from (3.36).Step 2: Sele
tion of subsequen
es. Sin
e the s
alar fun
tions Gτ,h,ε and Dτ,h,ε from(3.33) are uniformly bounded in BV([0, T ]) by (3.38) and (3.39) together with theobvious bounds on |Gτ,h,ε(0)| = |Eε(0, [q0]h,ε)| ≤ max(|c0|, a∗) with a∗ from (3.36) and

|Dτ,h,ε(0)| = 0, we may apply Helly's sele
tion prin
iple both in the 
lassi
al form11



and, relying on the assumptions (3.2), (3.6), (3.7), also in the form of Lemma 3.1 to�nd a subsequen
e {(τn, hn, εn)}n∈N su
h that for all t ∈ [0, T ] we have the following
onvergen
e:
Gτn,hn,εn(t) → G(t), Dτn,hn,εn(t) → D(t), and zτn,hn,εn(t) → z(t) in Z, (3.42)for suitable limit fun
tions D, G and z satisfying also (3.15b). This shows that the
onvergen
e at the point (iii) holds. We further set

Pn(t) :=
∂

∂t
Eεn(t, qn(t)) (3.43)to denote the power of the external for
es. Choosing another subsequen
e (notrelabeled), if ne
essary, we also obtain

Pn
w*→ p in L∞([0, T ]), (3.44)sin
e 
losed balls in L∞([0, T ]) are sequentially weakly* 
ompa
t. For �xed t, let

P(t) := lim sup
n→∞

Pn(t). (3.45)Using Fatou's lemma we 
on
lude P ∈ L∞(0, T ) and p(t) ≤ P(t) for a.a. t ∈ [0, T ].Further, let us set
A(t) :=

{

ũ∈U ;
∂

∂t
E(t, ũ, z(t)) = P(t)

}

. (3.46)For any t �xed, A(t) is nonempty: Indeed, we 
an 
hoose a subsequen
e (nt
j)j∈N(depending on t!) su
h that

P(t) = lim
j→∞

Pnt
j
(t) = lim

j→∞

∂

∂t
Eε

nt
j

(t, qnt
j
(t)), (3.47)
f. (3.45) and (3.43). Taking into a

ount the energy bound Gτ,h,ε(t) obtained inStep 1 and the 
ompa
tness assumption (3.5), we 
an even assume that also qnt

j
(t)
onverges to some q(t). By (3.42), q(t) = (u(t), z(t)) with z(t) just from (3.42). Let

tj := max{θ ∈ [0, t]; θ = t
τnj

k , k = 0, ..., kτnj
}. Then qnt

j
(t) ∈ Sε

nt
j
,h

nt
j

(tj). Obviously,also tj → t. Hen
e we 
an use (3.13) to obtain
lim
j→∞

∂

∂t
Eε

nt
j
,h

nt
j

(tj , qnt
j
(t)) =

∂

∂t
E(t, q(t)). (3.48)Comparing it with (3.47) we get

∂

∂t
E(t, q(t)) = P(t). (3.49)Thus u(t) forming the pair q(t) = (u(t), z(t)) lies in A(t) from (3.46). Ranging tover [0, T ] thus yields a mapping u : [0, T ] → U with u(t) ∈ A(t) for all t ∈ [0, T ].12



Step 3: Stability of the limit pro
ess. The stability of the limit pro
ess q is nowensured by (3.16) as a dire
t 
onsequen
e of Lemma 3.3. For �xed t ∈ (0, T ] 
onsider
qnt

j
(t) and tj 
onverging for j → ∞ to q(t) and t in the position of qn and tn in the
ondition (3.16), respe
tively, and then Lemma 3.3 just yields q(t) ∈ S(t). For t = 0,stability of q(0) = q0 holds by assumption.Step 4: Upper energy estimate. By (3.26) with r = 0 we have Gτn,hn,εn(t) +

Dτn,hn,εn(t) − Gτn,hn,εn(0) ≤
∫ t

0
Pn(s) ds for any t = tkτn

, k = 0, ..., kτn. For a gen-eral t ∈ [0, T ], this inequality is ful�lled with an a

ura
y O(τn); this is be
ause
|Gτn,hn,εn(t) − Gτn,hn,εn(tk−1

τn
)| ≤ τn‖Pn‖L∞(0,T ) for t ∈ [tk−1

τn
, tkτn

) and be
ause also
|
∫ t

0
Pn(s) ds−

∫ tk−1
τn

0
Pn(s) ds| ≤ τn‖Pn‖L∞(0,T ) while there is no additional error inthe pie
e-wise 
onstant Dτn,hn,εn. By the 
onvergen
e properties (3.42), (3.44) and(3.45) with Fatou's lemma we get

G(t) + D(t) − G(0) ≤
∫ t

0

p(s)ds ≤
∫ t

0

P(s)ds. (3.50)Using further (3.8), (3.42), and the notation from Step 2, we have
E(t, q(t)) ≤ lim inf

j→∞
Eεnt

j
,hnt

j

(tj, qnt
j
(t)) = lim

j→∞
Gnt

j
(t) = G(t). (3.51)By (3.15b) with s = 0 and D(s) = D(0) = 0, we have VarD(q; 0, t) ≤ D(t). More-over, by (3.32) we have G(0) = E(0, q(0)). Inserting this into (3.50) and using still(3.49), we obtain

E(t, q(t)) + VarD(q; 0, t) − E(0, q(0)) ≤ G(t) + D(t) − G(0)

≤
∫ t

0

P(s) ds =

∫ t

0

∂

∂s
E(s, q(s)) ds, (3.52)whi
h is the desired upper energy estimate.Step 5: Lower energy estimate. The opposite estimate E(t, q(t)) + VarD(q; 0, t) −

E(0, q(0)) ≥
∫ t

0
∂
∂s
E(s, q(s))ds is a 
onsequen
e of the stability whi
h is alreadyestablished in Step 3. We refer to [36, Prop. 5.7℄ or also [39, Prop. 2.4℄ for thiste
hni
al proof where (3.49) with P ∈ L∞(0, T ) and (3.11) have been used. Thus,we have proved that q : [0, T ] → Q is a solution.Step 6: Improved 
onvergen
e. Having energy equality, we 
on
lude that in (3.50)all the inequalities must be equalities. In parti
ular, this implies

p(t) = P(t), G(t) = E(t, q(t)) and Var(q; 0, t) = D(t). (3.53)Together with the 
onvergen
e properties established in Step 2, we obtain the as-sertions (i)�(iii). Finally, employing [14, Prop. A.2℄ together with p = P yields (iv).
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Remark 3.9 (Two-sided energy estimate (3.26)�(3.27).) In fa
t, (3.26)�(3.27) wasused only to prove the a-priori BV-bound for Gτ,h,ε in Step 1. This bound is notreally needed, sin
e we may postpone the de�nition of G : [0, T ] → R from Step 2to Step 4 and set G(t) = lim supn→∞ Gτn,hn,εn(t). Then (3.50) and (3.51) remaintrue but the last equality in (3.51) whi
h has to be repla
ed by �≤�. Finally, Step 5implies G(t) = E(t, q(t)) as before. However, the two-sided energy estimate (3.26)�(3.27) has its own relevan
e as it 
an be used to 
he
k implementation of numeri
al
al
ulations. Namely, evaluating the terms in (3.26)�(3.27) at ea
h time step and
he
king a-posteriori the estimate (3.26)�(3.27) may dete
t, e.g., a failure of theminimization pro
edure, whi
h we have to apply to solve numeri
ally the globaloptimization problem (3.22) at every 
urrent time step; see [31℄ for numeri
al resultsin a 
on
rete example. Violation of (3.26) or (3.27) mean that qk
τ,h,ε or qk−1

τ,h,ε 
annotbe stable, respe
tively.Remark 3.10 (Numeri
al integration.) Another approximation of Eε and Dε in-volving, e.g., numeri
al integration 
an quite easily be in
orporated, too. For this,
Eε and Dε in the 
onditions in Se
t. 3.1 as well as (3.16) should additionally dependon h by still another way than only by adding δQh

. As su
h a generalization would
ompli
ate, in parti
ular, Se
tion 4 and as it will not be used in Se
tion 5, we haveomitted it 
ompletely.4 Linear stru
tureWe 
onsider now the 
ase that U and Z are subsets of some re�exive separableBana
h spa
es U and Z, respe
tively. This enables more detailed 
onsiderations.4.1 Setting the data and their approximationThe weak topology, if restri
ted on bounded 
onvex sets, will play the role of thesequentially 
ompa
t topology used in Se
t. 3 for (3.3)�(3.8), (3.13), and (3.16); yet
f. Remark 3.2 for (3.13). Here we will denote it by �w-lim� or � w→ � to distinguishit from the norm topology whi
h we will denote by �s-lim� or � s→ �. In 
ase ofnon-re�exive spa
es having preduals, we 
ould work with weak* topologies insteadof the weak ones. For an abstra
t parameter h > 0, we 
onsider �nite-dimensionalsubspa
es Uh ⊂ U and Zh ⊂ Z. The 
on
rete 
onstru
tions of Qh := Uh × Zh usedin numeri
al analysis are 
reated by (here an abstra
t) �(quasi-)interpolation� linearbounded operators ΠU,h : U → U and ΠZ,h : Z → Z. We put Πh = ΠU,h × ΠZ,h :
Q→ Q, and

Uh := ΠU,hU , Zh := ΠZ,hZ, Qh := Uh×Zh = ΠhQ. (4.1)To guarantee the 
entral 
ondition (3.16), we assume the natural basi
 approxima-tion property that Πh 
onverges pointwise to the identity, i.e.
∀q ∈ Q : s-lim

h→0
Πhq = q. (4.2)14



The quasi-interpolation operators need not be 
onformal with 
onstraints involvedimpli
itly in U and Z so that Qh need not be a subset of Q. As an analyti
al toolthe Γ-
onvergen
e approa
h allow also for su
h situations (
f. [39℄) but, in order touse the theory from Se
tions 2�3 in a quantitative numeri
al way, we will alwaysrestri
t ourselves on �
onformal� situations when
ΠU,hU ⊂ U and ΠU,hZ ⊂ Z; (4.3)i.e. Qh = ΠhQ ⊂ Q. Possible �non
onformities� 
an be handled via the penalizationparameter ε.For X another Bana
h spa
e, it is often useful to 
onsider a mapping Ξ : U×Z → Xto des
ribe possible equality 
onstraints of the form Ξ(u, z) = 0 that may impli
itlybe involved in the de�nition of E . Moreover, we assume the for
ing by f : [0, T ] →

U∗ × Z∗ to be given expli
itly in E , whi
h 
overs many appli
ations (ex
ept, e.g.,�hard-devi
e� loading of me
hani
al systems through Diri
hlet boundary 
onditions).Then, for E : U × Z → R we 
onsider
E(t, u, z) :=

{

E(u, z) − 〈f(t), (u, z)〉 if u ∈ U , z ∈ Z, Ξ(u, z) = 0,
+∞ otherwise. (4.4)The approximate energy deals with possible in
ompatibility of the �nite-dimensionaldis
retization with the equality 
onstraints by a penalization of them (
f. [49℄):

Eε(t, u, z) :=

{

E(u, z) − 〈f(t), (u, z)〉 +
1

ε

∥

∥Ξ(u, z)
∥

∥

α

X
if u ∈ U , z ∈ Z,

+∞ otherwise. (4.5)To satisfy (3.4), we assume a super-linear growth of E to dominate the linear be-havior of 〈f(t), ·〉:
lim
q∈Q

‖q‖→∞

E(q)

‖q‖ = +∞. (4.6)Obviously, (4.4) and (4.5) yield simply ∂
∂t
E(t, q) = ∂

∂t
Eε(t, q) = 〈 ∂

∂t
f(t), q〉 and (3.9a)requires

f ∈ C1([0, T ];Q∗). (4.7)The 
oer
ivity (4.6) with (4.7) ensure also (3.9b), (3.11) and (3.13).A quite 
anoni
al way to indu
e the dissipation distan
es in simpler 
ases is througha degree-1 homogeneous dissipation potentials. For this, we 
onsider K ⊂ Z a
losed 
onvex 
one with the vertex at 0, R : Z → R a 
ontinuous 
onvex degree-1homogeneous fun
tional, i.e. R(az) = aR(z) for any z ∈ Z and a ≥ 0. Then we
onsider the spe
ial 
ase of D de�ned by
D(z1, z2) :=

{

R(z2 − z1) if z2 − z1 ∈ K,
+∞ otherwise. (4.8)15



Note that D(z1, z1) = 0 and the triangle inequality (2.1) holds. As R is 
onvexand 
ontinuous and K 
onvex 
losed, D : Z × Z → R ∪ {+∞} is weakly lowersemi
ontinuous.If K 6= Z, then it might be numeri
ally suitable to avoid the unilateral 
onstraintsinvolved by exa
t penalization by 
hoosing the approximate potential Dε in the form
Dε(z1, z2) := Rε(z2 − z1) where Rε(z) := R(z) + inf

ẑ∈K

‖z − ẑ‖
ε

. (4.9)As K is a 
one, Rε is again a homogeneous degree-1 fun
tional for any ε > 0 and(3.2) thus holds. As R is 
onvex and 
ontinuous and K is 
onvex, Rε is 
onvexand 
ontinuous, and the weak lower-semi
ontinuity (3.3) of Rε holds, too. Notethat always Rε ≤ R + δK . Unfortunately, smoothening of R + δK e.g. by Yosida'sapproximation, whi
h would be sometimes numeri
ally desirable, does not ful�ll(3.2) and expe
tedly nontrivial modi�
ations of the theory in Se
t. 3 would then beneeded.The stability (3.31) of the initial 
ondition q0 is, in general, di�
ult to verify andexpli
it 
onstru
tions 
an be done in very spe
ial 
ases only. Anyhow, there is oneuniversal way how to design a �gentle start�, namely taking q0 = (u0, z0) minimizing
E(0, ·), i.e. here a solution to the problemminimize E(u, z) − 〈f(0), (u, z)〉,subje
t to Ξ(u, z) = 0, u ∈ U , z ∈ Z.

} (4.10)Su
h a �gentle start� is, in fa
t, pra
ti
ally the only option applied in engineeringsimulations.The other assumptions from Se
t. 3 deserve a more detailed proof.Proposition 4.1 (Veri�
ation of (3.5)�(3.8).) Let E be weakly lower semi
on-tinuous, Ξ : Q → X be weakly 
ontinuous, and let K be 
onvex and 
losed, R be
onvex and also positive on K \ {0}, i.e.
∀z∈K : z 6= 0 ⇒ R(z) > 0. (4.11)Then (3.5)�(3.8) with �→� referring to the weak topology hold.Proof. In view of (4.4), the 
ondition Eε(θ, qh,ε) ≤ a < +∞ in (3.5) implies E(qh,ε) ≤

C+〈f(θ), qh,ε〉, and by (4.6) a sequen
e of {qh,ε}h,ε>0 must be bounded hen
e it has asubsequen
e whi
h 
onverges weakly (re
all that we assume re�exivity of Q), whi
hproves (3.5).As to (3.6), for z2 − z1 ∈ K we have
lim inf

(h,ε)→(0,0)
Dε(zh,ε, z̃h,ε) = lim inf

(h,ε)→(0,0)
R(z̃h,ε − zh,ε) + inf

ẑ∈K

‖z̃h,ε − zh,ε − ẑ‖
ε

≥ lim inf
(h,ε)→(0,0)

R(z̃h,ε − zh,ε) ≥ R(z̃ − z) = D(z, z̃) (4.12)16



be
ause R is weakly lower semi
ontinuous. If z2−z1 6∈ K, then inf ẑ∈K ‖z̃−z−ẑ‖ > 0be
ause K is 
losed. Using also (4.11), we then have
lim inf

(h,ε)→(0,0)
Dε(zh,ε, z̃h,ε) ≥ lim

(h,ε)→(0,0)
inf
ẑ∈K

‖zh,ε − z̃h,ε − ẑ‖
ε

= +∞ = D(z, z̃). (4.13)To prove (3.7), take z ∈ Z and a sequentially weakly 
ompa
t K in Z and a sequen
e
(zn)n∈N in K with limn→∞ min(D(zn, z),D(z, zn)) = 0. For a subsequen
e we have
znj

w→ z̃, and the mentioned weak lower semi
ontinuity ofD implies eitherD(z, z̃) =
0 or D(z̃, z) = 0. Thus we 
an 
on
lude z̃ = z and the whole sequen
e must weakly
onverge, whi
h proves (3.7).As to (3.8), let us distinguish whether Ξ(q) = 0 or Ξ(q) 6= 0. The former 
aseensures the last equality in the following estimate:

lim inf
(h,ε,θ)→(0,0,t)

Eε(θ, qh,ε) = lim inf
(h,ε)→(0,0)

E(qh,ε) − 〈f(θ), qh,ε〉 +
1

ε
‖Ξ(qh,ε)‖α

X

≥ lim inf
(h,ε,θ)→(0,0,t)

E(qh,ε) − 〈f(θ), qh,ε〉 ≥ E(q) − 〈f(t), q〉 = E(t, q), (4.14)where the last inequality is by the weak lower semi
ontinuity of E. This provesthat (3.8) holds with respe
t to the weak topology if Ξ(q) = 0. In the 
ase
Ξ(q) 6= 0, qh,ε

w→ q and the weak 
ontinuity of Ξ ensures lim inf ‖Ξ(qh,ε)‖X ≥
‖w- lim Ξ(qh,ε)‖X = ‖Ξ(q)‖X > 0. Then, be
ause of the 
oer
ivity (4.6) of E, wehave
lim inf

θ→t
(h,ε)→(0,0)

Eε(θ, qh,ε) ≥ inf
q̃∈Q

θ∈[0,T ]

[

E−f(θ)
]

(q̃) + lim
(h,ε)→(0,0)

1

ε

∥

∥Ξ(qh,ε)
∥

∥

α

X
= +∞ = E(t, q).

2In view of the above 
onsiderations, we have guaranteed the assumptions neededin Theorem 3.8 ex
ept (3.16) and (3.32). This 
onditions are still to be veri�ed inparti
ular 
ases, some of them s
rutinized in Se
tions 4.2�4.4.Remark 4.2 (BV-estimates.) Assuming 
oer
ivity of R+δK on some Bana
h spa
e
Z1 ⊃ Z, i.e.

lim
z∈K, ‖z‖Z1

→∞
R(z) = +∞, (4.15)together with the degree-1 homogeneity will make (4.11) more spe
i�
, namely [R+

δK ](z) ≥ c‖z‖Z1
with some c > 0, hen
e by (4.8) also D(q1, q2) ≥ c‖z1 − z2‖Z1

, andby the de�nition of �Var� in (2.6) then also
VarD(q; 0, T ) ≥ cVar‖·‖Z1

(z; 0, T ). (4.16)In view of the de�nition (2.6) applied now with the norm ‖ · ‖Z1
, the last expressionis just the standard total variation and the estimate (3.38) yields boundedness of

zτ,h,ε and thus also the limit z in the bounded-variation spa
e BV(0, T ;Z1).17



4.2 The 
ase K = ZLet us 
onsider an additional norm | · |, whi
h may indu
e a weaker topology thanthe 
anoni
al norm making Q a Bana
h spa
e.Proposition 4.3 (Veri�
ation of (3.16) and (3.32) for K=Z.) Let (4.6) and(4.7) hold, and let α ≥ 1, let E : Q → R in (4.4) be weakly lower semi
ontinuousand norm 
ontinuous, both Ξ : Q → X and R : Z → R be weakly 
ontinuous, and
K = Z (hen
e Rε ≡ R), and Ξ be also Lips
hitz 
ontinuous with respe
t to | · |, i.e.

∃ℓΞ ∈ R ∀q1, q2 ∈ Q :
∥

∥Ξ(q1) − Ξ(q2)
∥

∥

X
≤ ℓΞ

∣

∣q1 − q2
∣

∣ (4.17)and let the operator Πh satis�es the 
onvergen
e-rate estimate
∃γ > 0, C ∈ R ∀q ∈ Q :

∣

∣q − Πhq
∣

∣ ≤ Chγ
∥

∥q
∥

∥. (4.18)Then (3.16) and (3.32) with q0 ∈ S(0) are satis�ed, the last two 
onditions relyingon the 
onvergen
e 
riterion
H(ε) = o

(

ε
1

αγ
) and with q̃h,ε

s→ q̃. (4.19)Proof. Let us prove (3.16). For any q̃ ∈ Q, with Ξ(q̃) = 0, by (4.17) and (4.18), wehave
∥

∥Ξ(Πhq̃)
∥

∥

X
=

∥

∥Ξ(Πhq̃) − Ξ(q̃)
∥

∥

X
≤ ℓΞ

∣

∣q̃ − Πhq̃
∣

∣ ≤ CℓΞh
γ
∥

∥q̃
∥

∥. (4.20)For (h, ε) → (0, 0) with h ≤ H(ε) with H from (4.19) we therefore have
1

ε

∥

∥Ξ(Πhq̃)
∥

∥

α

X
≤ CαℓαΞ

hαγ

ε

∥

∥q̃
∥

∥

α → 0. (4.21)We put q̃h,ε := Πhq̃ for (3.16); note that, in fa
t, we do not need any expli
itdependen
e on ε ex
ept that we assume h ≤ H(ε). As E is strongly 
ontinuousand, by (4.2), q̃h,ε
s→ q̃, and as R is weakly 
ontinuous and qh,ε

w→ q is assumed in(3.16), it holds
lim

h≤H(ε)
(ε,h)→(0,0)

Eε(θ, q̃h,ε) + D(qh,ε, q̃h,ε) = lim
h≤H(ε)

(ε,h)→(0,0)

E(q̃h,ε) − 〈f(θ), q̃h,ε〉 +R(q̃h,ε−qh,ε)

+
1

ε

∥

∥Ξ(Πhq̃)
∥

∥

α

X
= E(q̃) − 〈f(t), q̃〉 +R(q̃−q) = E(t, q̃) + D(q, q̃)whenever Ξ(q̃) = 0. Combining this with (3.8), we obtain (3.16) for Ξ(q̃) = 0. If

Ξ(q̃) 6= 0, then due to the de�nition (4.4) the right-hand side in (3.16) is +∞ and(3.16) is ful�lled trivially.The stability of q0 
onsidered in Theorem 3.8 implies E(0, q0) < +∞, and then theassumption (3.32) is ful�lled if one 
hooses
[

q0
]

h,ε
:= Πhq0 (4.22)in (3.32). Indeed, [q0]h,ε

s→ q0 for h → 0 just by (4.2) and then also Eε(0, [q0]h,ε) =
E(Πhq0) + 1

ε
‖Ξ(Πhq0)‖α

X − 〈f(0),Πhq0〉 → E(q0) − 〈f(0), q0〉 = E(0, q0) be
ause
E is assumed norm 
ontinuous and be
ause, sin
e the �nite energy of q0 implies
Ξ(q0) = 0, we 
an employ the estimate (4.21) for h ≤ H(ε). 218



4.3 The 
ase K$ZCertain appli
ations to unidire
tional pro
esses (like damage, delamination, debond-ing, or hardening in plasti
ity or in ferromagnets) require modelling with K $ Z.This needs further �ner investigations for whi
h we 
onsider some topology σ on
U × Z whi
h is �ner than the weak one and 
oarser than the norm one; see theparti
ular examples in Se
t. 5.Proposition 4.4 (Un
onditional 
onvergen
e for K $ Z.) Let E : Q → Rbe weakly lower semi
ontinuous and σ-
ontinuous. Assume both R : Z → R and
Ξ : Q → X be weakly 
ontinuous, and let (4.7), and that the following attainability
ondition, expressing 
ertain 
onsisten
y of the dis
retization with the 
onstraintsgiven by Ξ and K, hold:

∀q, q̃∈Q, Ξ(q) = 0, q̃−q ∈ K, Ξ(q̃) = 0, ∀qh∈Qh, qh
w→ q

∃q̃h∈Qh : q̃h
σ→ q̃,

∥

∥Ξ(q̃h)
∥

∥

X
≤

∥

∥Ξ(qh)
∥

∥

X
, q̃h−qh ∈ K. (4.23)Then (3.16) with Dε,h from (4.9) is satis�ed, now with H ≡ 1, i.e. �un
onditionally�.Moreover, the quali�
ation (3.32) of the stable initial 
ondition q0 holds if

∃q0h ∈ Qh : Ξ(q0h) = 0 & q0h
σ→ q0. (4.24)Proof. The a-priori bound Eε,h(θ, qh,ε) ≤ C assumed in (3.16) means

1

ε

∥

∥Ξ(qh,ε)
∥

∥

α

X
≤ C − E(qh,ε) +

〈

f(θ), qh,ε

〉

≤ C + sup
q∈Q

θ∈[0,T ]

[

f(θ)−E
]

(q) <+∞ (4.25)due to (4.6) so that ‖Ξ(qh,ε)‖X = O(ε1/α). In the limit therefore Ξ(q) = 0 be
ause
Ξ is assumed weakly 
ontinuous. Thus we take qh,ε from (3.16) for qh in (4.23). As(3.16) is trivially satis�ed if Ξ(q̃) 6= 0 be
ause the right-hand side in (3.16) is +∞,we 
an 
onsider only Ξ(q̃) = 0. Then we 
an take q̃h from (4.23) for q̃h,ε in (3.16).Note that q̃h,ε − qh,ε ∈ K in (4.23) ensures Dε,h(qh,ε, q̃h,ε) = R(qh,ε − q̃h,ε) due tothe de�nition (4.9) and by the assumed weak 
ontinuity of R and 
losedness and
onvexity of K, we have

lim
(h,ε)→(0,0)

Dε,h(qh,ε, q̃h,ε) = lim
(h,ε)→(0,0)

R(q̃h,ε − qh,ε) = R(q̃ − q) = D(q, q̃). (4.26)Then, using the σ-
ontinuity and weak lower semi
ontinuity of E the 
ontinuity of
f (see (4.7)), and ‖Ξ(q̃h,ε)‖X ≤ ‖Ξ(qh,ε)‖X (see (4.23)), we obtain

lim sup
(h,ε,θ)→(0,0,t)

(

Eε,h(θ, q̃h,ε) + Dε,h(qh,ε, q̃h,ε) − Eε,h(θ, qh,ε)
)

= lim sup
(h,ε,θ)→(0,0,t)

(

E(q̃h,ε)

−〈f(θ), q̃h,ε − qh,ε〉 +
1

ε
‖Ξ(q̃h,ε)‖α

X + D(qh,ε, q̃h,ε) − E(qh,ε) −
1

ε
‖Ξ(q̃h,ε)‖α

X

)

≤ lim sup
(h,ε,θ)→(0,0,t)

(

E(q̃h,ε) − 〈f(θ), q̃h,ε − qh,ε〉 + D(qh,ε, q̃h,ε) − E(qh,ε)
)

= lim
(h,ε,θ)→(0,0,t)

(

E(q̃h,ε) − 〈f(θ), q̃h,ε − qh,ε〉 + D(qh,ε, q̃h,ε)
)

− lim inf
(h,ε)→(0,0)

E(qh,ε)

≤ E(q̃) − 〈f(t), q̃−q〉 + D(q, q̃) −E(q) = E(t, q̃) + D(q, q̃) − E(t, q). (4.27)19



Eventually, we are to prove (3.32) provided (4.24) and provided q0 ∈ S(0); the lastin
lusion implies E(0, q0) < +∞ whi
h here further implies Ξ(q0) = 0). Then, with
[q0]h,ε := q0h in (4.24), it holds

Eε,h(0, [q0]h,ε) = E(q0h) − 〈f(0), q0h〉 → E(q0) − 〈f(0), q0〉 = E(0, q0) (4.28)as required in (3.32) be
ause E is assumed σ-
ontinuous. Note that the last equalityin (4.28) relies on Ξ(q0) = 0 for whi
h σ-
ontinuity of Ξ is needed; in fa
t, weassumed even weak 
ontinuity of Ξ. 24.4 The 
ase K$Z and �semiquadrati
� E.Some appli
ations exhibits the �main� part of the stored energy E quadrati
 in termsof the dissipating variable z in the sense
E(u, z) :=

1

2
〈Bz, z〉 + E0(u, z) , B : Z → Z∗ linear and bounded,

E0 : U×Z → R (s×w)-
ontinuous. (4.29)In smooth 
ases, this 
orresponds to problems governed by �semilinear� mappings
E ′(q) =

(0 0
0 B

)

+E ′
0(q). Su
h problems are well �tted for un
onditional 
onvergen
eunder some parti
ular 
ir
umstan
es.As to (3.32), we 
an guarantee it again through (4.24) now with σ the strong topologyto have the quadrati
 term in (4.29) 
ontinuous. The veri�
ation of (3.16) is nowmore sophisti
ated:Proposition 4.5 (�Semiquadrati
� 
ase: un
onditional 
onvergen
e.) Let(4.7) and (4.29) hold, R be 
ontinuous, let further Ξ be independent of u, a�ne and
ontinuous, i.e. in the form Ξ(u, z) = Ξ0(z) + ξ with ξ ∈ X, and Ξ0 ∈ L(Z,X)
ompatible with the dis
retization operator ΠZ,h in the sense that ΠZ,h(Ker Ξ0) ⊂

KerΞ0. Let also Z +K ⊂ Z, and the 
one K be 
ompatible with ΠZ,h in the sensethat ΠZ,hK ⊂ K. Then (3.16) with H ≡ 1 holds.Proof. We will prove (3.16) by using Proposition 4.4 and for this we will verify(4.23) with σ being the strong×weak topology on U × Z. The re
overy element q̃hin (4.23) 
an be 
hosen simply as
ũh := ΠU,hũ, (4.30a)
z̃h := zh + ΠZ,h(z̃ − z). (4.30b)It holds q̃h ∈ Qh; indeed, ũh ∈ Uh just by the de�nitions (4.1) and (4.30a) while

z̃h ∈ Zh be
ause z̃−z ∈ K, assumed in (4.23), implies z̃h−zh = ΠZ,h(z̃−z) ∈ ΠZ,hKand further Z + K ⊂ Z implies Zh = ΠZ,hZ ⊃ ΠZ,h(Z + K) = Zh + ΠZ,hK andeventually zh ∈ Zh is assumed in (4.23), hen
e z̃h ∈ Zh indeed follows.20



Also, the inequality ‖Ξ(qh)‖X ≤ ‖Ξ(q̃h)‖X in (4.23) follows from
Ξ(q̃h) = Ξ0z̃h + ξ = Ξ0(zh + ΠZ,h(z̃ − z)) + ξ = Ξ(qh) (4.31)be
ause Ξ0(ΠZ,h(z − z̃)) = 0 holds. Indeed, Ξ(q̃) = 0 is also expli
itly assumed in(4.23) while Ξ(q) = 0 follows from qh

w→ q assumed in (4.23) by the 
ontinuityof Ξ, and therefore Ξ0(z − z̃) = Ξ(q) − Ξ(q̃) = 0, hen
e z − z̃ ∈ Ker Π0, and bythe assumed 
ompatibility ΠZ,h(KerΞ0) ⊂ Ker Ξ0 also ΠZ,h(z − z̃) ∈ Ker Ξ0, hen
eeventually Ξ0(ΠZ,h(z − z̃)) = 0. Then also, by using also (4.2), it holds(s×w)-lim
h→0

q̃h =
( s-lim

h→0
ũh , w-lim

h→0
z̃h

)

=
( s-lim

h→0
ΠU,hũ , w-lim

h→0
zh + s-lim

h→0
ΠZ,h(z̃−z)

)

=
(

ũ, z + (z̃−z)
)

= q̃.Although for σ =s×w the energy E itself need not be σ-
ontinuous like in Proposi-tion 4.4, in the 
ase (4.29) it is however possible to pass to the limit in the di�eren
e
E(θ, q̃h) − E(θ, qh) by using (4.31) and the binomial formula:
Eε(θ, q̃h) − Eε(θ, qh) = E(θ, q̃h) + 1

ε
‖Ξ(q̃h)‖α

X − E(θ, qh) − 1
ε
‖Ξ(qh)‖α

X

= E(θ, q̃h) − E(θ, qh)

= 1
2
〈Bz̃h, z̃h〉 − 1

2
〈Bzh, zh〉 + E0(q̃h) −E0(qh) − 〈f(θ), q̃h−qh〉

= 1
2
〈B(z̃h − zh), z̃h + zh〉 + E0(q̃h) − E0(qh) − 〈f(θ), q̃h−qh〉

→ 1
2
〈B(z̃ − z), z̃ + z〉 + E0(q̃) − E0(q) − 〈f(t), q̃ − q〉

= 1
2
〈Bz̃, z̃〉 − 1

2
〈Bz, z〉 + E0(q̃) − E0(q) − 〈f(t), q̃ − q〉

= E(t, q̃) − E(t, q). (4.32)For the limit passage it was important that z̃h−zh = ΠZ,h(z̃−z) s→ z̃−z be
ause of(4.2) so that
〈B(z̃h−zh), z̃h+zh〉 → 〈B(z̃ − z), z̃ + z〉 (4.33)be
ause z̃h+zh

w→ z+z̃. We have z̃h − zh = ΠZ,h(z̃ − z) ∈ ΠZ,hK ⊂ K. Then, inview of the de�nition in (4.8) and the strong 
ontinuity of R, we have
lim

(ε,h)→(0,0)
Dε(qh, q̃h) = lim

(ε,h)→(0,0)
Rε(z̃h−zh) = lim

h→0
R(z̃h−zh)

= lim
h→0

R
(

ΠZ,h(z̃−z)
)

= R
(

lim
h→0

ΠZ,h(z̃−z)
)

= R(z̃−z) = D(q, q̃). (4.34)By (4.32) and (4.34), we 
an pass dire
tly to the limit in (4.27). Thus (3.16) with
H ≡ 1 is proved in this 
ase, too. 2Alternatively to the setting (4.29), we 
an 
onsider a variant with a fully quadrati
�main� part of E: 21



Proposition 4.6 (Semiquadrati
 
ase II: un
onditional 
onvergen
e.) Let
E(q) :=

1

2
〈Bq, q〉 + E0(q) , B : Q→ Q∗ linear and bounded,

E0 : Q→ R w-
ontinuous. (4.35)hold, R be 
ontinuous and U = U and and Ξ be a�ne and 
ontinuous, i.e. in theform Ξ(q) = Ξ0q + ξ with ξ ∈ X and Ξ0 ∈ L(Q,X) su
h that Πh(Ker Ξ0) ⊂ Ker Ξ0.Let again Z + K ⊂ Z, ΠZ,hK ⊂ K, and f satisfy (4.7). Then (3.16) with H ≡ 1holds.Proof. Instead of (4.30), we take
q̃h := qh + Πh(q̃ − q). (4.36)Then it su�
es to modify the proof of Proposition 4.5 quite straightforwardly, e.g. to
onsider q's instead of z's in (4.31) and (4.32). 2Remark 4.7 (No penalization.) In 
ase of the un
onditional 
onvergen
e, one 
an
onsider a numeri
al s
heme with ε = 0, i.e. with the original E and D instead of

Eε,h and Dε,h. The 
orresponding in
remental problem might then involve unilateral
onstraint; 
f. also Remark 5.3.5 Parti
ular examples in 
ontinuum me
hani
sThe doubly-nonlinear in
lusion (2.2) is a framework for des
ription of so-
alled gen-eralized standard materials with internal parameters as introdu
ed by Halphen andNguen [21℄ in those 
ases where 
onvexity of stored and dissipated energies 
an beexpe
ted and inertial e�e
ts 
an be negle
ted. Here we have in mind various inelas-ti
 rate-independent pro
esses in su
h materials having possibly a non
onvex storedenergy. The following examples illustrate how the general theory applies in parti
-ular situations, 
f. Table 1 for a survey. As a by-produ
t of the presented numeri
altheory, we obtain analyti
al existen
e/
onvergen
e results whi
h have not yet beenderived in literature. For the sake of explanatory lu
idity, we 
on�ne ourselves torather 
onventional models from 
ontinuum me
hani
s although some less 
onven-tional models (e.g. those involving a mi
rostru
ture des
ribed by so-
alled Youngmeasures, see [32, 52, 53, 54℄) allow for su
h numeri
al analysis, too. In Se
t. 5.7we present a 
ombination of me
hani
al and ferromagneti
al e�e
ts, i.e. magne-tostri
tion with hystereti
al e�e
ts, but the 
ombination with ferroele
tri
al e�e
ts,i.e. piezoele
tri
ity with hysteresis (see [43℄), or even purely non-me
hani
al rate-independent models developed in ferromagneti
s (e.g. [52, 53, 58, 59℄) and ferro-ele
tri
s (e.g. [25, 48, 56℄) 
ould be treated similarly. We negle
t any temperaturedependen
e or, in other words, if there is a possible dependen
e of data on tem-perature, we 
onsider su�
iently slow pro
esses so that the released heat due todissipative pro
esses 
an e�
iently be transferred away to allow for 
onsideringisothermal pro
esses. 22



pro
ess unidire
tional 
onstraints quadrati
 proposition/ se
tion (i.e.K $ Z) (i.e.X 6={0}) energy E usedplasti
ity with hardening + − + 4.5 or 4.6at small strains / 5.2phase transformation: − − − 4.4 (σ=s)mixture approa
h / 5.3phase transformation: − + − 4.4 (σ=s)non-mixture approa
h/5.4damage / 5.5 + − ± 4.5debonding / 5.6 + − − 4.4 (σ=s×w∗)magnetostri
tion / 5.7 − + − 4.3Table 1. Organization and features of the examples presented in Se
tion 5.5.1 Sket
h of 
ontinuum me
hani
s of deformable bodiesWe assume a spe
imen o

upying in its referen
e 
on�guration a bounded domain
Ω ⊂ R3. As usual, y : Ω → R3 denotes the deformation and u : Ω → R3 thedispla
ement, related to ea
h other by y(x) = x+u(x), x ∈ Ω. Hen
e the deformationgradient equals F = ∇y = I + ∇u with I ∈ R3×3 being the identity matrix and ∇is the gradient operator. For simpli
ity, we will treat only the soft-devi
e loadingrealized through tra
tion (Neumann or Robin-type) boundary 
onditions. The stateof the material and possibly also of boundary 
onditions is assumed to depend on (aset of) 
ertain parameters z that may evolve in time in a rate-independent manner.Then naturally U and Z used before will be the spa
es of u's and of z's, respe
tively.The spe
i�
 energy stored in the inter-atomi
 links in the homogeneous (possiblyanisotropi
) 
ontinuum ϕ̂ = ϕ̂(F, z) is phenomenologi
ally des
ribed as a fun
tionof the deformation gradient F and the mentioned variable z ∈ Rm. Mostly theve
tor z ∈ Z0 ⊂ Rm in not dire
tly a

essible for a ma
ros
opi
al loading (for anex
eption see Se
t. 5.7) and will thus play the role of internal parameters. The frame-indi�eren
e, i.e. ϕ̂(F, z) = ϕ̂(RF, z) for any R ∈ SO(3) = the group of orientation-preserving rotations, requires that ϕ̂(·, z) in fa
t depends only on the (right) Cau
hy-Green stret
h tensor

F⊤F = (I + ∇u)⊤(I + ∇u) = I + (∇u)⊤ + ∇u+ (∇u)⊤∇u. (5.1)An important property of ϕ̂(·, z) is quasi
onvexity, whi
h means ϕ(A, z) ≤
infu∈W 1,p

0 (Ω;R3)

∫

Ω
ϕ(A+∇u, z) dx for any A ∈ R3×3. The following assertion modi�esthe 
elebrated result by A
erbi and Fus
o [1℄:Lemma 5.1 Let ϕ : R3×3 × Rm → R be 
ontinuous, ϕ(·, z) quasi
onvex, p, p1 ∈

(1,+∞) and, for some c2 ≥ c1 > 0,
∀A∈R3×3 ∀z∈Z0 : c1

(

|A|p+|z|p1−1
)

≤ ϕ(A, z) ≤ c2
(

1+|A|p+|z|p1
)

. (5.2)23



Then the fun
tional (u, z) 7→
∫

Ω
ϕ(∇u, z) dx is (w×s)-lower semi
ontinuous on

W 1,p(Ω; R3) × {z∈Lp1(Ω; Rm); z(·)∈Z0 a.e. on Ω}.Sket
h of the proof. By 
oer
ivity, we do not need to distinguish between sequentialand topologi
al lower semi
ontinuity.Let us take a sequen
e {(un, zn)}n∈N (w×s)-
onverging to (u, z). Then (∇un, zn)(w×s)-
onverges to (∇u, z) in Lp(Ω; R3×3) × Lp1(Ω; Rm). Also, sele
ting a suitablesubsequen
e, it generates (a set) of Lp×Lp1-Young measures of the form ν⊗µz where
µz = {δz(x)}x∈Ω with δz(x) denoting here the Dira
 distribution on Rm supported at
z(x); 
f. [44, Corollary 3.4℄. This means, in terms of a mentioned subsequen
e, that

lim
n→∞

∫

Ω

v(∇un, zn)dx =

∫

Ω

∫

R3×3×Rm

v(A, r)
[

νx ⊗ δz(x)

]

(dA×dr)dx

=

∫

Ω

∫

R3×3

v(A, z(x)) νx(dA)dx (5.3)for any v 
ontinuous of a growth less than p in the A-variable, while for ϕ 
ontinuoussatisfying (5.2) we have only
lim inf
n→∞

∫

Ω

ϕ(∇un, zn) dx ≥
∫

Ω

∫

R3×3

ϕ(A, z(x)) νx(dA)dx; (5.4)
f. [45, Theorem 3.2℄.As νx is a gradient Lp-Young measure with ∫

R3×3 Aνx(dA) = ∇u(x) for a.a. x ∈ Ω,and as ϕ(·, z(x)) is quasi
onvex, for a.a. x ∈ Ω it holds
∫

R3×3

ϕ(A, z(x))νx(dA) ≥ ϕ
(

∫

R3×3

Aνx(dA), z(x)
)

= ϕ(∇u(x), z(x)). (5.5)see [30, 45℄. Combining (5.4) and (5.5) yields lim infn→∞

∫

Ω
ϕ(∇un, zn) dx ≥

∫

Ω
ϕ(∇u(x), z(x)) dx. As the Young measure is not involved in the last estimateat all, this estimate holds, in fa
t, for the whole original sequen
e. 2An example of a frame-indi�erent quasi
onvex (in fa
t even poly
onvex, i.e. 
onvexin terms of F and its determinant and 
ofa
tors) energy ϕ̂(F, z) := ϕ̃(F ) satisfying(5.2) is the Ogden-type material

ϕ(F, z) = α1tr
(

F⊤F − I
)p/2

+ α2

∣

∣tr
(

cof(F⊤F )−I
)
∣

∣

p0
+ φ0

(

det(F )
)

; (5.6)here α1, α2 > 0, p ≥ 3, p0 ≤ p/2, φ0 is a 
onvex fun
tion of at most p/3 growth, and�nally tr(·) in (5.6) denotes the tra
e of a matrix.As F = I+∇u, we 
an express the spe
i�
 stored energy in terms of the displa
ementgradient as
ϕ = ϕ(∇u, z) = ϕ̂

(

I+∇u, z
)

. (5.7)24



The Piola-Kir
hho� stress σ : R3×3 → R3×3 is given by σ = ϕ′
∇u(∇u, z) = ϕ̂′

F (I+
∇u, z) with ϕ′

∇u and ϕ̂′
F denoting the tensor-valued partial gradients.If the displa
ement gradient ∇u is small, one 
an negle
t the quadrati
 term (5.1)so that the Green-Lagrange strain tensor E from (5.6) turns into a so-
alled small-strain tensor e(u) := 1

2
∇u+ 1

2
(∇u)⊤, i.e.

eij(u) =
1

2

∂ui

∂xj
+

1

2

∂uj

∂xi
, i, j = 1, ..., 3. (5.8)For all examples below, we assume Ω ⊂ R3 to be a polyhedral domain. The dis
retiza-tion is made by a nested family of regular triangulations of Ω with the mesh param-eter h > 0 and ΠU,h and ΠZ,h will always be 
onsidered as quasi-interpolation op-erators related with standard 
onformal �nite elements of polynomial type, namelyP0 (i.e. element-wise 
onstant fun
tions) or P1 (i.e. element-wise a�ne 
ontinu-ous fun
tions). To be more expli
it, we 
an 
onsider a molli�er u 7→ ũh with

ũh(x) =
∫

Ω
kh(x, ξ)u(ξ)dξ using a 
ontinuous kernel kh : Ω×Ω → R+ supported onan h-neighbourhood of the diagonal in Ω×Ω and ∫

Ω
kh(x, ξ) dξ = 1 for all x ∈ Ω.Then de�ne uh = ΠU,hu as a Lagrange pie
ewise a�ne interpolation of ũh usingthe nodal points in 
ase of P1-elements, or pie
ewise 
onstant interpolation usingbary
enters of the simplexes of the parti
ular triangulation in 
ase of P0-elements.Moreover, we will assume the nested triangulations 
onformal with the spe
i�
 dis-joint partition of Γ where possibly di�erent boundary 
onditions are pres
ribed. Asto the initial 
ondition q0, we will always assume its stability (3.31), e.g. ensuredthrough a �gentle start� (4.10) and thus not dis
ussed in parti
ular 
ases.5.2 Plasti
ity with hardening at small strainsThe �rst example on whi
h we want to demonstrate our theory is a fully rate-independent plasti
ity with isotropi
 hardening. The ve
tor of the internal param-eters z := (π, η) ∈ L2(Ω; R3×3

sym,0) × L2(Ω) =: Z is therefore now 
omposed from theplasti
 strain π and a hardening variable η; here we used the notation
R3×3

sym,0 :=
{

A ∈ R3×3; A⊤ = A, tr(A) = 0
}

. (5.9)For simpli
ity, we 
onsider homogeneous Diri
hlet boundary 
onditions on a part Γ0of the boundary ∂Ω with nonvanishing surfa
e measure, so that
U := U =

{

u ∈W 1,2(Ω; R3); u = 0 a.e. on Γ0}, (5.10)
Z :=

(

L2(Ω; R3×3
sym,0) × L2(Ω)

)

∩K (5.11)where K is the 
one of admissible evolution dire
tions, see (5.14) below. The 
oin
i-den
e that the z-
omponent of states 
an be restri
ted equally in the stored energyand dissipation energy is important for (5.17) below. We postulate the stored energyas
E(u, z) ≡ E(u, π, η) :=

1

2

∫

Ω

(e(u) − π)⊤C(e(u) − π) + bη2 dx (5.12)25



where C = [Cijkl] ∈ R3×3×3×3 is a positive-de�nite 4th-order tensor of elasti
 moduliand b > 0 a hardening parameter. There are no 
onstraints of the type Ξ(u, π, η) = 0so we 
onsider Eε ≡ E . In view of Remark 3.10, it also means that no numeri
al-integration error is expe
ted. Considering the loading by a time-varying for
e ga
ting on Γ1 := ∂Ω \ Γ0, we postulate f as
〈f(t), (u, z)〉 :=

∫

Γ1

g(t, x)·u(x) dS. (5.13)The hardening is a unidire
tional pro
ess and is, in standardly a

epted models,re�e
ted by the 
one of admissible evolution dire
tions in the form
K := {z = (π, η); η ≥ δ∗P (π) a.e. on Ω}. (5.14)Here P ⊂ R3×3 is a 
onvex 
losed neighbourhood of the origin, δP is its indi
atorfun
tion, and δ∗P the 
onjugate fun
tional to δP with respe
t to the duality pairing

σ : e =
∑3

i,j=1 σijeij . Note that the physi
al dimension of this pairing is Pa=J/m3.Hen
e, δ∗P is 
onvex, homogeneous degree-1 and positive ex
ept at the origin, andthus K is indeed a 
one. The interior of P is 
alled elasti
ity domain while itsboundary is 
alled the yield surfa
e. More pre
isely, it 
orresponds to the initialelasti
ity domain if η = 1 is 
onsidered as an initial 
ondition while the a
tualelasti
ity domain may be in�ated during the loading pro
ess just by the isotropi
alhardening. The 
ontinuous part of the degree-1 homogeneous dissipation potentialis
R(z) :=

∫

Ω

δ∗P (π) dx (5.15)so that the overall dissipation distan
e is, in view of (4.8),
D(z1, z2) ≡ D(π1, η1, π2, η2) :=

{

∫

Ω
δ∗P (π2−π1) dx if η2−η1 ≥ δ∗P (π2−π1) on Ω,

+∞ otherwise.This leads naturally to Z1 := L1(Ω; R3×3
sym,0)×L1(Ω) in Remark 4.2. Beside the men-tioned initial 
ondition η(0, ·) = 1, we must pres
ribe π(0, ·) = π0 ∈ L2(Ω; R3×3

sym,0).The required stability (3.31) of q0, a
hieved e.g. through the �gentle start� (4.10) assuggested in Se
t. 5.1, yields z0 = (π0, η0) ∈ K, i.e. here δ∗K(π0) ≤ 1. The mentionedinitial 
ondition η0 = 1 is, in general, guaranteed by this way only if f(0) is smallenough. Moreover, it is well-known (
f. [22, 36℄) that this problem has a uniqueenergeti
 solution (u, z) ∈W 1,∞([0, T ];U × Z).We assume a polyhedral domain Ω with also Γ0 and Γ1 having a polyhedral shape,and assume Ω triangulated by a nested family of regular triangulations with themesh parameter h > 0 
onformal with the partition Γ = Γ0 ∪Γ1, and ΠU,h and ΠZ,hquasi-interpolation operators related with 
onformal P1-elements and P0-elements,respe
tively. It is also important that the P0-elements are 
onformal with the 
one
K from (5.14) used also for Z in (5.11) in the sense ΠZ,hK ⊂ K, as needed forPropositions 4.5 and 4.6. As there is no Ξ in this problem, we have Eε = E but Rε26



from (4.9) is to be 
onsidered (unless one thinks about R + δK in pla
e of Re assuggested in Remark 4.7), and also (4.24) with σ the norm topology works simplyfor [q0]h,ε := Πhq0.Corollary 5.2 Let the data Ω, Γ0, Γ1, P , and q0 be quali�ed as above, and g ∈
C1([0, T ];L4/3(Γ1; R3)) and [q0]h,ε be taken as above. Then the approximate solutions
qε,τ,h = (uε,τ,h, πε,τ,h, ηε,τ,h) with

uε,τ,h ∈ L∞(0, T ;W 1,2(Ω; R3)), (5.16a)
πε,τ,h ∈ L∞(0, T ;L2(Ω; R3×3

sym,0)) ∩ BV([0, T ];L1(Ω; R3×3)), (5.16b)
ηε,τ,h ∈ L∞(0, T ;L2(Ω)) ∩ BV([0, T ];L1(Ω)), (5.16
)based on the P0-elements for π and η and the P1-elements for u 
onverge for

(ε, τ, h) → (0, 0, 0) (even as the whole sequen
e in the sense of Theorem 3.8 withRemark 4.2) to the energeti
 solution of the problem given by E, R, K, f and q0above.Proof. The 
oer
ivity (4.6) is ensured due to the Poin
aré inequality through theDiri
hlet boundary 
onditions, ensuring
E(u, π, η) ≥ c

(

‖u‖2
W 1,2(Ω;R3) + ‖π‖2

L2(Ω;R3×3) + ‖η‖2
L2(Ω)

) (5.17)provided also δ∗P (π) ≤ η; note that su
h 
oer
ivity does not hold for general (π, η) ∈
Z, whi
h is why for the de�nition (5.11) of Z the restri
tion to K had to be used.As P is assumed bounded, δ∗P is Lips
hitz 
ontinuous, and hen
e R is 
ontinuous.Moreover, stability of q0 as well as (4.24) have already been dis
ussed above.Using the 
oer
ivity of E already proved, we 
an verify (3.9b) with Eε = E by
∂E
∂t

(t, q) = −〈∂f
∂t
, q〉 = −

∫

Γ1

∂g
∂t

(t, x) · u(x) dS and the estimate
∣

∣

∣

∂E
∂t

(t, q)
∣

∣

∣
≤ N

∥

∥

∥

∂g

∂t

∥

∥

∥

L4/3(Γ1;R3)

∥

∥u
∥

∥

W 1,2(Ω;R3)
≤ NG1‖q‖ ≤ N2G2

1

2c
+
c

2

∥

∥q
∥

∥

2

≤ N2G2
1

c
+ E(t, q) = c1

(

E(t, q) + c0
)with c1 = 1 and c0 = N2G2

1/c. Here c is from (5.17) and N is the norm of thetra
e operator u 7→ u|Γ1
in Lin(W 1,2(Ω), L4(Γ1)) and G1 = ‖g‖C1([0,T ];L4/3(Γ1)). Herewe used the estimate E(t, q) = E(q) − 〈f(t), q〉 = E(q) −

∫

Γ1

∂g
∂t

(t, x) · u(x) dS ≥
c‖q‖2 −NG1‖q‖ ≥ c

2
‖q‖2 − 1

2c
N2G2

1.Then we use the assertions from Se
t. 3 through either Propositions 4.5 or 4.6. Inthe former 
ase, the setting (4.29) takes now
B(π, η) :=

(

Cπ , bη
)

, E0(u, π, η) :=

∫

Ω

e(u)⊤Ce(u)
2

− e(u)⊤Cπ dx,27



while for the latter 
ase the setting (4.35) works simply with B = E ′ and E0 = 0,i.e.
B(u, π, η) :=

(

div
(

C(e(u) − π)
)

, C(π − e(u)) , bη
)

, E0 := 0,with the �div� term 
onsidered in the weak sense, of 
ourse. Note that Z +K ⊂ Z,holds, too. Eventually, due to the uniqueness result [22, 36℄ or [51, Se
t.11.1.3℄, we
on
lude that the whole sequen
e 
onverges. 2Remark 5.3 (Implementation without regularization by LQ-programme.) Inanisotropi
 media like single-
rystals, the domain P is 
onsidered to be polyhe-dral, 
f. e.g. [12℄, hen
e δ∗P has a polyhedral epigraph and the in
remental problem(3.22) without any regularization (
f. Remark 4.7) represents a minimization prob-lem of a sum of a quadrati
 and a polyhedral-graph fun
tional whi
h 
an be, aftera 
omputationally 
heap enhan
ement, solved by e�
ient linear-quadrati
 solvers;
f. [52, Lemma 4℄ for this enhan
ement.Remark 5.4 The P0/P1-dis
retization of this plasti
ity problem has been alreadyused by Alberty and Carstensen [2℄ and thus Corollary 5.2 re
overs some resultsfrom [2℄. Note that our 
onvergen
e result does not use higher-order regularity ofthe solutions (u, z) ∈W 1,∞(0, T ;U×Z). Hen
e we 
annot expe
t 
onvergen
e ratesas in [2℄ and thus our results are 
loser to [23℄ where the above 
onvergen
e resultwas established already by a more elaborate method.5.3 Phase transformation: a mixture approa
hIn engineering, modelling of inelasti
 response of the materials undergoing marten-siti
 transformation is of high interest. Here we want to demonstrate our theory ona simpli�ed mixture-like model for martensiti
 transformation.Taking Γ0 as in Se
tion 5.2 and Z0 := {s ∈ Rm; sl ≥ 0 &
∑m

l=1 sl = 1} the Gibbssimplex, we put
U := U =

{

u ∈W 1,p(Ω; R3); u = 0 a.e. on Γ0}, (5.18)
Z :=

{

z∈Z := W α,2(Ω; Rm); z(x)∈Z0 for a.a. x∈Ω
} (5.19)with α > 0 denoting (possibly a fra
tional) order of derivatives of the ve
tor of theinternal parameters z whi
h now represents volume fra
tions referring to m phases(or phase variants). For simpli
ity, we 
onsider the loading again through g as inSe
t. 5.2, i.e. f is again de�ned by (5.13). We postulate the stored energy as

E(u, z) :=

∫

Ω

ϕ(∇u, z) dx+
κ

2
|z|2α (5.20)

28



with κ, α > 0 and | · |α denoting the usual seminorm in the Sobolev (or, for αnoninteger, Sobolev-Slobodetski��) spa
e, i.e.
|z|2α =















∫

Ω

|∇αz|2 dx for α ∈ N,

1

4

∫

Ω

∫

Ω

|∇[α]z(x) −∇[α]z(ξ)|2
|x− ξ|3+2(α−[α])

dxdξ for α > 0 noninteger (5.21)with [α] the integer part of α. In prin
iple, more physi
ally justi�ed kernels with asupport lo
alized around the diagonal {x = ξ} with the same singular behaviour as
|x− ξ|−3−2(α−[α]) for |x− ξ| → 0 
ould equally be used in (5.21).The degree-1 homogeneous dissipation potential is now postulated as

R(z) :=

∫

Ω

δ∗M (z) dx (5.22)where δ∗M is determined, in analogy with δ∗P from Se
t. 5.2, by a 
onvex 
om-pa
t neighbourhood M ⊂ Rm of the origin whi
h pres
ribes a
tivation energiesfor martensite/austenite phase-transformation or for re-orientation of parti
ularmartensiti
 variants. In parti
ular, the martensiti
 transformation is a reversiblepro
ess, so that K = Z. Also, there is nor Ξ neither K 6= Z and thus both Eε ≡ Eand Dε ≡ D and the ε-regularization is irrelevant here.For the dis
retization, we 
onsider naturally P1-elements for u and either P0-elements for z (if α < 1/2) or P1-element also for z if (α < 3/2). Again, taking
[q0]h,ε := Πhq0 guarantees (4.24) with σ being the norm topology.Corollary 5.5 Let the data Ω, Γ0, and Γ1 be quali�ed as in Se
t. 5.2, let ϕ bequali�ed as in Lemma 5.1 (note that p1 is irrelevant as Z0 is bounded here), andfurther let

g ∈ C1([0, T ];Lp#/(p#−1)(Γ1; R3)), where p#







= 2p
3−p

for p < 3,

< +∞ for p = 3,
= +∞ for p > 3,

(5.23)and q0 ∈ S(0) be approximated by [q0]h,ε := Πhq0. Then the approximate solutions
qτ,h = (uτ,h, zτ,h) with

uτ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (5.24a)
zτ,h ∈ L∞(0, T ;W α,2(Ω; Rm)) ∩ BV([0, T ];L1(Ω; Rm)), (5.24b)based on the P1-elements for u and the P0- or P1-elements for z 
onverge for

(τ, h) → (0, 0) (in terms of subsequen
es in the sense of Theorem 3.8 with Re-mark 4.2) to energeti
 solutions of the problem given by E, R, f and q0 above.Proof. Coer
ivity on Q = U ×Z follows from the assumed 
oer
ivity (5.2) of ϕ(·, z)by Poin
aré inequality 
ombined with the Diri
hlet 
ondition on Γ0 and by the29



regularizing κ-term in (5.20) 
ombined with the 
onstraint z(x) ∈ Z0 involved in Zin (5.19).The lower-semi
ontinuity of the �rst term in (5.20) needed for (3.8) follows byLemma 5.1 with p1 < +∞ arbitrary sin
e Z0 is now bounded.The 
ontinuity of R : L1(Ω) → R follows from (in fa
t is equivalent to) the assumedboundedness of M ⊂ Rm.The assumption in Proposition 4.4 are satis�ed simply if σ : equals the strongtopology on W 1,p(Ω; R3) ×W α,2(Ω; Rm). Here the 
onvexity of the Gibbs simplex
Z0 involved in Z is used, whi
h makes both P0- and P1-elements 
ompatible with Zin the sense ΠZ,hZ ⊂ Z, 
f. (4.3), whi
h makes our results from Se
tion 4.3 working.
2Example 5.6 At small strains, a popular model takes a �mixture� of quadrati
energies in the form

ϕ(∇u, z) :=

m
∑

ℓ=1

zℓ
(e(u)−eℓ)

⊤Cℓ(e(u)−eℓ)

2
+ ψ(z) where eℓ :=

U⊤
ℓ +Uℓ

2
,with the distortion matri
es Uℓ of parti
ular pure phases (or phase variants). Thesetting here is related with the situation of martensiti
 transformation in a single-
rystal and z's are volume fra
tions of the so-
alled austenite and of parti
ularvariants of martensite, e.g. m = 4 or 7 for tetragonal or orthorhombi
 martensite,respe
tively. The fun
tion ψ re�e
ts the di�eren
e between 
hemi
al energies ofaustenite and martensite and also between pure phases and �mixtures�. As ϕ(·, z)is now 
onvex, it quali�es for Lemma 5.1 with Z0 bounded. The philosophy ofmixtures of austenite/martensite phases in so-
alled shape-memory alloys has beenproposed by Frémond [15℄; in rate-independent variant also presented in [16℄. For itsanalysis and numeri
al implementation see [10, 11, 17, 24℄. Gradients of mesos
opi
alvolume fra
tions (i.e.. (5.20) with α = 1 has already been used in Frémond's model[16, p.364℄ or [17, Formula (7.20)℄. Another way for obtaining physi
ally relevantmixture energies is the quasi
onvexi�
ation under volume 
onstrains, also 
alled
ross-quasi
onvexi�
ation, see [42℄.Example 5.7 If the elasti
-moduli tensors Cℓ = C are equal for all phases, thespe
i�
 energy in Example 5.6) transforms to

ϕ(∇u, z) =
m

∑

ℓ=1

(e(u)−etr(z))⊤C(e(u)−etr(z))
2

+ ψ̃(z) with etr(z) =
m

∑

ℓ=1

zℓeℓ,where etr(z) the is so-
alled transformation strain. Note that, although (5.20) hasgot now a quadrati
 form ex
ept the lower-order term ψ̃(z), we 
annot use Proposi-tion 4.5 or 4.6 be
ause of the 
onstraint z(x) ∈ Z0. Hen
e, the quadrati
 stru
tureof the regularizing term κ|z|2α 
annot be exploited and a non-quadrati
 regularizingterm 
ould equally be 
onsidered through this se
tion. For su
h a model we refere.g. to [5, 6, 8, 19, 20, 28, 60℄. 30



5.4 Phase transformation: non-mixture approa
hThe mixture approa
h in Se
t. 5.3 is rather designed for phenomenologi
al models ofpoly
rystals but is too 
oarse for the des
ription of 
ompli
ated mi
rostru
tures o
-
urring in shape-memory-alloy single-
rystals. An attempt to build a mi
ros
opi
almodel has been done in [34℄ (see also [35℄) by restri
ting z to be valued in verti
es ofthe Gibbs' simplex, i.e. only pure phase(variant)s are allowed; then α < 1/2 shouldbe taken in (5.20) or, as 
onsidered in [34, 35℄, a BV-like term κ|∇z|. In this model,
z �swit
hes� ϕ.A di�erent philosophy with presumably similar e�e
ts, pioneered by Falk [13℄, 
on-siders the ve
torial �order parameter� z related to the deformation gradient ∇u andparti
ular shapes are then swit
hed rather by ∇u. Spinodal regions are then allowedinstead of mixtures. The spe
i�
 stored energy ϕ now depends only on ∇u but neednot be quasi
onvex. For example, in [3, 4, 32, 50, 54℄, a multiwell potential ϕ̂ (re-lated with ϕ by (5.7)) arises by the 
ombination of St.Venant-Kir
hho� materials
onsidered for ea
h parti
ular phase:

f̂(F ) := min
ℓ=1,..,m

(1

2
(U−⊤

ℓ F⊤FU−1
ℓ − I)⊤Cℓ(U

−⊤
ℓ F⊤FU−1

ℓ − I) + cℓ

)

, (5.25)where Uℓ are distortion matri
es as in Example 5.6, Cℓ are elasti
-moduli tensors,
cℓ are some 
onstants, and U−⊤

ℓ := (U⊤
ℓ )−1. Now naturally p = 4.We postulate the stored energy in terms of E and Ξ as

E(u, z) :=

∫

Ω

ϕ(∇u) dx+
κ

2
|u|2α, (5.26)

Ξ(u, z) := z − L(∇u), (5.27)with κ > 0, α > 1 and L : R3×3 → Z0 playing the role of a �phase indi
ator�with Z0 being again the Gibbs simplex. The seminorm | · |α de�ned in (5.21) usedfor 1 < α < 2 with the Frobenius norm in the enumerator, now a
ting on (3×3)-matri
es is frame-indi�erent, as observed by Arndt in [3℄. We 
onsider the sameloading as in Se
ts. 5.2 and 5.3, i.e. f from (5.13), but now we put
U := U =

{

u ∈W α,2(Ω; R3); u = 0 a.e. on Γ0}, (5.28)
Z :=

{

z ∈ Z := L2(Ω; Rm); z(x) ∈ Z0 for a.a. x ∈ Ω
}

, (5.29)and then naturally X := Z. The dissipation potential R is again from (5.22). Thereis no K involved, hen
e Dε = D, but as Ξ from (5.27) o

urs, the regularization Eεis, in prin
iple, to be 
onsidered.Choosing α < 3/2 allows for the usage of P1-elements for u and P0-elements for z.As now Q = Q and K = Z, so in parti
ular their 
onformity (4.3) is automati
.The proof of the following assertion shows that they are 
onformal also with the
onstraints Ξ(q) = 0 so, in view of Remark 4.7, it would be possible to avoid the
ε-regularization at all. When taking [u0]h,ε = ΠU,hu0, we have ∇[u0]h,ε element-wise
onstant and so is L(∇[u0]h,ε) =: [z0]h,ε, and (4.24) is satis�ed.31



Corollary 5.8 Let ϕ : R3×3 → R be 
ontinuous (not ne
essarily quasi
onvex)satisfying (5.2) here with m := 0 (so no z-dependen
e), let g satisfy (5.23),
L : R3×3 → Z0 be 
ontinuous, and α ∈ (1, 3/2) and p < 6/(5−2α) in (5.2), and q0and [q0]h,ε as spe
i�ed above. Then the approximate solutions qε,τ,h = (uε,τ,h, zε,τ,h)with

uε,τ,h ∈ L∞(0, T ;W α,2(Ω; R3)), (5.30a)
zε,τ,h ∈ L∞(0, T ;L∞(Ω; Rm)) ∩ BV([0, T ];L1(Ω; Rm)), (5.30b)based on the P1-elements for u and the P0-elements for z 
onverge for (ε, τ, h) →

(0, 0, 0) (in terms of subsequen
es in the sense of Theorem 3.8 with Remark 4.2) toenergeti
 solutions of the problem given by E, R, f and q0 above.Proof. Weak lower semi
ontinuity of E is due to 
onvexity of the regularizing term
κ|u|2α in (5.26) while ϕ is now treated by 
ompa
tness of the embedding W α,2(Ω) ⊂
W 1,p(Ω) (guaranteed if p < 6/(5−2α)) as a lower-order term. The limit passagein the z-variable is trivial. This 
ompa
tness also ensures the weak 
ontinuity of
Ξ : U × Z → X.As K = Z, 
ondition (4.23) with σ being the strong topology holds, if we show, forgiven z̃ = L(∇ũ), the existen
e of (ũh, z̃h)

σ→ (ũ, z̃) su
h that z̃h = L(∇ũh). As faras ũh, this 
an be done by a density argument of smooth fun
tions in W α,2(Ω; R3),and then the usual Lagrange interpolation. By the embedding W α,2(Ω) ⊂W 1,p(Ω),
∇ũh

s→ ∇ũ in Lp(Ω; R3×3) and z̃h = L(∇ũh)
s→ L(∇ũ) = z̃ by 
ontinuity of theNemytski�� mapping indu
ed by L.Then we use the results from Se
t. 3 via Proposition 4.4 with σ being the strongtopology on W α,2(Ω; R3) × L2(Ω; Rm). 2Remark 5.9 The inequalities α < 3/2 and p < 6/(5−2α) restri
t us to p < 3,whi
h unfortunately ex
ludes (5.25). Hen
e we are tempted to take higher α whi
h,however, brings the ne
essity to use higher-order elements (or to split the problemto a system). Considering P2-elements for u would allow for α < 5/2 whi
h, in turn,would allow for arbitrarily high p. Sin
e L is inevitable nonlinear, it is no longer
onformal with the 
onstraint Ξ(q) = 0 no matter what (polynomial) elements aretaken for z. This would drive us to a penalization te
hnique based on Proposition 4.3.However, here it is simpler to modify our analysis to allow for expressing the modelin terms of u only, 
f. the following Remark 5.10.Remark 5.10 In fa
t, a �vis
ous� rate-dependent variant of the above model wasproposed in [50℄, for the rate-independent dissipation term 
f. [50, Formula (33)℄.The regularizing term | · |α used for α < 1/2 and the P0/P1-dis
retization was sug-gested and implemented in [3℄ and 
omputational experiments on NiMnGa single
rystals reported in [4℄. In [46℄, the model was analyzed and implemented in the1-dimensional 
ase with α = 2. Pure analysis then followed also in [47℄; in parti
u-lar for α ≥ 3, [47, Prop.3℄ investigated an invis
id variant of this model a

ounting,32




ontrary to our paper, also for inertial e�e
ts. In fa
t, the model was formulatedonly in terms of u in [3, 46, 47, 50℄ but then the dissipation distan
e took the form
D(u1, u2) =

∫

Ω
|L(∇u1)−L(∇u2)| dx, having lost the stru
ture based on the degree-1 homogeneous potential R. Negle
ting di�
ulties in numeri
al evaluation of su
h

D if α = 2 would be 
onsidered, by this way one gets rid of the ne
essity to penalize
Ξ (whi
h, in 
ase α < 1/2, is made possible due to Corollary 5.8 together withRemark 4.7 in our 
ase too). Nevertheless, a fully rate-independent model, usedin fa
t for 
al
ulations in [4℄, has not been subje
ted to any rigorous mathemati-
al/numeri
al analysis, and therefore Corollary 5.8 brings indeed new results.5.5 Damage at large strainsIn engineering, other inelasti
 pro
ess in the materials of a high interest is damage.We 
onsider a fully rate-independent isotropi
 and nonlo
al damage, and again
onsider the body Ω �xed on a nonvanishing part Γ0 and loaded by a surfa
e for
e
g on Γ1 = ∂Ω \ Γ0, so that U = U is again from (5.18). As we 
onsider isotropi
damage, the internal parameter z ∈ Z will be s
alar valued with

Z :=
{

z ∈ Z := W α,2(Ω); z(x) ≥ 0 for a.a. x ∈ Ω
}

. (5.31)We postulate the stored energy again by the formula (5.20); κ > 0 in (5.20) is nowa 
oe�
ient responsible for nonlo
al e�e
ts in gradient-of-damage theories as, e.g.,in [16℄, 
f. [38℄ for a dis
ussion and more referen
es. Note that we admitted, ratherformally, ϕ operating on the argument z nonrestri
ted from above to allow for asimple 
onstru
tion of the re
overy sequen
e (4.30). The loading f is 
onsideredagain by (5.13).Like isotropi
 hardening in Se
t. 5.2, the pro
ess of damaging is unidire
tional inthe sense that, if in progress, it 
an only in
rease but the material never 
an heal,whi
h leads us to de�ne the 
one of admissible evolution dire
tions as
K := {z ∈W α,2(Ω); z ≥ 0 a.e. on Ω} ≡ Z. (5.32)The degree-1 homogeneous dissipation potential is 
onsidered as

R(z) :=

∫

Ω

c1z dx, (5.33)where c1 is a phenomenologi
al spe
i�
 energy (with physi
al dimension J/m3=Pa)expressing the energy needed for a damage of a unit volume des
ribed by a unitjump of the damage parameter z. Considering the initial 
ondition for z0 = 0and ϕ(A, ·) de
reasing for z ∈ [0, 1] and with ϕ(A, z) = ϕ(A, 1) + (z − 1)2 for
z ∈ (1,+∞), we e�e
tively for
e the values of z to range only the interval [0, 1] and
c1 refers to the spe
i�
 energy dissipated by damaging the original material (havingthe stored-energy ϕ(·, 0)) to the fully damaged material (having the stored-energy
ϕ(·, 1) assumed to be still 
oer
ive so we ex
lude the 
ase when the material fullydisintegrates). 33



As no equality 
onstraints of the type Ξ(q) = 0 are involved, we have Eε = E butthe ε-regularization Dε from (4.9) is to be still 
onsidered unless one takes R + δKinstead of Rε, 
f. Remark 4.7. For the dis
retization, as in Se
t. 5.3, we 
onsiderP1-elements for u and either P0-elements for z (if α < 1/2) or P1-element also for zif (α < 3/2). Again, both P0- and P1-elements are 
onformal with the 
onstraintsin Z = K from (5.31)�(5.32) in the sense ΠZ,hZ ⊂ Z and ΠZ,hK ⊂ K, as requiredin Proposition 4.5.Corollary 5.11 Let the data Ω, Γ0, and Γ1 be quali�ed as in Se
t. 5.2, let ϕ bequali�ed as in Lemma 5.1 with m := 1 and Z0 := {z ≥ 0} and p1 := 2, let gsatisfy (5.23), and let q0 ∈ S(0) and [q0]h,ε := Πhq0. Then the approximate solutions
qε,τ,h = (uε,τ,h, zε,τ,h) with

uε,τ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (5.34a)
zε,τ,h ∈ L∞(0, T ;W α,2(Ω)) ∩ BV([0, T ];L1(Ω)), (5.34b)based on the P1-elements for u and the P0- or P1-elements for z 
onverge for

(ε, τ, h) → (0, 0, 0) (in terms of subsequen
es in the sense of Theorem 3.8 withRemark 4.2) to energeti
 solutions of the problem given by E, R, K, f and q0above.Proof. Coer
ivity on Q = U ×Z follows from the assumed 
ondition |A|p ≤ ϕ(A, z)by the Poin
aré inequality 
ombined with the Diri
hlet 
ondition on Γ0 and by theregularizing κ-term in (5.20) 
ombined with the 
onstraint z(x) ≥ 0 involved in Zin (5.31). Then we use Proposition 4.5 with the de
omposition (4.29) using B = E ′
1with E1(z) := κ

2
|z|2α and E0(u, z) =

∫

Ω
ϕ(∇u, z) dx. Note also that [q0]h,ε := Πhq0satis�es (4.24). 2Remark 5.12 The partial damage at large strains has been analyzed in [38℄ butwithout any numeri
al approximation and nonquadrati
 regularizing term κ

p1
|∇z|p1with p1 > 3 had to be used, 
ontrary to the quadrati
 term in (5.20) whi
h isusual in engineering literature but never was mathemati
ally analyzed so far. Hen
eCorollary 5.11 represents a new extension in this �eld.Example 5.13 (Engineering �(1−d)-model�.) Considering two materials havinglinear response des
ribed in small strains by elasti
 moduli tensors C1 and C2, the�rst one undergoing a damage in a linear way leads to the potential ϕ in the form

ϕ(∇u, z) = (1−z)+ e(u)
⊤C1e(u)

2
+

e(u)⊤C2e(u)

2
+ ((z−1)+)2where (·)+ = max(0, ·). This potential satis�es all our assumptions with p = p1 = 2in (5.2) if C1 is positive semide�nite and C2 positive de�nite. Su
h a model is 
alledin engineering literature a 1−d model (here rather 1−z) and 
an be used for two-
omponent materials as e.g. �lled polymers or �lled rubbers whi
h do not undergoa full damage. 34



5.6 Debonding at large strainsOther inelasti
 pro
esses may o

ur not in the materials themselves but on theboundary. Here we want to 
onsider a possible debonding of an elasti
 support on apart Γ2 of the boundary ∂Ω. The internal parameter z ∈ L∞(Γ2) is therefore now as
alar debonding parameter assumed to range [0, 1] and expressing volume fra
tionof the adhesive whi
h �xes elasti
ally the body on Γ2 if not debonded. It is naturalalso to 
onsider a unilateral Signorini 
onta
t on Γ2. Moreover, we again 
onsiderthe body Ω �xed on a nonvanishing part Γ0 of ∂Ω (disjoint with Γ2) and loaded bya surfa
e time-varying for
e g on Γ1 = ∂Ω \ (Γ0 ∪ Γ2), so that
U :=

{

u ∈W 1,p(Ω; R3); u = 0 a.e. on Γ0, ν · u ≥ 0 a.e. on Γ2}, (5.35)
Z :=

{

z ∈ Z := L∞(Γ2); 0 ≤ z ≤ 1 a.e. on Γ2

} (5.36)with ν = ν(x) a normal to Γ2. We postulate the stored energy as
E(u, z) :=

∫

Ω

ϕ(∇u) dx+

∫

Γ2

(1 − z)ψ(u) dS, (5.37)where ψ : R3 → R+ des
ribes the elasti
 response of the adhesive �xing the bodyon Γ2.Considering naturally that debonding 
an only develop but never heal ba
k leadsus to pose the 
one of admissible evolution dire
tions as
K := {z ∈ L∞(Γ2); z ≥ 0 a.e. on Γ2}. (5.38)Similarly like in (5.33), the degree-1 homogeneous dissipation potential is

R(z) :=

∫

Γ2

c2z dS (5.39)with c2 a phenomenologi
al spe
i�
 energy (with physi
al dimension J/m2) express-ing the energy needed for a full debonding of a unit area of Γ2.Natural �nite-element approximation is now P1-elements for u and P0-elements onthe boundary for z. We assume that the disjoint partition Γ = Γ0 ∪ Γ1 ∪ Γ2 ispolyhedral and that the nested triangulations are 
onformal with this partition. Tosimplify te
hni
al details, let us assume that Γ2 is �at; this ensures ΠU,hU ⊂ U ,
f. (4.3). Also the 
onstraints in (5.36) are 
onformal with P0-elements in the sense
ΠZ,hZ ⊂ Z. As there is no Ξ here, we have Eε ≡ E but Dε 6= D is still to be
onsidered.Corollary 5.14 Let the disjoint partition Γ = Γ0 ∪ Γ1 ∪ Γ2 be polyhedral, Γ2 �at,and the nested triangulations be 
onformal with this partition, ϕ be quali�ed as inLemma 5.1 with n := 0 (i.e. with no z-dependen
e in ϕ), g satisfy (5.23), and
ψ : R3 → R be 
ontinuous satisfying the growth 
ondition 0 ≤ ψ(u) ≤ C(1+ |u|p#−ǫ)35



with p# from (5.23) and ǫ > 0, and q0 ∈ S(0) is approximated by [q0]h,ε := Πhq0.Then the approximate solutions qε,τ,h = (uε,τ,h, zε,τ,h) with
uε,τ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (5.40a)
zε,τ,h ∈ L∞(0, T ;L∞(Γ2)) ∩ BV([0, T ];L1(Γ2)), (5.40b)based on the P1-elements for u and the P0-elements for z 
onverge for (ε, τ, h) →

(0, 0, 0) (in terms of subsequen
es in the sense of Theorem 3.8 with Remark 4.2) tosome energeti
 solutions of the problem given by E, R, K, f and q0 above.Proof. The 
oer
ivity of E follows as in Corollary 5.5; note that the term on Γ2,being nonnegative, 
annot destroy it. The weak lower-semi
ontinuity is again as inCorollary 5.5, the term on Γ2 being even weakly 
ontinuous due to a�nity in z-variable and due to the 
ompa
tness of the tra
e operator u 7→ u|Γ2
: W 1,p(Ω; R3) →

Lp#−ǫ(Γ2; R3).We will expli
itly 
onstru
t the re
overy sequen
e {q̃h}h>0 for (4.23). As to ũh weuse the 
onstru
tion (4.30a); as Γ2 is �at, ν is 
onstant on Γ2, and ΠU,hU = Uh ∩U ,whi
h ensures Uh ⊂ U be
ause Uh := ΠU,hU . As for ΠZ,h, we have in mind thestandard Clément's quasi-interpolation by element-wise 
onstant averages, hen
ee.g. fun
tions valued in [0,1℄ are again mapped to (element-wise 
onstant) fun
tionsvalued in [0,1℄. Then we put
z̃h := 1 − (1 − zh)ΠZ,h

(1 − z̃

1 − z

)

. (5.41)If z(x) = 1, then also z̃(x) = 1 be
ause always z ≤ z̃ ≤ 1 and the fra
tion in (5.41)
an be de�ned arbitrarily in valued [0, 1]. The produ
t of element-wise 
onstantfun
tions 1 − zh and ΠZ,h(
1−z̃
1−z

) is again element-wise 
onstant, hen
e zh ∈ Zh. As
0 ≤ ΠZ,h(

1−z̃
1−z

) ≤ 1, we have also zh ≤ z̃h ≤ 1, hen
e z̃h ∈ Zh and z̃h − zh ∈ K.As ΠZ,h(
1−z̃
1−z

) s→ 1−z̃
1−z

in any Lp(Γ2), p < +∞, and zh
w*→ z, from (5.41) we have

z̃h
w*→ 1 − (1 − z)1−z̃

1−z
= z̃ in fa
t in L∞(Γ2) due to the a-priori bound of values in[0,1℄.Then, having (4.23) proved, we 
an verify (3.16) through Proposition 4.4 used withthe topology σ := s × w∗ on W 1,p(Ω; R3) × L∞(Γ2). 2Remark 5.15 As we do not have any gradient-type regularization like in Se
t. 5.5,we had to assume ψ(u, ·) a�ne to allow for a passage via weak 
onvergen
e. Ithowever does not allow for any arti�
ial de�nition of ψ like we did for ψ in Se
t. 5.5for z > 1, whi
h is why here we had to in
lude the 
onstraint z(x) ∈ [0, 1] expli
itlyinto Z in (5.36) but this, in turn, destroyed any quadrati
 stru
ture in z and hen
ewe had to rely on Proposition 4.4 supported by the rather sophisti
ated 
onstru
tion(5.41).Remark 5.16 A debonding on a-priori pres
ribed surfa
es inside the body, 
alledthen rather a delamination, 
ould be treated similarly only by introdu
ing a more36



extensive notation, 
f. [31℄. Let us emphasize that Corollary 5.14 adapted to su
h aproblem substantially improves results from [31℄, where 
onvergen
e has only beenproved for a semidis
retization in time while the 
onvergen
e of the full time-spa
edis
retization has only silently been assumed under an additional 
onvergen
e 
ri-terion h/τ → 0.5.7 Magnetostri
tion at small strainsIn this se
tion, we illustrate our theory on a deformable ferromagnet o

upying adomain Ω ⊂ R3 and undergoing quasistati
 isothermal evolution at small strains.Again, the non-dissipative 
omponent u : Ω → R3 will be the displa
ement while thedissipating variable z : Ω → R3 will now be the magnetization ve
tor; thus m = 3here. The stored energy is then 
onsidered in the form
E(u, z) :=

∫

Ω

(

ϕ
(

∇u(x), z(x)
)

+
κ

2

∣

∣∇z
∣

∣

2
)

dx+
µ0

2

∫

R3

∣

∣∇φ
∣

∣

2
dx. (5.42)The parti
ular terms in (5.42) represent the me
hani
al stored energy intera
tingwith an anisotropi
 magnetization energy, the ex
hange energy (with κ > 0 a 
oef-�
ient having a quantum-me
hani
al origin), and the energy of the demagnetizing�eld φ ∈ W 1,2(Ω) (with µ0 > 0 the va
uum permeability) whi
h is determined bythe magnetization z by the (weak solution to the) following 2nd-order linear ellipti
equation on the whole spa
e R3:

div(µ0∇φ− χΩz) = 0 on R3, (5.43)where χΩ : R3 → {0, 1} denotes the 
hara
teristi
 fun
tion on Ω. The externalfor
ing might be both me
hani
al and magneti
al. Let us 
onsider it again via asurfa
e for
e g (as in Se
tion 5.2) and by an external magneti
 �eld hext:
〈f(t), (u, z)〉 :=

∫

Γ1

g(t, x) · u(x) dS +

∫

Ω

hext(t, x) · z(x) dx. (5.44)Contrary to the previous se
tions, z is not any internal parameter be
ause it 
an besubje
ted dire
tly to outer loading by hext. For notational simpli
ity, we 
onsideragain the Diri
hlet 
ondition on Γ0 and then take U = U from (5.18) while Z isnaturally to be taken as W 1,2(Ω; R3). The standard model involves also the so-
alled Heisenberg 
onstraint
∣

∣z(x)
∣

∣ = ms for a.a. x (5.45)with ms > 0 a given saturation magnetization. In fa
t, due to (5.45) we 
an rede�ne
ϕ(A, z) for |z| > ms, if needed, suitably so that the 
oer
ivity (5.2) holds. For thedissipation potential R we 
onsider, for example,

R(z) :=

∫

Ω

d0

∣

∣z
∣

∣ + d1

∣

∣e3 · z
∣

∣ dx (5.46)37



where d0 > 0 and d1 ≥ 0 and e3 = (0, 0, 1). The d0-term has been 
onsidered in[58℄ while for the d1-term see [59℄ or also [52, 53℄. The former term 
orrespondsto a basi
 dissipation and ensures 
oer
ivity of R while the latter term des
ribesdissipation during remagnetization in a uniaxial magnet with easy-magnetizationaxis in the dire
tion e3; then the anisotropi
 energy ϕ(A, ·) is assumed to haveminima along this axis and d0 + d1 is a so-
alled 
oer
ive for
e whi
h determinesthe width of a parent hysteresis loop during 
y
li
 magnetization pro
esses. Themagnetization pro
ess is fully reversible (be
ause we do not 
onsider any sort ofunidire
tional �hardening� like in [53℄) and therefore we put K = Z = W 1,2(Ω; R3).The initial magnetization z0 should satisfy the 
onstraint (5.45) and, together with
u0, be stable with respe
t to the loading hext(0, ·) and g(0, ·); we will not spe
ify thisrather te
hni
al 
ondition.We 
annot simply involve the 
onstraint (5.45) into Z be
ause (4.3) 
annot 
onven-tionally be a
hieved be
ause no polynomial �nite elements are 
ompatible with theHeisenberg 
onstraints (5.45). Hen
e we implement it by Ξ and then take simply
Z := Z = W 1,2(Ω; R3) and de�ne Ξ as

Ξ : U × Z → X := L2(Ω) : (u, z) 7→ |z|2 −m2
s

√

|z|2 +m2
s

. (5.47)Note that the nonlinearity r 7→ (|r|2 − m2
s )/

√

|r|2 +m2
s involved in (5.47) has alinear growth and is Lips
hitz 
ontinuous, and so is Ξ : L2(Ω; R3 × R3) → L2(Ω).Simultaneously, Ξ is weakly 
ontinuous on U ×Z due to the 
ompa
t embedding of

U × Z into L2(Ω; R3 × R3).Again we 
onsider a polyhedral domain Ω and its nested regular triangulations,and in view of (5.42) take P1-elements both for u and z. Then, in prin
iple, exa
tintegration formulae 
an be exploited for (5.43) and for the last term in (5.42), too.So no dis
retization of ϕ would be needed, although pra
ti
al 
al
ulations usuallyexploit some numeri
al approximation of this pro
edure (and hen
e of E itself, too).As we did not 
onsider it in previous se
tions, we omit it here too. Be
ause ofthe mentioned in
ompatibility of the P1-elements (and in fa
t with any polynomial�nite-elements), with the 
onstraint Ξ(u, z) = 0, i.e. |z| = ms, we must 
onsider thepenalization method. Using α = 2 in (4.5), it yields
Eε(u, z) =

∫

Ω

(

ϕ
(

∇u(x), z(x)
)

+
κ

2
|∇z|2 +

(

|z|2−m2
s

)2

ε
(

|z|2+m2
s

)

)

dx+
µ0

2

∫

R3

|∇φ|2 dx. (5.48)The 
onformity (4.3) is here automati
 be
ause there are no other 
onstraints in-volved, i.e. Q ≡ Q and K ≡ Z.Corollary 5.17 Let the data Ω, Γ0, and Γ1 be quali�ed as in Se
t. 5.2, let ϕ bequali�ed as in Lemma 5.1 with Z0 := Rm, m = 3, p1 = 2, let g satisfy (5.23), andlet further hext ∈ C1([0, T ];L6/5(Ω; R3)), q0 ∈ S(0) and [q0]h,ε := Πhq0. Then the38



approximate solutions qε,τ,h = (uε,τ,h, zε,τ,h) with
uε,τ,h ∈ L∞(0, T ;W 1,p(Ω; R3)), (5.49a)
zε,τ,h ∈ L∞(0, T ;W 1,2(Ω; R3)) ∩ BV([0, T ];L1(Ω; R3)), (5.49b)based on the P1-elements and the penalization of the Heisenberg 
onstraint (5.45)as in (5.48) 
onverge for (ε, τ, h) → (0, 0, 0) (in terms of subsequen
es in the senseof Theorem 3.8 with Remark 4.2) to energeti
 solutions of the problem given by E,

R, Ξ, f and q0 above under the 
onvergen
e 
riterion h2/ε→ 0.For the 
onvergen
e 
riterion h ≤ H(ε) 
an take H , e.g., in the form
H(ε) = εa with any 0 < a < 1/2. (5.50)Proof of Corollary 5.17. The weak lower semi
ontinuity in the sense (3.8) of the

ϕ-term in (5.48) is by Lemma 5.1, while that of the terms |∇z|2 and |∇φ|2 is due tothe 
onvexity and linearity of (5.43). The penalty term in (5.48) has the 2nd-order-polynomial growth and is therefore 
ontinuous be
ause of the 
ompa
t embeddingof W 1,2(Ω) into L2(Ω). The 
oer
ivity of E on U × Z follows from (5.2) throughPoin
aré's inequality.For our P1-elements, the estimate (4.18) with γ = 1 is then known to hold with | · |and ‖ · ‖ being respe
tively the L2- and the W 1,2-norms. The Lips
hitz 
ontinuity(4.17) of Ξ from (5.47) holds for X := L2(Ω), whi
h just makes the penalty form in(5.48) with α = 2. The 
hoi
e [q0]h,ε := Πhq0 again satis�es (4.24). Our assertionthen follows from Theorem 3.8 through Proposition 4.3 where (4.19) just says that
h = o(

√
ε), as 
laimed. 2Remark 5.18 Referen
es for magnetostri
tion usually addresses large strains wheremore 
ompli
ations arise, 
f. [9, 26, 27, 55, 57℄. Mathemati
al analysis at largestrains needs some additional regularization, e.g. like [55℄. A 
onventional formof ϕ in (5.42) in term of small strains, as 
onsidered here, is ϕ(∇u, z) = ϕ0(z) +

1
2
(e(u) − ez)

⊤C(e(u) − ez) with ez a preferred strain tensor 
orresponding to themagnetization z; for the 
on
rete form of ez we refer to [27, 57℄. No numeri
al andeven purely theoreti
al analysis of this rate-independent evolution problem seemsto be reported in literature hen
e Corollary 5.17 represents a new result for this
on
eptual algorithm.A
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