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Abstra
tWe present a solution to the 
onsidered in [5℄ and [22℄ optimal stoppingproblem for some jump pro
esses. The method of proof is based on redu
ingthe initial problem to an integro-di�erential free-boundary problem where thenormal re�e
tion and smooth �t may break down and the latter then be re-pla
ed by the 
ontinuous �t. The derived result is applied for determining thebest 
onstants in maximal inequalities for a 
ompound Poisson pro
ess withlinear drift and exponential jumps.1 Introdu
tionThe main aim of this paper is to present a solution to the optimal stopping problem(2.3) for the maximum asso
iated with the pro
ess X that solves the sto
hasti
 dif-ferential equation (2.1) driven by a 
ompound Poisson pro
ess with exponentiallydistributed jumps. The problem (2.3) was earlier 
onsidered for some parti
ular
lasses of sto
hasti
 pro
esses. In the arti
les [12℄ and [5℄, solutions of the givenproblem were found for a re�e
ted Brownian motion and for Bessel pro
esses, respe
-tively, and then the derived results were applied for determining the best 
onstantsin the related maximal inequalities. The 
ase of linear di�usion pro
esses was 
on-sidered in the papers [9℄-[10℄. A 
omplete solution of the problem (2.3) for di�usionpro
esses was obtained in the arti
le [22℄ using the established maximality prin
iplebeing equivalent to the superharmoni
 
hara
terization of the value fun
tion. The
ase of Poisson pro
ess and a 
onstant 
ost fun
tion was treated in the paper [17℄.We also note that an expli
it solution of a dis
ounted variant of the problem (2.3)with the zero 
ost fun
tion (the Russian option problem) was derived in the arti
les[26℄-[27℄.In the papers mentioned above the solutions were obtained by redu
ing the initialproblem to a free-boundary problem for a di�erential operator and solving the latterby means of the smooth-�t and normal-re�e
tion 
onditions. By means of the samemethodology, in this paper we derive a solution of the optimal stopping problem(2.3) for the de�ned in (2.1)-(2.2) jump pro
ess (X, S). We also remark that un-der some relationships on the parameters of the model the normal re�e
tion andsmooth �t may break down and the latter then be repla
ed by the 
ontinuous �t.The breakdown of the smooth-�t prin
iple and its repla
ement by the prin
iple of
ontinuous �t was earlier observed in optimal stopping problems for jump pro
esses
onsidered in the arti
les [23℄-[24℄ (see also [1℄ for ne
essary and su�
ient 
onditionsfor the o

urren
e of smooth-�t 
ondition and referen
es to the related literature1



and [25℄ for an extensive overview). Some other optimal stopping problems for jumppro
esses related to �nan
ial mathemati
s were earlier 
onsidered in the arti
les [8℄,[19℄-[20℄, [14℄-[16℄, [2℄-[3℄, and [7℄.The paper is organized as follows. In Se
tion 2, for the initial problem (2.3) weformulate the 
orresponding integro-di�erential free-boundary problem for the in-�nitesimal operator of the pro
ess (X, S). In Se
tion 3, we present a solution to thefree-boundary problem and derive (�rst-order) nonlinear ordinary di�erential equa-tions for the optimal stopping boundary under di�erent relationships on the param-eters of the model. In Se
tion 4, we verify that the solution of the free-boundaryproblem turns out to be a solution of the initial optimal stopping problem. In Se
tion5, the obtained result is applied for determining the best 
onstants in some maximalinequalities for a 
ompound Poisson pro
ess with linear drift and exponential jumps.The main result of the paper is stated in Theorem 4.1.2 Formulation of the problem2.1. For a pre
ise probabilisti
 formulation of the problem let us 
onsider a prob-ability spa
e (Ω,F , P ) with a jump pro
ess J = (Jt)t≥0 de�ned by Jt =
∑Nt

i=1 Yi,where N = (Nt)t≥0 is a Poisson pro
ess of the intensity λ, and (Yi)i∈N is a sequen
eof independent random variables exponentially distributed with parameter 1 (N and
(Yi)i∈N are supposed to be independent). It is assumed that there exists a pro
ess
X = (Xt)t≥0 solving the sto
hasti
 di�erential equation:

dXt = η(Xt) dt + θ dJt (X0 = x) (2.1)with a Lips
hitz fun
tion η(x) 6= 0 on R and a 
onstant θ 6= 0, where x ∈ R is givenand �xed. The pro
esses of su
h type were 
onsidered e.g. in [4℄. For simpli
ity ofexposition throughout the paper we will assume that the state spa
e of the pro
ess
X is R. With the pro
ess X let us asso
iate the maximum pro
ess S = (St)t≥0de�ned by:

St =
(

max
0≤u≤t

Xu

)

∨ s (2.2)for an arbitrary s ≥ x. The main purpose of the present paper is to give a solutionto the optimal stopping problem for the time-homogeneous (strong) Markov pro
ess
(X, S) = (Xt, St)t≥0 given by:

V∗(x, s) = sup
τ

Ex,s

[

Sτ −

∫ τ

0

c(Xt) dt

]

, (2.3)where Px,s is a probability measure under whi
h the pro
ess (X, S) starts at some
(x, s) ∈ E, and the supremum is taken over all stopping times τ of the pro
ess
X (i.e. stopping times with respe
t to the natural �ltration of X) satisfying the
ondition:

Ex,s

[
∫ τ

0

c(Xt) dt

]

< ∞ (2.4)2



with some 
ontinuous 
ost fun
tion c(x) > 0 on R. Here by E = {(x, s) ∈ R
2 | x ≤ s}we denote the state spa
e of the pro
ess (X, S). By means of the same argumentsas in [5℄ and [22℄ it 
an be shown that the optimal stopping time in the problem(2.3) should be given by:

τ∗ = inf{t ≥ 0 |Xt ≤ g∗(St)} (2.5)for some fun
tion g∗(s) su
h that g∗(s) < s for all s ∈ R. In this 
onne
tion thefun
tion g∗(s) is 
alled an optimal stopping boundary. Note that g∗(s) is the largestnumber x from R su
h that V∗(x, s) = s for ea
h s ∈ R �xed.2.2. By means of standard arguments it is shown that the in�nitesimal operator Lof the pro
ess (X, S) a
ts on a fun
tion F ∈ C1,1(E) a

ording to the rule:
(LF )(x, s) = η(x)

∂F

∂x
(x, s)+

∫ ∞

0

(

F (x+ θy, (x+ θy)∨ s)−F (x, s)
)

λe−y dy (2.6)for all x < s. In order to �nd expli
it expressions for the unknown value fun
tion
V∗(x, s) from (2.3) and the optimal stopping boundary g∗(s) from (2.5), using theresults of the general theory of optimal stopping problems for Markov pro
esses (see,e.g., [11℄ and [28; Chapter III, Se
tion 8℄ or [25℄), we 
an formulate the followingintegro-di�erential free-boundary problem:

(LV )(x, s) = c(x) for g(s) < x < s (2.7)
V (x, s)

∣

∣

x=g(s)+
= s (
ontinuous �t) (2.8)

V (x, s) = s for x < g(s) (2.9)
V (x, s) > s for g(s) < x ≤ s (2.10)for ea
h s ∈ R. Note that by virtue of the superharmoni
 
hara
terization of thevalue fun
tion (see [6℄ and [28℄) it follows that V∗(x, s) is the smallest fun
tion satis-fying the 
onditions (2.7)-(2.10). Moreover, under some relations on the parametersof the model whi
h are spe
i�ed below, the following 
onditions 
an be satis�ed orbreak down:
∂V

∂x
(x, s)

∣

∣

∣

x=g(s)+
= 0 (smooth �t) (2.11)

∂V

∂s
(x, s)

∣

∣

∣

x=s−
= 0 (normal re�e
tion) (2.12)for ea
h s ∈ R.3 Solution of the free-boundary problem3.1. Let us �rst assume that θ > 0 and η(x) < 0 for all x ∈ R. In this 
ase, bymeans of straightforward 
al
ulations we get that the equation (2.7) takes the form:

η(x)
∂V

∂x
(x, s)e−αx +

∫ ∞

x

V (z, z ∨ s) λαe−αz dz − V (x, s) λe−αx = c(x)e−αx (3.1)3



with α = 1/θ > 0. Then, using the fa
t that by the integration-by-parts formulaimplies:
∫ s

x

V (z, s) αe−αz dz =

∫ s

x

∂V

∂x
(z, s)e−αz dz − V (s, s)e−αs + V (x, s)e−αx, (3.2)we may 
on
lude that the equation (3.1) is equivalent to the following (�rst order)ordinary di�erential equation:

−η(x)
∂G

∂x
(x, s) + λG(x, s) = c(x)e−αx, (3.3)where we set:

G(x, s) =

∫ s

x

∂V

∂x
(z, s) e−αz dz +

∫ ∞

s

V (z, z) αe−αz dz − V (s, s) e−αs (3.4)for all g(s) < x < s. By virtue of the fa
t that in this 
ase, leaving the 
ontinuationregion g∗(s) < x ≤ s the pro
ess X 
an pass through the boundary g∗(S) for the �rsttime only 
ontinuously, let us further assume that the smooth-�t 
ondition (2.11)holds. Solving the equation (3.3), we obtain that the fun
tion G(x, s) admits therepresentation:
G(x, s) =

∫ s

x

c(y)e−αy

η(y)
exp

(

−

∫ y

x

λdz

η(z)

)

dy + D(s) exp

(

−

∫ s

x

λdz

η(z)

) (3.5)for g(s) < x ≤ s, and sin
e from (3.4) it follows that:
∂V

∂x
(x, s) = −

∂G

∂x
(x, s) eαx, (3.6)from where, by means of the 
ondition (2.11), we �nd that the fun
tion D(s) from(3.5) takes the expression:

D(s) =
c(g(s))

λeαg(s)
exp

(
∫ s

g(s)

λdz

η(z)

)

−

∫ s

g(s)

c(y)e−αy

η(y)
exp

(
∫ s

y

λdz

η(z)

)

dy, (3.7)then, integrating the expression (3.6) and using the representation (3.5), we may
on
lude that the solution of the system (2.7)-(2.9) takes the form:
V (x, s; g(s)) = s −

c(g(s))

eαg(s)

∫ x

g(s)

λeαy

η(y)
exp

(
∫ y

g(s)

λdz

η(z)

)

dy (3.8)
+

∫ x

g(s)

(

c(y)

η(y)
+

λeαy

η(y)

∫ y

g(s)

c(z)e−αz

η(z)
exp

(
∫ y

z

λdu

η(u)

)

dz

)

dyfor all g(s) < x ≤ s and ea
h s ∈ R with α = 1/θ > 0. In order to determine theoptimal stopping boundary g∗(s), we observe that setting x = s into (3.4)-(3.5), itfollows that for the fun
tion D(s) we have the expression:
D(s) =

∫ ∞

s

V (z, z) αe−αz dz − V (s, s) e−αs (3.9)4



for s ∈ R. Then, substituting the expressions (3.7) for D(s) and (3.8) for V (s, s) into(3.9) and assuming that the fun
tions c(x) and g(s) are 
ontinuously di�erentiable,di�erentiating both sides of the expression (3.9), after some transformations weobtain the equality:
(

d

ds

c(g(s))

eαg(s)

) (
∫ s

g(s)

eαy

η(y)
exp

(
∫ y

g(s)

λdz

η(z)

)

dy − λeαs exp

(
∫ s

g(s)

λdz

η(z)

))

= 1 (3.10)for ea
h s ∈ R with α = 1/θ > 0.3.2. Let us now assume that θ < 0 and η(x) > 0 for all x ∈ R. In this 
ase, usingthe 
ondition (2.9), by means of straightforward 
al
ulations we obtain that theequation (2.7) takes the form:
η(x)

∂V

∂x
(x, s) e−αx −

∫ x

g(s)

V (z, s) λαe−αz dz + s λe−αg(s) − V (x, s) λe−αx = c(x) e−αx(3.11)with α = 1/θ < 0. Then, using the fa
t that the integration-by-parts formulaimplies:
∫ x

g(s)

V (z, s) αe−αz dz =

∫ x

g(s)

∂V

∂x
(z, s) e−αz dz − V (x, s) e−αx + V (g(s), s) e−αg(s)(3.12)and by virtue of the fa
t that the 
ondition (2.8) yields V (g(s), s), we may 
on-
lude that the equation (3.11) is equivalent to the following (�rst order) ordinarydi�erential equation:

−η(x)
∂H

∂x
(x, s) + λH(x, s) = c(x) e−αx, (3.13)where we set:

H(x, s) = −

∫ x

g(s)

∂V

∂x
(z, s) e−αz dz (3.14)for all g(s) < x < s. Solving the equation (3.13), we obtain that the fun
tion H(x, s)admits the representation:

H(x, s) = −

∫ x

g(s)

c(y)e−αy

η(y)
exp

(
∫ x

y

λdz

η(z)

)

dy (3.15)for g(s) < x ≤ s, and sin
e from (3.14) it follows that:
∂V

∂x
(x, s) = −

∂H

∂x
(x, s) eαx, (3.16)then integrating the expression (3.16) and using the representation (3.15), we may
on
lude that the solution of the system (2.7)-(2.9) takes the form:

V (x, s; g(s)) = s +

∫ x

g(s)

(

c(y)

η(y)
+

λeαy

η(y)

∫ y

g(s)

c(z)e−αz

η(z)
exp

(
∫ y

z

λdu

η(u)

)

dz

)

dy (3.17)5



for all g(s) < x ≤ s and ea
h s ∈ R with α = 1/θ < 0. By virtue of the fa
t thatin this 
ase the pro
ess X 
an hit the diagonal in R
2 only 
ontinuously, in orderto determine the optimal stopping boundary g∗(S), let us further assume that thenormal-re�e
tion 
ondition (2.12) holds. Then, assuming that the fun
tion g(s) is
ontinuously di�erentiable, di�erentiating both sides of the expression (3.17) andsetting x = s, after some transformations we obtain the equality:

g′(s)
c(g(s))

η(g(s))

(

1 +

∫ s

g(s)

λeα(y−g(s))

η(y)
exp

(
∫ y

g(s)

λdz

η(z)

)

dy

)

= 1 (3.18)for ea
h s ∈ R with α = 1/θ < 0.We will further assume that there exist maximal solutions g∗(s) of the (�rst order)ordinary di�erential equations (3.10) and (3.18), staying stri
tly below the diagonalin R
2, and show that these solutions turn out to be optimal stopping boundaries in(2.5).4 Main result and proofTaking into a

ount the fa
ts proved above let us now formulate the main assertionof the paper, whi
h extends the results of the arti
les [5℄ and [22℄ to the 
ase of somejump pro
esses.Theorem 4.1. Suppose that the pro
ess (X, S) is de�ned in (2.1)-(2.2), under θ > 0and η(x) < 0 there exists a maximal solution g∗(s) of the equation (3.10), and under

θ < 0 and η(x) > 0 there exists a maximal solution g∗(s) of the equation (3.18),where in both 
ases g∗(s) < s for all s ∈ R. Then the stopping time τ∗ de�ned in(2.5) is optimal in the problem (2.3) whenever it satis�es the 
ondition (2.4), andthe value fun
tion is �nite and takes the expression:
V∗(x, s) =

{

V (x, s; g∗(s)), g∗(s) < x ≤ s,

s, x ≤ g∗(s),
(4.1)where under θ > 0 and η(x) < 0 the fun
tion V (x, s; g(s)) is given by (3.8), andunder θ < 0 and η(x) > 0 the fun
tion V (x, s; g(s)) is given by (3.17).Proof. Let us show that the fun
tion (4.1) 
oin
ides with the value fun
tion (2.3)and the maximal solutions g∗(s) of the equations (3.10) and (3.18), staying stri
tlybelow the diagonal in R

2, are the optimal stopping boundaries in (2.5). For this letus introdu
e the fun
tion:
Vg(x, s) =

{

V (x, s; g(s)), g(s) < x ≤ s,

s, x ≤ g(s),
(4.2)where under θ > 0 and η(x) < 0 the fun
tion V (x, s; g(s)) is given by (3.8) and thefun
tion g(s) solves the equation (3.10), and under θ < 0 and η(x) > 0 the fun
tion6



V (x, s; g(s)) is given by (3.17) and the fun
tion g(s) solves the equation (3.18). Inthis 
ase by straightforward 
al
ulations and the assumptions above it follows thatthe fun
tion V (x, s) satis�es the system (2.7)-(2.9) as well as the 
ondition (2.11)under θ > 0 and η(x) < 0, and the 
ondition (2.12) under θ < 0 and η(x) > 0. Then,applying It�'s formula for semimartingales (see e.g. [13; Chapter I, Theorem 4.57℄or [18; Chapter II, Theorem 6.1℄) to Vg(Xt, St), we obtain:
Vg(Xt, St) = Vg(x, s) +

∫ t

0

(LVg)(Xu, Su)I(Xu 6= g(Su), Xu < Su) du + Mt (4.3)
+

∫ t

0

∂Vg

∂s
(Xu−, Su−) dSu −

∑

0<u≤t

∂Vg

∂s
(Xu−, Su−) ∆Su,where the pro
ess (Mt)t≥0 de�ned by:

Mt =

∫ t

0

∫ ∞

0

(

Vg

(

Xu−+θy, (Xu−+θy)∨Su−

)

−Vg(Xu−, Su−)
)

(µ(du, dy)−ν(du, dy))(4.4)is a lo
al martingale under the measure Px,s with respe
t to (FX
t )t≥0, and µ(du, dy) isthe measure of jumps of the pro
ess J having the 
ompensator ν(du, dy) = λduI(y >

0)e−ydy. Observe that when θ > 0 and η(x) < 0 the time spent by the pro
ess X atthe diagonal in R
2 is of Lebesgue measure zero that permits to extend the fun
tion

(LVg)(x, s) arbitrarily to x = s, as well as by virtue of the fa
t that in this 
asewe have dSu = ∆Su, the integral with respe
t to dSu in (4.3) is 
ompensated bythe sum with respe
t to ∆Su. On the other hand, when θ < 0 and η(x) > 0 thetime spent by X at the boundary g(S) is of Lebesgue measure zero that permits toextend (LVg)(x, s) arbitrarily to x = g(s), as well as the sum with respe
t to ∆Su in(4.3) is equal to zero and the same is the integral with respe
t to dSu, sin
e in thelatter 
ase the pro
ess S 
an in
rease only at the diagonal in R
2, where we assumethat the 
ondition (2.12) is satis�ed.By virtue of the arguments above we may 
on
lude that (LVg)(x, s) ≤ c(x) for all

x < s. Moreover, by means of straightforward 
al
ulations, it 
an be shown that theproperty (2.10) also holds, that together with the 
ondition (2.9) implies Vg(x, s) ≥ sfor all x ≤ s. From the expression (4.3) it therefore follows that the inequalities:
Sτ −

∫ τ

0

c(Xu) du ≤ Vg(Xτ , Sτ ) −

∫ τ

0

c(Xu) du ≤ Vg(x, s) + Mτ (4.5)hold for any stopping time τ of the pro
ess X.Let (σn)n∈N be an arbitrary lo
alizing sequen
e of stopping times for the pro
ess
(Mt)t≥0. Then taking in (4.5) expe
tation with respe
t to the measure Px,s, bymeans of the optional sampling theorem (see e.g. [13; Chapter I, Theorem 1.39℄) weget:

Ex,s

[

Sτ∧σn
−

∫ τ∧σn

0

c(Xu) du

]

≤ Ex,s

[

Vg(Xτ∧σn
, Sτ∧σn

) −

∫ τ∧σn

0

c(Xu) du

] (4.6)
≤ Vg(x, s) + Ex,s[Mτ∧σn

] = Vg(x, s)7



for all x ≤ s. Hen
e, letting n go to in�nity and using Fatou's lemma, we obtainthat for any stopping time τ satisfying the 
ondition (2.4), the inequalities:
Ex,s

[

Sτ −

∫ τ

0

c(Xu) du

]

≤ Ex,s

[

Vg(Xτ , Sτ ) −

∫ τ

0

c(Xu) du

]

≤ Vg(x, s) (4.7)hold for all x ≤ s. Taking in (4.7) the supremum over all stopping times τ satisfyingthe 
ondition (2.4), and then in�mum over all boundaries g, by virtue of the obviousfa
t that the fun
tion g 7→ Vg(x, s) is (stri
tly) de
reasing, we may therefore 
on
ludethat:
V∗(x, s) ≤ inf

g
Vg(x, s) = Vg∗(x, s) (4.8)for all x ≤ s, from where it is seen that one should take maximal solutions of theequations (3.10) and (3.18) as 
andidates for the optimal stopping boundary in (2.5).In order to show that the equalities in (4.7)-(4.8) are attained under τ∗ from (2.5),let us use the fa
t that the fun
tion Vg∗(x, s) from (4.2) together with the boundary

g∗(s) satisfy the system (2.7)-(2.9). In this 
ase by the stru
ture of the stoppingtime τ∗ in (2.5) and the expression (4.3) it follows that the equality:
Vg∗(Xτ∗∧σn

, Sτ∗∧σn
) −

∫ τ∗∧σn

0

c(Xu) du = Vg∗(x, s) + Mτ∗∧σn
(4.9)is satis�ed, and by virtue of the expression (4.5), we may 
on
lude that the inequal-ities:

−

∫ τ∗∧σn

0

c(Xu) du ≤ Vg∗(x, s) + Mτ∗∧σn
≤ Vg∗(Xτ∗∧σn

, Sτ∗∧σn
) −

∫ τ∗∧σn

0

c(Xu) du(4.10)hold for all x ≤ s, where (σn)n∈N is a lo
alizing sequen
e for (Mt)t≥0. Hen
e, letting
n go to in�nity in the expression (4.9) and taking into a

ount the equalities (4.7)-(4.8) as well as the property Vg∗(Xτ∗ , Sτ∗) = Sτ∗ also satis�ed, by means of theLebesgue bounded 
onvergen
e theorem we obtain the equality:

Ex,s

[

Sτ∗ −

∫ τ∗

0

c(Xu) du

]

= Vg∗(x, s) (4.11)for all x ≤ s, from where the desired assertion follows. �Remark 4.1. It 
an be easily veri�ed that in 
ase when θ > 0 and η(x) < 0,for the fun
tion V∗(x, s) from (4.1) the normal-re�e
tion 
ondition (2.12) breaksdown, and at the same time the smooth-�t 
ondition (2.11) at the boundary g∗(s) issatis�ed. This 
an be explained by the fa
t that in the given 
ase the pro
ess X 
anhit the diagonal in R
2 only by jumping, while it 
an leave the 
ontinuation region

g∗(s) < x ≤ s only 
ontinuously.Remark 4.2. On the other hand, by means of straightforward 
al
ulations, it 
anbe shown that in 
ase when θ < 0 and η(x) > 0 for the fun
tion V∗(x, s) from8



(4.1) the smooth-�t 
ondition (2.11) at the boundary g∗(s) breaks down, that 
anbe explained by the fa
t that in the given 
ase, leaving the 
ontinuation region
g∗(s) < x ≤ s the pro
ess X 
an pass through the boundary g∗(S) for the �rst timeonly by jumping. Su
h an e�e
t was earlier observed and explained in [23℄-[24℄ bysolving some other optimal stopping problems for jump pro
esses. A

ording to theresults in [1℄ we may 
on
lude that this property appears be
ause of �nite intensityof jumps and exponential distribution of jump sizes of the 
ompound Poisson pro
ess
J .Remark 4.3. Note that, at the same time, in 
ase when θ < 0 and η(x) > 0, forthe fun
tion V∗(x, s) from (4.1) the normal-re�e
tion 
ondition (2.12) is satis�ed,that 
an be explained by the fa
t that the pro
ess X 
an hit the diagonal in R

2 only
ontinuously. This 
ondition was earlier observed and explained in [5℄ and then in[22℄.5 Maximal inequalitiesLet us now 
onsider the appli
ation of the results derived above for determining thebest 
onstants in some maximal inequalities for a 
ompound Poisson pro
ess withlinear drift and exponential jumps. For this in the 
ourse of all the se
tion we assumethat the fun
tions η(x) in (2.1) and c(x) in (2.3)-(2.4) are 
onstant, from where, inparti
ular, it follows that X = (Xt)t≥0 is a stationary pro
ess with independentin
rements (a Lévy pro
ess). In this 
ase, if there exist maximal solutions of theequations (3.10) and (3.18), staying stri
tly below the diagonal in R
2, then they getthe form g∗(s) = s − h∗, so that, the optimal stopping time (2.5) has the stru
ture:

τ∗ = inf{t ≥ 0 |St − Xt ≥ h∗} (5.1)with some 
onstant h∗ > 0. Taking into a

ount these arguments let us formulatethe assertions, whi
h straightforwardly follow from Theorem 3.1.Corollary 5.1. Suppose that in (2.1) we have θ = 1 and η(x) = η < 0 for all x ∈ R.Then in 
ase when η < −1/λ2 and 0 < c < 1/λ2 as well as when −1/λ2 < η < 0and η + 1/λ2 < c < 1/λ2 the expression (3.8) takes the form:
V (x, s; g(s)) = s +

cλ2

λ2η + 1

(

x − g(s)
)

−
cλ3η

(λ2η + 1)2

(

eα(x−g(s)) − 1
) (5.2)with α = 1/(λη) + λ and for h∗ in (5.1) we get the representation:

h∗ =
λη

λ2η + 1
log

(

λ2(η − c) + 1

λ4ηc

)

, (5.3)and in 
ase when η = −1/λ2 and 0 < c < 1/λ2 (3.8) has the form:
V (x, s; g(s)) = s +

cλ3

2

(

x − g(s)
)2 (5.4)9



and for h∗ in (5.1) we have:
h∗ =

1 − cλ2

cλ3
. (5.5)Corollary 5.2. Suppose that in (2.1) we have θ = −1 and η(x) = η > 0 for all

x ∈ R. Then in 
ase when 0 < η < 1/λ2 and η < c as well as when 1/λ2 < η and
η − 1/λ2 < c < η the expression (3.17) takes the form:

V (x, s; g(s)) = s +
cλ2

λ2η − 1

(

x − g(s)
)

+
cλ

(λ2η − 1)2

(

eβ(x−g(s)) − 1
) (5.6)with β = 1/(λη) − λ and for h∗ in (5.1) we get the representation:

h∗ = −
λη

λ2η − 1
log

(

λ2η(c − η) + η

c

)

, (5.7)and in 
ase when η = 1/λ2 and 0 < c < 1/λ2 (3.17) has the form:
V (x, s; g(s)) = s + cλ2

(

x − g(s)
)

+
cλ3

2

(

x − g(s)
)2 (5.8)and for h∗ in (5.1) we have (5.5).Finally, setting x = s = 0 in (2.1)-(2.2) and underlying the dependen
e of the valuefun
tion from the parameter c, we observe that under the assumptions above theexpression (2.3) takes the form:

V∗(0, 0; c) = sup
τ

E
[

max
0≤u≤τ

Xu − cτ
]

, (5.9)from where we obtain that for any arbitrary stopping time τ of the pro
ess X thefollowing inequality is satis�ed:
E

[

max
0≤u≤τ

Xu

]

≤ V∗(0, 0; c) + cE[τ ]. (5.10)In this 
ase the following assertions hold.Example 5.1. Let the pro
ess X = (Xt)t≥0 be of the form Xt = Jt − t/λ2 for all
t ≥ 0. Then from Corollary 4.1 and the inequality (5.10) it follows that for anystopping time τ of the pro
ess X we have the expression:

E
[

max
0≤u≤τ

Xu

]

≤ inf
0<c<1/λ2

(

(1 − cλ2)2

2cλ3
+ cE[τ ]

)

, (5.11)where the in�mum is attained at c = 1/
√

λ4 + 2λ3E[τ ]. From (5.11) we may there-fore 
on
lude that for any stopping time τ the following inequality holds:
E

[

max
0≤u≤τ

Xu

]

≤

√

1 + 2E[τ ]/λ − 1

λ
. (5.12)10



Example 5.2. Let the pro
ess X = (Xt)t≥0 be of the form Xt = t/λ2 − Jt for all
t ≥ 0. Then from Corollary 4.2 and the inequality (5.10) it follows that for anystopping time τ of the pro
ess X su
h that E[τ ] > λ we have the expression:

E
[

max
0≤u≤τ

Xu

]

≤ inf
0<c<1/λ2

(

1 − c2λ4

2cλ3
+ cE[τ ]

)

, (5.13)where the in�mum is attained at c = 1/
√

2λ3E[τ ] − λ4. From (5.13) we may there-fore 
on
lude that for any stopping time τ su
h that E[τ ] > λ the following inequalityholds:
E

[

max
0≤u≤τ

Xu

]

≤

√

2E[τ ]/λ − 1

λ
. (5.14)A
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