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Abstract

This paper offers a new technique for spatially adaptive estimation. The local like-
lihood is exploited for nonparametric modelling of observations and estimated signals.
The approach is based on the assumption of a local homogeneity of the signal: for
every point there exists a neighborhood in which the signal can be well approximated
by a constant. The fitted local likelihood statistics is used for selection of an adap-
tive size of this neighborhood. The algorithm is developed for quite a general class
of observations subject to the exponential distribution. The estimated signal can be
uni- and multivariable. We demonstrate a good performance of the new algorithm for
Poissonian image denoising and compare of the new method versus the intersection
of confidence interval (ICI) technique that also exploits a selection of an adaptive
neighborhood for estimation.

1 Introduction

The nonparametric local regression originated in mathematical statistics offers an original
approach to signal processing problems (e.g. [1], [2]). It basically results in linear filtering
with the linear filters designed using some moving window local approximations. The
first local pointwise (varying window size) adaptive nonparametric regression statistical
procedure was suggested by Lepski [3], [4], [5] and independently by Goldenshluger and
Nemirovsky [6]. This approach has received further development as the intersection of
confidence interval (ICI ) rule in application to various signal and image processing prob-
lems [7], [8], [9], [10]. The algorithm searches for a largest local vicinity of the point of
estimation where the estimate fits well to the data. The estimates are calculated for a
set of window sizes (scales) and compared. The adaptive window size is defined as the
largest of those in the grid which estimate does not differ significantly from the estimators
corresponding to the smaller window size.

In many applications the noise that corrupts the signal is non-Gaussian and signal depen-
dent. There are a lot of heuristics adaptive-neighborhood approaches to filtering signal
and images corrupted by signal-dependent noise. Instead of using fixed-size, fixed-shape
neighborhoods, statistics of the noise and the signal are computed within variable-size,
variable-shape neighborhoods that are selected for every point of estimation.

The Lepski approach allows a regular and theoretically well justified methodology for
design of estimates with adaptive neighborhood. Unfortunately, it is originated from the
Gaussian observation model and its modification to the signal dependent noise meets some
principal difficulties. Another problem with applications of the Lepski method in practical
situations is the choice of tuning parameters, especially of the threshold used for compar-
ing two estimates from different scales. The theory only says that this threshold has to be
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large enough (logarithmic in the sample size) and the theory only applies for such thresh-
olds. At the same time, the numerical experiments indicate that a logarithmic threshold
recommended by the theory is much too high and leads to a significant oversmoothing of
the estimated function. Reasonable numerical results can be obtained by using smaller
values of the threshold which shows the gap between the existing statistical theory and
the practical applications.

The contribution of this paper is twofold: first, we propose a novel approach to design of
the pointwise adaptive estimates especially for non-Gaussian distributions. Secondly, we
address in details the question of selecting the parameters of the procedure and prove the
theoretical results exactly for the algorithm we apply in numerical finite sample study.

The procedure is given for observations subject to the class of exponential distributions
which includes the Poissonian model as an important special case. The fitted local likeli-
hood is developed as statistics for selection of an adaptive size of this neighborhood. The
estimated signal can be uni- and multivariable. The varying thresholds of the test-statistics
is an important ingredient of approach. Special methods are proposed for selection of these
thresholds. The fitted local likelihood approach is founded on theory justifying both the
adaptive estimation procedure and the varying threshold selection. The main theoretical
result formulated in Theorem 9 shows the accuracy of the adaptive estimate.

The proposed adaptive technique is applied for high-resolution imaging in a special form
of anisotropic directional estimates using the size adaptive sectorial windows. The per-
formance of the algorithm is illustrated for image denoising with data having Poissonian,
Gaussian and Bernoulli observations. Simulation experiments demonstrate a quite good
performance of the new algorithm.

Further, the paper is organized as follows. The nonparametric observation modeling and
local likelihood estimates are discussed in Section 2. The local scale adaptive algorithm
and the threshold selection are presented in Section 3. The theory of the approach is a
subject of Section 4. The anisotropic implementation of the approach for high-resolution
imaging is presented in Section 5. The simulation experiments are discussed in Section 6.

2 Observations and nonparametric modeling

This section describes our model and present some basic fact about nonparametric local
maximum likelihood estimation.

2.1 Stochastic observations

Suppose we have independent random observations {Zi}n
i=1 of the form Zi = (Xi , Yi) .

Here Xi denotes a vector of “features” or explanatory variables which determines the dis-
tribution of the “ observation” Yi . The d -dimensional vector Xi ∈ Rd can be viewed as a
location in time or space and Yi as the “observation at Xi ” . Our model assumes that the
values Xi are given and a distribution of each Yi is determined by a parameter θi which
may depend on the location Xi , θi = f(Xi) . In many cases the natural parametrization is

2



chosen which provides the relation θi = E{Yi} . The estimation problem is to reconstruct
f(x) from the observations {Zi}i=1,...,n for x = Xi .

Let us illustrate this set-up by few special cases.

1. Gaussian regression. Let Zi = (Xi, Yi) with Xi ∈ Rd and Yi ∈ R obeying the
regression equation Yi = f(Xi)+εi with a regression function f and i.i.d. Gaussian
errors εi ∼ N(0, σ2) . This observation model is standard one for many problems in
signal and image processing.

2. Poisson model. Suppose that the random Yi is a nonnegative integer subject to the
Poisson distribution with the parameter f(Xi) , i.e., Yi ∼ P(f(Xi)) . The probability
that Y takes the value k provided that Xi = x is defined by the formula P (Yi =
k|Xi = x) = fk(x) exp(−f(x))/k! . This model occurs in digital camera imaging,
queueing theory, positron emission tomography, etc.

3. Bernoulli (binary response) model. Let again Zi = (Xi, Yi) with Xi ∈ Rd and
Yi ∈ R be a Bernoulli random variable with parameter f(x) , that is a probability
that depends on Xi = x that the random Yi takes a value equal to one. It means
that P (Yi = 1|Xi = x) = f(x) , where P (Yi = 1|Xi = x) is a conditional probability.
Such models arise in many econometric applications, and they are widely used in
classification and digital imaging.

Now we describe the general setup. Let P = (Pθ, θ ∈ Θ ⊆ R) be a parametric family of
distributions dominated by a measure P . By p(·, θ) we denote the corresponding density.
We consider the regression-like model in which every “response” Yi is, conditionally on
Xi = x , distributed with the density p(·, f(x)) for some unknown function f(x) on X

with values in Θ . The considered model can be written as Yi ∼ Pf(Xi).This means that
the distribution of every “observation” Yi is described by the density p(Yi, f(Xi)) . In the
considered situations with the independent observations Yi , the joint distribution of the
samples Y1, . . . , Yn is given by the log-likelihood L =

∑n
i=1 log p(Yi, f(Xi)) . In the litera-

ture similar regression-like models are also called varying coefficient or nonparametrically
driven models.

Suppose for a moment that given y , the maximum of the density function p(y, θ) is
achieved at θ = y . This is the case for the above examples. Then the unconstrained maxi-
mization of the log-likelihood L w.r.t. the collection of parameter values θ = (θ1, . . . , θn)>

obviously leads to the trivial solution θ̃ = argmax{θi}
∑n

i=1 log p(Yi, θi) = Y , where Y

means the vector of observations. Thus, there is no smoothing and noise removal in this
trivial estimate. It can be introduced assuming the correlation of the observations {Zi}n

i=1

or by use some model of the underlying function f(x) . The last idea is the most popular
and exploited in a number of quite different forms.

2.2 Local likelihood modelling

In the simplest parametric setup, when the parameter θ does not depend on x , i.e., the
distribution of every “ observation” Yi is the same, the invariant θ can be estimated well
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by the parametric maximum likelihood method θ̃ = argmaxθ

∑n
i=1 log p(Yi, θ).

In the nonparametric framework with varying f(x) , one usually applies the local likelihood
approach which is based on the assumption that the parameter is nearly constant within
some neighborhood of every point x in the “feature” space. This leads to considering a
local model concentrated in some neighborhood of the point x .

We use localization by weights as a general method to describe a local model. Let, for
a fixed x , nonnegative weights wi,h(x) be assigned to the observations Yi . The weights
wi,h(x) determine a local model corresponding to the point x in the sense that, when
estimating the local parameter f(x) , the observations Yi are used with these weights.
This leads to the local maximum likelihood estimate

θ̃h(x) = argmax
θ

∑

i

wi,h(x) log p(Yi, θ), (1)

where the weight wi,h(x) usually depends on the distance between the point of estimation
x and the location Xi corresponding to the “observation” Yi . The index h means a scale
(window size) parameter which can be a vector, see Section 5 for an example. Usually the
weights wi,h(x) are selected in the form wi,h(x) = w

(
h−1(x−Xi)

)
, where w(·) is a fixed

window function in Rd and h is the scale parameter. This window is often taken either
in the product form w(x) =

∏n
i=1 wi(xi) or in radial form w(x) = w1(‖x‖) . We do not

assume any special structure for the window function except that w(0) = maxx w(x) . It
means that the maximum weight is given to the observation with Xi = x .

2.3 Properties of the local MLE for a varying coefficient exponential

family model

The examples of random observations considered in Section 2.1 are particular cases of the
exponential family of distributions. This means that all distribution densities in (1) are of
the form p(y, θ) = p(y) exp(yC(θ)− B(θ)), θ ∈ Θ, y ∈ Y . Here C(θ) and B(θ) are some
given non-negative functions of θ and p(y) is some non-negative function of y . A natural
parametrization for this family means the equality EθY =

∫
yp(y, θ)P (dy) = θ for all

θ ∈ Θ . This condition is useful because the weighted average of observations is a natural
unbiased estimate of θ . This section presents some results for on the properties of such
local ML estimates. If P = (Pθ) is an exponential family with the natural parametrization,
the local log-likelihood and the local maximum likelihood estimates admit a simple closed
form representation. For a given set of weights {w1,h, . . . , wn,h} with wi,h ∈ [0, 1] , denote
Nh =

∑n
i=1 wi,h, Sh =

∑n
i=1 wi,hYi . Note that the both sums depend on the location x

via the weights {wi,h} .

Lemma 1 (Polzehl and Spokoiny [11]) It holds

Lh(θ) =
n∑

i=1

wi,h log p(Yi, θ) = ShC(θ)−NhB(θ) + Rh
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where Rh =
∑n

i=1 wi,h log p(Yi) . Moreover,

θ̃h = Sh/Nh =
n∑

i=1

wi,hYi

/ n∑

i=1

wi,h (2)

and
Lh(θ̃h, θ) := Lh(θ̃h)− Lh(θ) = NhK(θ̃h, θ)

where K(θ, θ′) is the Kullback-Leibler divergence between two distributions with parameter
values θ and θ′ : K(θ, θ′) = Eθ log(p(Y, θ)/p(Y, θ′)) =

∫
p(y, θ) log(p(y, θ)/p(y, θ′))dy.

Here Lh(θ̃h, θ) is a “fitted log-likelihood” defined as a difference between the maximized
log-likelihood at θ = θ̃h and the log-likelihood with an arbitrary θ , Lh(θ̃h, θ) ≥ 0 . Table 1
provides K(θ, θ′) , C(θ) , B(θ) for special cases of the exponential distribution considered
above.

Table 1: The Kulback-Leibler divergence for the particular cases of the exponential family.

Model K(θ, θ′) C(θ) B(θ)
Gaussian (θ − θ′)2/(2σ2) θ/σ2 θ2/(2σ2)

Bernoulli θ log
θ

θ′
+ (1− θ) log

1− θ

1− θ′
log

θ

1− θ
log

1
1− θ

Poisson θ log
θ

θ′
− (θ − θ′) log θ θ

Now we present some rather tight exponential inequalities for the fitted log-likelihood
Lh(θ̃, θ) in the parametric situation θi ≡ θ∗ for i = 1, . . . , n which apply to the arbitrary
sample size and arbitrary weighting scheme. These results are essential for explaining our
adaptive estimation procedure.

Theorem 2 (Polzehl and Spokoiny [11]) Let {wi,h} be a localizing scheme such that
maxi wi,h ≤ 1 . If f(Xi) ≡ θ∗ for all Xi with wi,h > 0 then for any z > 0

P θ∗(Lh(θ̃h, θ∗) > z) = P θ∗
(
NhK(θ̃h, θ∗) > z

)
≤ 2e−z.

In the regular situation, the Kullback-Leibler divergence K fulfills K(θ, θ∗) ≈ Iθ∗ |θ−θ∗|2
for any point θ in a neighborhood of θ∗ , where Iθ∗ is the Fisher information at θ∗ , see
e.g. [12] or [13]. Therefore, the result of Theorem 2 guarantees that |θ̃h − θ∗| ≤ CN

−1/2
h

with a high probability. Theorem 2 can be used for constructing the confidence intervals
for the parameter θ∗ .

Theorem 3 If zα satisfies 2e−zα ≤ α , then Eh(zα) = {θ : NhK
(
θ̃h, θ

) ≤ zα} is an
α -confidence set for the parameter θ∗ .
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Theorem 3 claims that the estimation loss measured by K(θ̃h, θ) is with high probability
bounded by zα/Nh provided that zα is sufficiently large. Similarly, one can establish a
risk bound for a power loss function.

Theorem 4 Let Yi be i.i.d. from Pθ∗ . Then for any r > 0

Eθ∗
∣∣Lh(θ̃h, θ∗)

∣∣r ≡ Eθ∗
∣∣NhK(θ̃h, θ∗)

∣∣r ≤ rr ,

rr = 2r

∫

z≥0
zr−1e−zdz = 2rΓ (r).

Proof.By Theorem 2

Eθ∗
∣∣Lh(θ̃h, θ∗)

∣∣r ≤ −
∫

z≥0
zrdP θ∗(Lh(θ̃h, θ∗) > z)

≤ r

∫

z≥0
zr−1P θ∗(Lh(θ̃h, θ∗) > z)dz ≤ 2r

∫

z≥0
zr−1e−zdz

and the assertion follows.

3 Local scale selection algorithm

Let H = {h1, . . . , hK} be a set of different scales ordered by the smoothing parameter
h , and let θ̃h = Sh/Nh for h ∈ H be the corresponding set of estimates. For conciseness
we use the notation θ̃k = θ̃hk

, Sk = Shk
and Nk = Nhk

. We also denote by Lk(θ) the
log-likelihood for the scale hk , k = 1, . . . , K . We assume that the scale set H is ordered
in the sense that the local sample size Nk grows with k .

The presented procedure aims at selecting one estimate θ̃k out of the given set in a data
driven way to provide the best possible quality of estimation. This explains the notion of
local scale selection. The fitted local likelihood (FLL) scale selection rule can be presented
in the form [14]:

k̂ = max{k : Tlk ≤ zl, l < k}, (3)

Tlk = Ll(θ̃l, θ̃k) = NlK(θ̃l, θ̃k).

The procedure (3) can be interpreted as follows. The first estimate θ̃1 is always accepted
and (3) starts from k = 2 . For the current estimate θ̃2 is checked whether it belongs
to the confidence set Eh1(z1) of the previous step estimate θ̃1 , see Theorem 3. If not,
the estimate θ̃2 is rejected and the procedure terminates selecting θ̃1 . If the inequality
T12 = L1(θ̃1, θ̃2) ≤ z1 is fulfilled then θ̃2 is accepted and the procedure considers the
next step estimate θ̃3 . At every step k , the current estimate θ̃k is compared with all
the previous estimates θ̃1, . . . , θ̃k−1 by checking the inequalities (3). We proceed this way
until the current estimates is rejected or the last estimate in the family for the largest
scale is accepted. The adaptive estimate is the latest accepted one.

The proposed method can be viewed as a multiple testing procedure. The expressions
Tlk = Ll(θ̃l, θ̃k) is understood as test statistics for testing the hypothesis Hlk : E θ̃l =
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E θ̃k , and zl is the corresponding critical value. At the step k the procedure tests the
composite hypothesis E θ̃1 = . . . = E θ̃k . The choice of the z ’s is of special importance
for the procedure and it is discussed in the next section.

The random index κ means the largest accepted k . The adaptive estimate θ̂ is θ̃κ ,
θ̂ = θ̃κ . We also define the random moment κk meaning the largest index accepted after
first k steps and the corresponding adaptive estimate: κk = min{κ, k}, θ̂k = θ̃κk

.

The ICI rule mentioned above can be presented in the sequential form (3) provided that the
inequality Tlk ≤ zl is replaced by |θ̃l− θ̃k| ≤ (σ

θ̃l
+σ

θ̃k
)z where σ

θ̃l
and σ

θ̃k
are standard

deviations of the estimates θ̃l and θ̃k and z is the parameter similar to the varying zl

in (3). Thus, to compare the estimates of different scales one has to additionally estimate
their variances which in general, in particular for Poisson models, depend on unknown
f(x) and requires some recursive calculations, e.g. [10], [15]. Note, that the proposed
procedure (3) does not need the estimate variance and the recursive calculations.

3.1 Choice of the parameter zk

Following [14], the critical values z1, . . . , zK−1 are selected by the reasoning similar to the
standard approach of hypothesis testing theory: to provide the prescribed performance
of the procedure under the simplest (null) hypothesis. In the considered set-up, the null
means f(Xi) ≡ θ∗ for some fixed θ∗ and all i . In this case it is natural to expect
that the estimate θ̂k coming out of the first k steps of the procedure is close to the
nonadaptive counterpart θ̃k . This particularly means that the probability of rejecting
one of the estimates θ̃2, . . . , θ̃k under the null hypothesis should be very small.

Now we give a precise definition. Similarly to Theorem 4 the risk of estimation for an
estimate θ̂ of θ∗ is measured by E

∣∣K(θ̂, θ∗)
∣∣r for some r > 0 . Under the null hypothesis

f(Xi) ≡ θ∗ , every estimate θ̃k fulfills by Theorem 4 for every r > 0

Eθ∗
∣∣Lk(θ̃k, θ

∗)
∣∣r = Eθ∗

∣∣NkK(θ̃k, θ
∗)

∣∣r ≤ rr

for the fixed absolute constant rr . We require that the parameters z1, . . . , zK−1 of the
procedure are selected in such a way that

Eθ∗
∣∣Lk(θ̃k, θ̂k)

∣∣r = Eθ∗
∣∣NkK(θ̃k, θ̂k)

∣∣r ≤ αrr , k = 2, . . . , K. (4)

Here α is the preselected constant having the meaning of the confidence level of procedure.
This gives us K − 1 conditions to fix K − 1 critical values.

The condition (4) will be referred to as the propagation property. The meaning of “propa-
gation” is that in the homogeneous situation the procedure passes with a high probability
at every step from the current scale k − 1 with the corresponding parameter hk−1 to a
larger scale k with the parameter hk . This yields that the adaptive estimate θ̂k coin-
cides with the nonadaptive counterpart θ̃k in the typical situation. These two estimates
can be different only in the “false alarm” when one of the test statistics Tlm exceeds the
critical value zl for some l < m ≤ k . The loss associated with such “false alarm” is
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naturally measured by
∣∣NkK(θ̃k, θ̂k)

∣∣r and the condition (4) gives the upper bound for
the corresponding risk.

Our definition still involves two parameters α and r . It is important to mention that
their choice is subjective and there is no way for an automatic local rule. One can apply
the cross-validation type technique for a global data-driven tuning of these parameters,
especially the parameter α . However, it is important to mention that a proper choice of the
power r for the loss function as well as the “confidence level” α depends on the particular
application and on the additional subjective requirements to the procedure. Taking a large
r and small α would result in an increase of the critical values and therefore, improves the
performance of the method in the parametric situation at cost of some loss of sensitivity to
deviations from the parametric situation. Theorem 5 presents some upper bounds for the
critical values zk as functions of α and r in the form a0 + a1 log α−1 + a2r(K − k) with
some coefficients a0 , a1 and a2 . We see that these bounds linearly depend on r and on
log α−1 . It is found in our experiments that a relatively small value r = 1/2 and α = 1
are universally good for most image denoising scenarios. At least the thresholds found for
these parameters give a very good initial guess for further threshold optimization. The
set of conditions (4) do not directly define the critical values zk . We present below two
methods for selecting zk to provide these conditions.

3.1.1 The sequential choice

The first one is sequential and it is based on the decomposition

Kr(θ̃k, θ̂k) =
k−1∑

l=1

Kr(θ̃k, θ̃l)1
(
κ = l

)

for every k ≤ K . The idea is to specify the risk of estimation associated with every
particular critical value starting from z1 . For this we run the procedure with only z1

bounded and all the other values zk = ∞ for k ≥ 2 . Define for l > 1 the events

A
(1)
l = {T12 ≤ z1, . . . , T1l ≤ z1}, B

(1)
l = {T12 ≤ z1, . . . , T1,l−1 ≤ z1, T1l > z1}.

The events A
(1)
l and B

(1)
l mean respectively that the estimate θ̃l is accepted and rejected

when compared with θ̃1 . If the rejection happens too often, this is an indication that z1

is too small. We therefore select z1 as the minimal value providing that

Eθ∗
∣∣NkK(θ̃k, θ̂k)

∣∣r =
k∑

l=2

Eθ∗
∣∣NkK(θ̃k, θ̃l−1)

∣∣r1(
B

(1)
l

) ≤ αrr/(K − 1) (5)

for all k = 2, . . . ,K .

Similarly, we specify z2 by considering the situation with the previously fixed z1 , some
finite z2 and all the remaining critical values equal to infinity, and so on. For the general
definition, suppose that z1, . . . , zj−1 have been already fixed for some j > 1 and define
for any zj and all k > j the events

B
(j)
k = A

(1)
k ∩ . . . ∩A

(j−1)
k ∩ {Tj,j+1 ≤ zj , . . . , Tj,k−1 ≤ zj , Tjk > zj}.
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Then similarly to the first step, κ = k − 1 on B
(j)
k but now the estimate θ̃k is rejected

when compared with θ̃j . The related condition on the risk associated with zj can be
written in the form

k∑

l=j+1

Eθ∗
∣∣NkK(θ̃l−1, θ̃k)

∣∣r1(
B

(j)
l

) ≤ αrr/(K − 1)

for all k = j + 1, . . . , K .

It is straightforward to check that such defined zk fulfill (4). It is also obvious that the
choice of the critical values zk is determined by the joint distribution of the estimates θ̃k

under the null hypothesis H0 : f(X1) = . . . = f(XK) = θ∗ .

3.1.2 Simplified parameter choice

Here we present a simplified procedure which is rather simple for implementation. It
suggests to select zk linearly decreasing with k . This simplified selection of zk is based
on the upper bound from Theorem 5 that there are constants a0 , a1 , and a2 such that
it holds for every k ≤ K

zk ≤ a0 + a1 log α−1 + a2r log(NK/Nk). (6)

This result justifies the linear rule

zk = z1 − ι(K − k) (7)

in the case when the local sample size measured by the value Nk grows exponentially
with k . Then we only need to fix two parameters, e.g. the first value z1 and the slop.
We first identify the first value z1 using the condition (5). The other values zk are found
in the form zk = z1 − ι(k − 1) to provide (4).

3.2 Details of implementation

To run the procedure, one has to first fix the set of local weighting schemes (wi,h) for
every scale parameter h1, . . . , hK . The proposed algorithm applies to any such sequence
which satisfies the growth condition (MD) from Section 4. A recommended choice is
a geometric progression with the starting value h1 and the growing factor a > 1 . This
means that hk = h1a

k−1 for k = 2, . . . ,K . The starting bandwidth h1 is usually the
smallest possible value such that the first neighborhood only contains the reference point
x . Our numerical results indicate that the procedure is quite stable w.r.t. to the growing
factor a , and values in the range [1.1, 1.5] lead to very reasonable estimation quality.
The choice of critical values involves two more parameters α and r . Their meaning and
impact has been already discussed before.
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4 Theoretical study

This section presents some properties of the adaptive estimate θ̂ . We suppose that the
parameters zk of the procedure are selected in such a way that the condition (4) is fulfilled.
First we present some bounds on zk that ensure (4). Next we study the properties of θ̂

in the parametric and local parametric situation. Finally we extend these results to the
general nonparametric situation and prove an “oracle” property of θ̂ .

4.1 Bounds for the critical values

This section presents some upper and lower bounds for the critical values zk . The results
are established under the following condition on the local sample sizes Nk .

(MD) for some constants u0, u with u0 ≤ u < 1 , the values Nk satisfy for every
2 ≤ k ≤ K to the following conditions Nk−1 ≤ uNk, u0Nk ≤ Nk−1 .

In addition, we need the following regularity condition on the parametric set Θ .

(Θ) for some constants a it holds for every sequence θ0, θ1, . . . , θm ∈ Θ that

K1/2(θ1, θ2) ≤ a
{
K1/2(θ1, θ0) + K1/2(θ2, θ0)

}
,

K1/2(θ0, θm) ≤ a
{
K1/2(θ0, θ1) + . . . + K1/2(θm−1, θm)

}
.

[11] showed (Lemma 5.2) that this property is fulfilled under some mild regularity con-
ditions on the parametric family P . Our first result claims that in this situation under
condition (MD) the parameters zk can be chosen in the form zk = zK + ι(K − k) to
fulfill the “propagation” condition (4). The proof is given in the Appendix.

Theorem 5 Assume (MD) and (Θ) . Let f(·) ≡ θ∗ . Then there are three constants
a0, a1 and a2 depending on r and u0 , u only such that the choice zk = a0 +a1 log α−1 +
a2r log(NK/Nk) ensures (4) for all k ≤ K . Particularly, Eθ∗

∣∣NKK
(
θ̃K , θ̂

)∣∣r ≤ αrr.

4.2 Risk of estimation in nonparametric situation. “Small modeling

bias” condition

This section extends the bound of Theorem 4 to the nonparametric model Yi ∼ Pf(Xi)

when the function f(·) is not any longer constant even in a vicinity of the reference point
x . We, however, suppose that the function f(·) can be well approximated by a constant
θ for all points Xi from a neighborhood of x . Let Zθ = dP /dP θ be the likelihood ratio
of the underlying measure P w.r.t. the parametric measure P θ corresponding to the con-
stant parameter f(·) ≡ θ . Then log Zθ =

∑
i log p(Yi,f(Xi))

p(Yi,θ)
. If we restrict our analysis to a

neighborhood U and denote by P U (respectively P U,θ ) the distribution of the observa-
tions Yi for Xi ∈ U , then in a similar way log ZU,θ := log dP U,θ

dP U
=

∑
Xi∈U log p(Yi,f(Xi))

p(Yi,θ)
. To
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measure the quality of the approximation of the underlying measure P U by the paramet-
ric measure P U,θ , define ∆U (θ) =

∑
Xi∈U K

(
f(Xi), θ

)
, where K

(
f(Xi), θ

)
means the

Kullback-Leibler distance between two parameter values f(Xi) and θ .

Now we define for every scale hk the neighborhood Uk which includes all the points Xi

with wi,hk
> 0 and write Fk instead of FUk

. Define ∆k(θ) =
∑

Xi:wi,hk
>0 K

(
f(Xi), θ

)
.

By Theorem 4 Eθ

∣∣NkK(θ̃k, θ)
∣∣r ≤ rr for all k . We now aim to extend this result to the

nonparametric situation under the “small modeling bias” condition ∆k(θ) ≤ ∆ for some
∆ ≥ 0 .

Theorem 6 Let for some θ ∈ Θ and some ∆ ≥ 0

∆k(θ) ≤ ∆. (8)

Then it holds for r > 0

E log
(
1 +

∣∣NkK(θ̃k, θ)
∣∣r/rr

)
≤ ∆ + 1.

This result means that in the nonparametric situation under the condition (8) with some
fixed ∆ the losses

∣∣NkK(θ̃k, θ)
∣∣r are stochastically bounded. Note that this result ap-

plies even with if ∆ is large, however the bound is proportional to e∆+1 and grows
exponentially with ∆ .

4.3 “Stability after propagation” and “oracle” results

The notion of “oracle” result and “oracle” quality becomes more and more popular in
statistical literature. Our analysis in Section 4.2 suggests the following definition of the
“oracle” or “ideal” choice k∗ of the scale parameter k : it is the largest value for which the
“small modeling bias” condition ∆k(θ) ≤ ∆ is fulfilled for all k ≤ k∗ . The corresponding
“oracle” risk E Kr

(
θ̃k∗ , θ

)
is of order 1/N r

k∗ . We aim to build the estimate θ̂ which
provides the same quality of estimation but does not rely to the “oracle”. Our main
result, see Theorem 9 below, shows that the proposed method possesses such an “oracle”
feature: the difference between the “oracle” estimate θ̃k∗ and the adaptive estimate θ̂

measured by Kr
(
θ̃k∗ , θ̂

)
is of order of the “oracle” risk N−r

k∗ .

The “propagation” result of Theorem 6 applies as long as the “small modeling bias”
condition ∆k(θ) ≤ ∆ is fulfilled. To establish the accuracy result for the final estimate θ̂ ,
we have to check that the aggregated estimate θ̂k does not vary much at the steps “after
propagation” when the divergence ∆k(θ) from the parametric model becomes large.

Theorem 7 It holds for every k ≤ K

NkK
(
θ̂k, θ̂

) ≤ zk .
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Remark 8 An interesting feature of this result is that it is fulfilled without any condition
and with probability one, that is, the control of stability “works” not only with a high
probability, it always applies. This property follows directly from the construction of the
procedure.

Proof. The result follows by the definition of θ̂ = θ̃κ and θ̂k = θ̃κk
because κk ≤ κ

and θ̃κ is accepted.

The “stability” result of Theorem 7 and condition (Θ) imply

K1/2
(
θ̃k∗ , θ̂

) ≤ aK1/2
(
θ̃k∗ , θ̂k∗

)
+ aK1/2

(
θ̂k∗ , θ̂

)

for some fixed constant a ≥ 1 . Moreover, for any r > 0

Kr/2
(
θ̃k∗ , θ̂

) ≤ 2(r−1)+ar
{
Kr/2

(
θ̃k∗ , θ̂k∗

)
+ Kr/2

(
θ̂k∗ , θ̂

)}
. (9)

Combination of the “propagation” and “stability” statements implies the main result
concerning the properties of the adaptive estimate θ̂ . We state the result for r = 1/2 .
An extension to an arbitrary r > 0 is obvious.

Theorem 9 Assume (MD) and (Θ) . Let θ and k∗ be such that maxk≤k∗ ∆k(θ) ≤ ∆

for some ∆ ≥ 0 . Then

E log
(

1 +

∣∣Nk∗K
(
θ̃k∗ , θ̂

)∣∣1/2

az
1/2
k∗

)
≤ log 2 + ∆ +

αr1/2

z
1/2
k∗

.

The presented result states a kind of “oracle” property of the proposed estimate θ̂ . In-
deed, due to this result, the normalized stochastic loss

∣∣Nk∗K
(
θ̃k∗ , θ̂

)∣∣1/2/
z
1/2
k∗ is bounded

in the sense of existence of its log-moment. The “oracle” accuracy from Theorem 6 is
stated for the loss

∣∣Nk∗K
(
θ̃k∗ , θ̂

)∣∣1/2 . The factor z
1/2
k∗ in the risk bound comes from the

stability result and it can be considered as a kind of “payment for adaptation”. Due to
Theorem 5, zk∗ is bounded from above by a0 + a1 log(α−1) + a2r log(NK/Nk∗) . There-
fore, the risk of the aggregated estimate corresponds to the best possible risk among the
family {θ̃k} for the choice k = k∗ up to a logarithmic factor in the sample size. Lep-
ski, Mammen and Spokoiny [5] established a similar result in the regression setup for the
pointwise adaptive Lepski procedure and showed that this result yields the rate of adap-
tive estimation

(
n−1 log n

)1/(2+d) under Lipschitz smoothness of the function f(·) and
the usual design regularity, see [11] for more details. It was shown by Lepski [3] that in
the problem of pointwise adaptive estimation this rate is optimal and cannot be improved
by any estimation method.

5 Application to non-Gaussian image denoising

In many cases the image intensity is a typical anisotropic function demonstrating essen-
tially different nonsymmetric behavior in different directions at each pixel. It follows that

12



a good local approximation can be achieved only in a non-symmetric neighborhood. To
deal with these features oriented/directional estimators are used in many vision and image
processing tasks, such as edge detection, texture and motion analysis, etc. To mention
a few of this sort of techniques we refer to classical steerable filters [16] and recent new
ridgelet and curvelet transforms [17].

In this paper in terms of the considered nonparametric regression approach we exploit
starshaped size/shape adaptive neighborhoods built for each estimation point. Figure 1
illustrates this concept and shows sequentially: a local best ideal estimation neighborhood
U∗ (figure a ) , a sectorial segmentation of the unit ball (figure b ), and the sectorial
approximation of U∗ using the scales h∗α = h∗(α) defining the length of the corresponding
sectors (figure b ) in the direction α from the finite set of directions A . Varying size
sectors of the length h∗α enable one to get a good approximation of any neighborhood
of the point x provided that it is a starshaped body. This leads to the problem of
simultaneous data-driven choice of the set of parameters h∗α, α ∈ A . This is, however,
a difficult task encountering some technical and principal points. To be practical we use
a procedure with independent selection of the parameters h∗α for each direction α ∈ A .
The adaptive procedure applied to the directional estimates θ̃α,h(x) defined as

θ̃α,h(x) =
∑

i∈Iα(x)

wi,h(x)Yi

/ ∑

i∈Iα(x)

wi,h(x) (10)

where wi,h(x) = w(|Xi−x|/h) for some univariate kernel w(·) and Iα(x) is the sectorial
set in direction α .

Figure 1: A neighborhood of the estimation point x : a) the best estimation set U∗ , b)
the unit ball segmentation, c) sectorial approximation of U∗ .

With a given set of bandwidths h1, . . . , hK we come back to the problem of selecting for
every direction α one of them in a data driven way. The adaptive procedure described in
Section 3 leads to the value ĥα(x) .

When these adaptive scales ĥα(x) are found for all α ∈ A , the final estimate is calculated
as the weighted mean of the observations included in the support of the neighborhoods:

θ̂(x) =
′∑

α∈A

∑

i∈Iα(x)

w
i,ĥα(x)

(x)Yi

/ ′∑

α∈A

∑

i∈Iα(x)

w
i,ĥα(x)

(x). (11)

The sets Iα(x) have as a common point (intersection of the sets) at least the origin. The
prime (′) in the formula (11) means that the estimate is calculated over the union of the
directional supports Iα(x) . Thus each observation enters in this formula only ones.
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In (11) the argument x for ĥα(x) indicates that the adaptive scales can be varying for
each x . In the estimate (11) the adaptive procedure is used only in order to generate
the adaptive neighborhood and the estimate is calculated as the weighted mean of the
observations in this neighborhood.

There is another approach to the estimation problem. Let θ̂α(x) be the directional adap-
tive estimate calculated for the corresponding direction α , that is, θ̂α(x) = θ̃

α,ĥα(x)
(x) ,

see (10). Define also σ̂2
α(x) = σ2

α,ĥα(x)
(x) where σ2

α,h(x) =
∑

i w
2
i,h

/
(
∑

i wi,h)2 is the vari-

ance of θ̃α,h from (10). Then the final estimate can be yield by fusing of the directional
ones as follows

θ̂(x) =
∑

α∈A

λα(x)θ̂α(x), λα = σ̂−2
α (x)

/∑

α∈A

σ̂−2
α (x), (12)

The FLL adaptive window sizes enable nearly constant value of θ in the starshaped
neighborhood. It means that the observations in this neighborhood have equal variances
and the variances σ̂2

α in (12) can be calculated assuming that these variances of the
observations are equal to one. The inverse variance weighting in (12) assumes that the
directional estimates are unbiased and statistically independent. The estimate (11) is
quite different from (12). In particular the origin is used here T = #(A) times while it
enters in (11) only ones. These estimates are quite competitive. In different cases one or
another gives a better result.

The described adaptive starshaped neighborhood estimates are originated in the works
[10], [18], where it is successfully exploited with the ICI adaptive scale selection for dif-
ferent image processing problems.

Formulas (11)–(12) make clear the algorithm. We introduce the directional estimates
θ̂α(x) , optimize the scalar scale parameter hα for each of the directions (sectors) and use
these adaptive directional sectors or directional estimates in order to calculate the final
fused estimates.

Two points are of the importance here. First, we are able to find good approximations of
estimation supports which can be of a complex form. Second, this approximation is com-
posed from the univariate scale optimizations on h , thus the complexity is proportional
to the number of sectors.

Multiple studies show that the finite sample performance of estimators based on bandwidth
or model selection is often rather unstable, e.g. [19]. It is true for the local pointwise model
selection considered in this paper. In spite of nice theoretical properties the FLL rule the
resulting estimates suffer from a high variability due to a pointwise model choice, especially
for a large noise level. In order to reduce the stochastic variability of the estimates the
FLL algorithm is completed by special filtering of the adaptively selected ĥα . For this
filtering we use a weighted median filters specially designed for each direction of the
sectorial starshaped neighborhood. Thus, the adaptive directional estimates are defined
as those after this median filtering. In the aggregation formulas (11)–(12) these filtered
FLL estimates are used.
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6 Experimental study

In these simulation experiments we demonstrate the performance of the developed algo-
rithm for Poissonian and Gaussian image observations. It is assumed that the parameter
θ is a deterministic unknown image intensity f(x) .

The image and the observations are defined on the finite discrete grid x ∈ X = {k1, k2 :
k1 = 1, 2, ..., n1, k2 = 1, 2, ..., n2} of the size n1 × n2 . It is assumed that the observations
for each pixel are statistically independent. The problem is to reconstruct the image f(x)
from the observations Y (x) , x ∈ X . The following standard criteria are used:
(1) Root mean squared error (RMSE) : RMSE2 = (n1n2)−1

∑
x∈X(f(x)− θ̂(x))2;

(2) Signal-to-noise ratio (SNR) in dB : SNR = 10 log10(
∑

x∈X |f(x)|2/∑
x∈X |f(x) −

θ̂(x)|2);
(3) Improvement in SNR ( ISNR ) in dB : ISNR = 20 log10(σ̂z/RMSE) , where σ̂z is
an estimate of the observation standard deviation;
(4) Peak signal-to-noise ratio (PSNR ) in dB : PSNR = 20 log10(maxx∈X |f(x)|/RMSE) .

For our experiments we use the MATLAB texture test-images (8 bit gray-scale): Boats
( 512 × 512 ), Lena ( 512 × 512 ), Cameraman ( 256 × 256 ), Peppers ( 512 × 512) and
two binary test-images: Testpat1 ( 256 × 256) and Cheese (128 × 128) . For the texture
images we use eight line-wise directional estimators diagonal, vertical and horizontal with
windowing function w . The line-wise supports enable high level of directional sensitivity
of the adaptive estimators. The sectorial windows (of the angular size ∆α ' 33.750 ) work
better then the line-wise ones for the images with comparatively large areas of constant or
slowly varying intensities, in particular for the binary images considered in our simulation.

For every direction α , we apply the adaptive procedure for the set of window sizes H with
a relatively small number of scales K = 7 . For uniform linewise and sectorial windows the
scale parameter h is integer with the set of values defined as H = {b1.5kc, k = 1, ..., 7} =
{1, 2, 3, 5, 7, 11, 17} . Then Nk = hk for all k ≤ K . The fused estimates are calculated
according to the formula (11).

A special study has been produced for testing the procedures presented in Section 3.1
for zk selection. For calculation of the expectations in the corresponding formulas we
use Monte-Carlo simulation runs. In implementation of these calculations we accurately
imitate the work of the adaptive FLL algorithm and use the adaptive estimates instead
of the random event B

(j)
k introduced to check the inequalities Tlk > zl . The developed

algorithms for selection of zk give the results which depend on the parameters r and
α , where r is the power of the used criterion functions and α is a parameter, similar
to nominal rejection probability in hypothesis testing. These parameters are of purely
mathematical origin, our default choice is r = 1/2 and α = 1 . These theoretical
recommendations work surprisingly well giving the sets of zk universally good for quite
different images and different distributions.

In what follows we use the sets zk obtained by the simplified threshold parameter choice
(Section 3.1) with r = 1/2 and α = 1 . Of course, further optimization of zk can be
produced for particular images or set of images but in any case what is found for r = 1/2
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and α = 1 can be treated as a good initial guess quite useful for further improvement.

6.1 Poissonian observations

To achieve different level of randomness (i.e. different SNR ) in the Poissonian obser-
vations we multiply the true signal y by a scaling factor with the observations defined
according to the formula z̃ ∼ P(y · χ) , where χ > 0 is a scaling factor. Further, we
assume the observations in the form z = z̃/χ in order to have the results compara-
ble for different χ as E{z} = E{z̃}/χ = y for all χ > 0 . The scaling by χ allows
to get the random data z with a different level the random noise and to preserve the
mean value : var{z} = var{z̃}/χ2 = y/χ . The signal-to-noise ratio is calculated as
E{z}/

√
var{z} =

√
yχ . Thus, for larger and smaller χ we have respectively a larger and

smaller signal-to-noise ratio.

This scaled modelling of Poisson data is appeared in a number of publications [20], [21],
[22], [23] where the advanced performance of the wavelet based denoising algorithms is
demonstrated. It is shown in [15] that the ICI based adaptive algorithm is quite compet-
itive and at least numerically demonstrates a better performance then the algorithms in
the cited papers. Here we compare the proposed FLL technique versus the ICI adaptive
algorithm only.

In the scale selection the FLL technique is applied to the Poissonian variables, i.e. to z̃ .
However, our linear estimates are calculated for the data z = z̃/χ . It means that in the
formula for the Kullback divergence θ should be replaced by θχ . Then the scale selection
rule (3) for the Poissonian data (see the Kullback divergence in Table 1) is modified to
the form k̂ = max{m, Lm(θ̃(m), θ̃(l)) ≤ zl/χ , l < m} . In these experiments we use the
line-wise and sectorial directional nonsymmetric windows of the scales H . The threshold
set calculated according to the simplified choice is as follows z = {1.2 , 1.0 , 0.8 , 0.6 , 0.4 ,
0.2} .

Table 2: ”Cheese” image: criteria values for the eight directional and final estimates.

α1 α2 α3 α4 α5 α6 α7 α8 Fused
ISNR , dB 7.62 6.62 7.67 6.84 7.50 6.56 7.76 6.95 16.59
SNR , dB 19.42 18.42 19.47 18.64 19.31 18.35 19.55 18.72 28.22
PSNR , dB 27.06 26.02 27.12 26.27 26.93 25.99 27.19 26.38 35.60
RMSE 11.32 12.71 11.25 12.39 11.48 12.81 11.15 12.23 4.23

The numerical results in Table 2 are given for the binary Cheesëımage taking values
θ = [0.2 , 1.0] . The criterion values for the fused (final) estimate compared with the eight
directional sectorial ones show a strong improvement in the final estimate. In particular,
we have for ISNR the values about 7 dB for the sectorial estimates while for the fused
estimate ISNR ' 16 dB . The fusing works very well for all criteria in Table 2. Visually,
the improvement effects of the fusing are quite obvious.

Table 3 shows numerical criteria calculated for the test images. Values before and after
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Table 3: Accuracy criterion for poissonian FLL imaging.

Test Image ISNR dB SNR dB PSNR dB RMSE

Cheese 16.40/10.68 28.04/22.47 35.42/30.1 4.32/7.97
Lena 10.65/11.9 22.17/23.58 27.85/28.92 10.32/9.13
Cameraman 9.38/9.20 21.17/21.04 26.75/26.52 11.71/12.03
Peppers 10.98/12.15 22.58/23.7 28.33/29.5 9.76/8.5
Boats 9.20/10.02 20.84/21.66 26.19/27.01 12.50/11.38
Testpat1 9.64/10.17 23.31/23.88 24.93/25.53 14.45/13.5

slash correspond to the FLL and LPA–ICI recursive (after 7 iterations) algorithms,
respectively. Numerically the FLL algorithm works better for Cheese and Cameraman
while for the other images the LPA–ICI algorithm gives better criterion values. However,
visual comparison is definitely in favor of the FLL algorithm. The recursive LPA–ICI
estimates typically suffer from multiple spot-like artifacts while the FLL estimates are
free from this sort of degradation effects.

Figure 2: Fragments of noisy and denoised Poissonian images: Cameraman, Peppers,
Cheese, Testpat1.

Fragments of noisy and denoised (by FLL algorithm) images are shown in Figure 2. Overall
Table 3 confirms a very good performance of the FLL algorithm for Poissonian data.

6.2 Gaussian observations

We assume that the additive zero-mean Gaussian noise has the variance σ2 = 0.01 . For
the scales H the threshold set calculated according to the simplified choice is as follows
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z = {2.5 , 2.07 , 1.64 , 1.21 , 0.78 , 0.35} . Numerically (see Table 4) the performance
of the FLL algorithm is better (Cheese, Peppers,Testpat1) or worse (for other images)
than that for LPA–ICI algorithm. Overall, the compared algorithms are more less equiv-
alent. Note that the referred non-recursive LPA–ICI algorithm is a specially designed and
optimized for the Gaussian case while the FLL is demonstrated in the form universally
applicable for the class of exponential distributions and further optimization can improve
the performance.

Table 4: Accuracy criterion for Gaussian FLL imaging.

Test Image ISNR dB SNR dB PSNR dB RMSE

Cheese 15.71/15.26 28.33/27.81 35.71/35.19 4.18/4.43
Lena 9.26/9.41 23.59/24.08 29.27/29.42 8.77/8.62
Cameraman 8.00/8.04 22.38/22.53 27.97/28.01 10.18/10.13
Peppers 9.66/9.46 23.91/24.72 29.67/29.47 8.37/8.57
Boats 7.63/7.81 22.30/22.47 27.64/27.82 10.58/10.36
Testpat1 8.05/7.60 26.4/25.95 28.02/27.57 10.13/10.66

6.3 Bernoulli observations

Bernoulli imaging assumes that the observations z take random binary values [0, 1] sub-
ject to the Bernoulli distribution. The image intensity θ is the mean of this random
variable to be reconstructed as a function of the argument x . The sample mean estimate
is unbiased with the variance equal to θ(1− θ)/n and SNR =

√
nθ/(1− θ) , where n is

a number of the averaged observations. For θ = 0 or θ = 1 the Bernoulli observations
are noiseless and give the accurate pattern of the image without any signal processing
and averaging. However, for the values θ different from 0 and 1 the observations can
be very noisy and difficult for imaging. We illustrate the performance of the FLL al-
gorithm for the piece-wise invariant image intensity. In order to have noisy observations
the values of the intensity function should be different from 0 and 1 . We control the
level of the randomness in the observations by the following transformation of the original
θ̃ = 0, 1 using instead the image θ = θ̃ · χ + 0.5(1 − χ) , 0 < χ < 1 . For this θ the
Bernoulli random variable takes values 0 and 1 with the probabilities θ0 = 0.5(1 − χ)
and θ1 = 0.5(1 + χ) respectively. The variance of these observations grows rapidly when
χ takes smaller values.

Table 5: Accuracy criterion for binary Bernoulli imaging.

χ data SNR dB ISNR dB SNR dB PSNR dB RMSE

0.8 1.62 16.53 18.14 27.03 11.34
0.85 2.81 16.23 19.04 27.84 10.34
0.9 4.51 15.37 19.88 28.53 9.55

The threshold set calculated according to the simplified choice is as follows z = {0.7, 0.686 ,
0.672 , 0.658 , 0.644 , 0.63} . The modelling results are presented for the binary Cheese
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image ( θ̃ = 0, 1 ) and the varying parameter χ . Results are shown in Table 5. The most
noisy case corresponds to χ = 0.8 with SNR = 1.62 for these observations. The lowest
level of the noise corresponds to χ = 0.95 with SNR = 7.44 . Numerical criterion values
in Table 5 confirms a good performance of the algorithm. Noisy and denoised images as
well as the error of denoising are illustrated in Figure 3.

Figure 3: Cheese image: binary Bernoulli observations z , estimate errors |θ− θ̂| · 10 and
estimates θ̂ .

7 Conclusion

A novel technique is developed for spatially adaptive estimation. The fitted local likelihood
statistics is used for selection of an adaptive size of this neighborhood. The algorithm is
developed for quite a general class of observations subject to the exponential distribution.
The estimated signal can be uni- and multivariable. The varying thresholds of the devel-
oped statistical test is an important ingredient of the approach. Special techniques are
proposed for the pointwise and linear approximation selection of these threshold. The de-
veloped theory justifies both the adaptive estimation procedure and the varying threshold
selection. The main theoretical result formulated in Theorem 9 shows the accuracy of the
adaptive estimate. For high-resolution imaging the developed approach is implemented
in the form of anisotropic directional estimation with fusing the scale adaptive sectorial
estimates. The performance of the algorithm is illustrated for image denoising with data
having Poissonian, Gaussian and Bernoulli (binary) random observations. Simulation ex-
periments demonstrate a very good performance of the new algorithm. A demo version of
the developed adaptive FLL algorithm and the scale selection procedures are available at
the website www.cs.tut.fi/˜lasip .
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8 Appendix

This section collects the proofs of the main results.

8.1 Proof of Theorem 5

Define for every k ≤ K the random set Ak =
⋂k−1

j=1

{
maxj<l≤k Tjl ≤ zj

}
, where Tjl =

NjK
(
θ̃j , θ̃l

)
. Note first that θ̂k = θ̃k on Ak for all k ≤ K .

Therefore, it remains to bound the risk of θ̂k on the complement Ak of Ak . Define
Bk−1 = Ak−1 \Ak . By definition κ = κk = k − 1 on Bk−1 and Ak =

⋃
l<k Bl . First we

bound the probability P 0

(
Bl

)
. Assumptions (MD) and (Θ) yield for every l < k

Tlk ≤ 2a2Nl

{
K(θ̃l, θ) + K(θ̃k, θ)

} ≤ 2a2
{
NlK(θ̃l, θ) + NkK(θ̃k, θ)

}
.

Therefore, by Theorem 4, for all λ < 1 and any θ

P θ

(
Bl

) ≤
l−1∑

j=1

P θ

(
Tjl > zj

) ≤ 2(1− λ)−1
l−1∑

j=1

e−λzj/a2
.

Similarly for l < k

Eθ

∣∣NkK(θ̃l, θ̃k)
∣∣r ≤ a2r2(r−1)+

{
Eθ

∣∣NkK(θ̃l, θ)
∣∣r + Eθ

∣∣NkK(θ̃k, θ)
∣∣r}

≤ a2r2(r−1)+
{N r

k

N r
l

Eθ

∣∣NlK(θ̃l, θ)
∣∣r + Eθ

∣∣NkK(θ̃k, θ)
∣∣r

}
≤ a2r2r∨1rrN

r
k/N r

l .

Now we employ the obvious representation NkK
(
θ̃k, θ̂k

)
=

∑k−1
l=1 NkK

(
θ̃k, θ̃l

)
1(Bl) . There-

fore, for every r and λ < 1 by the Cauchy-Schwartz inequality

Eθ

∣∣NkK
(
θ̃k, θ̂k

)∣∣r =
k−1∑

l=1

E0

∣∣NkK
(
θ̃k, θ̃l

)2∣∣r1(
Bl

)

≤
k−1∑

l=1

E
1/2
θ

∣∣NkK
(
θ̃k, θ̃l

)∣∣2r
P

1/2
θ

(
Bl

) ≤ 2r∨1r
1/2
2r (1− λ)−1/2

k−1∑

l=1

N r
k

N r
l

( l−1∑

j=1

e−λzj/a2

)1/2

.

It remains to check that the choice zj = a0+a1 log α−1+a2r log(NK/Nj) with properly se-
lected a0, a1 and a2 provide under condition (MD) the required bound Eθ

∣∣NkK
(
θ̃k, θ̂k

)∣∣r ≤
αrr and Theorem 5 follows.

8.2 Proof of Theorem 6

The proof is based on the following general result.

Lemma 10 Let P and P 0 be two measures such that K(P , P 0) ≤ ∆ < ∞.Then for
any random variable ζ with E0ζ < ∞, E log

(
1 + ζ

) ≤ ∆ + E0ζ.
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Proof.By simple algebra one can check that for any fixed y the maximum of the function
f(x) = xy−x log x+x is attained at x = ey leading to the inequality xy ≤ x log x−x+ey .
Using this inequality and the representation E log

(
1 + ζ

)
= E0

{
Z log

(
1 + ζ

)}
with

Z = dP /dP 0 we obtain

E log
(
1 + ζ

)
= E0

{
Z log

(
1 + ζ

)}

≤ E0

(
Z log Z − Z

)
+ E0(1 + ζ) = E0

(
Z log Z

)
+ E0ζ −E0Z + 1.

It remains to note that E0Z = 1 and E0

(
Z log Z

)
= E log Z = K(P , P 0) .

We now apply this lemma with ζ =
∣∣NkK(θ̃k, θ)

∣∣r/rr and utilize that E0ζ ≤ 1 . This
yields

Eθ

(
Zk,θ log Zk,θ

)
= E log Zk,θ = E

∑

Xi:wi,hk
>0

log
p(Yi, f(Xi))

p(Yi, θ)
= ∆k(θ) ≤ ∆

and the assertion follows.

8.3 Proof of Theorem 9

By (9) and Theorem 7

1 +

∣∣Nk∗K
(
θ̃k∗ , θ̂

)∣∣1/2

az
1/2
k∗

≤ 2 +

∣∣Nk∗K
(
θ̃k∗ , θ̂k∗

)∣∣1/2

z
1/2
k∗

.

Now by Lemma 10 and Theorem 7

E log
(

1 +

∣∣Nk∗K
(
θ̃k∗ , θ̂

)∣∣1/2

az
1/2
k∗

)

≤ log 2 + ∆ + Eθ

∣∣Nk∗K
(
θ̃k∗ , θ̂k∗

)∣∣1/2

2z
1/2
k∗

≤ log 2 + ∆ + αr1/2/z
1/2
k∗ ,

and the required assertion follows.
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