
Weierstraÿ-Institutfür Angewandte Analysis und Sto
hastikim Fors
hungsverbund Berlin e.V.Preprint ISSN 0946 � 8633Moderate deviationsfor random walk in random s
eneryKlaus Fleis
hmann∗,1, Peter Mörters†,2, Vitali Wa
htel∗,1submitted: O
tober 9, 2006
1 Weierstraÿ-Institut für AngewandteAnalysis und Sto
hastikMohrenstraÿe 3910117 Berlin, GermanyE-Mail: �eis
hmann�wias-berlin.devakhtel�wias-berlin.de

2 University of BathDepartment of Mathemati
al S
ien
esClaverton DownBA2 7AY BathUnited KingdomE-Mail: maspm�bath.a
.uk
No. 1167Berlin 2006

W I A S2000 Mathemati
s Subje
t Classi�
ation. 60F10, 60K37.Key words and phrases. Moderate deviation prin
iples, self-interse
tion lo
al times, 
on
en-tration inequalities, large deviations, moderate deviation regimes, maximum of lo
al times, pre
iseasymptoti
s, annealed probabilities, Cramér's 
ondition.*) Supported by the German S
ien
e Foundation
†) Supported by EPSRC grant EP/C500229/1 and an Advan
ed Resear
h FellowshipCorresponding author: Peter Mörters.



Edited byWeierstraÿ-Institut für Angewandte Analysis und Sto
hastik (WIAS)Mohrenstraÿe 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



RANDOM WALK IN RANDOM SCENERY 1Abstra
t: We investigate random walks in independent, identi
ally distributedrandom s
eneries under the assumption that the s
enery variables satisfy Cram�er's
ondition. We prove moderate deviation prin
iples in dimensions d � 2, 
overingall those regimes where rate and speed do not depend on the a
tual distribution ofthe s
enery. In the 
ase d � 4 we even obtain pre
ise asymptoti
s for the annealedprobability of a moderate deviation, extending a 
lassi
al 
entral limit theorem ofKesten and Spitzer. In d � 3, an important ingredient in the proofs are new 
on-
entration inequalities for self-interse
tion lo
al times of random walks, whi
h are ofindependent interest, whilst in d = 2 we use a re
ent moderate deviation result forself-interse
tion lo
al times, whi
h is due to Bass, Chen and Rosen.1. Introdu
tionIn the world of sto
hasti
 pro
esses in random environments, random walks in random s
enery repre-sent a 
lass of pro
esses with fairly weak intera
tion. Nevertheless, they have deservedly re
eiveda lot of attention sin
e their introdu
tion by Kesten and Spitzer [KS79℄ and, independently, byBorodin [Bo79a, Bo79b℄. A major reason for this interest is that in d � 2 the simple random walk inrandom s
enery exhibits super-di�usive behaviour. However, in dimensions d � 3, when the under-lying random walk visits most sites only on
e, the behaviour of the random walk in random s
eneryis di�usive. Here �ner features, like large deviation behaviour, have to be studied in order to get anunderstanding of the intera
tion of walk and s
enery.To de�ne random walk in random s
enery, suppose fSn : n � 0g is an underlying random walk on Zdstarted at the origin, and f�(z) : z 2Zdg are independent, identi
ally distributed real-valued randomvariables, whi
h are independent of the random walk and whi
h are 
alled the s
enery. Random walkin random s
enery is the pro
ess fXn : n � 0g given byXn := X1�k�n �(Sk) = Xz2Zd `n(z) �(z) for n � 0,where `n(z) :=P1�k�n 1fSk = zg are the lo
al times of the random walk at the site z.Throughout this paper we make the following additional assumptions on the model. The underlyingwalk is a symmetri
 and aperiodi
 walk in dimensions d � 2, su
h that the 
ovarian
e matrix � ofS1 is �nite and nondegenerate. Moreover, the random variable �(0) is 
entred, i.e. E�(0) = 0, withvarian
e �2 > 0, and satis�es Ej�(0)j3 <1 and Cram�er's 
ondition,E�e��(0)	 <1 for some � > 0: (1)The early papers by Kesten, Spitzer and Borodin establish 
entral limit theorems for the random walkin random s
enery. Indeed, it is (impli
itly) shown in [KS79℄ that, for d � 3,Xnpn n"1=) N �0; �(2G(0)� 1)�; (2)where G is the Green's fun
tion of the underlying random walk. Bolthausen in [Bo89℄ extended thisto the planar 
ase by showing that Xnpn log n n"1=) N (0; ��1):



2 RANDOM WALK IN RANDOM SCENERYHen
e, moderate and large deviation problems for the random walk in random s
enery deal with theasymptoti
 behaviour of PfXn � bng for bn � pn, i.e. lim bn=pn =1, if d � 3, and bn � pn log n ifd = 2. Let us remark for 
ompleteness that Kesten and Spitzer have also established a limit theoremin distribution for Xn=n3=4 with non-Gaussian limits for d = 1, a 
ase we do not 
onsider in this paperas large and moderate deviations are more or less fully understood in this 
ase.1Large deviation problems for random walks in random s
enery in dimensions d � 2 have only re
entlyattra
ted attention, see [GP02, GHK06, GKS05, As06, AC05, AC06℄, and also [CP01, AC03, Ca04℄where Brownian motions are used in pla
e of random walks. The fas
ination of this subje
t stems fromthe ri
h behaviour that 
omes to light when large deviations are investigated. The intri
ate interplayof the walk with the s
enery leads to a large number of di�erent regimes depending on� the dimension d of the underlying latti
e Zd,� the upper tail behaviour of the s
enery variable,� the size of the deviation studied,to name just the most important ones. For example, Asselah and Castell [AC06℄, restri
ting attentionto dimensions d � 5 and s
enery variables with superexponential de
ay of upper tails, have identi�ed�ve regimes with di�erent large deviation speeds. Heuristi
ally, in ea
h regime the walk and thes
enery `
ooperate' in a di�erent way to obtain the deviating behaviour. Up to now only one of theseregimes has been fully treated, in
luding the dis
ussion of expli
it rate fun
tions. This is the verylarge deviation regime dis
ussed (together with a number of boundary 
ases) by Gantert, K�onig andShi in [GKS05℄. In this regime it is assumed thatlogPf�(0)> xg � �Dxq as x " 1;for some D > 0 and q > d=2. Then, for any n� bn � n 1+qq , as n " 1,logP�Xn > bn	 � K n� 2q�dd+2 b 2qd+2n ; (3)where K = K(D; q; d) > 0 is a 
onstant given expli
itly in terms of a variational problem. Theunderlying strategy is that the random walk 
ontra
ts to grow at a speed ofn 1+qd+2 =b qd+2n � n 12 ;and the s
enery adopts values of size bn=n on the range of the walk. The right hand side in (3)represents the 
ombined 
ost of these two deviations.In the present paper we study moderate deviation prin
iples, providing a full analysis in
luding expli
itrate fun
tions and, in dimensions d � 4, even exa
t asymptoti
s of moderate deviation probabilities.We 
onsider as moderate deviations the regimes extending from the 
entral limit s
aling up to thepoint where either the deviation speed or the rate fun
tion start to depend on the a
tual distributionof the s
enery, or in other words where tail 
onditions stronger than Cram�er's 
ondition would havean impa
t on the speed or rate of the deviations.Heuristi
ally, our results, whi
h will be des
ribed in detail in the next se
tion, show that in d � 3throughout the moderate deviation regime the deviation is a
hieved by a moderate deviation of thes
enery without any 
ontribution from the walk. The rates therefore agree with those obtained for�xed walk in a random s
enery by Guillotin-Plantard in [GP02℄. Cru
ial ingredients of our proofs are
on
entration inequalities for self-interse
tion lo
al times of random walks, see Proposition 11. Ourexa
t asymptoti
 results for the moderate deviation probabilities build on 
lassi
al ideas of Cram�er.1This information was 
ommuni
ated to us by F. Castell.



RANDOM WALK IN RANDOM SCENERY 3In d = 2, by 
ontrast, the moderate deviation regime splits in two parts. If pn logn� bn � pn log nthen, again, we only have a 
ontribution from the s
enery and the walk exhibits typi
al behaviour.However, if pn log n� bn � n= logn the random walk 
ontra
ts, though in a mu
h more deli
ate waythan in the very large deviation regime: The self-interse
tion lo
al times of the walk, whi
h normallyare of order n logn are now in
reased to be of order pnbn. At the same time, on the (
ontra
ted)range of the walk, the s
enery values perform a moderate deviation and take values of size bn=n. Ourresults in the 
ase d = 2 rely on moderate deviation prin
iples for renormalised self-interse
tion lo
altimes of planar random walks re
ently obtained by Bass, Chen and Rosen [BCR06℄.2. Main resultsRe
all that we assume that the random variable �(0) satis�es Cram�er's 
ondition (1) and �2 > 0denotes its varian
e. For d � 3 we de�ne the Green's fun
tion of the random walk byG(x) := 1Xk=0PfSk = xg for x 2Zd.Theorem 1 (Re�ned moderate deviations in dimensions d � 4).There exists a regularly varying sequen
e (an) of index 23, su
h that, if d � 4 and n 12 � bn � an, thenP�Xn � bn	 � 1� �� bnp�2 n (2G(0)� 1)� as n " 1 ;where � denotes the standard normal distribution fun
tion.Remark 2. This result extends the 
entral limit theorem (2) to the moderate deviation regime. Notethat asymptoti
s of this degree of pre
ision are very rarely en
ountered in sto
hasti
 pro
esses beyondthe independent 
ase. In this theorem we are restri
ted to dimensions d � 4 as our proof requires ananalysis of triple self-interse
tions of random walks, for whi
h d = 3 is the 
riti
al dimension.In dimension d = 3 we 
an no longer provide pre
ise asymptoti
s, but we 
an still prove a full moderatedeviation prin
iple with the same speed and rate fun
tion as in d � 4.Theorem 3 (Moderate deviations in dimensions d � 3).If d � 3 and n 12 � bn � n 23 , then, as n " 1,logP�Xn � bn	 � �b2nn 12�2 (2G(0)� 1) :Remark 4. In this regime the deviation is entirely due to the moderate deviation behaviour of thes
enery, whereas the random walk does not 
ontribute and behaves in a typi
al way. Asselah andCastell [AC06℄ show that the regime in this result is maximal possible under Cram�er's 
ondition, morepre
isely, higher regularity features of the s
enery distribution de
ide whether this behaviour persistswhen bn grows faster than n2=3.Remark 5. For the sequen
e bn = n� with 1=2 < � � 2=3, the deviation speed n2��1, but not the ratefun
tion, in this result was identi�ed by Asselah and Castell [AC06℄ in d � 5 and by Asselah [As06℄in d = 3, under the additional assumptions that the law of �(0) has a symmetri
 density whi
h isde
reasing on the positive half-axis.



4 RANDOM WALK IN RANDOM SCENERYTurning to d = 2, we de�ne { to be the optimal 
onstant in the Gagliardo-Nirenberg inequality,{ := inf �
 : kfk4 � 
 krfk 122 kfk 122 for all f 2 C1
 (R2)	:This 
onstant features prominently in large deviation results for interse
tion lo
al times of Brownianmotion and random walk interse
tion lo
al times, see [Ch04℄ for further dis
ussion of the Gagliardo-Nirenberg inequality and the asso
iated 
onstant {.Theorem 6 (Moderate deviations in dimension d = 2).(a) If n 12plogn� bn � n 12 logn, then, as n " 1,logPfXn � bng � � b2nn logn �(det�)1=22�2 :(b) If n 12 logn� bn � n= logn, then, as n " 1,logPfXn � bng � � bnpn (det �)1=4{2� :(
) Finally, for every a > 0,logPfXn � an 12 logng � �I(a) logn;where I(a) := 8>><>>: �a2(det�)1=22�2 ; for a � ��{2(det �)1=4 ;a (det�)1=4�{2 � 12�{4 ; for a � ��{2(det �)1=4 :Remark 7. In regime (a) the deviation is due to the moderate deviation behaviour of the s
enery only,but in regimes (b) and (
) there is an additional 
ontra
tion of the walks to a
hieve the moderatedeviation. There is only a very small gap between our moderate deviation regime and the largedeviation regime studied in [GKS05℄: Assuming that all exponential moments of �(0) are �nite andbn = an, for some a > 0, they obtain a large deviation prin
iple with speed n1=2 and a rate fun
tionwhi
h is strongly dependent on the moment generating fun
tion of the s
enery variable.Remark 8. In the spe
ial 
ase of simple random walk in Gaussian s
enery, Theorem 6(a) is knownfrom [GKS05℄.The regime n 12plogn � bn � n= logn, whi
h we 
onsider in Theorem 6, is maximal for a moderatedeviation prin
iple using only Cram�er's 
ondition. The following large deviation prin
iple shows thatfor bn � n= logn �ner features of the s
enery distribution (in this parti
ular 
ase the 
onstant D)enter into the large deviation rate.



RANDOM WALK IN RANDOM SCENERY 5Proposition 9 (Spe
ial large deviations for d = 2). Assume that, for some D > 0,logP��(0) > x	 � �Dx as x " 1, (4)and suppose that (bn logn)=n!1 and log bn= logn! � 2 [1; 2). Then, as n " 1,logP�Xn � bn	 � �� bnlog n�1=2�8K2D2� � �1=2 ; (5)provided the underlying random walk is su
h that the limit K2 := limn!1 E[`n (0)℄logn 2 (0;1) exists.Remark 10. Note that this result is the planar 
ase of the regimelogPf�(0)> xg � �Dx d2 as x " 1;whi
h is des
ribed as `deli
ate' in [GKS05, Remark 1.2℄. The proof of Proposition 9 is based on largedeviation results for the maximum of the lo
al times obtained in [GHK06℄.The remainder of the paper is stru
tured as follows. Se
tion 3 is devoted to statements about self-interse
tion lo
al times of our random walk, whi
h are of independent interest. The proofs of ourthree theorems and Proposition 9 follow in the subsequent four se
tions.Throughout this paper we use the symbols P and E to denote probabilities, resp. expe
tations, with re-spe
t to the s
enery variables only, and the symbols Pand E to denote probabilities, resp. expe
tations,with respe
t to both the random walk and s
enery.We use the letters 
; C to denote positive, �nite 
onstants, whose value 
an 
hange at every o

urren
e,and whi
h never depend on random quantities. For nonnegative fun
tions fn, gn, possibly dependingon the sampled walk or s
enery, the Landau symbols fn = o(gn) and fn = O(gn) denote lim fn=gn = 0,respe
tively lim sup fn=gn <1, uniformly in the sampled walk or s
enery.3. Con
entration inequalities for self-interse
tion lo
al timesRe
all that fSn : n � 0g is a symmetri
, aperiodi
 random walk on the latti
e Zd, d � 2, withnondegenerate 
ovarian
e matrix �. For integers q > 1 we de�ne the q-fold self-interse
tion lo
al timef`(q)n : n � 0g of the random walk as`(q)n := Xz2Zd `qn(z) = X1�i1;��� ;iq�n 1�Si1 = � � � = Siq	 for n � 0 :We also denote the maximum of the lo
al times by`(1)n := maxz2Zd `n(z) :The most important quantity is f`(2)n : n � 0g, whi
h is simply 
alled the self-interse
tion lo
al time.Its asymptoti
 expe
tations are E`(2 )n � ( n (2G(0)� 1) if d � 3 ;n logn 1�pdet� if d = 2 : (6)In d � 3 this is easy, for d = 2 in the strongly aperiodi
 
ase this follows from the lo
al 
entral limittheorem in the form PfSn = 0g = 1=(n 2�pdet �)+o(1=n); see [Sp76, Proposition P7.9, p.75℄, and 
anbe extended to the periodi
 
ase using Spitzer's tri
k, see [Sp76, proof of Proposition P26.1, p.310℄.The main results of this se
tion are the following 
on
entration inequalities for double and tripleself-interse
tion lo
al times, whi
h are of independent interest. They are therefore given in somewhatgreater generality than needed for the proof of our main results.



6 RANDOM WALK IN RANDOM SCENERYProposition 11 (Con
entration inequalities). Let n � 2. There exists a 
onstant 
 > 0 su
h that,(a) if d > 4, then for x � n 23 log2 n,P�j`(2)n � E`(2)n j � x	 � expn� 
 x 12logno ;(b) if d = 4, then for x � n 23 log3 n,P�j`(2)n � E`(2)n j � x	 � expn� 
 x 12log3=2no ;(
) if d = 3, then for x � n 12 log9=2 n,P�j`(2)n � E`(2)n j � x	 � expn � 
 x 23n 13 o ;(d) if d > 4, then for x � n 35 log2 n,P�j`(3)n � E`(3)n j � x	 � expn� 
 x 13log2=3no ;(e) if d = 4, then for x � n 35 log7=2 n,P�j`(3)n � E`(3)n j � x	 � expn� 
 x 13log7=6no :Remark 12. All of these inequalities are, to the best of our knowledge, new. Similar 
on
entrationinequalities, but only for simple random walk and under 
onsiderably stronger assumptions on therelationship of x and n, have been found by Asselah and Castell in [AC06, Propositions 1.4 and 1.6℄if d � 5, and by Asselah in [As06, Proposition 1.1℄ if d = 3. In parti
ular, if d � 5, for the spe
ial
ase x = yn they obtain an upper bound of expf�
png, whi
h is an improvement of (a). The proofsin [As06, AC06℄ are based on a deli
ate and powerful analysis of the number of sites in Zd visited a
ertain number of times, and are therefore of independent interest. In this paper we give a dire
t proofof Proposition 11, whi
h entirely avoids the dis
ussion of the number of visits to individual sites, andis therefore mu
h easier than the method of Asselah and Castell.3.1 Proof of Proposition 11We start with some useful estimates for the partial Green's fun
tions,Gn(x) := nXk=0PfSk = xg; for n � 2 and x 2Zd:Lemma 13. For all n � 2, Xz2ZdG2n(z) � 8<: Cpn if d = 3;C log n if d = 4;C if d > 4:Proof. If d = 3 we have from [Sp76, Proposition P26.1, p.308℄ that G(z) � C=(1 + jzj). ThenXz2Z3G2n(z) = Xjzj�pnG2n(z) + Xjzj>pnG2n(z) � Xjzj�pnG2(z) + � supjzj>pnG(z)� Xjzj>pnGn(z) :



RANDOM WALK IN RANDOM SCENERY 7The estimate for G(z) shows that the �rst sum on the right is bounded by Cpn. We further have,from the de�nition of Gn and Chebyshev's inequality,� supjzj>pnG(z)� Xjzj>pnGn(z) � C n�1=2 nXk=0PfjSkj > png � C n�1=2 nXk=0 EjSk j2n � Cpn ;whi
h 
ompletes the argument. In dimension d � 4 we use that, by [U
98, (1.4)℄, we haveG(z) � Xx2Zd �(x)1 + jx� zjd�2 for all z 2Zd; (7)where (�(x) : x 2Zd) is a summable family of nonnegative weights. If d > 4, by the triangle inequality,� Xz2ZdG2(z)�1=2 � Xx2Zd� Xz2Zd �2(x)(1 + jx� zjd�2)2�1=2 = � Xx2Zd�(x)�� Xz2Zd 1(1 + jzjd�2)2�1=2;whi
h is bounded by a 
onstant. If d = 4 we use �rst thatXz2Z4G2n(z) = Xjzj�nG2n(z) + Xjzj>nG2n(z) � Xjzj�nG2(z) + � supz2Z4G(z)� Xjzj>nGn(z) :Clearly, G is bounded, see (7), and an argument analogous to the 
ase d = 3 shows that the se
ondsum on the right is bounded by a 
onstant. Using the triangle inequality as in the 
ase d > 4 weobtain for the �rst sum on the right� Xjzj�nG2(z)�1=2 � Xx2Z4�(x)� Xjz+xj�n 1(1 + jzj2)2�1=2 :It suÆ
es to show that the 
ontent of the round bra
ket on the right is bounded by a 
onstant multipleof logn, uniformly in x 2 Z4. On the one hand, if jxj � 2n this follows easily from the fa
t that thesum 
an now be taken over all z 2 Z4 with jzj � 3n. On the other hand, if jxj > 2n the sum 
an betaken over the annulus jxj�n � jzj � jxj+n and is thus easily seen to be bounded by a 
onstant. �The proof of Proposition 11 requires the following `folklore' lemma about the interse
tion of twoindependent random walks fSn : n � 0g and fS 0n : n � 0g with S0 = S 00. DenoteAn := nXi=1 n�1Xj=0 1fSi = S 0jg for n � 1:Lemma 14. There exists a 
onstant # > 0 su
h that,(a) if d > 4, then supn�2 E exp �#A1=2n 	 <1 ;(b) if d = 4, then supn�2 E exp �# 1plogn A1=2n 	 <1 ;(
) if d = 3, then supn�2 E exp �# �Anpn�2=3	 <1:



8 RANDOM WALK IN RANDOM SCENERYProof. From the de�nition of An we obtain, for moments of order m � 1,EAmn � m! X1�j1�����jm�n X0�k1 ;:::;km<n E mYl=1 1fSjl = S 0klg� m! X�2Sm X1�j1�����jm�n X0�k1�����km<n Xx1 ;:::;xm E mYl=1 1fSjl = xlg E mYl=1 1fS 0kl = x�(l)g� m! X�2Sm Xx1;:::;xm mYl=1Gn(xl � xl�1)Gn(x�(l) � x�(l�1));where Sm denotes the group of all permutations of f1; : : : ; mg, and we set x0 := 0 =: x�(0) for
onvenien
e. Applying H�older's inequality,EAmn � (m!)2 Xx1;:::;xm mYl=1G2n(xl � xl�1) = (m!)2� Xx2ZdG2n(x)�m;and from Lemma 13 we obtain, for all n � 2,EAmn � 8<: (m!)2Cm nm=2 if d = 3;(m!)2Cm (logn)m if d = 4;(m!)2Cm if d > 4:If d > 4 this implies E�pAn�m � pEAmn � m!Cm; and (a) follows by 
onsidering the exponentialseries. The analogous argument for d = 4 gives (b). In d = 3 we need an extra argument to 
ompletethe proof: We write `(m;n) := dn=me + 1. Using an inequality of Chen, [Ch04, Theorem 5.1℄ (withp = 2 and a = m), we get, for n � m,pEAmn � Xk1+���+km=mk1;:::;km�0 m!k1! � � �km!qEAk1`(m;n) � � �qEAkm`(m;n)� Xk1+���+km=mk1;:::;km�0 m!k1! � � �km!q(k1!)2Ck1`(m;n)k1=2 � � �q(km!)2Ckm`(m;n)km=2� �2m�1m � m!Cm � nm�m=4 � (m!)3=4Cm nm=4;and therefore EAmn � (m!)3=2Cm nm=2: For n � m we get the same estimate immediately from thetrivial inequality Amn � n2m � (m!)3=2Cm nm=2. We thus obtain, for all n;m, thatE�n�1=3A2=3n �m = n�m=3 E�Amn �2=3 � m!Cm;and (
) follows by taking the exponential series. �Introdu
e, for n � 1,�n := nXi=1 n�1Xj;k=0 1fSi = S 0j = S 0kg and ��n := n�1Xi=0 nXj;k=1 1fSi = S 0j = S 0kg:



RANDOM WALK IN RANDOM SCENERY 9Lemma 15. There exists a 
onstant # > 0 su
h that,(a) if d > 4, then supn�2 E exp �#�1=3n 	 <1 ;(b) if d = 4, then supn�2 E exp �# �1=3n(logn)1=2	 <1.The same statements hold when �n is repla
ed by ��n.Proof. We only 
onsider �n, as ��n 
an be treated analogously. From the de�nition of �n we obtain,for moments of order m � 1,E�mn � m! X1�j1�����jm�n X0�k1 ;:::;km<n0�l1;:::;lm<n E mYi=1 1fSji = S 0ki = S 0lig� m! Xx1;:::;xm X0�k1 ;:::;km<n0�l1 ;:::;lm<n mYi=1Gn(xi � xi�1) E mYi=1 1fS 0ki = S 0li = xig;where we set x0 := 0 for 
onvenien
e. Continuing with Cau
hy-S
hwarz, we get� m!� Xx1;:::;xm mYi=1G2n(xi � xi�1)�1=2� Xx1;:::;xm � X0�k1 ;:::;km<n0�l1;:::;lm<n E mYi=1 1fS 0ki = S 0li = xig�2�1=2 :By Lemma 13 the �rst bra
ket is bounded by Cm if d > 4, and by Cm(logn)m if d = 4. To analysethe se
ond bra
ket we denote by Tm the set of all mappings � : f1; : : : ; 2mg ! f1; : : : ; mg su
h that#��1fjg = 2 for all j 2 f1; : : : ; mg. For the 
ardinality of Tm we get#Tm � �2mm � (m!)2 � Cm (m!)2 : (8)Given (k1; : : : ; km) and (l1; : : : ; lm) there exists at least one ordered tuple (k01; : : : ; k02m) with k01 � � � � �k02m with fk1; : : : ; km; l1; : : : ; lmg = fk01; : : : ; k02mg and � 2 Tm su
h that �(i) = j if k0i = lj or k0i = kj .Hen
e we obtain,X0�k1 ;:::;km<n0�l1 ;:::;lm<n E mYi=1 1fS 0ki = S 0li = xig � X�2Tm X0�k01�����k02m<n 2mYi=1P�S 0k0i � S 0k0i�1 = x�(i) � x�(i�1)	� X�2Tm 2mYi=1Gn(x�(i) � x�(i�1));and, using the triangle inequality,� Xx1;:::;xm � X�2Tm 2mYi=1Gn(x�(i) � x�(i�1))�2�1=2 � X�2Tm� Xx1;:::;xm 2mYi=1G2n(x�(i) � x�(i�1))�1=2� #Tm� Xx1;:::;x2m 2mYi=1G2n(xi � xi�1)�1=2 :



10 RANDOM WALK IN RANDOM SCENERYBy Lemma 13 the bra
ket is bounded by Cm if d > 4, and by Cm(logn)2m if d = 4. Thus, togetherwith (8), we obtain the estimatesE�mn � ( �m!Cm�3 if d > 4;�m!Cm (logn)m=2�3 if d = 4:But E(�1=3n )m � �E�mn �1=3, and both statements follow by taking exponential series. �For any N � 0 we use the 
lassi
al de
omposition`(2)2N � E`(2)2N = 2 NXj=1 2j�1Xk=1 Aj;k;where Aj;k := Aj;k(N) := X(2k�2)2N�j<l�(2k�1)2N�j(2k�1)2N�j<m�(2k)2N�j �1fSl = Smg �PfSl = Smg�:For �xed 1 � j � N the random variables Aj;k, for k = 1; : : : ; 2j�1, are independent, identi
allydistributed with the law of A2N�j � EA2N�j . The next proposition exploits this independen
e, andthe moment results of Lemma 14 to give large deviation upper bounds.Proposition 16 (Large deviation upper bounds). For every " > 0 there exists 
 = 
(") > 0 su
h that,for all 1 � j � N ,(a) if d > 4, then Pn��� 2j�1Xk=1 Aj;k(N)��� � " xo � exp�� 
px	 for all x � (2N)2=3;(b) if d = 4, then Pn��� 2j�1Xk=1 Aj;k(N)��� � " xo � expn � 
r xN o for all x � N(2N)2=3;(
) if d = 3, then Pn��� 2j�1Xk=1 Aj;k(N)��� � " xo � expn � 
 x22N o+ expn� 
 x2=32j=32N=3 ofor all x � N9=2 (2N)1=2.The proof of this result will be postponed to the next se
tion.Completion of the proof of Proposition 11(a) { (
). We use two simple ingredients, stated belowas (9) and (10). First, note that, for any N � 0 and any 
hoi
e of nonnegative weights pj , 1 � j � N ,with P pj � 1, we haveP�j`(2)2N � E`(2 )2N j � "y	 = Pn2��� NXj=1 2j�1Xk=1 Aj;k��� � "yo � NXj=1Pn��� 2j�1Xk=1 Aj;k��� � "ypj2 o: (9)Se
ond, for any n � 2 there exists the representationn = 2N1 + � � �+ 2Nl ;where l � 1 and N1 > � � � > Nl � 0 are integers. Note that l � 
 logn. Write n0 := 0 andni := 2N1 + � � �+ 2Ni for 1 � i � l, and denoteBi := Xni�1<j<k�ni 1fSj = Skg; and Di := Xni�1<j�nini<k�n 1fSj = Skg:



RANDOM WALK IN RANDOM SCENERY 11Then P1�j<k�n 1fSj = Skg = Pli=1Bi + Pl�1i=1Di: We thus have, for any 
hoi
e of nonnegativeweights qi, 1 � i � l, with P qi � 1, for x large enough to satisfy xqi > 4EDi ,P�j`(2)n � E`(2)n j � x	 � lXi=1 P�jBi � EBi j � xqi4 	+ l�1Xi=1 P�Di � xqi4 	: (10)Depending on the dimension, we use the ingredients (9) and (10) with di�erent 
hoi
e of weights. Ifd = 3 we de�ne qi = b2(Ni�N1)=2 with b = (P1j=1 2�j=2)�1, and apply (9) forN = Ni; y = xqi4" and weights pj = aj�2 with a = � 1Xj=1 j�2��1;where " > 0 may be 
hosen independently of i; j su
h that ypj=2 � N9=2i (2Ni)1=2. Using (9), Proposi-tion 16 (
) and that l � 
 logn, this giveslXi=1 P�jBi � EBi j � xqi4 	 � lXi=1 NiXj=1 expn � 
 (ypj)22Ni o+ expn� 
 (ypj)2=32j=32Ni=3 o� expn� 
 x2=3n1=3o: (11)As (with d= denoting equality of distributions)Di d= 2NiXj=1 n�niXk=1 1fSj = S 0kg � 2NiXj=1 2Ni�1Xk=0 1fSj = S 0kg = A2Ni ;the se
ond sum in (10) 
an be estimated using Chebyshev's inequality and Lemma 14,l�1Xi=1 P�Di � xqi4 	 � l�1Xi=1 P�A2Ni2Ni=2 � xqi42Ni=2	� l�1Xi=1 exp�� 
 � xqi2Ni=2 �2=3	 � exp�� 
 x2=3n1=3	; (12)and the proof of (
) follows by plugging (11) and (12) into (10). The proof of (a), (b) is analogous,but now the weights are 
hosen to be equal, i.e. pj = 1=N and qi = 1=l. We leave the obvious detailsto the reader. �An analogous argument 
an be 
arried out for triple self-interse
tions. Indeed, for any N � 0 we have`(3)2N � E`(3)2N = NXj=1 2j�1Xk=1 �j;k + NXj=1 2j�1Xk=1 ��j;k (13)where �j;k := X(2k�2)2N�j<l�(2k�1)2N�j(2k�1)2N�j<m;n�(2k)2N�j �1fSl = Sm = Sng � PfSl = Sm = Sng�and ��j;k := X(2k�2)2N�j<l;m�(2k�1)2N�j(2k�1)2N�j<n�(2k)2N�j �1fSl = Sm = Sng � PfSl = Sm = Sng�:



12 RANDOM WALK IN RANDOM SCENERYAgain, for �xed 1 � j � N the random variables �j;k , for k = 1; : : : ; 2j�1, are independent, identi
allydistributed with the law of �2N�j � E�2N�j , and the random variables ��j;k , for k = 1; : : : ; 2j�1, areindependent, identi
ally distributed with the law of ��2N�j � E��2N�j .Proposition 17 (Large deviation upper bounds). For any " > 0 there exists 
 = 
(") > 0 su
h that,for all 1 � j � N ,(a) if d > 4, then Pn��� 2j�1Xk=1 �j;k��� � " xo � exp�� 
 x1=3	 ; for all x � (2N)3=5;(b) if d = 4, then Pn��� 2j�1Xk=1 �j;k��� � " xo � exp�� 
 � xN3=2 �1=3	 ; for all x � N3=2(2N)3=5.The same estimates hold for �j;k repla
ed by ��j;k.Again we postpone the proof of Proposition 17 to the next se
tion and �rst 
omplete the details ofthe remaining parts of Proposition 11.Proof of Proposition 11(d),(e). For any N � 0, we have by (13),P�j`(3)2N � E`(3 )2N j � "y	 = Pn��� NXj=1 2j�1Xk=1 �j;k��� � "y2 o+ Pn��� NXj=1 2j�1Xk=1 ��j;k��� � "y2 o� NXj=1Pn��� 2j�1Xk=1 �j;k��� � "y2N o+ NXj=1Pn��� 2j�1Xk=1 ��j;k��� � "y2N o: (14)For any n � 2 there exists the representation n = 2N1 + � � � + 2Nl ; where N1 > � � � > Nl � 0 areintegers. Note that l � 
 logn. Write n0 := 0 and ni := 2N1 + � � �+ 2Ni for 1 � i � l, and denoteBi := Xni�1<j;k;l�ni 1fSj = Sk = Slg;Di := Xni�1<j;k�nini<l�n 1fSj = Sk = Slg and Ei := Xni�1<j�nini<k;l�n 1fSj = Sk = Slg:Then `(3)n = Pli=1Bi +Pl�1i=1Di +Pl�1i=1Ei: As EDi and EEi are bounded by a 
onstant multiple oflogn, we get for all suÆ
iently large x,P�j`(3)n � E`(3)n j � x	 � lXi=1 P�jBi � EBi j � x3l	+ l�1Xi=1 P�Di � x3l	+ l�1Xi=1 P�Ei � x3l	: (15)We now look at the 
ase d = 4. Using (14) with y = x=(3l"), Proposition 17(b) and that l � 
 logn,this gives lXi=1 P�jBi � EBi j � x3l	 � 2 lXi=1 NiXj=1 expn � 
 � xlN5=2i �1=3o � expn� 
 x1=3log7=6no: (16)As we have Di d= 2Ni�1Xj;k=0 n�niXm=1 1fSj = Sk = S 0mg � 2Ni�1Xj;k=0 2NiXm=1 1fSj = Sk = S 0mg = ��2Ni ;



RANDOM WALK IN RANDOM SCENERY 13the se
ond sum in (15) 
an be estimated using Chebyshev's inequality and Lemma 15(b),l�1Xi=1 P�Di � x3l	 � l�1Xi=1 Pn��2NiN3=2i � x3lN3=2i o � l expn � 
� xlN3=21 �1=3o � expn � 
 x1=3log5=6 no: (17)The same estimate holds for Ei in pla
e of Di, using the estimate for �2Ni instead of ��2Ni . The proofof (
) follows by plugging this, (17) and (16) into (15). The 
ase d � 5 is analogous. �3.2 Proof of Propositions 16 and 17Proof of Proposition 16. We �rst give the argument in the 
ase d � 5. Take a 
ontinuouslydi�erentiable fun
tion g : (0;1)! R with non-in
reasing derivative, su
h that(a) g0(x) > 2=x for all x > 0,(b) g(x) = #px for all x � x0,where # is 
hosen as in Lemma 14. For 1 � j � N denotebj(N) := Eh exp�g�Aj;1(N)�	 1fAj;1(N) > 0gi;and re
all from Lemma 14(a) that bj(N) is uniformly bounded in j and N . By Theorem 2.3 of [Na79℄(with 
1 = 
2 = 
3 = 1=3, 
 = 2=3 and Æ = 2) we obtain the boundPn2j�1Xk=1 Aj;k � " xo � e1=2 expn� a2 "2 x22(a+1)2j�1Vj(N)o (18)+ e1=2 expn� 2a " x3S�1� a"x3ea2j�1bj(N)�o (19)+ 2j bj(N) e1=2 expn� g�23 " x�o + 2j�1PnAj;1 � 23 " xo; (20)where Vj(N) is the varian
e of Aj;1, the 
onstant a is the unique solution of the equation (u+1) = eu�1,and S�1 is the inverse of the stri
tly de
reasing fun
tion u 7! S(u) := e�g(u)g0(u)u2, see [Na79, p.765℄.By Chebyshev's inequality, P�Aj;1 � x	 � � supN supj�N bj(N)� e�g(x);and therefore the two terms in (20) are bounded by a 
onstant multiple of2N expn � g�23 " x�o for all j � N:Re
alling the de�nition of g we arrive at an upper bound ofC exp�� 
 px	 for all N � 1: (21)If x � (2N)2=3, then x2=2j�1 = x1=2 x3=2=2j�1 > px for all j � N . Further, using this inequality andthe boundedness of Vj(N), the term in (18) is also bounded by a 
onstant multiple of expf�
pxg.To show that also the term in (19) is negligible, re
all that the fun
tion S is stri
tly de
reasing. Hen
e,the term in (19) is bounded by C expn � 
 xS�1� 
2N=3 �o:From the de�nition of the fun
tions g and S it is easy to see thatS�1� 
2N=3 � � CN2:



14 RANDOM WALK IN RANDOM SCENERYThis implies that the term in (19) is bounded by a 
onstant multiple of expf�
 x=N2g, and is thereforealso negligible 
ompared to (21). This 
ompletes the bound for PAj;k . The same reasoning 
an beapplied with �Aj;k in pla
e of Aj;k, using only the trivial fa
t that �Aj;1 is bounded from above, uni-formly in j. Hen
e we get the same bound for �PAj;k. This 
ompletes the proof in dimensions d � 5.The result in d = 4 is a modi�
ation of this argument, using the random variable (N�j)�1Aj;k insteadof Aj;k, and details are left to the reader.Turning to dimension d = 3, we use thatPn2j�1Xk=1 Aj;k � "xo = Pn2j�1Xk=1 Aj;k2(N�j)=2 � " x2(N�j)=2o;and 
hoose a fun
tion g : (0;1)! Rwhi
h satis�es the same 
onditions as above, ex
ept that we nowrepla
e 
ondition (b) by g(x) = # x2=3 for all x � x0, and # as in Lemma 14. We de�nebj(N) := E� exp�g�Aj;1=2(N�j)=2� 1fAj;1 > 0g�;and by Theorem [Na79, Theorem 2.3℄ we obtainPn2j�1Xk=1 Aj;k2(N�j)=2 � " x2(N�j)=2o � exp n� 
 x22N o+ expn� 
 x2(N�j)=2S�1� 
x2(N+j)=2 �o (22)+ C 2j bj(N) expn� g�
 x2(N�j)=2�o + 2j�1Pn Aj;12(N�j)=2 � 
 x2(N�j)=2o: (23)The two terms in (23) are bounded by 2N expf�
 x2=3=2(N�j)=3g. To bound the last term in (22) weuse that, for x � 2N=2=N2,S�1� 
x2(N+j)=2� � S�1� 
x2N � � S�1� 
N22N=2� � CN3=2 ;to get expn� 
 x2(N�j)=2S�1� 
x2(N+j)=2 �o � expn� 
 x2j=22N=2N3=2o :As x � 2N=2N9=2 this term is also bounded by expf�
 x2=3=2(N�j)=3g, 
ompleting the proof. �Proof of Proposition 17. We use the same arguments as in Proposition 16, but now for a fun
tiong : (0;1)! R with 
ondition (b) repla
ed by g(x) = #x1=3 for x � x0. Then both terms in (20) give
ontributions bounded by expf�
 x1=3g. If x � (2N)3=5, then x2=2j�1 � x1=3, and hen
e we obtainthe same bound for (18). Under the same 
ondition x � (2N )3=5, we haveS�1�
x=2j�1� � S�1�
=(2N)2=5� � C N3 ;hen
e the term in (19) is of smaller order. �3.3 A large deviation bound for the maximum of the lo
al timesWe 
omplete this se
tion with an easy lemma, whi
h provides bounds for the large deviation prob-abilities of the maximum `(1)n of the lo
al times. Ideas for this proof are taken from Gantert andZeitouni [GZ98℄.



RANDOM WALK IN RANDOM SCENERY 15Lemma 18 (Large deviation bounds for the maximal lo
al time). There exists 
 > 0 su
h that(a) if d � 3, then for ea
h sequen
e an !1 and all n � 2,P�`(1)n > an	 � n exp�� 
 an	 ;(b) if d = 2, then for ea
h sequen
e an= logn!1 and all n � 2,P�`(1)n > an	 � n expn� 
 anlogno :Proof. Without loss of generality we may assume that all an are positive integers. We �rst redu
e theproblem to a large deviation bound for `n(0). De�ning the stopping times Tz := minfk � 1: Sk = zgwe have, for all nonnegative integers x,P�`(1)n > x	 � Xz2ZdP�`n(z) > x	 = Xz2Zd nXk=1PfTz = kgP�`n�k(0) � x	� P�`n(0) � x	 Xz2ZdPfTz � ng :Now Pz PfTz � ng � PzPnk=1PfSk = zg = n, so that it suÆ
es to bound the large deviationprobabilities of `n(0). By the strong Markov property applied at the su

essive hitting times of theorigin, we get P�`n(0) � an	 � P�T0 � n	an : (24)In the transient 
ase, d � 3, this gives (a) with 
 := � logPfT0 <1g > 0. In the re
urrent 
ase d = 2,we use the last exit de
omposition, for all 2 � k � n,1 � kXj=0PfSj = 0gPf`n�k(0) = 0g+ nXj=k+1PfSj = 0g :By [Sp76, Proposition P7.6, p.72℄ we have PfSj = 0g � 
j for j � 1. This implies that(log k)Pf`n�k(0) = 0g � Ch1� 
� nXj=k+1 1j�i :Now let k = d�ne and 
hoose � 2 (0; 1) suÆ
iently 
lose to one, so that the right hand side is boundedfrom zero by a positive 
onstant. Hen
e,PfT0 > n(1� �)g = Pf`bn(1��)
(0) = 0g � 
logn ;and thus logPfT0 � ng = log(1�PfT0 > ng) � �
= logn. Plugging this into (24) 
ompletes the proofof (b). �4. Pre
ise asymptoti
s in dimensions d � 4: Proof of Theorem 1The main ingredient of the proof is the following proposition. Re
all that the probability P refersex
lusively to the s
enery variables with �xed random walk samples, and the Landau symbols areuniform in these samples.



16 RANDOM WALK IN RANDOM SCENERYProposition 19. Assume that, for some A > 0 and all suÆ
iently large n,�n := Xz2Zd `3n(z) � n log2 n and V 2n := �2 Xz2Zd `2n(z) � An :Then, for pn� bn � n2=3= log3=2n, we havePn Xz2Zd `n(z)�(z) � bno = Vnp2�bn expn � b2n2V 2n o (1 + o(1)) : (25)Proof of Theorem 1. On the event�j`(2)n � E`(2)n j � n2=3 log3 n; `(3)n � n log2 n	we have V 2n = �2 E`(2)n +O(n2=3 log3 n):Sin
e for d � 4, E`(2)n � n (2G(0)� 1) = O(logn);we obtain V 2n = n �2 (2G(0)� 1) + O(n2=3 log3 n) :Thus, if we assume pn� bn � n2=3= log3=2 n =: an, we have� b2n2V 2n = � b2n2n�2(2G(0)� 1) + o(1) :Using that 1� �(x) = 1p2�x e�x22 �1 +O(x�2)�; as x!1 ; (26)and abbreviating �2n := 2n�2(2G(0)� 1) we obtain, on the same event,Vnp2�bn expn� b2n2V 2n o1� �(bn=�n) = 1 + o(1):Therefore, for a 
onstant 
 > 0 and all large n,���� PfXn � bng1� �(bn=�n) � 1����� E"����PfP `n(z)�(z) � bngVnp2�bn exp�� b2n2V 2n 	 � 1���� 1�j`(2)n � E`(2)n j � n2=3 log3 n; `(3)n � n log2 n	#+ o(1)+P�j`(2)n � E`(2)n j > n2=3 log3 n	 e
 b2nn + P�`(3)n > n log2 n	 e
 b2nn :By Proposition 11 both probabilities in the last line are bounded by expf�
n1=3g if d � 5, and byexpf�
n1=3= log1=2 ng if d = 4. As bn � an we have b2n=n � n1=3 if d � 5, and b2n=n � (n= log2 n)1=3if d = 4, hen
e the summands in the last line go to zero, and together with Proposition 19 this impliesTheorem 1. �Proof of Proposition 19. Re
all Cram�er's 
ondition (1) and denote f(h) := Eeh�(0) for all h 2 [0; �).For �xed n � 1 and h > 0 satisfying the 
onditionh `(1)n � �2 (27)



RANDOM WALK IN RANDOM SCENERY 17we introdu
e a family fYz : z 2Zdg of independent auxiliary random variables with distributionsP�Yz < x	 = �f(h`n(z))��1 Z x�1 ehy dPf`n(z)�(z) < yg :We de�ne mz := EYz; �2z := E[(Yz �mz)2℄; 
z := EjYz �mzj3;Mn(h) :=Pz2Zdmz; V 2n (h) :=Pz2Zd �2z ; �n(h) :=Pz2Zd 
z :From the de�nition of Yz we infer thatP�`n(z)�(z) < x	 = f(h`n(z)) Z x�1 e�hy dPfYz < yg ;and therefore Pn Xz2Zd `n(z)�(z) � bno = Yz2Zdf(h`n(z)) Z 1bn e�hy dPn Xz2ZdYz < yo :Substituting y = Mn(h) + xVn(h) and denoting T := (PYz �Mn(h))=Vn(h), we getPn Xz2Zd `n(z)�(z) � bno = expn� hMn(h) + Xz2Zd log f(`n(z)h)o� Z 1bn�Mn(h)Vn(h) expf�hxVn(h)g dP (T < x): (28)Now we show that (27) implies that, for some 
onstant 
 > 0, we haveh V 2n � 
 h3 �n �Mn(h) � h V 2n + 
 h2�n : (29)Obviously, mz = `n(z) f 0(`n(z)h)f(`n(z)h) and thus Mn(h) = Xz2Zd `n(z) f 0(`n(z)h)f(`n(z)h) :On the one hand, using that all derivatives of f are in
reasing, we getf 0(`n(z)h) � f 00(0) `n(z) h+ 12 f 000(`n(z)h) `2n(z) h2 � �2 `n(z) h+ 12 f 000(�=2) `2n(z) h2;and the se
ond inequality in (29) readily follows from this together with the fa
t that f(`n(z)h) � 1.On the other hand, noting that f 0(`n(z)h) � �2 `n(z) h andf(`n(z)h) � 1 + f 0(`n(z)h) `n(z) h � 1 + f 0(�=2) `n(z) h ;we obtain the boundMn(h) � Xz2Zd �2 `n(z) h1 + f 0(�=2) `n(z) h = h �2 Xz2Zd `2n(z)� f 0(�=2) �2 h2 Xz2Zd `3n(z) :Summarizing, we see that (29) holds with 
 := maxf�2f 0(�=2); 12 f 000(�=2)g.Let h�n denote the positive solutions of the quadrati
 equationsV 2n h� 
�n h2 = bn :It is easy to see that h�n = bnV 2n + O��nb2nV 6n � as n!1 ; (30)provided that �nbn = O(V 4n ).



18 RANDOM WALK IN RANDOM SCENERYFrom our assumption �n � n log2 n we get `(1)n � n1=3 log2=3 n and thus (27) holds for allh � �=(2n1=3 log2=3 n). Sin
e bn � n2=3= logn and �nb2n � n7=3 but V 2n � n we obtain thath�n � n�1=3= logn + O(n�2=3) and thus h�n is in the domain given by (27), for all large n. Hen
ethe inequalities (29) hold for all 0 < h � h�n and so, on the one hand, we have M(h�n ) � bn, and onthe other hand, as h+n < h�n , we have M(h+n ) � bn. Therefore there exists hn 2 [h+n ; h�n ℄ su
h thatM(hn) = bn. Applying (30) giveshn = bnV 2n + O��nb2nV 6n � as n!1 : (31)Clearly, log f�`n(z)hn� = log �1 + �22 `2n(z) h2n +O(`3n(x)h3n)� = �22 `2n(z) h2n +O(`3n(x)h3n) :Thus, in view of (31),�hnMn(hn) + Xz2Zd log f�`n(z)hn� = �hn bn + 12 V 2n h2n +O��nh3n� = � b2n2V 2n + O��nb3nV 6n � : (32)Putting h = hn in (28) and using (32), we obtainP�`n(z)�(z) � bn	 = expn � b2n2Vn +O��nb3nV 6n �o Z 10 e�xhnVn(hn) dP (T < x): (33)Integrating by parts gives, for a standard normal random variable N ,Z 10 e�xhnVn(hn) dPfT < xg = Z 10 PfT < xg hn Vn(hn) e�hnVn(hn)x dx= Z 10 PfN < xg hn Vn(hn) e�hn Vn(hn)x dx+ Z 10 �(x) hn Vn(hn)e�hn Vn(hn) x dx= 1p2� Z 10 exp�� hn Vn(hn) x� x22 	dx+ Z 10 �(x) hn Vn(hn) e�hVn(hn) x dx;where �(x) := PfT < xg � PfN < xg. By Esseen's inequality, see for example [Pe75, Theorem V.3℄,there exists an abolute 
onstant C > 0, su
h thatsupx j�(x)j � C �n(hn)V 3n (hn) :Therefore��� Z 10 e�xhnVn(hn) dPfT < xg � 1p2� Z 10 exp�� hn Vn(hn) x� x22 	dx��� � C �n(hn)V 3n (hn) :Evidently, 1p2� Z 10 exp�� hn Vn(hn) x� x22 	dx= 1p2� expnh2nV 2n (hn)2 o Z 10 expn � (x+ hnVn(hn))22 o dx= expnh2nV 2n (hn)2 o�1� ��hnVn(hn)�� : (34)We now show that, for a suitable 
onstant C > 0,V 2n (hn) = V 2n +O(�nhn) and �n(hn) � C �n: (35)



RANDOM WALK IN RANDOM SCENERY 19First, we obtain thatV 2n (hn) = Xz2Zd�2z = Xz2Zd `2n(z) f 00(`n(z)hn)� (f 0(`n(z)hn))2f(`n(z)hn)= Xz2Zd `2n(z) ��2 + O(`n(z) hn)� = V 2n + O(�nhn) :Se
ond, for an upper estimate of �n(hn), we note thatEjYzj3 = 2 Z 0�1 jyj3 dPfYz < yg+EY 3z :From the de�nition of Yz we get, on the one hand,Z 0�1 jyj3 dPfYz < yg = 1f(`n(z)h) Z 0�1 jyj3 ehy dP��(z) < y`n(z)g� `3n(z) Z 0�1 jxj3 dP��(z) < xg � `3n(z)Ej�(0)j3 ;and, on the other hand, EY 3z = f 000(`n(z)h) `3n(z)f(`n(z)h) � `3n(z) f 000(�=2) :The two bounds imply that EjYzj3 � �f 000(�=2)+2
�`3n(z); and 
ombining this with mz � f 0(�=2) `n(z)gives 
z � EjYzj3 +m3z � C`3n(z) and therefore we have proved (35).From (31) and (35) we thus gethnVn(hn) = � bnV 2n + O��nb2nV 6n �� �V 2n + O��nbnV 2n ��1=2 = bnVn �1 + O��nbnV 4n �� :Re
alling that bn � pn and V 2n � An we 
on
lude that hnVn(hn)! 1. Then, using (26),eh2nV 2n (hn)=2�1� �(hnVn(hn)� = 1p2�hnVn(hn) �1 +O� 1h2nV 2n (hn)��= Vnp2�bn �1 + O��nbnV 4n �+O�V 2nb2n �� :Substituting this into (34) givesZ 10 e�hnVn(hn)x dPfT < xg = Vnp2�bn �1 +O��nbnV 4n �+ O�V 2nb2n �� ;and the result follows by plugging this into (33). �5. Moderate deviations in dimensions d � 3: Proof of Theorem 35.1 Proof of the upper bound in Theorem 3We �x � > 0 and let A := 2G(0)� 1 + 3�: Our aim is to show thatlim supn!1 nb2n logPnXz2Zd `n(z)�(z) � bno � � 12�2A: (36)



20 RANDOM WALK IN RANDOM SCENERYWe note that, for any �xed � > 0,PnXz2Zd `n(z)�(z) � bno � PnXz2Zd `n(z)�(z) � bn; `(1)n � �nbn ; `(2)n � Ano+Pn`(1)n � �nbno +P�`(2)n � An	: (37)To see that the se
ond summand is negligible apply Lemma 18 with an = �n=bn, whi
h giveslim supn!1 nb2n logP�`(1)n > �nbn 	 � lim supn!1 n log nb2n � 
�n2b3n = �1: (38)To see that the third term in (37) is negligible, re
all from (6) that E`(2 )n � n(2G(0)�1) and therefore,for all large n,P�`(2)n � An	 � Pn`(2)n � E`(2)n � �A�1��2 �G(0)�no = P�`(2)n � E`(2)n � �n	:From Proposition 11 we know that for bn � n2=3, if d � 4,lim supn!1 nb2n logP�`(2)n � E`(2)n � �n	 � lim supn!1 �
 n3=2b2n logn = �1;and, if d = 3, lim supn!1 nb2n logP�`(2)n � E`(2)n � �n	 � lim supn!1 �
n4=3b2n = �1:Combining this, we get lim supn!1 nb2n logP�`(2)n � An	 = �1: (39)It remains to investigate the �rst term on the right hand side of (37). For this purpose, for the moment�x f`n(z) : z 2Zdg su
h that `(1)n � �nbn and `(2)n � An;and just look at probabilities for the i.i.d. variables f�(z) : z 2 Zdg. Denote f(h) := Eeh�(0) for allh < �, whi
h is well-de�ned by Cram�er's 
ondition. Re
all thatf(h) = exp�12 h2 �2(1 + o(h))	 as h # 0:In parti
ular, given any Æ > 0, we may 
hoose a small � > 0 su
h thatf�bn `n(x)�2 `(2)n � � expn(1 + Æ) b2n`2n(x)2�2 (`(2)n )2o; (40)where we use that bn`n(x)=`(2)n � �. From Chebyshev's inequality and independen
e we get thatPn Xx2Zd `n(x)�(x) � bno � Yx2Zdf�bn`n(x)�2 `(2)n � expn� b2n�2 `(2)n o� expn(1 + Æ) b2n2�2 `(2)n o expn � b2n�2 `(2)n o � expn� �1� Æ� b2n2�2Ano:We 
an now average over the random walk again, and get (36) from (37) together with (38) and (39),re
alling that Æ > 0 was arbitrary. This 
ompletes the proof. �



RANDOM WALK IN RANDOM SCENERY 215.2 Proof of the lower bound in Theorem 3We impose `typi
al behaviour' on `(2)n and `(1)n . More pre
isely, �x an arbitrary � 2 (0; 1), and also �x� > 0 whi
h we spe
ify later. We havePnXz2Zd `n(z)�(z) � bno � PnXz2Zd `n(z)�(z) � bn; `(1)n � �nbn ; `(2)n � Ano= EnPn Xz2Zd `n(z) �(z) � bno 1f`(1)n � �nbn ; `(2)n � Ango; (41)where A := 2G(0)� 1 + 3� and P refers to the probability with respe
t to the s
enery only. To studythe inner probability we now suppose that, for the moment, a random walk sample is �xed, su
h that`(1)n � �nbn and `(2)n � An:Denote 
 := Ej�(0)j3 < 1. Hen
e the varian
e of the random variable Pz2Zd `n(z)�(z) with respe
tto P is given by V 2n := �2Pz2Zd `2n(z) and the Lyapunov ratio by Ln := 
 V �3n Pz2Zd `3n(z). By [Na02,Theorem 2℄ there exist 
onstants 
1; 
2 > 0 su
h that, for all 32Vn � x � Vn196Ln ,Pn Xz2Zd `n(z)�(z) � xo � �1� �( xVn )� exp�� 
1x3 LnV �3n 	�1� 
2xLnV �1n �: (42)Now suppose that � > 0 is 
hosen to satisfy the three inequalities� < �4=(196
); 
1�
��6 < �; and 
2�
��4 < �:Using the upper bound on `(1)n , we get that Ln � 
�n�2bnV �1n . Therefore,Pn Xz2Zd `n(z)�(z) � xo � �1� �( xVn )� exp�� 
1 � x3bn �2 nV �4n 	�1� 
2 
 � xbn �2 nV �2n �;for all (3=2)Vn � x � (bnVn)=(196�n). We 
an use this inequality for x = bn. Indeed, as V 2n � A�2 n weget bn � (3=2)Vn, if n ex
eeds some 
onstant depending only on �2. Also V 2n � �2n and � < �4=(196
),therefore bn � bn�2V 2n =(196
�n)� Vn=(196Ln):Hen
e, Pn Xz2Zd `n(z)�(z) � bno � �1� �( bnVn )� exp�� 
1 � 
 ��6 b2nn 	�1� 
2
 ��4 ��: (43)Substituting (43) into (41) givesPnXz2Zd `n(z)�(z) � bno� �1� 
2
��4 �� exp�� 
1 
��6 � b2nn 	 Eh�1� �( bnVn )� 1�V 2n � A�2 n; `(1)n � �nbn 	i� �1� �� exp�� � b2nn 	Eh�1� �( bnVn )� 1�V 2n � A�2 n	i �Pn`(1)n � �nbn o: (44)Sin
e, by a standard estimate, (1� �(z)� � expf�(1 + �) z2=2g for all suÆ
iently large z, we getEh�1� �( bnVn )� 1�V 2n � A�2 n	i � E exp n� (1 + �)b2n2V 2n o�P�V 2n � A�2 n	: (45)By Jensen's inequality, we obtainE exp n � (1 + �)b2n2V 2n o � expn� (1 + �)b2n2�2n E n`(2)n o:



22 RANDOM WALK IN RANDOM SCENERYUsing Proposition 11 and the Borel-Cantelli lemma,limn!1 `(2)nn = limn!1 E`(2)nn = 2G(0)� 1 almost surely,and using further that n=`(2)n � 1, we obtain thatlimn!1 E n`(2)n = 12G(0)� 1 :Then, for all n suÆ
iently large,Eh�1� �( bnVn )�i � expn � (1 + 2�)b2n2�2n(2G(0)� 1� �)o: (46)Combining (44), (45) and (46) givesPnXz2Zd `n(z)�(z) � bno � (1� �) expn � �� + 1+ 2�2�2(2G(0)� 1� �)�b2nn o�Pn`(1)n � �nbn o� P�`(2)n � An	:The required lower bound follows from the estimates (38) and (39) for the subtra
ted probabilities,and the fa
t that � > 0 
an be 
hosen arbitrarily small, when
e � also be
omes arbitrarily small. �6. Moderate deviations in dimension d = 2: Proof of Theorem 6We use the following moderate deviation prin
iple for the self-interse
tion lo
al time in the planar 
ase,whi
h is due to Bass, Chen and Rosen [BCR06, Theorem 1.1 and (3.2)℄: If xn ! 1 and xn = o(n),then for every � > 0,limn!1 1xn logP�`(2)n � E`(2)n � �nxn	 = limn!1 1xn logP�j`(2)n � E`(2)n j � �nxn	 = ��pdet �2{4 ; (47)where again { is the optimal 
onstant in the Gagliardo-Nirenberg inequality.6.1 Proof of Theorem 6(a)The proof is largely analogous to that of Theorem 3 repla
ing Proposition 11 by (47). Starting withthe upper bound, for any �xed � > 0, we use the de
ompositionPnXz2Z2 `n(z)�(z) � bno � PnXz2Z2 `n(z)�(z) � bn; `(1)n � pn(logn)5bn ; `(2)n � An logno+Pn`(1)n � pn(logn)5bn o+ P�`(2)n � An logn	;where A := (�pdet �)�1+ 4�. The estimate for the last probability follows from (47). Indeed, by (6),for suÆ
iently large n,P�`(2)n � An logn	 � P�`(2)n � E`(2)n � �A� (�pdet �)�1 � ��n logn	 � n��pdet�{�4 ;hen
e, as bn � n 12 log n, lim supn!1 n lognb2n logP�`(2)n � An logn	 = �1: (48)



RANDOM WALK IN RANDOM SCENERY 23Moreover, applying Lemma 18, we getlim supn!1 n lognb2n logP�`(1)n > b�1n pn (logn)5	� lim supn!1 n(logn)2b2n � 
n 32 (logn)4b3n = �1: (49)We now look at �xed lo
al times f`n(z) : z 2Z2g satisfying the 
onditions max `n(z) � b�1n pn(logn)5and `(2)n � An logn. Note that, together with the trivial inequality `(2)n � n, this implieslimn"1 bn`n(z)�2 `(2)n = 0:Hen
e, for arbitrary Æ > 0, if n is suÆ
iently large, an appli
ation of Chebyshev's inequality and theestimate (40) for the Lapla
e transform f of �(z), gives, for n larger than some absolute 
onstant,Pn Xz2Z2 `n(z)�(z) � bno � Yz2Zdf� bn`n(z)�2 `(2)n � exp�� b2n�2 `(2)n 	 � exp�� (1� Æ) b2n2�2 An logn	:Averaging over the lo
al times again, we obtainlim supn"1 n lognb2n logPnXz2Z2 `n(z)�(z) � bn; `(1)n � pn(logn)5bn ; `(2)n � An logno � �(1�Æ)2�2 A ;so that the 
laimed upper bound follows, as �; Æ > 0 were arbitrary.Turning to the lower bound, we �x � > 0 again, and use thatPnXz2Z2 `n(z)�(z) � bno � EnP� Xz2Z2 `n(z) �(z) � bn	� 1�`(1)n � pn(logn)5bn ; `(2)n � An logn	o; (50)where A := (�pdet �)�1 + 4�. To obtain a lower bound for the inner probability we argue as inTheorem 3, relying on the estimates of [Na02, Theorem 2℄. This givesPn Xz2Zd `n(z)�(z) � bno � �1� �( bnVn )� exp�� 
1 
��6 b2n n� 32 (logn)3	 �1� 
2 
��4n� 12 (logn)4�:We now show that limn"1 Ehn logn`(2)n i = �pdet� : (51)For this purpose de�ne the random variables Yn := 1n `(2)n � (�pdet �)�1 logn and note thatn log n`(2)n = �pdet �� �pdet � Yn1n `(2)n :It suÆ
es to show that the expe
tation of the fra
tion on the right 
onverges to zero. As jYnj � " log nimplies that 1n`(2)n � ((�pdet�)�1 � ") logn we obtain, for any small " > 0, thatEh jYnj1n `(2)n 1fjYnj � " logngi � "(�pdet �)�1 � " : (52)Also, as 1n`(2)n � 1 and using (47) with � = " and xn = log n, for any 0 < " < Æ,Eh jYnj1n `(2)n 1f" logn < jYnj � Æ log ngi � Æ (logn)PfjYnj > " log ng �! 0; (53)



24 RANDOM WALK IN RANDOM SCENERYand, using (47) with � = Æ and xn = logn, if Æ > 0 is suÆ
iently large,Eh jYnj1n `(2)n 1fjYnj > Æ log ngi � nPfjYnj > Æ logng �! 0 : (54)We obtain that lim EjYn j= 1n`(2)n = 0, and hen
e (51), by 
ombining (52), (53), and (54).Repeating the arguments of the d � 3 
ase, given in Se
tion 5.2, givesPnXz2Zd `n(z)�(z) � bno� �1� 
2 
��4n� 12 (logn)4� exp�� 
1 
��6 b2n n� 32 (logn)3	 expn� (1 + ")2�b2n2�2n logn o�P�`(1)n � pn(logn)5bn 	�P�`(2)n � An logn	:The result follows, by observing that the �rst two fa
tors on the right 
onverge to one, re
alling (49),(48) and that � > 0 was arbitrary. �6.2 Proof of Theorem 6(b)Again, we start with the upper bound. Sin
e E`(2)n � (�pdet �)�1n logn, we 
an 
on
lude from (47)that, for logn� xn � n, limn!1 1xn logPf`(2)n � �nxng = � �2{4 pdet � : (55)For arbitrary N � 1 and 0 < Æ < 1,PfXn � bng � N�1Xi=0 P�Xn � bn; `(2)n 2 (iÆan; (i+ 1)Æan℄	+Pf`(2)n > NÆang; (56)where an := bnpn. Note that an � n logn. Hen
e, in view of (55),Pf`(2)n > NÆang � expn�NÆanpdet �3{4n o (57)for all suÆ
iently large n. Fix i � 1 and � 2 (0; ��2). Then,P�Xn � bn; `(2)n 2 (iÆan; (i+ 1)Æan℄	� PnXn � bn; `(2)n 2 (iÆan; (i+ 1)Æan℄; `(1)n � �iÆpno+ P�`(1)n > �iÆpn	 :Using Lemma 18, we get P�`(1)n > �iÆpn	 � expn�
�iÆpnlog n o: (58)On the event �`(1)n � �iÆpn; `(2)n 2 (iÆan; (i+ 1)Æan℄	, we obtain,bn`n(z)�2`(2)n � bn�iÆpn�2iÆan = ��2 < �:Therefore, we 
an use Chebyshev's inequality as before, whi
h givesPnXz2Z2 `n(z)�(z) � bno � expn�(1� �=2)b2n2�2`(2)n o � expn� (1� �)b2n2�2(i+ 1)Æano;



RANDOM WALK IN RANDOM SCENERY 25and thus, applying (55) again and re
alling the de�nition of an, for suÆ
iently large n,PnXn � bn; `(1)n � �iÆpn; `(2)n 2 (iÆan; (i+ 1)Æan℄o� expn� (1� �)b2n2�2(i+ 1)ÆanoPf`(2)n > iÆang � expn� (1� �)bn2�2(i+ 1)Æpn � (1� �)pdet �iÆbn2{4pn o: (59)It remains to 
onsider the summand 
orresponding to i = 0 in (56), whi
h for any � > 0 is bounded byPnXn � bn; `(2)n � Æan; `(1)n � �pno+ Pn`(1)n > �pno : (60)Applying Chebyshev's inequality on the event f`(2)n � Æan; `(1)n � �png we get, for any a > 0 and� < �=a, Pn Xz2Z2 `n(z)�(z) � bno � expn� a bnpn + C Xz2Z2 a2n `2n(z)o;for a 
onstant C > 0 depending only on the distribution of the s
enery and the random walk. Usingthis estimate for a = 1=(4CÆ) and � < 4CÆ� we getP�Xn � bn; `(2)n � Æan; `(1)n � �pn	 � expn � bnpn 18ÆCo : (61)Combining (56) { (61) gives usPfXn � bng � N�1Xi=1 expn� (1� �)bn2�2(i+ 1)Æpn � (1� �)iÆbnpdet�2{4pn o+ expn� bnpn 18ÆCo +N expn�
�Æpnlog n o+ expn�NÆbnpdet �2{4pn o: (62)It is easily seen, thatlimn!1 pnbn logN�1Xi=1 expn� (1� �)bn2�2(i+ 1)Æpn � (1� �)iÆbnpdet �2{4pn o= �(1� �) min1�i�N�1� 12�2(i+ 1)Æ + iÆpdet �2{4 �:Furthermore, if we 
hoose Æ > 0 small and N large, we getmin1�i�N�1� 12�2(i+ 1)Æ + iÆpdet�2{4 � � (1� �) minx>0 � 12�2x + xpdet�2{4 � = (1� �)(det �)1=4�{2 :Therefore, for all n large enough,N�1Xi=1 expn� (1� �)bn4�2(i+ 1)Æn1=2 � (1� �)iÆbnpdet �{4pn o � expn�(1� �)3 bn (det�)1=4�{2pn o: (63)Making �rst Æ smaller, and then N larger, if ne
essary, we see that all other terms in (62) are ofsmaller order than (63). Taking into a

ount that � > 0 was arbitrary, we havelim supn!1 pnbn logPfXn � bng � �(det �)1=4�{2 :To obtain a lower bound, note that for all 0 < � < � and � > 0,PfXn � bng � P�Xn � bn; `(2)n 2 [�an; �an℄; `(1)n � �pn	 ; (64)



26 RANDOM WALK IN RANDOM SCENERYwhere we still use an = bnpn. Re
all (42) and the de�nition of Ln and Vn. Note that on the setf`(2)n 2 [�an; �an℄; `(1)n � �png and for suÆ
iently large n, we have 32Vn � 32�(�bn)1=2n1=4 � bn ��an=`(1)n � (�=��2)V 2n =`(1)n � Vn=(196Ln) if � > 0 is suÆ
iently small. Hen
e,Pn Xz2Zd `n(z)�(z) � bno � �1� �( bnVn )� exp�� 
1b3nLnV �3n 	�1� 
2bnLnV �1n �:We observe that Ln � 
��2 pnVn and hen
eb3nLnV �3n � 
��2 b3n pnV 4n � 
��6�2 bnpn and bnLnV �1n � 
��2 bn pnV 2n � 
���4 :Therefore, for all large n,PfXn � bng � expn�(1 + �) bn2��2pn � 
1
�bn�2�6pno�1� 
2 
���4��hP�`(2)n 2 [�an; �an℄)	� P�`(1)n > �pn	i: (65)From (55) we 
on
lude that for all � < �,logP�`(2)n 2 [�an; �an℄	 � ��bnpdet�2{4n1=2 : (66)Applying (66) and (58) to the right hand side of (65), we get for n1=2 log n� bn � n= logn,lim infn!1 pnbn logPfXn � bng � �1 + �2��2 � 
1
��2�6 � �pdet �2{4 :Sin
e �; � > 0 
an be 
hosen arbitrarily small, and � is arbitrary,lim infn!1 pnbn logPfXn � bng � �min�>0� 12��2 + �pdet �2{4 � = �(det �)1=4�{2 :This 
ompletes the proof of Theorem 6(b). �6.3 Proof of Theorem 6(
)We now assume that bn := apn log n. In this 
ase we use the following de
omposition,PfXn � bng � P�Xn � bn; `(1)n � 
n; `(2)n � E`(2)n � Æan	+ NXi=1 P�Xn � bn; `(1)n � 
n; `(2)n � E`(2 )n 2 (iÆan; (i+ 1)Æan℄	+P�`(1)n > 
n	+P�`(2)n � E`(2)n > NÆan	;here an := n logn, 
n := �n logn=bn. Estimating every term as in the proof of the upper bound in (b)and using the relation E`(2)n � (�pdet�)�1n logn, one 
an getlim supn!1 1log nPfXn � bng � �minx�0� a22�2((�pdet �)�1 + x) � xpdet�2{4 � = I(a):In order to get a lower bound we 
onsider the 
ases a � �=(�{2(det �)1=4) and a > �=(�{2(det�)1=4)separately. In the �rst 
ase we usePfXn � bng � PnXn � bn; `(1)n � 
n; j`(2)n � E`(2)n j � Æano;



RANDOM WALK IN RANDOM SCENERY 27and in the se
ond 
asePfXn � bng � PnXn � bn; `(1)n � 
n; `(2)n � E`(2)n 2 (�an; �an℄ofor some 0 < � < �. The further proof is similar to that of the lower bound in Theorem 6(b) anddetails are left to the reader. �7. Large deviations in dimension d = 2: Proof of Proposition 9We �rst derive an upper bound for PfXn � bng. For arbitrary N � 1 and 0 < Æ < 1,PfXn � bng � N�1Xi=0 PfXn � bn; `(1)n 2 (iÆan; (i+ 1)Æan℄g+Pf`(1)n � ÆNang; (67)where an := (bn log n)1=2. By assumption (4), there exists CÆ su
h thatEeh�(0) � expfCÆh2g for h � (1� Æ)D:From this bound and Chebyshev's inequality we getPnXz2Zd `n(z)�(z) � bno � exp��hbn + CÆh2`(2)n 	 for h � (1� Æ)D=`(1)n : (68)Letting here h = (1� Æ)D=`(1)n , we obtainPnXz2Zd `n(z)�(z) � bno � expn� (1�Æ)Dbn`(1)n �1� CÆ(1�Æ)D`(1)n bn `(2)n �o:Therefore, for any i � 1,PfXn � bn; `(1)n 2 (iÆan; (i+ 1)Æan℄g� exp�� (1�Æ)2Dbn(i+1)Æan 	Pf`(1)n > iÆang+ P�`(2)n > iÆ2(1�Æ)CÆD bnan	: (69)Using [GHK06, Lemma 1.3℄ and re
alling the de�nition of an, we getlogPf`n(0) > xang � �K2x (bn log bn)1=2logn � (1=2) log bn � �2K2x2 � �� bnlogn�1=2: (70)Hen
e, arguing as in Lemma 18, for all x � Æ and n large enough n,Pf`(1)n > xang � expn�(1� Æ)22K2x2 � �� bnlogn�1=2o: (71)Combining (69) and (71), and noting that bn=an = (bn= logn)1=2, we obtainPfXn � bn; `(1)n 2 (iÆan; (i+ 1)Æan℄g� expn�� (1�Æ)2D(i+1)Æ + (1� Æ)2 2K2iÆ2�� �� bnlogn�1=2o+P�`(2)n > iÆ2(1�Æ)CÆD bnan	: (72)Now we 
onsider the probability 
orresponding to i = 0. As `(1)n � Æan, we 
an use h = (Æ�1�1)Da�1nin (68). This gives us the boundPnXz2Zd `n(z)�(z) � bno � expn� (1�Æ)DbnÆan �1� CÆ(1�Æ)DÆanbn `(2)n �o:Averaging over the random walk, we havePfXn � bn; `(1)n � Æang � exp�� (1�Æ)2DbnÆan 	+ P�`(2)n > Æ2(1�Æ)CÆD bnan	: (73)



28 RANDOM WALK IN RANDOM SCENERYApplying (71) we obtain Pf`(1)n � ÆNang � expn�
ÆN� bnlogn�1=2o: (74)Substituting (72) { (74) into (67) givesPfXn � bng � N�1Xi=0 expn�(1� Æ)2�(i+ 1)Æ + 2K2iÆ2� � �� bnlogn�1=2o+N P�`(2)n > Æ2(1�Æ)CÆD bnan	+ exp��
ÆN� bnlogn�1=2	: (75)It is easily seen thatlimn!1� log nbn �1=2 logN�1Xi=0 expn�(1� Æ)2� D(i+ 1)Æ + 2K2iÆ2� � �� bnlog n�1=2o= �(1� Æ)2 min0�i<N� D(i+ 1)Æ + 2K2iÆ2� � �:Further, for small Æ and large N we have the inequalitymin0�i<N� D(i+ 1)Æ + 2K2iÆ2� � � � (1� Æ)minx>0�Dx + 2K2x2 � �� = (1� Æ)�8K2D2� � �1=2:Consequently, for all n large enough,N�1Xi=0 expn�(1� Æ)2�(i+ 1)Æ + 2K2iÆ2� � �� bnlog n�1=2o � expn�(1� Æ)4�8K2D2� � �1=2� bnlog n�1=2o: (76)Making N larger, we see that the last term in (75) is of smaller order than (76). By (47) we obtain,for some 
onstant 
 > 0, logP�`(2)n > tbnan	 � �
t�anbnn �:By our assumption, bn log n� n. Therefore, n�1anbn = n�1b3=2n log1=2 n� (bn= logn)1=2. This meansthat the probability term in (75) is negligible 
ompared to (76). As a result we havelim supn!1 � lognbn �1=2 logPfXn � bng � �(1� Æ)4�8K2D2� � �1=2: (77)To derive a lower bound we note thatPnXz2Zd `n(z)�(z) � bno � P�`n(0)�(0) � (1 + Æ)bn	PnXz 6=0 `n(z)�(z) � �Æbno:Applying Chebyshev's inequality with se
ond moments gives usPnXz2Zd `n(z)�(z) � bno � Pn`n(0)�(0) � (1 + Æ)bno�1� �2`2nÆ2b2n �:Consequently, PfXn � bng � (1� Æ)Pf`n(0)�(0) � (1 + Æ)bng � Pf`(2)n > Æ2 b2n=�2g: (78)From (4) and (70) we get, for every x > 0,Pf`n(0)�(0)� (1 + Æ)bng � Pf`n(0) > xang � expn�(1 + Æ)2�Dx + 2K2x2� ��� bnlogn�1=2o:



RANDOM WALK IN RANDOM SCENERY 29Minimizing over x, we see thatPf`n(0)�(0)� (1 + Æ)bng � expn�(1 + Æ)2�8K2D2� � �1=2� bnlog n�1=2o: (79)As in the proof of the upper bound one 
an show that the last term in (78) is of smaller order thanthe right hand side in (79). Therefore,lim infn!1 � log nbn �1=2 logPfXn � bng � �(1 + Æ)2�8K2D2� � �1=2: (80)Combining (77) and (80), and taking into a

ount that Æ is arbitrary, we get (5). �A
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