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Abstract

A general abstract approximation scheme for rate-independent processes in
the energetic formulation is proposed and its convergence is proved under var-
ious rather mild data qualifications. The abstract theory is illustrated on sev-
eral examples: plasticity with isotropic hardening, damage, debonding, mag-
netostriction, and two models of martensitic transformation in shape-memory
alloys.

1 Introduction

Rate independent processes occur (after certain, and usually necessary, simplifi-
cations) in various physical (mainly mechanical but not only) systems exhibiting
hysteretic response during isothermal evolution processes. Mathematical analysis of
such processes, based on the notion of energetic solutions introduced in |40, 42|, has
been intensively scrutinized and develop in particular in [31, 35, 36, 37, 38, 41, 43, 53].
However, except for some particular attempts [7, 18, 32, 54|, there has been no nu-
merical analysis developed for such processes so far.

This paper fills the gap of a universally-applicable numerical scheme in the context of
rate-independent processes and its analysis. After introducing the energetic formu-
lation in Sect. 2, a fairly general conceptual numerical discretization is proposed and
its convergence is analyzed in Sect. 3. Then, in Sect. 4, the generality is reduced
to problems based on Banach spaces and with dissipation distances governed by
degree-1 homogeneous potentials, which in turn allows for various specific construc-
tions directly applicable in concrete situations. This is demonstrated in Sect. 5 on
various examples from continuum mechanics of deformable bodies, namely plasticity
with hardening, two models of martensitic transformation, damage, debonding, and
magnetostriction.

In particular, it accompanies a large variety of existing models by conceptual finite-
element discretizations supported by rigorous analysis as far as convergence con-
cerns, and in some cases offers new results or improves known results as far as mere
existence of solutions concerns.

2 An abstract setting: energetic solution

We consider a state space Q (independent of time) as a topological space. Typically,
it is subset of a locally convex space. We will distinguish between a “non-dissipative”



component u € U and a “dissipative” component z € Z of the state ¢ = (u,z) €
Q:=Ux2Z.

For a fixed time horizon T' > 0, we consider a Gibbs-type stored energy € : [0,T] x
Q — RU{+o0}. The further ingredient is a (time-independent but not necessarily
symmetric) dissipation distance D : Z x Z — RU{+o0} which will later determine
the dissipated energy and which is assumed to satisfy

V21, 20,23€ 2 : D(Zl,Zl) =0 & D(Zl,Zg) < D(Zl,Zg) +D(23,23). (21)

Let us agree to write occasionally D(q;,q2) with the meaning D(zq, 2z3) for ¢ =
(u1, 21) and g = (ug, 22).

In case of @ having a linear structure, D(zy, 25) := R(z2 — 21) (as in Sect. 4 below)
and convexity of both £ and R, we want to address an evolution of ¢ = ¢(t) governed
by the doubly nonlinear inclusion
9q

m(§)+@au@90 (2:2)
where “0” denotes the subdifferential. Under some additional qualification, it is
equivalent (see [36, 41]) to the energetic formulation based on Definition 2.1 below
which, however, works under much weaker data qualification where (2.2) loses any
sense. In fact, this definition is based on a global-minimization hypothesis competing
with the maximum-dissipation principle (or rather Levitas’ realizability principle
[33]). In mathematical terms, it means stability

Vie Q:  E(tq(t) <&t q) +D(q(t),q), (2.3)

and energy equality

E(t,q(t)) + Varp(g; s,t) = £(s,q(s)) +/7’(7“> q(r)) dr, (2.4)
where
0
P(t,q) := ag(t, q) and (2.5)
Varp(q; s,t) 1= supZD(q(ti_l),q(ti)) (2.6)

with the supremum taken over all j € N and over all partitions of [s, ] in the form
s=1y <t <..<tj_y <t; =t. The particular terms in (2.4) represent the stored
energy at time ¢, the energy dissipated by changes of the internal variable during
the time interval [s, t], the stored energy at the initial time s, and the work done by
external loadings during the time interval [s, t]; P is then the power.

Definition 2.1 The process q : [0,T] — Q is called an energetic solution to the
initial-value problem given by the triple (€, D, qo) if
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(i) it is stable in the sense that (2.3) holds for all t € [0,T],

(ii) the energy balance (2.4) holds for any 0 < s < t < T, in particular
t — P(t,q(t)) is in L'(0,T), and
(iii) the initial condition q(0) = gy holds.

For the analysis of the rate-independent problems, it is convenient to introduce the
sets of stable states S(t) for any t € [0, 7] by putting

S(t):={qeQ; &(t,q) <+ & YGeQ: E(t,q) <E(t, Q) +D(g.q)}. (2.7

This allows us to recast the stability condition (i) in Definition 2.1 in the form
q(t) € S(t) for all t € [0,7]. Yet, more importantly, we may address closedness
properties of S(t).

In Sect. 4, we will specialize this setting by introducing an additional linear structure,
i.e. Q will be (a subset of) a Banach space equipped with the weak or the norm
topology. This will allow us to make the abstract properties more specific.

3 An abstract approximation

For an abstract approximation, we consider three positive parameters 7, h, and
e. Here 7 > 0 represents the fineness of a time discretization by a partition (not
necessarily equidistant) of the time interval [0,7]. The parameter h > 0 denotes a
spatial discretization of the state space Q by a subset Q again having the structure
On = U, x Z,. Moreover, ¢ > 0 is used for a possible approximation of the
functionals £ and D to be implemented more easily when restricted on Qj, (see also
Remark 3.10 below) or just to guarantee the convergence in some more complicated
cases. Typically, a penalization of some constraints may be involved by this way,
cf. Sect.5. These last approximations lead to & : [0,7] X [U,2o @Qn — R U {400}
and D : J,-(Zh X Z5) = RU {+o0}.

Using the indicator function dg, : Q@ — {0,400}, i.e. g, = 0 on Q) and dg, = +00
on Q\ Qp, it will occasionally be convenient to introduce the restriction to Qy, also
by replacing &£. and D, respectively by

gs,h - 55 + 5Qh and De,h : (CL q~) = De(Qa (D + 5Qh (Q) + 5Qh ((D (3'1)

3.1 Basic assumptions

We first collect a few basic assumptions. We assume (2.1) also for each D, i.e. for
all e > 0:

Vz1,29,23€ 2. De(z1,21) =0 & D.(z1,23) < D.(21,22) + D-(23, 23). (3.2)



For proving existence results we will need the following lower semi-continuity and
compactness results:

Ve,h>0: D.: QnxQp, — Ry are lower semi-continuous, (3.3)

Ve, h>0 Vte|0,T] VaeR:

the sublevels { g€ Q; ; E.(t,q) <a} are sequentially compact in Q. (3.4)
To pass to the limit will need a wuniform inf-compactness of the collection

(Ecn(t,))e >0, 0,17
VaeR Ve,h>0, 0€[0,T], qn-€Qn: &E(0,qnc) <a
— Jqe€Q Jsubsequence {qn,c, tnen: ¢ = lim qp, ., (3.5)

Next we need a “I'-liminf estimate” for the family (D.).~o on (QnxQp)nso in the
limit e, h — 0:

2€Z, zp €2y, z= lim 2z,

(he)~(00) D(z,%) < liminf D.(ze, 5n). (3.
ZEZ, 2h78€Zh’ z :(h %inzo ) Zh,a = (Z’ Z) = (h,lar)n—}(%,o) E(Zh@a Zh,a) (3 6)
78 — b

The limit functional D has to satisfy a positivity condition:

VzeZ VK C Z sequentially compact V z, € C : }
=

lim min{D(z,,2),D(z,2,)} =0 z= lim z,. (3.7)

Like for D, we also need a “I-liminf estimate” for the family (E.(t,-))c>0,:c0,7] ON

(Qn)ns0:

VqeQ Vg €Qp with g = lim  qu: E(t,q) <  liminf E.(0,qnc).  (3.8)
(h,e)—(0,0) (he,0)—(0,0,t)

Note that (3.6) and (3.8) are only “lower” I'-liminf estimates for (D, ). p>0 and
(Eon(t,))en>0,ec0,m)- The corresponding upper estimates are consequences of the
central condition (3.16) which postulates the existence of joint recovery sequences.

So far all conditions above relate to static concepts. The next three conditions
relate to the time dependence, which involves the power of external forces P-(t,q) =
%é}(t,q). The first assumption provides a uniform energetic control of the power
P-, viz.,

Jeg,c1 €R Ve, h >0 VYqeQ, : <3toe[O,T] o E(to,q) < +oo> —
E(-,q) € CY([0,T]) and (3.9a)
Vie[0,T]: |P(t,q)| < c1(E(t, q)+co). (3.9b)

Using a Gronwall estimate we immediately obtain the growth restrictions
Vs,t €[0,T]: E(s,q) +co < e *NE(t, q)+cp). (3.10)
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The second assumption is a conditioned (with respect to sublevels of £) equi- (with
respect to ¢) uniform (with respect to t) continuity of P(, q):

VaeR VYo >0 30 >0 Vs, t€[0,T] VgeQ:
if £(0,¢) < a and [t—s| < 6, then |P(s,q) — P(t,q)| < o (3.11)

The third assumption on P, concerns the convergence of P, for e,h — 0. It is a
“continuous convergence” but conditioned by the fact that the considered arguments
are in the associated sets of stable states

Scn(t) :={q€Qp; &.(t,q) <to0 &
VGeQn:  Etiq) <E(,Q) +DAq, 7)), (3.12)

and that the energies are bounded:

If (e, hn,tn) — (0,0,8), qn € Sepnn(tn), ¢ — ¢, and

En,hin
sup &, h, (tn, Gn) < +00, then lim P. (t,,q.) = P(t, q). (3.13)
neN n—o0

Recall that D, and D only depend on the z-component of ¢ = (u, z) and we have
agreed to write occasionally, as e.g. in (3.12), D.(q,§) in the meaning of D.(z, 2).

An essential ingredient for the convergence analysis is the abstract version of Helly’s
selection principle, which has been proved in the Appendix of |39] generalizing |35,
Theorem 3.2|.

Lemma 3.1 (Abstract Helly’s selection principle [39].) Under the conditions
(2.1), (3.6) and (3.7), for every sequence z, : [0,T] — Z, n € N satisfying

3C >0 VneN: Varp_, (2,;0,T) <C, (3.14a)
K C Z sequentially compact ¥n €N Vte[0,T]: z,(t) € K, (3.14b)

there exists a subsequence (zn;)jen, a nondecreasing function ® : [0,T] — R, and a
limit process z : [0, T] — Z such that we have

Vtel0,T]: z(t) = lim z,,(t), D(t) = lim Varp,

J—}OO ]—)OO

Zn;30,t), and  (3.15a)

7Lj ;hn]

Vs, t€[0,T] with s <t: Varp(z; s,t) < D(t) — D(s). (3.15b)

Remark 3.2 (Weakening (3.13) on Banach spaces.) In the applications presented
in this paper we will not make use of the full strength of the “conditioned” continuous
convergence. However, we refer to [14|, where a setting is considered where Q is a
Banach space equipped with its weak topology. It is shown that the assumptions
in (3.13) first imply the energy convergence &, p, (tn, ¢n) — E(t,q). This, together
with the weak convergence ¢, — ¢, can then be used to improve the convergence
into the strong convergence. Hence, in that case the conditioning implies that only
strongly convergent sequences have to be considered for the continuous convergence
in (3.13).



3.2 Stability of sets of stable states

All the assumptions of the previous subsection are either on the family (D ;). n>0 or
on the family (. 1) n>0. The final condition links the behavior of these two families
and thus provide the upper I'-limit estimates which are needed to complement the
lower I'-limit estimate for D in (3.6) and for £ in (3.8). Sometimes, in particular
when some holonomic-type constraints are involved in £, it occurs that a convergence
criterion of the type h < H(e), for some H : R" — R monotone and satisfying
H(e) — 0 for ¢ — 0, is needed.

The following central condition states the existence of a “joint recovery sequence”
under suitable qualifications:

Vq,GeQ Vt,€l0,T] with t,, — t Ve,, h, — 0+ with h, < H(e,)

Vg, € S:, h,(tn) with ¢, — ¢ and sup, oy &, n, (tn, @) < +00

3¢, € Qp, with ¢, — ¢:

hm Sup (gfnyhn(tn7 (jn)_‘_DEnyhn (Qn> (jn)_ganyhn (tna qn))
<&(t,9)+D(q,q9)—E(t,q).  (3.16)

The following assertion says, in other words, that the graph of the set-valued
mapping S : [0,7] = Q contains Kuratowski’s limes superior of the graphs of
S.n:[0,T] =2 Qp at least if restricted to states with bounded energy as in (3.5) and
if h < H(e) is taken into account. This upper semicontinuity result establishes a
certain stability of sets of stable states that is crucial for the convergence analysis.

Lemma 3.3 (Conditioned upper semi-continuity of the sets of stable
states.) Let (3.8) and (3.16) hold and t,, ey, hy, ¢, and ¢ = lim g, be as in (3.16).

Then qe S(t).

Proof. By (3.8), we have

E(t,q) <lminf &, p, (tn, qn) < sup &, n, (tn, ¢n) < +00, (3.17)

n—oo neN
where the last inequality is assumed in (3.16). Next, for § € Q arbitrary, choose
Gn € Qp, as in (3.16). By definition (3.12), ¢, € S., 4, (t,) says that & . (tn, Gn) +

De,, b (Gns Gn) — E=p 1 (tns @n) > 0. Using now the limsup estimate in (3.16) we obtain

O S hm sup gen,hn (tna gn) + Dsn,hn (Qnu Cjn) - gen,hn (tna Qn)

< &(t.q)+Dlq,q) — E(t,q)- (3.18)
Since ¢ was arbitrary, definition (2.7) gives ¢ € S(t). O

Remark 3.4 (Weakening of (3.16).) In this proof the condition ¢, — ¢ was not
used. Thus, in principle assumption (3.16) could be weakened by dropping this ad-
ditional request. However, in doing so, the limsup estimate in (3.16) degenerates in
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the sense that the two sides in this estimate no longer depend on each other. In fact,
the best choice for making the left-hand side small is, by recalling stability, the choice
Gn = Qn, which makes each member in the sequence identical (. Since this is inde-
pendent of G, the weakened condition (3.16) just means 0 < £(t,§)+D(q, §)—E(t, q),
which is the desired stability of ¢. As we will see in the applications in Section 5,
the strengthened condition is useful, since properly chosen joint recovery sequences
allow us to prove

0 S (gan,hn (tm (jn)‘l‘pan,hn(Qna Cjn)_gan,hn(tna Qn)) - g(t> (j)_l'D(Qa Cﬂ_g(ta Q)>

from which we then conclude stability. See [39] for more discussion of this point.

Example 3.5 Quite typical way how the qualification (3.16) can be ensured is the
situation when D, ;, converges continuously to D in the sense

lim De(Qh,ev gh,e) - D(Qv ij) (319)
e—0, h—0
qh,s_“]:q‘h,s_)q
Gh,esGn,c€CQn
and, in addition,
VGeQ Vh,e >0 th,e €9y, : lim qh,e =¢ and
(h,e)—(0,0)
limsup (0. G) < E(EQ). (320
h<H(e)

(h,e,0)—(0,0,t)

Then (3.16) holds: indeed, it suffices to sum (3.20) used for ¢, = G, , with (3.19)
used for ¢, = qu, ., and ¢, = G, ., and subtract (3.8) used for ¢, = g and
eventually estimate the sum of limits superior from below by limits superior of the
sum. Let us still remark that (3.20) together with (3.8) is just the conditioned
I-convergence (sometimes also called epi-convergence) of the collection (& (0, ) +
90, )he>0,0cfo,r] to € if (h,e,0) — (0,0,) conditioned by h < H(e).

n,En )

3.3 Approximate solutions

We consider now 7 > 0, and a partition 0 =t < ¢t} < ... < th7 = T with

tr—tT <71 for i=1,.. k. (3.21)

(2

We do not assume this partition to be equidistant. Further, we consider an ap-
proximation [go] . of the initial condition g and the following recursive incremental
formula: we put qgh’e = [qo]ne a given initial condition, and, for k = 1,..., k; we
define qf7h75, an approximation of a solution at time t*, to be any solution of the
minimization problem

Minimize &, ,(t5, q) + D. (231, 2) } (3.22)

subject to ¢ = (u, z) € Q.
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We define the approximate solution ¢,,. : [0,7] — Q as a piecewise constant
approximation, namely

0 for th=1 <t <th k=1,..k,

Grpe(t) =9 (3.23)
@ne = [qo]ne fort=0.
We also need the “retarded” approximate solution qf’hﬁ :[0,7] — Q with
k k—1 k _
R | @ for 77" <t <ty, k=1,..k;, -
qr,h,a( ) - k ( . )
Qe fort="1T,

Proposition 3.6 (Discrete stability and energy inequalities.) Let (3.2), the
lower semicontinuity (3.3)—(3.4) of the approzimate stored and the dissipated ener-
gies, and smoothness of external forcing (3.9a) hold. Then (3.22) has a solution
qf’h@ forany k=1,.. k; and q; . is stable in the sense

Grne(t) € Sen(ts)  forany t €t 88, k=0, .. ks, (3.25)

and satisfies the discrete upper enerqy inequality

*0E.
ga,h(5> th,a(s)) + Va’rDs,h (QT,h,a; T, 5) - ga,h(ra QT,h,E(T)) < / U

o (t, g, (t)) dt

» 47 h,e
(3.26)

forr =" and s = t*2 with any ki, ks € NU{0}, 0 < ky < ky < k,, as well as a
similar discrete lower energy inequality

TO0E.
ot

(ta qr,h,e (t)> de

€€7h(5> QT,h,a(S)) + Va’rDs,h (QT,h,a; T, 5) - ga,h(ra QT,h,E(T)) > /
(3.27)

forr =t and s = t*2 but now only with ki, ky € N, 1 < ky < ky < k.
Proof. The existence of ¥, _ solving (3.22) follows from (3.3) and (3.4) via a recursive

argument for k= 1,..., k;. Hence g5 and ¢, _ exist, too.

The discrete stability condition (3.25) follows by using successively that qﬁh’s is a
solution to (3.22) and the triangle inequality (2.1) for D, j:

Ecnh aipe) < En(s,@) + Dep(dlyes @) — Den(diper 45

S g€7h(tf—> (j) _I— D&h(qﬁ,h,aa q~) (328)
forany k=1,.... k..
As to (3.26), we again use that ¢¥, _ solves (3.22) and, comparing it with qf’;}e, we
get

gE,h(tﬁﬁ Qf,h,e) - gE,h (tﬁ_l’ qf,?b}&) + nyh (qf,ﬁ,lm qf,h,s)
" 0n(t ar)
_ _ _ ) ) 47,h,
< En(th i l) —En(ti a0l = /k 1 : o =2 dt. (3.29)
o

-



Now the estimate (3.26) follows after a summation for k = k;+1, ..., ks. As to the
estimate (3.27), by the stability (3.28) written for qfﬁ}a q =gk, we find

Ecn(th @rne) = Een(ty™ dine) + Den(trnr i)

" OE u(t, q" ), )
> En(th i) — En(tih gk L) = / —ER el it (3.30)
th=1 ot
By a summation for k = k;+1, ..., ks, we obtain (3.27). O

Remark 3.7 (Approximation of initial conditions.) Note that (3.30) does not work
for & = 1 because we (intentionally) did not assume “numerical” stability of the
approximate initial condition, i.e. [go]p € S.1(0) which would only very hardly be
guaranteed in concrete numerical schemes. This is also why (3.27) does not hold
with r = 0, unlike (3.26).

3.4 Convergence of the approximate solutions

Now we investigate the asymptotics for 7 — 0, h — 0, and ¢ — 0. Like for
space discretization, we do not assume the partition of the time interval [0, 7] to be
nested, but we assume that both time and space discretization refines when 7 — 0
and h — 0, respectively. Namely (3.21) for the time discretization while, for the
spatial discretization, this refinement requirement is implicitly contained in (3.16);
later it will be assumed explicitly (4.2) to prove (3.16).

Theorem 3.8 Let the assumptions (2.1), (3.2) (3.9), (3.13), (3.16) and (3.21)
hold. Assume that the initial condition qq 1s stable, i.e.

Qo € S(O), (3.31)
and is approzimated by [qolne € Qn in the sense

[qolne — g0 and  E.(0,[qoln:) — £(0, qo). (3.32)

Then, there exists a subsequence {(Tn, hn,&n)tnen with (Tn, hp,e,) — (0,0,0) for

n — oo satisfying the convergence criterion h, < H(g,) from condition (3.16) and

a process q : [0,T] — Q being an energetic solution according to Definition 2.1 such

that the following holds:

(i) for all t € [0,T] we have &, (t,q,(t)) — E(t,q(t)),

(ii) for all t € [0,T] we have Varp_ (¢,;0,t) — Varp(q;0,t),

(iii) for all t € [0,T] we have z,(t) — z(t) in Z,

(iv) 5 a() = HEC,q() in L'(0,T),

(v) for all t € [0,T] there is a subsequence {n;}ien such that lim;_. up, (t) =
u(t) in U, hence lim_, qn, (t) = q(t) in Q,

where we wrote shortly ¢, = (un, z,) for qf—i,hn,an = (ul R ).

z
Trshn,en? “Tn,hn,en
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Proof. We follow the steps for the existence proof formulated in [14, 39]. However,
we are more general than [14, 39] as we do not require [go]s. to be stable.

Let us abbreviate

G pe(t) = 6,h(t,qghﬁ(t)), Drpe(t) = Varpsyh(qgh’g;o,t). (3.33)

Step 1: A priori estimates. By (3.9) and (3.10), we can estimate the right-hand side
of (3.29) as

08 (L, ¢ L) tk
o e k-1
[ R <
/t’il ot dt < /t 101 (5€,h(tv qﬂh,a) + Co) dt

T

tk

T k—1
< /k 1clecl(t_tT )(5E,h(tf_la Q’jlf,;l,}g) + Co) dt
th—
k—1
= (a7 — 1) (Eu(th1, d50) + o). (3.34)

Forgetting, for a moment, D.;, in (3.29) and linking it with (3.34) yields
Ecn(th, gk ) +co < ecl(ti_tfil)(ga,h(tf L the) + ¢o) from which, by induction for
k=1,2,.... k; we get

Ecn(t b)) < e (E4(0,02,.) + co) — co. (3.35)

By (3.32), we conclude that & (t*, the) is upper bounded independently of k, h,
7, and €. By (3.9b) we can bound Q5th,€( ) from below and, by (3.35) with (3.10)
after some still some calculations from above:

—g < By (t) < ae™t —cy  with a, = co+supE4(0,¢2,.), (3.36)

T,h,e

where the “sup” is considered for (7, h, e) small enough. Note that a, < +oo due to
(3.32) with the assumption £(0,qy) < +00.

Using (3.35) again for (3.34) but summed for & = 1, ..., k., we obtain

Tage,h(tv qgh,a) dt = kZT tr 85€,h(t7qf,7hla> dt
0 - k1

ot 2 5
& k—1
< (€€7h(0’ qg,h,a) + Co) Z (ecltﬁ _ eclt-,— )
k=1
= (B0 ) o) (7 1), (3.7

Coming back to (3.29) and combining it with the lower bound (3.9b) for & ,(T, qT e)
and with (3.37), we now can estimate the total variation of ®,, . as

kr
Var( Th€70 T Z e,h th&’the)
k=1
5 (0 qrha) +Co+ (56 h(o qgha) _'_CO) (601T_1)
= (Eon(0,07p) + o)™ < ae”? (3.38)
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with a, from (3.36). We can now estimate also the total variation of &, . simply
by (3.9b) and (3.10) as

DE (L, gR,
Var(@nh’e;O,T):/ ‘ h( q’rh

0

dt + Z |Ecn(th, qF ) — Ecn(th ab L))
T T
< / 1 (Brpe(t) +co)dt + Z |Een(th qbp ) — Ecn(ti dl L)
0

+Z/

The term 77 is bounded since we have already proved |&, ) ()| a-priori bounded,
and also Ty < T, see (3.37), so it remains to bound 7. By (3.29) and (3.30), we
can estimate
T
88& s Qr e
Ty < Var(®,,.;0,T) + max (Tl,/ ‘% dt)
0

+ max (o, En(0,%, ) — Eonlt!, qi7h75)> (3.40)

agﬁh t the)

and, again by (3.9b) and (3.10),

/T ’ ag&,h(ta QT,h,a)
0

T
dtg/ c1(Eonlts grpe) +co) dt
ot 0

kr otk kr etk
= /k C1 (86 h(t ths)_'_CO t< Z/k 1 Cl(t )(g (tk7q7h5>+00> dt
k=117 k=117

=
3
X
3

(D 1) (et ) + ) < 3 (1) e
k=1

o~ Bl
S
—_

(ecltl.ﬁ o eclt§71

Ja.e” = (7" —1)a,e, (3.41)
k=

—_

where we also used, by (3.35)-(3.36), the estimate

k tk th=1
Ecn(th gk ) +co <ea, < e age,

and eventually the last term in (3.40) can be estimated simply because, by (3.9b)

and (3.32), 5Eh(t1,q7h€) > —¢p and 5E,h(0,q27h’€) < a, — ¢p, hence this last term is
bounded from above by a, from (3.36).

Step 2: Selection of subsequences. Since the scalar functions &, . and D, . from
(3.33) are uniformly bounded in BV(][0,T]) by (3.38) and (3.39) together with the
obvious bounds on |8, 5, .(0)| = |€.(0, [qo]n.:)| < max(|col, a.) with a, from (3.36) and
|9, 1:(0)] =0, we may apply Helly’s selection principle both in the classical form

11



and, relying on the assumptions (3.2), (3.6), (3.7), also in the form of Lemma 3.1 to
find a subsequence {(7,, hn, €,) }nen such that for all ¢ € [0, T] we have the following
convergence:

G e (t) = O(), Dopppen(t) = D(t), and 2, p, ., (1) — 2(t) in Z,  (3.42)

for suitable limit functions ©, & and z satisfying also (3.15b). This shows that the
convergence at the point (iii) holds. We further set

Tull) == o 0, (1,0,(1) (3.49)

to denote the power of the external forces. Choosing another subsequence (not
relabeled), if necessary, we also obtain

Ba ¥ pin L2(0,7)), (3.44)
since closed balls in L*°([0,7T]) are sequentially weakly* compact. For fixed ¢, let

PB(t) := limsup P, (t). (3.45)
Using Fatou’s lemma we conclude 8 € L*>°(0,T) and p(t) < P(¢) for a.a. t € [0,T].
Further, let us set

Qemazw)zwug. (3.46)

Auy:{aeu;at

For any ¢ fixed, A(t) is nonempty: Indeed, we can choose a subsequence (n});en
(depending on t!) such that

P(t) = lim P (1) = lim 2.

j—o0 j—oo Ot 7

(1 g (). (3.47)

cf. (3.45) and (3.43). Taking into account the energy bound &, .(t) obtained in
Step 1 and the compactness assumption (3.5), we can even assume that also qnﬁ(t)

converges to some ¢(t). By (3.42), q(t) = (u(t), 2(t)) with z(¢) just from (3.42). Let
t; == max{f € [0,t]; 0 = t;nj, k=0,.., k:mj}. Then g, (t) € Se , n,(t;). Obviously,

also t; — t. Hence we can use (3.13) to obtain

.0 0
Comparing it with (3.47) we get
0
&t a(t) =P(?). (3.49)

Thus u(t) forming the pair ¢(t) = (u(t), 2(t)) lies in A(¢) from (3.46). Ranging ¢
over [0, 7] thus yields a mapping w : [0, 7] — U with u(t) € A(t) for all ¢ € [0,T].
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Step 3: Stability of the limit process. The stability of the limit process ¢ is now
ensured by (3.16) as a direct consequence of Lemma 3.3. For fixed ¢ € (0, 7] consider
Gt (t) and t; converging for j — oo to ¢(t) and ¢ in the position of ¢, and ¢, in the
condition (3.16), respectively, and then Lemma 3.3 just yields ¢(t) € S(t). Fort = 0,
stability of ¢(0) = go holds by assumption.

Step 4: Upper energy estimate By (3.26) with » = 0 we have &, , .. (1) +
Dirinen(t) = e, (0) < fo B (s)ds for any ¢ =t k =0,..., k. For a gen-
eral t € [0,T1], this 1nequal1ty is fulﬁlled with an accuracy O(Tn) this is because
B e () — ®Tn o e (] < 7 |IBal o) for © € [tE1 5 ) and because also

| [y Pa(s) ds — fOT” B (s) ds| < 7,||Byll Lo (0,r) while there is no additional error in
the piece wise constant ®,, . ... By the convergence properties (3.42), (3.44) and
(3.45) with Fatou’s lemma we get

&(t) +D(t) /p ds</s]3 (3.50)

Using further (3.8), (3.42), and the notation from Step 2, we have

E(t,q(t)) <liminf &, o t(t],qn (1)) = lim &, ( ) = &(t). (3.51)

J—0 J—00

By (3.15b) with s = 0 and D(s) = ©(0) = 0, we have Varp(q;0,t) < D(t). More-
over, by (3.32) we have &(0) = £(0,¢(0)). Inserting this into (3.50) and using still
(3.49), we obtain

E(t,q(t)) + Varp(q: 0,t) — £(0,¢(0)) <

/‘B ds—/—gs q(s))ds, (3.52)

which is the desired upper energy estimate.

Step 5 Lower enerqy estzmate The opposite estimate E(¢,q(t)) + Varp(q;0,t) —
£ > fot ))ds is a consequence of the stability which is already
estabhshed in Step 3 We refer to |36, Prop.5.7| or also |39, Prop.2.4| for this
technical proof where (3.49) with P € L>°(0,7") and (3.11) have been used. Thus,
we have proved that ¢ : [0,7] — Q is a solution.

Step 6: Improved convergence. Having energy equality, we conclude that in (3.50)
all the inequalities must be equalities. In particular, this implies

p(t) =P(t), &(t)=£E(tq(t)) and Var(g;0,1) =D(1). (3.53)
Together with the convergence properties established in Step 2, we obtain the as-

sertions (i) (iii). Finally, employing [14, Prop. A.2| together with p = yields (iv).
O
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Remark 3.9 (Two-sided energy estimate (3.26) (3.27).) In fact, (3.26) (3.27) was
used only to prove the a-priori BV-bound for &, ;. in Step 1. This bound is not
really needed, since we may postpone the definition of & : [0,7] — R from Step 2
to Step 4 and set &(¢t) = limsup,,_,o B, h, e, (t). Then (3.50) and (3.51) remain
true but the last equality in (3.51) which has to be replaced by “<”. Finally, Step 5
implies &(t) = £(t,q(t)) as before. However, the two-sided energy estimate (3.26)—
(3.27) has its own relevance as it can be used to check implementation of numerical
calculations. Namely, evaluating the terms in (3.26) (3.27) at each time step and
checking a-posteriori the estimate (3.26)-(3.27) may detect, e.g., a failure of the
minimization procedure, which we have to apply to solve numerically the global
optimization problem (3.22) at every current time step; see |31] for numerical results
in a concrete example. Violation of (3.26) or (3.27) mean that ¢¥, _ or q’;;,le cannot
be stable, respectively.

Remark 3.10 (Numerical integration.) Another approximation of & and D, in-
volving, e.g., numerical integration can quite easily be incorporated, too. For this,
E. and D, in the conditions in Sect. 3.1 as well as (3.16) should additionally depend
on h by still another way than only by adding dg,. As such a generalization would
complicate, in particular, Section 4 and as it will not be used in Section 5, we have
omitted it completely.

4 Linear structure

We consider now the case that U and Z are subsets of some reflexive separable
Banach spaces U and Z, respectively. This enables more detailed considerations.

4.1 Setting the data and their approximation

The weak topology, if restricted on bounded convex sets, will play the role of the
sequentially compact topology used in Sect. 3 for (3.3)-(3.8), (3.13), and (3.16); yet
cf. Remark 3.2 for (3.13). Here we will denote it by “w-lim” or “ % to distinguish
it from the norm topology which we will denote by “s-lim” or “ 7. In case of
non-reflexive spaces having preduals, we could work with weak® topologies instead
of the weak ones. For an abstract parameter h > 0, we consider finite-dimensional
subspaces U, C U and Z;, C Z. The concrete constructions of @, := U, X Zj used
in numerical analysis are created by (here an abstract) “(quasi-)interpolation” linear
bounded operators Iy, : U — U and Iz, : Z — Z. We put II;, = Iy, x Iz ¢
Q — @, and

Z/{h = HU’hZ/{, Zh = HZ’hZ, Qh = Z/{hXZh = HhQ (41)

To guarantee the central condition (3.16), we assume the natural basic approxima-
tion property that II; converges pointwise to the identity, i.e.

VqeQ: slim Il,q=q. (4.2)
h—0
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The quasi-interpolation operators need not be conformal with constraints involved
implicitly in & and Z so that Q) need not be a subset of Q. As an analytical tool
the I'-convergence approach allow also for such situations (cf. [39]) but, in order to
use the theory from Sections 2-3 in a quantitative numerical way, we will always
restrict ourselves on “conformal” situations when

HU’hu cu and HU,hZ C Z, (43)

ie. @, =11,0 C Q. Possible “nonconformities” can be handled via the penalization
parameter €.

For X another Banach space, it is often useful to consider a mapping = : U x Z — X
to describe possible equality constraints of the form Z(u, z) = 0 that may implicitly
be involved in the definition of £. Moreover, we assume the forcing by f :[0,7] —
U* x Z* to be given explicitly in £, which covers many applications (except, e.g.,
“hard-device” loading of mechanical systems through Dirichlet boundary conditions).
Then, for £ : U x Z — R we consider

E(t u, 2) ::{ E(u,z) = (f(t),(u,2)) ifueld, z€ 2, Z(u,2z) =0, (4.4)

+00 otherwise.

The approximate energy deals with possible incompatibility of the finite-dimensional
discretization with the equality constraints by a penalization of them (cf. [49]):

£t 2) { B, 2) — (f(£), (u, 2)) + %HE(U, Ay dtued ez o
+00 otherwise.

To satisfy (3.4), we assume a super-linear growth of £ to dominate the linear be-

havior of (f(t),):

E
lim _(q) =
g0 |lgll

llgll—o0

+o0. (4.6)

Obviously, (4.4) and (4.5) yield simply 2&(t,q) = 2&.(t,q) = (£ f(t),q) and (3.9a)
requires

f€CH0,T]; Q). (4.7)

The coercivity (4.6) with (4.7) ensure also (3.9b), (3.11) and (3.13).

A quite canonical way to induce the dissipation distances in simpler cases is through
a degree-1 homogeneous dissipation potentials. For this, we consider K C Z a
closed convex cone with the vertex at 0, R : Z — R a continuous convex degree-1
homogeneous functional, i.e. R(az) = aR(z) for any z € Z and a > 0. Then we
consider the special case of D defined by

R(ZQ — Zl) if 29 — 21 € K,

+00 otherwise. (4.8)

D) = {
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Note that D(z1,21) = 0 and the triangle inequality (2.1) holds. As R is convex
and continuous and K convex closed, D : Z x Z — R U {+oc} is weakly lower
semicontinuous.

If K # Z, then it might be numerically suitable to avoid the unilateral constraints

involved by exact penalization by choosing the approximate potential D, in the form
._ _ oz — 2]l

D.(z1,22) := Re(20 — z1) where R.(2):= R(z) + inf :

zeK 3

(4.9)

As K is a cone, R, is again a homogeneous degree-1 functional for any ¢ > 0 and
(3.2) thus holds. As R is convex and continuous and K is convex, R. is convex
and continuous, and the weak lower-semicontinuity (3.3) of R. holds, too. Note
that always R. < R + 0x. Unfortunately, smoothening of R + dx e.g. by Yosida’s
approximation, which would be sometimes numerically desirable, does not fulfill
(3.2) and expectedly nontrivial modifications of the theory in Sect. 3 would then be
needed.

The stability (3.31) of the initial condition gq is, in general, difficult to verify and
explicit constructions can be done in very special cases only. Anyhow, there is one
universal way how to design a “gentle start”, namely taking gy = (uo, 29) minimizing
£(0,-), i.e. here a solution to the problem

minimize  F(u,z) — (f(0), (u, 2)), (4.10)
subject to Z(u,z) =0, ueld, ze€ Z. ’

Such a “gentle start” is, in fact, practically the only option applied in engineering
simulations.

The other assumptions from Sect. 3 deserve a more detailed proof.

Proposition 4.1 (Verification of (3.5)-(3.8).) Let E be weakly lower semicon-
tinuous, = : Q — X be weakly continuous, and let K be conver and closed, R be
convex and also positive on K \ {0}, i.e.

VzeK: z#0 = R(z)>0. (4.11)
Then (3.5)-(3.8) with “—7” referring to the weak topology hold.
Proof. In view of (4.4), the condition £.(, ¢, ) < a < +ooin (3.5) implies E(gp.) <
C+{(f(0),qne), and by (4.6) a sequence of {gy ¢} >0 must be bounded hence it has a

subsequence which converges weakly (recall that we assume reflexivity of @)), which
proves (3.5).

As to (3.6), for zo — 2y € K we have

||2h76 — Rhe — 2|

pminl De(zne Fne) = Hminf R(3c = 2ne) + Inf e
> liminf R(Z. — z1.) > R(Z — 2) = D(z, 2 4.12
> Aminf R(Zhe = zne) 2 B(Z=2) =D(27)  (412)
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because R is weakly lower semicontinuous. If zo—z; & K, then inf:cx [|Z—2—2] > 0
because K is closed. Using also (4.11), we then have

lim inf Ds(zh,e, 2h,e) > lim inf ||Zh7a — Zhe — Z”

= 400 ="D(z,73). (4.13)
(h,e)—(0,0) (h,e)—(0,0) 2eK 12

To prove (3.7), take z € Z and a sequentially weakly compact K in Z and a sequence
(zn)nen in K with lim, o min(D(z,, 2), D(z, 2,)) = 0. For a subsequence we have
Zn, ~> %, and the mentioned weak lower semicontinuity of D implies either D(z, 2) =
0 or D(Z,z) = 0. Thus we can conclude Z = z and the whole sequence must weakly
converge, which proves (3.7).

As to (3.8), let us distinguish whether =(¢) = 0 or =(¢) # 0. The former case
ensures the last equality in the following estimate:

1
liminf  &.(0,qn.) = liminf E(gn.) — (f(0), qne) + = [|1Z(qne)|
pliminf Eo(0,qne) = lminf Blgne) = (F0) ane) + ZlIE(ane)lx

> liminf  E(gne) = (f(0), qne) = E(q) — (f(),q) = E(t.q),  (4.14)
(h,e,0)—(0,0,)
where the last inequality is by the weak lower semicontinuity of E. This proves
that (3.8) holds with respect to the weak topology if =Z(¢) = 0. In the case
=(¢) # 0, gn. ~> q and the weak continuity of = ensures liminf ||Z(gn.)|lx >
|lw-lm Z(gnc)|lx = [|IE2(¢)|lx > 0. Then, because of the coercivity (4.6) of E, we
have

1 a
liminf £.(0,q,.) > inf |[E—f(0)|(q)+ lim —||=Z(qne =400 = &(t,q).
minf £ (0, ne) > inf [E=f0)](@) + lm =@y (t.9)
(h,e)—(0,0) 0€(0,7] -

In view of the above considerations, we have guaranteed the assumptions needed
in Theorem 3.8 except (3.16) and (3.32). This conditions are still to be verified in
particular cases, some of them scrutinized in Sections 4.2—4.4.

Remark 4.2 (BV-estimates.) Assuming coercivity of R+Jx on some Banach space
Z1D 7, i.e.

lim  R(z) = oo, (4.15)

2€K, ||z]lz; o0

together with the degree-1 homogeneity will make (4.11) more specific, namely [R+
Ok|(z) > c||z||z, with some ¢ > 0, hence by (4.8) also D(q1,q2) > c||z1 — 22|z, and
by the definition of “Var” in (2.6) then also

Varp(q; 0,T) > cVar, (2;0,7T). (4.16)

In view of the definition (2.6) applied now with the norm || - ||z, the last expression
is just the standard total variation and the estimate (3.38) yields boundedness of
Zrne and thus also the limit z in the bounded-variation space BV (0,T"; Z).
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4.2 The case K =7

Let us consider an additional norm | - |, which may induce a weaker topology than
the canonical norm making () a Banach space.

Proposition 4.3 (Verification of (3.16) and (3.32) for K=7.) Let (4.6) and
(4.7) hold, and let o« > 1, let E: Q — R in (4.4) be weakly lower semicontinuous
and norm continuous, both = : Q) — X and R : Z — R be weakly continuous, and
K =7 (hence R. = R), and = be also Lipschitz continuous with respect to | - |, i.e.

W=eR Vg1, € Q:  [|B(qr) — El@) || < l=|ar — ¢ (4.17)
and let the operator 11, satisfies the convergence-rate estimate
Jy>0, CeR Vqge Q: ‘q—th‘ SC’h“’HqH. (4.18)

Then (3.16) and (3.32) with qo € S(0) are satisfied, the last two conditions relying
on the convergence criterion

H(e)=o0(c>) and with Gne = q. (4.19)

Proof. Let us prove (3.16). For any ¢ € @), with =Z(¢) = 0, by (4.17) and (4.18), we
have

|2(0:.9)|| = [[E(0:9) = (@), < ¢=|d —Tag| < Clzh||q]]. (4.20)

For (h,e) — (0,0) with h < H(e) with H from (4.19) we therefore have
1 —_ " o a aha’y ~ll
gH:(th)HX <C 65?\@“ — 0. (4.21)

We put ¢n. = ;¢ for (3.16); note that, in fact, we do not need any explicit
dependence on e except that we assume h < H(e). As E is strongly continuous
and, by (4.2), G- 2, G, and as R is weakly continuous and Ghe %, ¢ is assumed in

(3.16), it holds

lim &0, Gne) + D(Ghe Gne) = Hm  E(Gne) — (f(0), Gre) + B(Ghe—an.e)
h<H(e) h<H(e)
(,h)—(0,0) (e,h)—(0,0)

FEMm = B@ ~ (/0.6 + Ra-0) = £(t.) + Dl,3)

whenever =(g) = 0. Combining this with (3.8), we obtain (3.16) for =(¢) = 0. If
=(q) # 0, then due to the definition (4.4) the right-hand side in (3.16) is 400 and
(3.16) is fulfilled trivially.

The stability of ¢o considered in Theorem 3.8 implies £(0, o) < 400, and then the
assumption (3.32) is fulfilled if one chooses

[90],,.. = Mo (4.22)

in (3.32). Indeed, [qo]n. = qo for h — 0 just by (4.2) and then also E.(0, [qo]n.) =

E(Thgo) + £IIE(Mhqo)[|% — (£(0), Thgo) — E(q0) — (f(0),q0) = £(0,q0) because
E is assumed norm continuous and because, since the finite energy of ¢y implies
=(qo) = 0, we can employ the estimate (4.21) for h < H(e). O
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4.3 The case K;Z

Certain applications to unidirectional processes (like damage, delamination, debond-
ing, or hardening in plasticity or in ferromagnets) require modelling with K ; Z.
This needs further finer investigations for which we consider some topology o on
U x Z which is finer than the weak one and coarser than the norm one; see the
particular examples in Sect. 5.

Proposition 4.4 (Unconditional convergence for K ; Z.) Let E: Q — R
be weakly lower semicontinuous and o-continuous. Assume both R : Z — R and
Z:Q — X be weakly continuous, and let (4.7), and that the following attainability
condition, expressing certain consistency of the discretization with the constraints
given by = and K, hold:

\V/q,q~€ Q> E(q) :Oa (j_q € K7 E((j) :07 vthQha dh = q
3€Qn: @ > ¢ |[E@)| < |IE@)|lys di—an € K. (4.23)

Then (3.16) with Dy, from (4.9) is satisfied, now with H = 1, i.e. “unconditionally”.
Moreover, the qualification (3.32) of the stable initial condition qo holds if

Jqon € Qn: Elqon) =0 & qon = o (4.24)

Proof. The a-priori bound &, 4 (0, ¢s ) < C assumed in (3.16) means

EHE((]}LE)H; < C— E(Qh,a) + <f(9)a Qh,a> < C+ Slelg [f(@)—E] (Q) <+00 (4'25)
92[01}
due to (4.6) so that ||Z(qn.)|lx = O(e/). In the limit therefore Z(g) = 0 because
= is assumed weakly continuous. Thus we take g, . from (3.16) for g, in (4.23). As
(3.16) is trivially satisfied if Z(§) # 0 because the right-hand side in (3.16) is +oo,
we can consider only Z(§) = 0. Then we can take ¢, from (4.23) for g, . in (3.16).
Note that ¢n. — qn. € K in (4.23) ensures D. ;,(qne, Grhe) = R(qhe — Gne) due to
the definition (4.9) and by the assumed weak continuity of R and closedness and
convexity of K, we have
(h’al)lir(lop)pa,h(qmaa Gn,c) (h7£1)13070)3(qh75 gne) = R(G—q)=D(g,q).  (4.26)

Then, using the o-continuity and weak lower semicontinuity of £ the continuity of
f (see (4.7)), and |Z2(Gne)|lx < [|2(gne)|lx (see (4.23)), we obtain

limsup (E4(0, dne) + Deplthe ine) — Eonlone)) = limsup (E(ne)
(h,e,0)—(0,0,t) (h,e,0)—(0,0,t)

~ 1 —(~ [e ~ 1 —_(~ o]
—(f(0), Qh,e — C_Ih,a> + g”:(%,a)nx + D(Qh,aa Qh,a) - E(C_Ih,a) - g”i(%,a)ﬂx)

< timsup (E(Gne) = (f0), Ghe — ) + Dlanes ine) — Elas))
(h,e,0)—(0,0,t)

= Ii <E~€_ ‘97~€_ € D €7~€>_1"fE €
nedm o (E@he) = {F(0) Gne = ne) + Dgher Gne) ) — limint Elgn.e)

< E(q) —(f(t),4—q) + D(q,q) — E(q) = E(t,q) + D(q,q) — E(t, q). (4.27)
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Eventually, we are to prove (3.32) provided (4.24) and provided ¢y € S(0); the last
inclusion implies £(0, go) < +oo which here further implies Z(qo) = 0). Then, with
[q0)n.c = qon in (4.24), it holds

En(0, [qo]ne) = E(gon) — (f(0), qon) — E(qo) — (f(0), q0) = £(0,q0)  (4.28)

as required in (3.32) because £ is assumed o-continuous. Note that the last equality
in (4.28) relies on =(qp) = 0 for which o-continuity of = is needed; in fact, we
assumed even weak continuity of =. O

4.4 The case K;Z and “semiquadratic” F.

Some applications exhibits the “main” part of the stored energy E quadratic in terms
of the dissipating variable z in the sense

1
E(u,z) := §<Bz, z2)+ Eo(u,z), B:Z — Z* linear and bounded,
Ey: UxZ — R (sxw)-continuous. (4.29)

In smooth cases, this corresponds to problems governed by “semilinear” mappings
E'(q) = (8 %) + E{(q). Such problems are well fitted for unconditional convergence

under some particular circumstances.

As to (3.32), we can guarantee it again through (4.24) now with o the strong topology
to have the quadratic term in (4.29) continuous. The verification of (3.16) is now
more sophisticated:

Proposition 4.5 (“Semiquadratic” case: unconditional convergence.) Let
(4.7) and (4.29) hold, R be continuous, let further = be independent of u, affine and
continuous, i.e. in the form Z(u,z) = Zo(z) + £ with £ € X, and 29 € L(Z,X)
compatible with the discretization operator llz, in the sense that 11, (Ker Zy) C
Ker=y. Let also Z + K C Z, and the cone K be compatible with 11z, in the sense
that 1z, K C K. Then (3.16) with H = 1 holds.

Proof. We will prove (3.16) by using Proposition 4.4 and for this we will verify
(4.23) with o being the strongxweak topology on U x Z. The recovery element ¢,
in (4.23) can be chosen simply as

'&h = HUJﬂNL, (430&)
Zh = zp+ HZ,h(é - Z). (430b)

It holds ¢, € Qp; indeed, 4 € Uy, just by the definitions (4.1) and (4.30a) while
Zn € 2y because Z—z € K, assumed in (4.23), implies 2, —z, = Uz (2 —2) € Iz, K
and further Z+ K C Z implies Z, = HZJLZ D) HZJL(Z + K) = Z, + HZ’hK and
eventually z, € Z), is assumed in (4.23), hence 2, € Z;, indeed follows.
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Also, the inequality ||Z(gn)||x < [|2(Gn)||x in (4.23) follows from

[1]

((jh) = Eogh —|—£ = Eo(Zh + HZJL(Z - Z)) —|—£ = E(qh) (431)

because Z¢(Ilzx(z — Z)) = 0 holds. Indeed, Z(g) = 0 is also explicitly assumed in
(4.23) while Z(¢q) = 0 follows from ¢, ~» ¢ assumed in (4.23) by the continuity
of =, and therefore Z¢(z — 2) = Z(¢) — Z(¢) = 0, hence z — Z € KerIly, and by
the assumed compatibility 11z ,(KerZy) C KerZ, also Il ,(z — 2) € Ker =, hence
eventually Zy(IIz,(z — 2)) = 0. Then also, by using also (4.2), it holds

(sxw)-lim Gy = ( s-lim @, , w-lim zh>
h—0 h—0 h—0

= < s-lim Iy e, w-lim 2, + s-lim Hz,h(é—z)> = (11,24— (Z—z)) =q.
h—0 h—0 h—0
Although for 0 =sxw the energy E itself need not be o-continuous like in Proposi-

tion 4.4, in the case (4.29) it is however possible to pass to the limit in the difference
E(0,q,) — E(0,qn) by using (4.31) and the binomial formula:

E0,qn) — E(0,qn) = E(0,qn) + 1IIE(@)S — E0,an) — 21=(an) 1%
= &(0,qn) — E(0,qn)
= $(BZ, Zn) — 3(Bzn, z) + Eo(@n) — Eolan) — (f(9), dh—an)
= 5(B(Zh — 2). 20+ 2n) + Eoldn) — Eolan) — (f(0), Gh—an)
— $(B(Z—2),Z+2) + Eo(q) — Eo(q) — (f(£),d—q)
= 3(BZ,%) — 3(Bz,z) + Eo(q) — Eolq) — (f(t), G — q)
= &(t,q) — E(t,q). (4.32)

For the limit passage it was important that ,—z, = Il ,(3—2) > Z—2z because of
(4.2) so that

(B(Zh—2n), Zntan) — (B(Z — 2),Z2 + 2) (4.33)

because 7,4z, ~» 2+2. We have %, — 2, = llz,(2 — 2) € Iz, K C K. Then, in
view of the definition in (4.8) and the strong continuity of R, we have

lim  D.(qn,qn) = lim R.(Z,— zh)—hmR(zh zn)

(g,h)—(0,0) (g,h)—(0,0)
= flllir(l) R(lzp(2—2)) = R(}ILE% II;4(3-2)) = R(2—2) = D(q, q). (4.34)

By (4.32) and (4.34), we can pass directly to the limit in (4.27). Thus (3.16) with
H =1 is proved in this case, too. O

Alternatively to the setting (4.29), we can consider a variant with a fully quadratic
“main” part of E:

21



Proposition 4.6 (Semiquadratic case II: unconditional convergence.) Let

1
E(q) := i(Bq, q)+ Eo(q), B:Q — Q" linear and bounded,
Ey: Q — R w-continuous. (4.35)

hold, R be continuous and U = U and and = be affine and continuous, i.e. in the
form 2(q) = Eoq+ & with £ € X and Zy € L(Q, X) such that 11, (Ker Zy) C Ker =y.
Let again Z+ K C Z, Uy, K C K, and f satisfy (4.7). Then (3.16) with H = 1
holds.

Proof. Instead of (4.30), we take

Gn = qn + (7 — q). (4.36)
Then it suffices to modify the proof of Proposition 4.5 quite straightforwardly, e.g. to
consider ¢’s instead of 2z’s in (4.31) and (4.32). O

Remark 4.7 (No penalization.) In case of the unconditional convergence, one can
consider a numerical scheme with ¢ = 0, i.e. with the original £ and D instead of
E.p and D, j,. The corresponding incremental problem might then involve unilateral
constraint; cf. also Remark 5.3.

5 Particular examples in continuum mechanics

The doubly-nonlinear inclusion (2.2) is a framework for description of so-called gen-
eralized standard materials with internal parameters as introduced by Halphen and
Nguen [21] in those cases where convexity of stored and dissipated energies can be
expected and inertial effects can be neglected. Here we have in mind various inelas-
tic rate-independent processes in such materials having possibly a nonconvex stored
energy. The following examples illustrate how the general theory applies in partic-
ular situations, cf. Table 1 for a survey. As a by-product of the presented numerical
theory, we obtain analytical existence/convergence results which have not yet been
derived in literature. For the sake of explanatory lucidity, we confine ourselves to
rather conventional models from continuum mechanics although some less conven-
tional models (e.g. those involving a microstructure described by so-called Young
measures, see |32, 52, 53, 54|) allow for such numerical analysis, too. In Sect. 5.7
we present a combination of mechanical and ferromagnetical effects, i.e. magne-
tostriction with hysteretical effects, but the combination with ferroelectrical effects,
i.e. piezoelectricity with hysteresis (see [43]), or even purely non-mechanical rate-
independent models developed in ferromagnetics (e.g. [52, 53, 58, 59|) and ferro-
electrics (e.g. |25, 48, 56|) could be treated similarly. We neglect any temperature
dependence or, in other words, if there is a possible dependence of data on tem-
perature, we consider sufficiently slow processes so that the released heat due to
dissipative processes can efficiently be transferred away to allow for considering
isothermal processes.
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process/ unidirectional| constraints | quadratic | proposition

section (ie. K G Z)|(i.e. X#{0}) | energy E used

plasticity with hardening
at small strains / 5.2

phase transformation: _ _ _ _
mixture approach / 5.3 4.4 (o=s)

phase transformation:

+ — + 45 0r 4.6

non-mixture approach/5.4 o T o 4.4 (0=s)
damage / 5.5 + - + 4.5
debonding / 5.6 + — - 4.4 (o=sxw*)
magnetostriction / 5.7 - + - 4.3

Table 1. Organization and features of the examples presented in Section 5.

5.1 Sketch of continuum mechanics of deformable bodies

We assume a specimen occupying in its reference configuration a bounded domain
Q Cc R®. Asusual, y : Q — R? denotes the deformation and u : Q — R? the
displacement, related to each other by y(z) = z4u(x), x € Q. Hence the deformation
gradient equals F' = Vy = I+ Vu with I € R**® being the identity matrix and V
is the gradient operator. For simplicity, we will treat only the soft-device loading
realized through traction (Neumann or Robin-type) boundary conditions. The state
of the material and possibly also of boundary conditions is assumed to depend on (a
set of) certain parameters z that may evolve in time in a rate-independent manner.
Then naturally U and Z used before will be the spaces of u’s and of z’s, respectively.

The specific energy stored in the inter-atomic links in the homogeneous (possibly
anisotropic) continuum ¢ = @(F, z) is phenomenologically described as a function
of the deformation gradient F' and the mentioned variable z € R™. Mostly the
vector z € Zy C R™ in not directly accessible for a macroscopical loading (for an
exception see Sect. 5.7) and will thus play the role of internal parameters. The frame-
indifference, i.e. o(F,z) = ¢(RF, z) for any R € SO(3) = the group of orientation-
preserving rotations, requires that ¢(+, z) in fact depends only on the (right) Cauchy-
Grreen stretch tensor

FTF=0+Vu) I+Vu) =1+ (Vu)" + Vu+ (Vu)' Vu. (5.1)

An important property of (-, z) is quasiconverity, which means @(A, z) <
inf, cpir(ops) Jo p(A+Vu, z) dz for any A € R>®. The following assertion modifies

the celebrated result by Acerbi and Fusco [1]:

Lemma 5.1 Let ¢ : R¥3 x R™ — R be continuous, ¢(-,2) quasiconver, p,p; €
(1,+00) and, for some cy > ¢; > 0,

VAER P VzeZy: o (J[AP+]2[P'—1) < p(A, 2) < co(1+]AP+H2[P).  (5.2)
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Then the functional (u,z) — [, @(Vu,z)dx is (wxs)-lower semicontinuous on

WhP(Q;R3) x {z€LP(Q;R™); 2(-)€Zy a.e. on Q}.

Sketch of the proof. By coercivity, we do not need to distinguish between sequential
and topological lower semicontinuity.

Let us take a sequence {(un,2n)}nen (WXs)-converging to (u, z). Then (Vuy,,z,)
(wxs)-converges to (Vu, z) in LP(Q; R3*3) x LP1(Q;R™). Also, selecting a suitable
subsequence, it generates (a set) of LP x LP'-Young measures of the form v®pu, where
Wy = {5Z(x)}xeg with 0,(,) denoting here the Dirac distribution on R™ supported at
z(x); cf. |44, Corollary 3.4|. This means, in terms of a mentioned subsequence, that

lim U(Vun,zn)dx:// V(A7) [Ve ® 6.3 (dA X dr)da
(9] Q JR3X3xRmM

_ /Q /R (A, 2(@) 1 (dA) e (5.3)

for any v continuous of a growth less than p in the A-variable, while for ¢ continuous
satisfying (5.2) we have only

lim inf /Q oV, ) dz > /Q /R (A, 2(@) ve(dA)ds; (5.4)

n—~0o0

cf. [45, Theorem 3.2|.

As v, is a gradient LP-Young measure with fRSX:,, Av,(dA) = Vu(zx) for a.a. = € Q,
and as ¢(-, z(z)) is quasiconvex, for a.a. x € Q it holds

/RSXS w(A, z(x))v,(dA) > go(/RSXS Al/x(dA),Z(l’)> = ¢o(Vu(x), z(z)). (5.5)

see [30, 45|. Combining (5.4) and (5.5) yields liminf, .« [, o(Vn, 2,) dz >
Joe(Vu(z), z(x)) dz. As the Young measure is not involved in the last estimate
at all, this estimate holds, in fact, for the whole original sequence. O

An example of a frame-indifferent quasiconvex (in fact even polyconvex, i.e. convex
in terms of F' and its determinant and cofactors) energy ¢(F, z) := @(F') satisfying
(5.2) is the Ogden-type material

P(F,2) = artr(FTF —1)" + agtr (cof (FTF)=T)|™ + ¢ (det(F));  (5.6)

here aq, 0 > 0, p > 3, pg < p/2, ¢g is a convex function of at most p/3 growth, and
finally tr(-) in (5.6) denotes the trace of a matrix.

As F' = [+Vu, we can express the specific stored energy in terms of the displacement
gradient as

¢ = ¢(Vu,2) = p(I+Vu, 2). (5.7)
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The Piola-Kirchhoff stress o : R*** — R**3 is given by o = ¢4, (Vu,2) = @I+

Vu, z) with 95, and ¢} denoting the tensor-valued partial gradients.

If the displacement gradient Vu is small, one can neglect the quadratic term (5.1)

so that the Green-Lagrange strain tensor £ from (5.6) turns into a so-called small-

strain tensor e(u) := tVu+ 1(Vu)T, i.e.
i (u) n 5 837]‘ 5 8@ ’

ij=1,..3. (5.8)

For all examples below, we assume 2 C R? to be a polyhedral domain. The discretiza-
tion is made by a nested family of regular triangulations of 2 with the mesh param-
eter h > 0 and Il and 11z, will always be considered as quasi-interpolation op-
erators related with standard conformal finite elements of polynomial type, namely
PO (i.e. element-wise constant functions) or P1 (i.e. element-wise affine continu-
ous functions). To be more explicit, we can consider a mollifier v — a; with
Un(x) = [o kn(z, §)u(§)dE using a continuous kernel kj, : QxQ — R supported on
an h-neighbourhood of the diagonal in QxQ and [, ky(2,£) d¢ = 1 for all z € Q.
Then define u, = Iy pu as a Lagrange piecewise affine interpolation of 1, using
the nodal points in case of Pl-elements, or piecewise constant interpolation using
barycenters of the simplexes of the particular triangulation in case of PO-elements.
Moreover, we will assume the nested triangulations conformal with the specific dis-
joint partition of I' where possibly different boundary conditions are prescribed. As
to the initial condition gy, we will always assume its stability (3.31), e.g. ensured
through a “gentle start” (4.10) and thus not discussed in particular cases.

5.2 Plasticity with hardening at small strains

The first example on which we want to demonstrate our theory is a fully rate-
independent plasticity with isotropic hardening. The vector of the internal param-
eters z := (m,n) € L*(QR% ) x L*(Q) =: Z is therefore now composed from the

sym,0
plastic strain ™ and a hardening variable n; here we used the notation
Rfyxrio = {A cR¥™3;, AT = A, tr(A) = O}. (5.9)

For simplicity, we consider homogeneous Dirichlet boundary conditions on a part I'g
of the boundary 02 with nonvanishing surface measure, so that

U = U={ueWQR%; u=0 ae onlg}, (5.10)
Z = (P(QRGR0) x () NK (5.11)

where K is the cone of admissible evolution directions, see (5.14) below. The coinci-
dence that the z-component of states can be restricted equally in the stored energy
and dissipation energy is important for (5.17) below. We postulate the stored energy
as

1

B(u,2) = Blu,m,m) = 3 /Q (e(w) — 7)TC(e(u) — 1) + b de (5.12)
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where C = [C;;x] € R**¥3%3 i3 a positive-definite 4th-order tensor of elastic moduli
and b > 0 a hardening parameter. There are no constraints of the type =(u, 7, 1) =0
so we consider £, = £. In view of Remark 3.10, it also means that no numerical-
integration error is expected. Considering the loading by a time-varying force g
acting on 'y := 90 \ Ty, we postulate f as

(f(t), (u,z2)) ::/F g(t,z)-u(x)ds. (5.13)

The hardening is a unidirectional process and is, in standardly accepted models,
reflected by the cone of admissible evolution directions in the form

K :={z=(mmn); n>dp(r) ae on Q}. (5.14)

Here P C R3*3 is a convex closed neighbourhood of the origin, dp is its indicator
function, and ¢} the conjugate functional to dp with respect to the duality pairing
o:e= Z?,j:l oi;€ij. Note that the physical dimension of this pairing is Pa=J/m3.
Hence, 0} is convex, homogeneous degree-1 and positive except at the origin, and
thus K is indeed a cone. The interior of P is called elasticity domain while its
boundary is called the yield surface. More precisely, it corresponds to the initial
elasticity domain if n = 1 is considered as an initial condition while the actual
elasticity domain may be inflated during the loading process just by the isotropical
hardening. The continuous part of the degree-1 homogeneous dissipation potential
is

R(z) ::/QcS}B(W) dz (5.15)

so that the overall dissipation distance is, in view of (4.8),

{fQ 5(my—m) dz if my—ny > 0% (me—m) on Q,

D(z1,29) =D =
(21, 22) (71, 11, 72, 712) +00 otherwise.

This leads naturally to Z, := L'(Q;R**3 /) x L'(Q) in Remark 4.2. Beside the men-

sym,0
tioned initial condition 7(0,-) = 1, we must prescribe 7(0,-) = my € L2 (RS ).
The required stability (3.31) of qg, achieved e.g. through the “gentle start” (4.10) as
suggested in Sect. 5.1, yields zp = (7, 19) € K, i.e. here 65 (mp) < 1. The mentioned
initial condition 79 = 1 is, in general, guaranteed by this way only if f(0) is small
enough. Moreover, it is well-known (cf. [22, 36]) that this problem has a unique
energetic solution (u,z) € Wh([0,T]; U x Z).

We assume a polyhedral domain €2 with also I'y and I'; having a polyhedral shape,
and assume (2 triangulated by a nested family of regular triangulations with the
mesh parameter h > 0 conformal with the partition I' = I'y UT"y, and Il and Iz
quasi-interpolation operators related with conformal Pl-elements and P0O-elements,
respectively. It is also important that the PO-elements are conformal with the cone
K from (5.14) used also for Z in (5.11) in the sense 11z, K C K, as needed for
Propositions 4.5 and 4.6. As there is no Z in this problem, we have & = £ but R,
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from (4.9) is to be considered (unless one thinks about R + 0k in place of R, as
suggested in Remark 4.7), and also (4.24) with ¢ the norm topology works simply

for [qo]n.e := IInqo.

Corollary 5.2 Let the data §2, Ty, I'y, P, and qo be qualified as above, and g €
CY([0,T); L*3(T'1;R?)) and [qo]n. be taken as above. Then the approzimate solutions

Qe rh = (ua,r,ha Te,1,h) na,r,h) with

uEyth € LOO(()?Tv W172(Q.R3))a (516&)
e € L2(0, T; LA RGH 0)) N BV([0,T]; L (Q; RP?)), (5.16b)
Nern € L°(0,T; L*(Q)) N BV([0,T]; LY(Q)), (5.16¢)

based on the P0-elements for m and n and the Pl-elements for w converge for
(e,7,h) — (0,0,0) (even as the whole sequence in the sense of Theorem 3.8 with
Remark 4.2) to the energetic solution of the problem given by E, R, K, f and qo
abowve.

Proof. The coercivity (4.6) is ensured due to the Poincaré inequality through the
Dirichlet boundary conditions, ensuring

E(u,m,n) > C(HUH%/VL?(Q;]I@) + ’|7T||2L2(Q;]R3X3) + HWH%Z(Q)) (5.17)

provided also d5(m) < n; note that such coercivity does not hold for general (7,7) €
Z, which is why for the definition (5.11) of Z the restriction to K had to be used.
As P is assumed bounded, 0} is Lipschitz continuous, and hence R is continuous.

Moreover, stability of g as well as (4.24) have already been discussed above.

Using the ('oer('ivity of £ already proved, we can verify (3.9b) with & = & by

Z(t,q) = 8t ,q) = — frl -u(x)dS and the estimate
o€
(o) < Hat)m(ms lellyrzgomsy < NG +5lal”
2,2
<M ety =a (E(t. ) + o)

with ¢; = 1 and ¢y = N2G?/c. Here c is from (5.17) and N is the norm of the
trace operator u — ulp, in Lin(W1H2(Q), L4(F1)) and G1 = Hg||cl [0 T] L4/3(F1)) Here
we used the estimate £(t,q) = E(q) — (f(t),q fl“l cu(x)dS >
cllgll* = NGillall = §llqll* — 3. N*Gi.

Then we use the assertions from Sect. 3 through either Propositions 4.5 or 4.6. In
the former case, the setting (4.29) takes now

B(m,n) = (Cr, by), Eo(u,m,n) ::/Q w —e(u)'Crduz,
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while for the latter case the setting (4.35) works simply with B = E" and Ey = 0,
ie.

B(u,m,n) = (div(C(e(u) — 7)), C(r —e(u)), bn) , Ey =0,

with the “div” term considered in the weak sense, of course. Note that Z 4+ K C Z,
holds, too. Eventually, due to the uniqueness result [22, 36| or [51, Sect.11.1.3], we
conclude that the whole sequence converges. O

Remark 5.3 (Implementation without regularization by LQ-programme.) In
anisotropic media like single-crystals, the domain P is considered to be polyhe-
dral, cf. e.g. |12], hence 0} has a polyhedral epigraph and the incremental problem
(3.22) without any regularization (cf. Remark 4.7) represents a minimization prob-
lem of a sum of a quadratic and a polyhedral-graph functional which can be, after
a computationally cheap enhancement, solved by efficient linear-quadratic solvers;
cf. [52, Lemma 4| for this enhancement.

Remark 5.4 The P0/P1-discretization of this plasticity problem has been already
used by Alberty and Carstensen [2] and thus Corollary 5.2 recovers some results
from |2|. Note that our convergence result does not use higher-order regularity of
the solutions (u, z) € Wh*(0,T; Ux Z). Hence we cannot expect convergence rates
as in [2] and thus our results are closer to [23| where the above convergence result
was established already by a more elaborate method.

5.3 Phase transformation: a mixture approach

In engineering, modelling of inelastic response of the materials undergoing marten-
sitic transformation is of high interest. Here we want to demonstrate our theory on
a simplified mixture-like model for martensitic transformation.

Taking I'y as in Section 5.2 and Zy := {s € R™; s, >0 & > )", s, = 1} the Gibbs
simplex, we put
U :=U={ueW"(QR?; u=0 ae. only}, (5.18)
Z = {2€Z :=W**(4R™); z(z)€Zy for a.a. z€Q} (5.19)
with a > 0 denoting (possibly a fractional) order of derivatives of the vector of the
internal parameters z which now represents volume fractions referring to m phases

(or phase variants). For simplicity, we consider the loading again through g as in
Sect. 5.2, i.e. f is again defined by (5.13). We postulate the stored energy as

B(u, ) = / o(Vu, z) dz + gmg (5.20)
Q
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with kK, > 0 and | - |, denoting the usual seminorm in the Sobolev (or, for «
noninteger, Sobolev-Slobodetskii) space, i.e.

|V°lz|2 dz for a € N,
(5.21)

o VElz(a) = VIz(E)]
/ / |x _ €|3+2 —[a]) dzd{ for o > 0 noninteger

with [a] the integer part of . In principle, more physically justified kernels with a
support localized around the diagonal {z = £} with the same singular behaviour as
|z — ¢ 7372@=lD for |2 — €| — 0 could equally be used in (5.21).

The degree-1 homogeneous dissipation potential is now postulated as

R(z) ::/Qé}kv[(z) dz (5.22)

where ¢3, is determined, in analogy with 0} from Sect. 5.2, by a convex com-
pact neighbourhood M C R™ of the origin which prescribes activation energies
for martensite/austenite phase-transformation or for re-orientation of particular
martensitic variants. In particular, the martensitic transformation is a reversible
process, so that K = Z. Also, there is nor = neither K # Z and thus both & =&
and D. = D and the e-regularization is irrelevant here.

For the discretization, we consider naturally Pl-elements for u and either PO-
elements for z (if & < 1/2) or Pl-element also for z if (a < 3/2). Again, taking
[qo]n.c == g guarantees (4.24) with ¢ being the norm topology.

Corollary 5.5 Let the data ), Ty, and I'y be qualified as in Sect. 5.2, let ¢ be
qualified as in Lemma 5.1 (note that py is irrelevant as Zy is bounded here), and
further let

= 32Tpp forp <3,
g € CY([0,T); P/ =D, R%),  where p* { < +o00 forp=3,  (5.23)
=400 forp >3,

and qo € S(0) be approzimated by [qolne == Hpgo. Then the approzimate solutions
qr.h = (uT,hv ZT,h) with
Uy, € L0, T; WHP(Q; R?)), (5.24a)
Zrn € L0, T; W*2(Q; R™)) N BV([0, T]; L' (Q; R™)), (5.24b)
based on the Pl-elements for uw and the PO- or Pl-elements for z converge for

(1,h) — (0,0) (in terms of subsequences in the sense of Theorem 3.8 with Re-
mark 4.2) to energetic solutions of the problem given by E, R, f and qo above.

Proof. Coercivity on @ = U x Z follows from the assumed coercivity (5.2) of (-, 2)
by Poincaré inequality combined with the Dirichlet condition on I'y and by the
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regularizing k-term in (5.20) combined with the constraint z(z) € Z; involved in Z
n (5.19).

The lower-semicontinuity of the first term in (5.20) needed for (3.8) follows by
Lemma 5.1 with p; < 400 arbitrary since Z; is now bounded.

The continuity of R : L'(2) — R follows from (in fact is equivalent to) the assumed
boundedness of M C R™.

The assumption in Proposition 4.4 are satisfied simply if o : equals the strong
topology on WHP(Q; R3) x W2(2;R™). Here the convexity of the Gibbs simplex
Zy involved in Z is used, which makes both PO- and P1-elements compatible with Z
in the sense 11, Z C Z, cf. (4.3), which makes our results from Section 4.3 working.
O

Example 5.6 At small strains, a popular model takes a “mixture” of quadratic
energies in the form

UZT—I-Ug

o(Vu, z) Zze —eo) Cle(w)=e) +1(z) where ey := 5

2

with the distortion matrices U, of particular pure phases (or phase variants). The
setting here is related with the situation of martensitic transformation in a single-
crystal and 2’s are wolume fractions of the so-called austenite and of particular
variants of martensite, e.g. m = 4 or 7 for tetragonal or orthorhombic martensite,
respectively. The function 1) reflects the difference between chemical energies of
austenite and martensite and also between pure phases and “mixtures”. As (-, 2)
is now convex, it qualifies for Lemma 5.1 with Z; bounded. The philosophy of
mixtures of austenite/martensite phases in so-called shape-memory alloys has been
proposed by Frémond |15]; in rate-independent variant also presented in [16]|. For its
analysis and numerical implementation see [10, 11, 17, 24]. Gradients of mesoscopical
volume fractions (i.e.. (5.20) with @ = 1 has already been used in Frémond’s model
[16, p.364] or [17, Formula (7.20)]. Another way for obtaining physically relevant
mixture energies is the quasiconvexification under volume constrains, also called
cross-quasiconvexification, see [42].

Example 5.7 If the elastic-moduli tensors C;, = C are equal for all phases, the
specific energy in Example 5.6) transforms to

o(vu,z) = Y0 A=) HEWewlE) iy it e(2) =3 e
=1 =1

where e, (z) the is so-called transformation strain. Note that, although (5.20) has
got now a quadratic form except the lower-order term 15(2), we cannot use Proposi-
tion 4.5 or 4.6 because of the constraint z(x) € Z,. Hence, the quadratic structure
of the regularizing term x|z|2 cannot be exploited and a non-quadratic regularizing
term could equally be considered through this section. For such a model we refer
e.g. to [5, 6, 8, 19, 20, 28, 60].
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5.4 Phase transformation: non-mixture approach

The mixture approach in Sect. 5.3 is rather designed for phenomenological models of
polycrystals but is too coarse for the description of complicated microstructures oc-
curring in shape-memory-alloy single-crystals. An attempt to build a microscopical
model has been done in |34] (see also |35]) by restricting z to be valued in vertices of
the Gibbs’ simplex, i.e. only pure phase(variant)s are allowed; then o < 1/2 should
be taken in (5.20) or, as considered in |34, 35|, a BV-like term x|V z|. In this model,
z “switches” .

A different philosophy with presumably similar effects, pioneered by Falk |13], con-
siders the vectorial “order parameter” z related to the deformation gradient Vu and
particular shapes are then switched rather by Vu. Spinodal regions are then allowed
instead of mixtures. The specific stored energy ¢ now depends only on Vu but need
not be quasiconvex. For example, in 3, 4, 32, 50, 54|, a multiwell potential ¢ (re-
lated with ¢ by (5.7)) arises by the combination of St. Venant-Kirchhoff materials
considered for each particular phase:

1
F(F) == min (ﬁ(Uz‘TFTFUgl D) TCUU; TFTFUSY - ) +Cg), (5.25)
where U, are distortion matrices as in Example 5.6, C, are elastic-moduli tensors,
¢, are some constants, and U, := (U)~'. Now naturally p = 4.

We postulate the stored energy in terms of £ and = as

E(u,z) := /ng(Vu) dz + g|u|i, (5.26)
E(u, z) == z — L(Vu), (5.27)

with K > 0, @« > 1 and £ : R¥3® — Z, playing the role of a “phase indicator”
with Zy being again the Gibbs simplex. The seminorm |- |, defined in (5.21) used
for 1 < a < 2 with the Frobenius norm in the enumerator, now acting on (3x3)-
matrices is frame-indifferent, as observed by Arndt in [3]. We consider the same
loading as in Sects. 5.2 and 5.3, i.e. f from (5.13), but now we put

U = U={ueW*(R’); u=0 ae. on Iy}, (5.28)
Z = {z€Z:=L(QR"); z(z) € Zy foraa. zeQ}, (5.29)

and then naturally X := Z. The dissipation potential R is again from (5.22). There
is no K involved, hence D, = D, but as = from (5.27) occurs, the regularization &,
is, in principle, to be considered.

Choosing a < 3/2 allows for the usage of Pl-elements for v and P0-elements for z.
As now Q@ = @ and K = Z, so in particular their conformity (4.3) is automatic.
The proof of the following assertion shows that they are conformal also with the
constraints =(¢) = 0 so, in view of Remark 4.7, it would be possible to avoid the
e-regularization at all. When taking [ug|p = Iy puo, we have V(uglp . element-wise
constant and so is L(V]uo|n ) =: [20]ne, and (4.24) is satisfied.
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Corollary 5.8 Let ¢ : R¥3 — R be continuous (not necessarily quasiconver)
satisfying (5.2) here with m := 0 (so no z-dependence), let g satisfy (5.23),
L: R — Zy be continuous, and a € (1,3/2) and p < 6/(5—2«) in (5.2), and qq
and [qo]ne as specified above. Then the approxzimate solutions q- rp = (Uer.h, 2erh)
with

Uerp € L(0,T; W2 (Q;R?)), (5.30a)
Zean € L°(0,T; L®(Q;R™)) N BV([0, T; L' (Q; R™)), (5.30b)

based on the P1-elements for w and the PO-elements for z converge for (e,7,h) —
(0,0,0) (in terms of subsequences in the sense of Theorem 3.8 with Remark 4.2) to
energetic solutions of the problem given by E, R, f and qy above.

Proof. Weak lower semicontinuity of £ is due to convexity of the regularizing term
klul? in (5.26) while ¢ is now treated by compactness of the embedding W*2(Q) C
WhP(Q) (guaranteed if p < 6/(5—2a)) as a lower-order term. The limit passage
in the z-variable is trivial. This compactness also ensures the weak continuity of

=:Ux 27— X.

As K = Z, condition (4.23) with o being the strong topology holds, if we show, for
given Z = L(V1), the existence of (i, 2,) = (@, 2) such that 2, = £(Viy,). As far
as 1y, this can be done by a density argument of smooth functions in W2(Q; R3),
and then the usual Lagrange interpolation. By the embedding W*2(Q) c Whr(Q),
Vi, = Vi in LP(Q;R*3) and 2, = L(Viy,) > L(Va) = 2 by continuity of the
Nemytskii mapping induced by L.

Then we use the results from Sect. 3 via Proposition 4.4 with o being the strong
topology on W*2(Q; R3) x L?(Q;R™). O

Remark 5.9 The inequalities @ < 3/2 and p < 6/(5—2«) restrict us to p < 3,
which unfortunately excludes (5.25). Hence we are tempted to take higher o which,
however, brings the necessity to use higher-order elements (or to split the problem
to a system). Considering P2-elements for u would allow for v < 5/2 which, in turn,
would allow for arbitrarily high p. Since L is inevitable nonlinear, it is no longer
conformal with the constraint =(¢) = 0 no matter what (polynomial) elements are
taken for z. This would drive us to a penalization technique based on Proposition 4.3.
However, here it is simpler to modify our analysis to allow for expressing the model
in terms of u only, cf. the following Remark 5.10.

Remark 5.10 In fact, a “viscous” rate-dependent variant of the above model was
proposed in |50], for the rate-independent dissipation term cf. [50, Formula (33)].
The regularizing term | - |, used for o < 1/2 and the P0/P1-discretization was sug-
gested and implemented in |3| and computational experiments on NiMnGa single
crystals reported in [4]. In [46], the model was analyzed and implemented in the
1-dimensional case with a = 2. Pure analysis then followed also in [47]; in particu-
lar for v > 3, [47, Prop.3] investigated an inviscid variant of this model accounting,
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contrary to our paper, also for inertial effects. In fact, the model was formulated
only in terms of w in [3, 46, 47, 50| but then the dissipation distance took the form
D(ur,uz) = [ |L(Vur) —L(Vus)| dzz, having lost the structure based on the degree-
1 homogeneous potential R. Neglecting difficulties in numerical evaluation of such
D if a = 2 would be considered, by this way one gets rid of the necessity to penalize
= (which, in case o < 1/2, is made possible due to Corollary 5.8 together with
Remark 4.7 in our case too). Nevertheless, a fully rate-independent model, used
in fact for calculations in [4], has not been subjected to any rigorous mathemati-
cal /numerical analysis, and therefore Corollary 5.8 brings indeed new results.

5.5 Damage at large strains

In engineering, other inelastic process in the materials of a high interest is damage.
We consider a fully rate-independent isotropic and nonlocal damage, and again
consider the body €2 fixed on a nonvanishing part I'y and loaded by a surface force
gon 'y = 90\ Ty, so that Y = U is again from (5.18). As we consider isotropic
damage, the internal parameter z € Z will be scalar valued with

Z = {z€Z:=W*Q); z(z)>0 foraa. zeQ}. (5.31)

We postulate the stored energy again by the formula (5.20); £ > 0 in (5.20) is now
a coefficient responsible for nonlocal effects in gradient-of-damage theories as, e.g.,
in [16], cf. [38] for a discussion and more references. Note that we admitted, rather
formally, ¢ operating on the argument z nonrestricted from above to allow for a
simple construction of the recovery sequence (4.30). The loading f is considered
again by (5.13).

Like isotropic hardening in Sect. 5.2, the process of damaging is unidirectional in
the sense that, if in progress, it can only increase but the material never can heal,
which leads us to define the cone of admissible evolution directions as

K:={zecW*(Q); 2>0 ae. onQ}=2Z. (5.32)

The degree-1 homogeneous dissipation potential is considered as

R(2) ::/chzdat, (5.33)

where c; is a phenomenological specific energy (with physical dimension J/m?*=Pa)
expressing the energy needed for a damage of a unit volume described by a unit
jump of the damage parameter z. Considering the initial condition for z; = 0
and (A, ) decreasing for z € [0,1] and with p(A,z2) = p(A, 1) + (2 — 1)? for
z € (1,+00), we effectively force the values of z to range only the interval [0, 1] and
¢; refers to the specific energy dissipated by damaging the original material (having
the stored-energy ¢(-,0)) to the fully damaged material (having the stored-energy
©(+, 1) assumed to be still coercive so we exclude the case when the material fully
disintegrates).
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As no equality constraints of the type Z(¢) = 0 are involved, we have & = £ but
the e-regularization D, from (4.9) is to be still considered unless one takes R + dx
instead of R., cf. Remark 4.7. For the discretization, as in Sect. 5.3, we consider
Pl-elements for u and either PO-elements for z (if @ < 1/2) or Pl-element also for z
if (o < 3/2). Again, both P0- and Pl-elements are conformal with the constraints
in Z = K from (5.31)-(5.32) in the sense I1;,Z C Z and Il , K C K, as required
in Proposition 4.5.

Corollary 5.11 Let the data €2, 'y, and I'y be qualified as in Sect. 5.2, let ¢ be
qualified as in Lemma 5.1 with m := 1 and Zy := {z > 0} and p; = 2, let g
satisfy (5.23), and let g0 € S(0) and [qo]ne == Hnqo. Then the approzimate solutions
Qe r,h = (ua,r,ha Za;r,h) with

Uerp € L0, T; WHP(Q; RY)), (5.34a)
Zern € L0, T; W*2(Q)) N BV([0, T]; L'()), (5.34b)

based on the Pl-elements for uw and the P0O- or Pl-elements for z converge for
(,7,h) — (0,0,0) (in terms of subsequences in the sense of Theorem 3.8 with
Remark 4.2) to energetic solutions of the problem given by E, R, K, f and qo
above.

Proof. Coercivity on @ = U x Z follows from the assumed condition |[A]P < ¢(A, 2)
by the Poincaré inequality combined with the Dirichlet condition on I'y and by the
regularizing s-term in (5.20) combined with the constraint z(xz) > 0 involved in Z
in (5.31). Then we use Proposition 4.5 with the decomposition (4.29) using B = F
with Fy(2) := £|2|2 and Eo(u, 2) = [, ¢(Vu, z)dz. Note also that [go]n. = IIxqo

2
satisfies (4.24). O

Remark 5.12 The partial damage at large strains has been analyzed in [38] but
without any numerical approximation and nonquadratic regularizing term pi1|V,z|p1
with p; > 3 had to be used, contrary to the quadratic term in (5.20) which is
usual in engineering literature but never was mathematically analyzed so far. Hence
Corollary 5.11 represents a new extension in this field.

Example 5.13 (Engineering “(1—d)-model”.) Considering two materials having
linear response described in small strains by elastic moduli tensors C; and C,, the
first one undergoing a damage in a linear way leads to the potential ¢ in the form

+6(U)TC16(U) e(u) TCoe(u)
5 + 5 + ((

where (-)* = max(0,-). This potential satisfies all our assumptions with p = p; = 2
in (5.2) if C, is positive semidefinite and Cy positive definite. Such a model is called
in engineering literature a 1—d model (here rather 1—z) and can be used for two-
component materials as e.g. filled polymers or filled rubbers which do not undergo
a full damage.

p(Vu,z) = (1-2) —1)")*
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5.6 Debonding at large strains

Other inelastic processes may occur not in the materials themselves but on the
boundary. Here we want to consider a possible debonding of an elastic support on a
part 'y of the boundary 9. The internal parameter z € L>°(I'y) is therefore now a
scalar debonding parameter assumed to range [0, 1] and expressing volume fraction
of the adhesive which fixes elastically the body on I's if not debonded. It is natural
also to consider a unilateral Signorini contact on I'y. Moreover, we again consider
the body € fixed on a nonvanishing part I’y of 9 (disjoint with I'y) and loaded by
a surface time-varying force g on I'y = 9Q \ (I'o UT), so that

U:={ueW"P(LR); u=0 ae. only, v-u>0 ae only}, (5.35)
Z:={2€Z:=L%{I,); 0<z<1lae. onls} (5.36)

with v = v(z) a normal to I'y. We postulate the stored energy as

E(u, z) :z/(p(Vu) dz + / (1 —2)¢(u)dsS, (5.37)
Q I

where 1 : R — R, describes the elastic response of the adhesive fixing the body

on FQ.

Considering naturally that debonding can only develop but never heal back leads
us to pose the cone of admissible evolution directions as

K :={ze€L>*Iy); 2z>0 ae. only}. (5.38)

Similarly like in (5.33), the degree-1 homogeneous dissipation potential is
R(z) ::/ cozdS (5.39)
s

with ¢y a phenomenological specific energy (with physical dimension J/m?) express-
ing the energy needed for a full debonding of a unit area of I's.

Natural finite-element approximation is now Pl-elements for u and P0-elements on
the boundary for z. We assume that the disjoint partition I' = 'y U 'y U T’y is
polyhedral and that the nested triangulations are conformal with this partition. To
simplify technical details, let us assume that I's is flat; this ensures Iy U C U,
cf. (4.3). Also the constraints in (5.36) are conformal with PO-elements in the sense
IIz,Z C Z. As there is no = here, we have & = & but D, # D is still to be
considered.

Corollary 5.14 Let the disjoint partition I' = T'o U Ty Uy be polyhedral, 'y flat,
and the nested triangulations be conformal with this partition, ¢ be qualified as in
Lemma 5.1 with n := 0 (i.e. with no z-dependence in ), g satisfy (5.23), and
¥ R3 = R be continuous satisfying the growth condition 0 < ¢(u) < C(1+4 |u["~*)
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with p? from (5.23) and € > 0, and qy € S(0) is approzimated by [qo)n. = nqo.
Then the approzimate solutions G r.p = (Uerpy Ze 7.n) With

Ue . € L0, T; WHP(Q; RY)), (5.40a)
Zern € L®(0,T; L™ (Ty)) N BV([0, T); LY(Ty)), (5.40D)

based on the P1-elements for w and the PO-elements for z converge for (e,7,h) —
(0,0,0) (in terms of subsequences in the sense of Theorem 3.8 with Remark 4.2) to
some energetic solutions of the problem given by E, R, K, f and qy above.

Proof. The coercivity of E follows as in Corollary 5.5; note that the term on I'y,
being nonnegative, cannot destroy it. The weak lower-semicontinuity is again as in
Corollary 5.5, the term on I'y being even weakly continuous due to affinity in 2z-
variable and due to the compactness of the trace operator u +— u|r, : WhP(Q; R3) —

LP"=¢(Ty; R3).

We will explicitly construct the recovery sequence {Gn}n~o for (4.23). As to @y we
use the construction (4.30a); as I'y is flat, v is constant on I'y, and Iy, U = U, NU,
which ensures U, C U because Uy, = Iy 4. As for II;,, we have in mind the
standard Clément’s quasi-interpolation by element-wise constant averages, hence
e.g. functions valued in |0,1] are again mapped to (element-wise constant) functions
valued in [0,1|. Then we put

13

=1 (1 zh)HZ,h< z). (5.41)
11—z

If z(x) = 1, then also Z(x) = 1 because always z < Z < 1 and the fraction in (5.41)

can be defined arbitrarily in valued [0,1]. The product of element-wise constant

functions 1 — z;, and II, h( j) is again element-wise constant, hence z, € Z;,. As

0 < Tlgu(d _z) < 1, we have also z;, < z, < 1, hence z, € Z;, and 2z, — 2z, € K.

As HZh( z)
11— )
10,1].

Then, having (4.23) proved, we can verify (3.16) through Proposition 4.4 used with
the topology o :=s x w* on WHP(Q;R3) x L>(Ty). O

in any LP(I'9), p < 400, and z, L z, from (5.41) we have

)—l)—l‘

[SIENRNY

= Z in fact in L>°(I'y) due to the a-priori bound of values in

H ‘

Remark 5.15 As we do not have any gradient-type regularization like in Sect. 5.5,
we had to assume v (u,-) affine to allow for a passage via weak convergence. It
however does not allow for any artificial definition of ) like we did for ¢ in Sect. 5.5
for z > 1, which is why here we had to include the constraint z(z) € [0, 1] explicitly
into Z in (5.36) but this, in turn, destroyed any quadratic structure in z and hence
we had to rely on Proposition 4.4 supported by the rather sophisticated construction
(5.41).

Remark 5.16 A debonding on a-priori prescribed surfaces inside the body, called
then rather a delamination, could be treated similarly only by introducing a more
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extensive notation, cf. [31]. Let us emphasize that Corollary 5.14 adapted to such a
problem substantially improves results from [31], where convergence has only been
proved for a semidiscretization in time while the convergence of the full time-space
discretization has only silently been assumed under an additional convergence cri-
terion h/7 — 0.

5.7 Magnetostriction at small strains

In this section, we illustrate our theory on a deformable ferromagnet occupying a
domain © C R3 and undergoing quasistatic isothermal evolution at small strains.
Again, the non-dissipative component v : Q — R? will be the displacement while the
dissipating variable z : QO — R?® will now be the magnetization vector; thus m = 3
here. The stored energy is then considered in the form

E(u,z) := /Q <<p(Vu(x), 2(2)) + g’Vzlz) dx + % /11@3 ’qufdx. (5.42)

The particular terms in (5.42) represent the mechanical stored energy interacting
with an anisotropic magnetization energy, the exchange energy (with k > 0 a coef-
ficient having a quantum-mechanical origin), and the energy of the demagnetizing
field ¢ € WH2(Q) (with pg > 0 the vacuum permeability) which is determined by
the magnetization z by the (weak solution to the) following 2nd-order linear elliptic
equation on the whole space R3:

div(11oVe — xoz) = 0 on R?, (5.43)

where yo : R® — {0,1} denotes the characteristic function on €. The external
forcing might be both mechanical and magnetical. Let us consider it again via a
surface force g (as in Section 5.2) and by an external magnetic field hey:

(f(t),(u,z2)) = /1“ g(t,x) - u(x)dS + / hext(t, z) - z(x) da. (5.44)

Q

Contrary to the previous sections, z is not any internal parameter because it can be
subjected directly to outer loading by he. For notational simplicity, we consider
again the Dirichlet condition on I'y and then take & = U from (5.18) while Z is
naturally to be taken as W12?(Q;R3). The standard model involves also the so-
called Heisenberg constraint

|z(z)| =mg  foraa. z (5.45)

with mg > 0 a given saturation magnetization. In fact, due to (5.45) we can redefine
©(A, z) for |z| > my, if needed, suitably so that the coercivity (5.2) holds. For the
dissipation potential R we consider, for example,

R(z) := /Qd()’z’ +di|es - 2| dw (5.46)
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where dg > 0 and d; > 0 and e3 = (0,0,1). The dp-term has been considered in
[58] while for the d;-term see [59] or also [52, 53]. The former term corresponds
to a basic dissipation and ensures coercivity of R while the latter term describes
dissipation during remagnetization in a uniaxial magnet with easy-magnetization
axis in the direction es; then the anisotropic energy (A, -) is assumed to have
minima along this axis and dy + d; is a so-called coercive force which determines
the width of a parent hysteresis loop during cyclic magnetization processes. The
magnetization process is fully reversible (because we do not consider any sort of
unidirectional “hardening” like in |53|) and therefore we put K = Z = WH%(Q; R3).
The initial magnetization zy should satisfy the constraint (5.45) and, together with
ug, be stable with respect to the loading he (0, -) and g(0, -); we will not specify this
rather technical condition.

We cannot simply involve the constraint (5.45) into Z because (4.3) cannot conven-
tionally be achieved because no polynomial finite elements are compatible with the
Heisenberg constraints (5.45). Hence we implement it by = and then take simply
Z =7 =W"(Q;R?) and define Z as

2 .2
2" = m; (5.47)

VIzP +m2

Note that the nonlinearity 7 — (|r|> — m2)/+/|r]? + m2 involved in (5.47) has a
linear growth and is Lipschitz continuous, and so is = : L?(Q;R3? x R3) — L2().
Simultaneously, = is weakly continuous on U x Z due to the compact embedding of
U x Z into L?(£2;R3 x R3).

Again we consider a polyhedral domain 2 and its nested regular triangulations,
and in view of (5.42) take Pl-elements both for u and z. Then, in principle, exact
integration formulae can be exploited for (5.43) and for the last term in (5.42), too.
So no discretization of ¢ would be needed, although practical calculations usually
exploit some numerical approximation of this procedure (and hence of E itself, too).
As we did not consider it in previous sections, we omit it here too. Because of
the mentioned incompatibility of the P1-elements (and in fact with any polynomial
finite-elements), with the constraint Z(u, z) = 0, i.e. |z| = mg, we must consider the
penalization method. Using a = 2 in (4.5), it yields

E:UXZ—X:=L*Q): (u,z2) —

(|2>~m2)*

e(]z]2+m2)

E(u, 2) :/Q (¢(Vu(x),z(x))+g|v,z|2 + )dx%—% R3|V¢|2dx. (5.48)

The conformity (4.3) is here automatic because there are no other constraints in-
volved, i.e. Q=@ and K = Z.

Corollary 5.17 Let the data 2, 'y, and I'y be qualified as in Sect. 5.2, let ¢ be
qualified as in Lemma 5.1 with Zy := R™, m = 3, p; = 2, let g satisfy (5.23), and
let further hey € CH([0,T); LS°(4;R3)), qo € S(0) and [go)n. = Huqo. Then the
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approzimate solutions qerp = (Ue 7., 2e.rn) With

Uerp € L0, T; WHP(Q; R?)), (5.49a)
Zern € L0, T; WH2(Q; R?)) N BV([0, T); L' (4 R?)), (5.49b)

based on the Pl-elements and the penalization of the Heisenberg constraint (5.45)
as in (5.48) converge for (e,7,h) — (0,0,0) (in terms of subsequences in the sense
of Theorem 3.8 with Remark 4.2) to energetic solutions of the problem given by E,
R, =, f and qo above under the convergence criterion h?/s — 0.

For the convergence criterion h < H(e) can take H, e.g., in the form

H(e)=¢* withany 0<a<1/2. (5.50)

Proof of Corollary 5.17. The weak lower semicontinuity in the sense (3.8) of the
¢-term in (5.48) is by Lemma 5.1, while that of the terms |Vz|? and |V¢|? is due to
the convexity and linearity of (5.43). The penalty term in (5.48) has the 2nd-order-
polynomial growth and is therefore continuous because of the compact embedding
of WH2(Q) into L*(2). The coercivity of £ on U x Z follows from (5.2) through
Poincaré’s inequality.

For our Pl-elements, the estimate (4.18) with v = 1 is then known to hold with |- |
and | - || being respectively the L?- and the W'2-norms. The Lipschitz continuity
(4.17) of Z from (5.47) holds for X := L?(Q), which just makes the penalty form in
(5.48) with o = 2. The choice [go]n. := II,qy again satisfies (4.24). Our assertion
then follows from Theorem 3.8 through Proposition 4.3 where (4.19) just says that
h = o(y/¢), as claimed. O

Remark 5.18 References for magnetostriction usually addresses large strains where
more complications arise, cf. [9, 26, 27, 55, 57|. Mathematical analysis at large
strains needs some additional regularization, e.g. like [55]. A conventional form
of ¢ in (5.42) in term of small strains, as considered here, is p(Vu,z) = ¢o(z) +
T(e(u) — e.) "C(e(u) — e.) with e, a preferred strain tensor corresponding to the
magnetization z; for the concrete form of e, we refer to |27, 57|. No numerical and
even purely theoretical analysis of this rate-independent evolution problem seems
to be reported in literature hence Corollary 5.17 represents a new result for this

conceptual algorithm.
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