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AbstratWe present a solution to the onsidered in [5℄ and [22℄ optimal stoppingproblem for some jump proesses. The method of proof is based on reduingthe initial problem to an integro-di�erential free-boundary problem where thenormal re�etion and smooth �t may break down and the latter then be re-plaed by the ontinuous �t. The derived result is applied for determining thebest onstants in maximal inequalities for a ompound Poisson proess withlinear drift and exponential jumps.1 IntrodutionThe main aim of this paper is to present a solution to the optimal stopping problem(2.3) for the maximum assoiated with the proess X that solves the stohasti dif-ferential equation (2.1) driven by a ompound Poisson proess with exponentiallydistributed jumps. The problem (2.3) was earlier onsidered for some partiularlasses of stohasti proesses. In the artiles [12℄ and [5℄, solutions of the givenproblem were found for a re�eted Brownian motion and for Bessel proesses, respe-tively, and then the derived results were applied for determining the best onstantsin the related maximal inequalities. The ase of linear di�usion proesses was on-sidered in the papers [9℄-[10℄. A omplete solution of the problem (2.3) for di�usionproesses was obtained in the artile [22℄ using the established maximality priniplebeing equivalent to the superharmoni haraterization of the value funtion. Thease of Poisson proess and a onstant ost funtion was treated in the paper [17℄.We also note that an expliit solution of a disounted variant of the problem (2.3)with the zero ost funtion (the Russian option problem) was derived in the artiles[26℄-[27℄.In the papers mentioned above the solutions were obtained by reduing the initialproblem to a free-boundary problem for a di�erential operator and solving the latterby means of the smooth-�t and normal-re�etion onditions. By means of the samemethodology, in this paper we derive a solution of the optimal stopping problem(2.3) for the de�ned in (2.1)-(2.2) jump proess (X, S). We also remark that un-der some relationships on the parameters of the model the normal re�etion andsmooth �t may break down and the latter then be replaed by the ontinuous �t.The breakdown of the smooth-�t priniple and its replaement by the priniple ofontinuous �t was earlier observed in optimal stopping problems for jump proessesonsidered in the artiles [23℄-[24℄ (see also [1℄ for neessary and su�ient onditionsfor the ourrene of smooth-�t ondition and referenes to the related literature1



and [25℄ for an extensive overview). Some other optimal stopping problems for jumpproesses related to �nanial mathematis were earlier onsidered in the artiles [8℄,[19℄-[20℄, [14℄-[16℄, [2℄-[3℄, and [7℄.The paper is organized as follows. In Setion 2, for the initial problem (2.3) weformulate the orresponding integro-di�erential free-boundary problem for the in-�nitesimal operator of the proess (X, S). In Setion 3, we present a solution to thefree-boundary problem and derive (�rst-order) nonlinear ordinary di�erential equa-tions for the optimal stopping boundary under di�erent relationships on the param-eters of the model. In Setion 4, we verify that the solution of the free-boundaryproblem turns out to be a solution of the initial optimal stopping problem. In Setion5, the obtained result is applied for determining the best onstants in some maximalinequalities for a ompound Poisson proess with linear drift and exponential jumps.The main result of the paper is stated in Theorem 4.1.2 Formulation of the problem2.1. For a preise probabilisti formulation of the problem let us onsider a prob-ability spae (Ω,F , P ) with a jump proess J = (Jt)t≥0 de�ned by Jt =
∑Nt

i=1 Yi,where N = (Nt)t≥0 is a Poisson proess of the intensity λ, and (Yi)i∈N is a sequeneof independent random variables exponentially distributed with parameter 1 (N and
(Yi)i∈N are supposed to be independent). It is assumed that there exists a proess
X = (Xt)t≥0 solving the stohasti di�erential equation:

dXt = η(Xt) dt + θ dJt (X0 = x) (2.1)with a Lipshitz funtion η(x) 6= 0 on R and a onstant θ 6= 0, where x ∈ R is givenand �xed. The proesses of suh type were onsidered e.g. in [4℄. For simpliity ofexposition throughout the paper we will assume that the state spae of the proess
X is R. With the proess X let us assoiate the maximum proess S = (St)t≥0de�ned by:

St =
(

max
0≤u≤t

Xu

)

∨ s (2.2)for an arbitrary s ≥ x. The main purpose of the present paper is to give a solutionto the optimal stopping problem for the time-homogeneous (strong) Markov proess
(X, S) = (Xt, St)t≥0 given by:

V∗(x, s) = sup
τ

Ex,s

[

Sτ −

∫ τ

0

c(Xt) dt

]

, (2.3)where Px,s is a probability measure under whih the proess (X, S) starts at some
(x, s) ∈ E, and the supremum is taken over all stopping times τ of the proess
X (i.e. stopping times with respet to the natural �ltration of X) satisfying theondition:

Ex,s

[
∫ τ

0

c(Xt) dt

]

< ∞ (2.4)2



with some ontinuous ost funtion c(x) > 0 on R. Here by E = {(x, s) ∈ R
2 | x ≤ s}we denote the state spae of the proess (X, S). By means of the same argumentsas in [5℄ and [22℄ it an be shown that the optimal stopping time in the problem(2.3) should be given by:

τ∗ = inf{t ≥ 0 |Xt ≤ g∗(St)} (2.5)for some funtion g∗(s) suh that g∗(s) < s for all s ∈ R. In this onnetion thefuntion g∗(s) is alled an optimal stopping boundary. Note that g∗(s) is the largestnumber x from R suh that V∗(x, s) = s for eah s ∈ R �xed.2.2. By means of standard arguments it is shown that the in�nitesimal operator Lof the proess (X, S) ats on a funtion F ∈ C1,1(E) aording to the rule:
(LF )(x, s) = η(x)

∂F

∂x
(x, s)+

∫ ∞

0

(

F (x+ θy, (x+ θy)∨ s)−F (x, s)
)

λe−y dy (2.6)for all x < s. In order to �nd expliit expressions for the unknown value funtion
V∗(x, s) from (2.3) and the optimal stopping boundary g∗(s) from (2.5), using theresults of the general theory of optimal stopping problems for Markov proesses (see,e.g., [11℄ and [28; Chapter III, Setion 8℄ or [25℄), we an formulate the followingintegro-di�erential free-boundary problem:

(LV )(x, s) = c(x) for g(s) < x < s (2.7)
V (x, s)

∣

∣

x=g(s)+
= s (ontinuous �t) (2.8)

V (x, s) = s for x < g(s) (2.9)
V (x, s) > s for g(s) < x ≤ s (2.10)for eah s ∈ R. Note that by virtue of the superharmoni haraterization of thevalue funtion (see [6℄ and [28℄) it follows that V∗(x, s) is the smallest funtion satis-fying the onditions (2.7)-(2.10). Moreover, under some relations on the parametersof the model whih are spei�ed below, the following onditions an be satis�ed orbreak down:
∂V

∂x
(x, s)

∣

∣

∣

x=g(s)+
= 0 (smooth �t) (2.11)

∂V

∂s
(x, s)

∣

∣

∣

x=s−
= 0 (normal re�etion) (2.12)for eah s ∈ R.3 Solution of the free-boundary problem3.1. Let us �rst assume that θ > 0 and η(x) < 0 for all x ∈ R. In this ase, bymeans of straightforward alulations we get that the equation (2.7) takes the form:

η(x)
∂V

∂x
(x, s)e−αx +

∫ ∞

x

V (z, z ∨ s) λαe−αz dz − V (x, s) λe−αx = c(x)e−αx (3.1)3



with α = 1/θ > 0. Then, using the fat that by the integration-by-parts formulaimplies:
∫ s

x

V (z, s) αe−αz dz =

∫ s

x

∂V

∂x
(z, s)e−αz dz − V (s, s)e−αs + V (x, s)e−αx, (3.2)we may onlude that the equation (3.1) is equivalent to the following (�rst order)ordinary di�erential equation:

−η(x)
∂G

∂x
(x, s) + λG(x, s) = c(x)e−αx, (3.3)where we set:

G(x, s) =

∫ s

x

∂V

∂x
(z, s) e−αz dz +

∫ ∞

s

V (z, z) αe−αz dz − V (s, s) e−αs (3.4)for all g(s) < x < s. By virtue of the fat that in this ase, leaving the ontinuationregion g∗(s) < x ≤ s the proess X an pass through the boundary g∗(S) for the �rsttime only ontinuously, let us further assume that the smooth-�t ondition (2.11)holds. Solving the equation (3.3), we obtain that the funtion G(x, s) admits therepresentation:
G(x, s) =

∫ s

x

c(y)e−αy

η(y)
exp

(

−

∫ y

x

λdz

η(z)

)

dy + D(s) exp

(

−

∫ s

x

λdz

η(z)

) (3.5)for g(s) < x ≤ s, and sine from (3.4) it follows that:
∂V

∂x
(x, s) = −

∂G

∂x
(x, s) eαx, (3.6)from where, by means of the ondition (2.11), we �nd that the funtion D(s) from(3.5) takes the expression:

D(s) =
c(g(s))

λeαg(s)
exp

(
∫ s

g(s)

λdz

η(z)

)

−

∫ s

g(s)

c(y)e−αy

η(y)
exp

(
∫ s

y

λdz

η(z)

)

dy, (3.7)then, integrating the expression (3.6) and using the representation (3.5), we mayonlude that the solution of the system (2.7)-(2.9) takes the form:
V (x, s; g(s)) = s −

c(g(s))

eαg(s)

∫ x

g(s)

λeαy

η(y)
exp

(
∫ y

g(s)

λdz

η(z)

)

dy (3.8)
+

∫ x

g(s)

(

c(y)

η(y)
+

λeαy

η(y)

∫ y

g(s)

c(z)e−αz

η(z)
exp

(
∫ y

z

λdu

η(u)

)

dz

)

dyfor all g(s) < x ≤ s and eah s ∈ R with α = 1/θ > 0. In order to determine theoptimal stopping boundary g∗(s), we observe that setting x = s into (3.4)-(3.5), itfollows that for the funtion D(s) we have the expression:
D(s) =

∫ ∞

s

V (z, z) αe−αz dz − V (s, s) e−αs (3.9)4



for s ∈ R. Then, substituting the expressions (3.7) for D(s) and (3.8) for V (s, s) into(3.9) and assuming that the funtions c(x) and g(s) are ontinuously di�erentiable,di�erentiating both sides of the expression (3.9), after some transformations weobtain the equality:
(

d

ds

c(g(s))

eαg(s)

) (
∫ s

g(s)

eαy

η(y)
exp

(
∫ y

g(s)

λdz

η(z)

)

dy − λeαs exp

(
∫ s

g(s)

λdz

η(z)

))

= 1 (3.10)for eah s ∈ R with α = 1/θ > 0.3.2. Let us now assume that θ < 0 and η(x) > 0 for all x ∈ R. In this ase, usingthe ondition (2.9), by means of straightforward alulations we obtain that theequation (2.7) takes the form:
η(x)

∂V

∂x
(x, s) e−αx −

∫ x

g(s)

V (z, s) λαe−αz dz + s λe−αg(s) − V (x, s) λe−αx = c(x) e−αx(3.11)with α = 1/θ < 0. Then, using the fat that the integration-by-parts formulaimplies:
∫ x

g(s)

V (z, s) αe−αz dz =

∫ x

g(s)

∂V

∂x
(z, s) e−αz dz − V (x, s) e−αx + V (g(s), s) e−αg(s)(3.12)and by virtue of the fat that the ondition (2.8) yields V (g(s), s), we may on-lude that the equation (3.11) is equivalent to the following (�rst order) ordinarydi�erential equation:

−η(x)
∂H

∂x
(x, s) + λH(x, s) = c(x) e−αx, (3.13)where we set:

H(x, s) = −

∫ x

g(s)

∂V

∂x
(z, s) e−αz dz (3.14)for all g(s) < x < s. Solving the equation (3.13), we obtain that the funtion H(x, s)admits the representation:

H(x, s) = −

∫ x

g(s)

c(y)e−αy

η(y)
exp

(
∫ x

y

λdz

η(z)

)

dy (3.15)for g(s) < x ≤ s, and sine from (3.14) it follows that:
∂V

∂x
(x, s) = −

∂H

∂x
(x, s) eαx, (3.16)then integrating the expression (3.16) and using the representation (3.15), we mayonlude that the solution of the system (2.7)-(2.9) takes the form:

V (x, s; g(s)) = s +

∫ x

g(s)

(

c(y)

η(y)
+

λeαy

η(y)

∫ y

g(s)

c(z)e−αz

η(z)
exp

(
∫ y

z

λdu

η(u)

)

dz

)

dy (3.17)5



for all g(s) < x ≤ s and eah s ∈ R with α = 1/θ < 0. By virtue of the fat thatin this ase the proess X an hit the diagonal in R
2 only ontinuously, in orderto determine the optimal stopping boundary g∗(S), let us further assume that thenormal-re�etion ondition (2.12) holds. Then, assuming that the funtion g(s) isontinuously di�erentiable, di�erentiating both sides of the expression (3.17) andsetting x = s, after some transformations we obtain the equality:

g′(s)
c(g(s))

η(g(s))

(

1 +

∫ s

g(s)

λeα(y−g(s))

η(y)
exp

(
∫ y

g(s)

λdz

η(z)

)

dy

)

= 1 (3.18)for eah s ∈ R with α = 1/θ < 0.We will further assume that there exist maximal solutions g∗(s) of the (�rst order)ordinary di�erential equations (3.10) and (3.18), staying stritly below the diagonalin R
2, and show that these solutions turn out to be optimal stopping boundaries in(2.5).4 Main result and proofTaking into aount the fats proved above let us now formulate the main assertionof the paper, whih extends the results of the artiles [5℄ and [22℄ to the ase of somejump proesses.Theorem 4.1. Suppose that the proess (X, S) is de�ned in (2.1)-(2.2), under θ > 0and η(x) < 0 there exists a maximal solution g∗(s) of the equation (3.10), and under

θ < 0 and η(x) > 0 there exists a maximal solution g∗(s) of the equation (3.18),where in both ases g∗(s) < s for all s ∈ R. Then the stopping time τ∗ de�ned in(2.5) is optimal in the problem (2.3) whenever it satis�es the ondition (2.4), andthe value funtion is �nite and takes the expression:
V∗(x, s) =

{

V (x, s; g∗(s)), g∗(s) < x ≤ s,

s, x ≤ g∗(s),
(4.1)where under θ > 0 and η(x) < 0 the funtion V (x, s; g(s)) is given by (3.8), andunder θ < 0 and η(x) > 0 the funtion V (x, s; g(s)) is given by (3.17).Proof. Let us show that the funtion (4.1) oinides with the value funtion (2.3)and the maximal solutions g∗(s) of the equations (3.10) and (3.18), staying stritlybelow the diagonal in R

2, are the optimal stopping boundaries in (2.5). For this letus introdue the funtion:
Vg(x, s) =

{

V (x, s; g(s)), g(s) < x ≤ s,

s, x ≤ g(s),
(4.2)where under θ > 0 and η(x) < 0 the funtion V (x, s; g(s)) is given by (3.8) and thefuntion g(s) solves the equation (3.10), and under θ < 0 and η(x) > 0 the funtion6



V (x, s; g(s)) is given by (3.17) and the funtion g(s) solves the equation (3.18). Inthis ase by straightforward alulations and the assumptions above it follows thatthe funtion V (x, s) satis�es the system (2.7)-(2.9) as well as the ondition (2.11)under θ > 0 and η(x) < 0, and the ondition (2.12) under θ < 0 and η(x) > 0. Then,applying It�'s formula for semimartingales (see e.g. [13; Chapter I, Theorem 4.57℄or [18; Chapter II, Theorem 6.1℄) to Vg(Xt, St), we obtain:
Vg(Xt, St) = Vg(x, s) +

∫ t

0

(LVg)(Xu, Su)I(Xu 6= g(Su), Xu < Su) du + Mt (4.3)
+

∫ t

0

∂Vg

∂s
(Xu−, Su−) dSu −

∑

0<u≤t

∂Vg

∂s
(Xu−, Su−) ∆Su,where the proess (Mt)t≥0 de�ned by:

Mt =

∫ t

0

∫ ∞

0

(

Vg

(

Xu−+θy, (Xu−+θy)∨Su−

)

−Vg(Xu−, Su−)
)

(µ(du, dy)−ν(du, dy))(4.4)is a loal martingale under the measure Px,s with respet to (FX
t )t≥0, and µ(du, dy) isthe measure of jumps of the proess J having the ompensator ν(du, dy) = λduI(y >

0)e−ydy. Observe that when θ > 0 and η(x) < 0 the time spent by the proess X atthe diagonal in R
2 is of Lebesgue measure zero that permits to extend the funtion

(LVg)(x, s) arbitrarily to x = s, as well as by virtue of the fat that in this asewe have dSu = ∆Su, the integral with respet to dSu in (4.3) is ompensated bythe sum with respet to ∆Su. On the other hand, when θ < 0 and η(x) > 0 thetime spent by X at the boundary g(S) is of Lebesgue measure zero that permits toextend (LVg)(x, s) arbitrarily to x = g(s), as well as the sum with respet to ∆Su in(4.3) is equal to zero and the same is the integral with respet to dSu, sine in thelatter ase the proess S an inrease only at the diagonal in R
2, where we assumethat the ondition (2.12) is satis�ed.By virtue of the arguments above we may onlude that (LVg)(x, s) ≤ c(x) for all

x < s. Moreover, by means of straightforward alulations, it an be shown that theproperty (2.10) also holds, that together with the ondition (2.9) implies Vg(x, s) ≥ sfor all x ≤ s. From the expression (4.3) it therefore follows that the inequalities:
Sτ −

∫ τ

0

c(Xu) du ≤ Vg(Xτ , Sτ ) −

∫ τ

0

c(Xu) du ≤ Vg(x, s) + Mτ (4.5)hold for any stopping time τ of the proess X.Let (σn)n∈N be an arbitrary loalizing sequene of stopping times for the proess
(Mt)t≥0. Then taking in (4.5) expetation with respet to the measure Px,s, bymeans of the optional sampling theorem (see e.g. [13; Chapter I, Theorem 1.39℄) weget:

Ex,s

[

Sτ∧σn
−

∫ τ∧σn

0

c(Xu) du

]

≤ Ex,s

[

Vg(Xτ∧σn
, Sτ∧σn

) −

∫ τ∧σn

0

c(Xu) du

] (4.6)
≤ Vg(x, s) + Ex,s[Mτ∧σn

] = Vg(x, s)7



for all x ≤ s. Hene, letting n go to in�nity and using Fatou's lemma, we obtainthat for any stopping time τ satisfying the ondition (2.4), the inequalities:
Ex,s

[

Sτ −

∫ τ

0

c(Xu) du

]

≤ Ex,s

[

Vg(Xτ , Sτ ) −

∫ τ

0

c(Xu) du

]

≤ Vg(x, s) (4.7)hold for all x ≤ s. Taking in (4.7) the supremum over all stopping times τ satisfyingthe ondition (2.4), and then in�mum over all boundaries g, by virtue of the obviousfat that the funtion g 7→ Vg(x, s) is (stritly) dereasing, we may therefore onludethat:
V∗(x, s) ≤ inf

g
Vg(x, s) = Vg∗(x, s) (4.8)for all x ≤ s, from where it is seen that one should take maximal solutions of theequations (3.10) and (3.18) as andidates for the optimal stopping boundary in (2.5).In order to show that the equalities in (4.7)-(4.8) are attained under τ∗ from (2.5),let us use the fat that the funtion Vg∗(x, s) from (4.2) together with the boundary

g∗(s) satisfy the system (2.7)-(2.9). In this ase by the struture of the stoppingtime τ∗ in (2.5) and the expression (4.3) it follows that the equality:
Vg∗(Xτ∗∧σn

, Sτ∗∧σn
) −

∫ τ∗∧σn

0

c(Xu) du = Vg∗(x, s) + Mτ∗∧σn
(4.9)is satis�ed, and by virtue of the expression (4.5), we may onlude that the inequal-ities:

−

∫ τ∗∧σn

0

c(Xu) du ≤ Vg∗(x, s) + Mτ∗∧σn
≤ Vg∗(Xτ∗∧σn

, Sτ∗∧σn
) −

∫ τ∗∧σn

0

c(Xu) du(4.10)hold for all x ≤ s, where (σn)n∈N is a loalizing sequene for (Mt)t≥0. Hene, letting
n go to in�nity in the expression (4.9) and taking into aount the equalities (4.7)-(4.8) as well as the property Vg∗(Xτ∗ , Sτ∗) = Sτ∗ also satis�ed, by means of theLebesgue bounded onvergene theorem we obtain the equality:

Ex,s

[

Sτ∗ −

∫ τ∗

0

c(Xu) du

]

= Vg∗(x, s) (4.11)for all x ≤ s, from where the desired assertion follows. �Remark 4.1. It an be easily veri�ed that in ase when θ > 0 and η(x) < 0,for the funtion V∗(x, s) from (4.1) the normal-re�etion ondition (2.12) breaksdown, and at the same time the smooth-�t ondition (2.11) at the boundary g∗(s) issatis�ed. This an be explained by the fat that in the given ase the proess X anhit the diagonal in R
2 only by jumping, while it an leave the ontinuation region

g∗(s) < x ≤ s only ontinuously.Remark 4.2. On the other hand, by means of straightforward alulations, it anbe shown that in ase when θ < 0 and η(x) > 0 for the funtion V∗(x, s) from8



(4.1) the smooth-�t ondition (2.11) at the boundary g∗(s) breaks down, that anbe explained by the fat that in the given ase, leaving the ontinuation region
g∗(s) < x ≤ s the proess X an pass through the boundary g∗(S) for the �rst timeonly by jumping. Suh an e�et was earlier observed and explained in [23℄-[24℄ bysolving some other optimal stopping problems for jump proesses. Aording to theresults in [1℄ we may onlude that this property appears beause of �nite intensityof jumps and exponential distribution of jump sizes of the ompound Poisson proess
J .Remark 4.3. Note that, at the same time, in ase when θ < 0 and η(x) > 0, forthe funtion V∗(x, s) from (4.1) the normal-re�etion ondition (2.12) is satis�ed,that an be explained by the fat that the proess X an hit the diagonal in R

2 onlyontinuously. This ondition was earlier observed and explained in [5℄ and then in[22℄.5 Maximal inequalitiesLet us now onsider the appliation of the results derived above for determining thebest onstants in some maximal inequalities for a ompound Poisson proess withlinear drift and exponential jumps. For this in the ourse of all the setion we assumethat the funtions η(x) in (2.1) and c(x) in (2.3)-(2.4) are onstant, from where, inpartiular, it follows that X = (Xt)t≥0 is a stationary proess with independentinrements (a Lévy proess). In this ase, if there exist maximal solutions of theequations (3.10) and (3.18), staying stritly below the diagonal in R
2, then they getthe form g∗(s) = s − h∗, so that, the optimal stopping time (2.5) has the struture:

τ∗ = inf{t ≥ 0 |St − Xt ≥ h∗} (5.1)with some onstant h∗ > 0. Taking into aount these arguments let us formulatethe assertions, whih straightforwardly follow from Theorem 3.1.Corollary 5.1. Suppose that in (2.1) we have θ = 1 and η(x) = η < 0 for all x ∈ R.Then in ase when η < −1/λ2 and 0 < c < 1/λ2 as well as when −1/λ2 < η < 0and η + 1/λ2 < c < 1/λ2 the expression (3.8) takes the form:
V (x, s; g(s)) = s +

cλ2

λ2η + 1

(

x − g(s)
)

−
cλ3η

(λ2η + 1)2

(

eα(x−g(s)) − 1
) (5.2)with α = 1/(λη) + λ and for h∗ in (5.1) we get the representation:

h∗ =
λη

λ2η + 1
log

(

λ2(η − c) + 1

λ4ηc

)

, (5.3)and in ase when η = −1/λ2 and 0 < c < 1/λ2 (3.8) has the form:
V (x, s; g(s)) = s +

cλ3

2

(

x − g(s)
)2 (5.4)9



and for h∗ in (5.1) we have:
h∗ =

1 − cλ2

cλ3
. (5.5)Corollary 5.2. Suppose that in (2.1) we have θ = −1 and η(x) = η > 0 for all

x ∈ R. Then in ase when 0 < η < 1/λ2 and η < c as well as when 1/λ2 < η and
η − 1/λ2 < c < η the expression (3.17) takes the form:

V (x, s; g(s)) = s +
cλ2

λ2η − 1

(

x − g(s)
)

+
cλ

(λ2η − 1)2

(

eβ(x−g(s)) − 1
) (5.6)with β = 1/(λη) − λ and for h∗ in (5.1) we get the representation:

h∗ = −
λη

λ2η − 1
log

(

λ2η(c − η) + η

c

)

, (5.7)and in ase when η = 1/λ2 and 0 < c < 1/λ2 (3.17) has the form:
V (x, s; g(s)) = s + cλ2

(

x − g(s)
)

+
cλ3

2

(

x − g(s)
)2 (5.8)and for h∗ in (5.1) we have (5.5).Finally, setting x = s = 0 in (2.1)-(2.2) and underlying the dependene of the valuefuntion from the parameter c, we observe that under the assumptions above theexpression (2.3) takes the form:

V∗(0, 0; c) = sup
τ

E
[

max
0≤u≤τ

Xu − cτ
]

, (5.9)from where we obtain that for any arbitrary stopping time τ of the proess X thefollowing inequality is satis�ed:
E

[

max
0≤u≤τ

Xu

]

≤ V∗(0, 0; c) + cE[τ ]. (5.10)In this ase the following assertions hold.Example 5.1. Let the proess X = (Xt)t≥0 be of the form Xt = Jt − t/λ2 for all
t ≥ 0. Then from Corollary 4.1 and the inequality (5.10) it follows that for anystopping time τ of the proess X we have the expression:

E
[

max
0≤u≤τ

Xu

]

≤ inf
0<c<1/λ2

(

(1 − cλ2)2

2cλ3
+ cE[τ ]

)

, (5.11)where the in�mum is attained at c = 1/
√

λ4 + 2λ3E[τ ]. From (5.11) we may there-fore onlude that for any stopping time τ the following inequality holds:
E

[

max
0≤u≤τ

Xu

]

≤

√

1 + 2E[τ ]/λ − 1

λ
. (5.12)10



Example 5.2. Let the proess X = (Xt)t≥0 be of the form Xt = t/λ2 − Jt for all
t ≥ 0. Then from Corollary 4.2 and the inequality (5.10) it follows that for anystopping time τ of the proess X suh that E[τ ] > λ we have the expression:

E
[

max
0≤u≤τ

Xu

]

≤ inf
0<c<1/λ2

(

1 − c2λ4

2cλ3
+ cE[τ ]

)

, (5.13)where the in�mum is attained at c = 1/
√

2λ3E[τ ] − λ4. From (5.13) we may there-fore onlude that for any stopping time τ suh that E[τ ] > λ the following inequalityholds:
E

[

max
0≤u≤τ

Xu

]

≤

√

2E[τ ]/λ − 1

λ
. (5.14)Aknowledgments. The author thanks Goran Peskir for many useful disussionsof optimal stopping problems for maxima proesses.Referenes[1℄ Alili, L. and Kyprianou, A. E. (2004). Some remarks on �rst passage ofLévy proesses, the Amerian put and pasting priniples. Annals of AppliedProbability 15 (2062�2080).[2℄ Asmussen, S., Avram, F. and Pistorius, M. (2003). Russian and Amerianput options under exponential phase-type Lévy models. Stohasti Proessesand Appliations 109 (79�111).[3℄ Avram, F., Kyprianou, A. E. and Pistorius, M. (2004). Exit problemsfor spetrally negative Lévy proesses and appliations to (Canadized) Russianoptions. Annals of Applied Probability 14(1) (215�238).[4℄ Barndorff-Nielsen, O. E. (1998). Proesses of normal inverse Gaussiantype. Finane Stohast. 2 (41�68).[5℄ Dubins, L., Shepp, L. A. and Shiryaev, A. N. (1993). Optimal stoppingrules and maximal inequalities for Bessel proesses. Theory Probab. Appl. 38(226�261).[6℄ Dynkin, E. B. (1963). The optimum hoie of the instant for stopping aMarkov proess. Soviet Math. Dokl. 4 (627�629).[7℄ Gapeev, P. V. and Kühn, C. (2005). Perpetual onvertible bonds in jump-di�usion models. Statistis and Deisions 23 (15�31).[8℄ Gerber, H. U., Mihaud, F. and Shiu, E. S. W. (1995). Priing Russianoptions with the ompound Poisson proess. Transations of the XXV Interna-tional Congress of Atuaries 3. 11



[9℄ Graversen, S. E. and Peskir, G. (1998). Optimal stopping and maximalinequalities for geometri Brownian motion. J. Appl. Probab. 35(4) (856�872).[10℄ Graversen, S. E. and Peskir, G. (1998). Optimal stopping and maximalinequalities for linear di�usions. J. Theoret. Probab. 11 (259�277).[11℄ Grigelionis, B. I. and Shiryaev, A. N. (1966). On Stefan's problem andoptimal stopping rules for Markov proesses. Theory Probab. Appl. 11 (541�558).[12℄ Jaka, S. D. (1991). Optimal stopping and best onstants for Doob-like in-equalities I: The ase p = 1. Ann. Probab. 19 (1798�1821).[13℄ Jaod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stohasti Pro-esses. Springer, Berlin.[14℄ Kou, S. G. (2002). A jump di�usion model for option priing. ManagementSiene 48 (1086�1101).[15℄ Kou, S. G. and Wang, H. (2003). First passage times for a jump di�usionproess. Advanes in Applied Probability 35 (504�531).[16℄ Kou, S. G. andWang, H. (2004). Option priing under a double exponentialjump di�usion model. Management Siene 50 (1178�1192).[17℄ Kramkov, D. O. andMordeki, E. (1999). Optimal stopping and maximalinequalities for Poisson proesses. Publ. Mat. Urug. 8 (153�178).[18℄ Liptser, R. S. and Shiryaev, A. N. (1989). Theory of Martingales. Kluver,Dordreht.[19℄ Mordeki, E. (1999). Optimal stopping for a di�usion with jumps. Finaneand Stohastis 3 (227�236).[20℄ Mordeki, E. (2002). Optimal stopping for a di�usion with jumps. Finaneand Stohastis 6(4) (473�493).[21℄ Mordeki, E. and Moreira, W. (2001). Russian Options for a Difussionwith Negative Jumps. Publiaiones Matemátias del Uruguay 9 (37�51).[22℄ Peskir, G. (1998). Optimal stopping of the maximum proess: The maximal-ity priniple. Ann. Probab. 26(4) (1614�1640).[23℄ Peskir, G. and Shiryaev, A. N. (2000). Sequential testing problems forPoisson proesses. Ann. Statist. 28 (837�859).[24℄ Peskir, G. and Shiryaev, A. N. (2002). Solving the Poisson disorder prob-lem. Advanes in Finane and Stohastis. Essays in Honour of Dieter Sonder-mann. Sandmann, K. and Shönbuher, P. eds. Springer (295�312).12



[25℄ Peskir, G. and Shiryaev, A. N. (2006). Optimal Stopping and Free-Boundary Problems. Bikkhäuser, Basel.[26℄ Shepp, L. A. and Shiryaev, A. N. (1993). The Russian option: reduedregret. Ann. Appl. Probab. 3(3) (631�640).[27℄ Shepp, L. A. and Shiryaev, A. N. (1994). A new look at the priing ofRussian options. Theory Probab. Appl. 39(1) (103�119).[28℄ Shiryaev, A. N. (1978). Optimal Stopping Rules. Springer, Berlin.

13


