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AbstratWe present solutions to some disounted optimal stopping problems for themaximum proess in a model driven by a Brownian motion and a ompoundPoisson proess with exponential jumps. The method of proof is based onreduing the initial problems to integro-di�erential free-boundary problemswhere the normal re�etion and smooth �t may break down and the latterthen be replaed by the ontinuous �t. The results an be interpreted aspriing perpetual Amerian lookbak options with �xed and �oating strikes ina jump-di�usion model.1 IntrodutionThe main aim of this paper is to present solutions to the disounted optimal stoppingproblems (2.4) and (5.1) for the maximum assoiated with the proess X de�ned in(2.1) that solves the stohasti di�erential equation (2.2) driven by a Brownian mo-tion and a ompound Poisson proess with exponentially distributed jumps. Theseproblems are related to the option priing theory in mathematial �nane, wherethe proess X an desribe the prie of a risky asset (e.g., a stok) on a �nanialmarket. In that ase the values (2.4) and (5.1) an be formally interpreted as fairpries of perpetual lookbak options of Amerian type with �xed and �oating strikesin a jump-di�usion market model, respetively. For a ontinuous model the prob-lems (2.4) and (5.1) were solved by Pedersen [21℄, Guo and Shepp [13℄, and Beibeland Lerhe [4℄.Observe that when K = 0 the problems (2.4) and (5.1) turn into the lassialRussian option problem introdued and expliitly solved by Shepp and Shiryaev[30℄ by means of reduing the initial problem to an optimal stopping problem for a(ontinuous) two-dimensional Markov proess and solving the latter problem usingthe smooth-�t and normal-re�etion onditions. It was further observed in [31℄that the hange-of-measure theorem allows to redue the Russian option problemto a one-dimensional optimal stopping problem that explained the simpliity of thesolution in [30℄. Building on the optimal stopping analysis of Shepp and Shiryaev[30℄-[31℄, Du�e and Harrison [7℄ derived a rational eonomi value for the Russianoption and then extended their arbitrage arguments to perpetual lookbak options.More reently, Shepp, Shiryaev and Sulem [32℄ proposed a barrier version of theRussian option where the deision about stopping should be taken before the prieproess reahes a 'dangerous' positive level. Peskir [24℄ presented a solution tothe Russian option problem in the �nite horizon ase (see also [8℄ for a numeri1



algorithm for solving the orresponding free-boundary problem and [10℄ for a studyof asymptoti behavior of the optimal stopping boundary near expiration).In the reent years, the Russian option problem in models with jumps was studiedquite extensively. Gerber, Mihaud and Shiu [12℄ and then Mordeki and Moreira[20℄ obtained losed form solutions to the perpetual Russian option problems fordi�usions with negative exponential jumps. Asmussen, Avram and Pistorius [2℄ de-rived expliit expressions for the pries of perpetual Russian options in the denselass of Lévy proesses with phase-type jumps in both diretions by reduing theinitial problem to the �rst passage time problem and solving the latter by martingalestopping and Wiener-Hopf fatorization. Avram, Kyprianou and Pistorius [3℄ stud-ied exit problems for spetrally negative Lévy proesses and applied the results tosolving optimal stopping problems assoiated with perpetual Russian and Amerianput options.In ontrast to the Russian option problem, the problem (2.4) is neessarily two-dimensional in the sense that it annot be redued to an optimal stopping prob-lem for a one-dimensional (time-homogeneous) Markov proess. Some other two-dimensional optimal stopping problems for ontinuous proesses were earlier on-sidered in [6℄ and [22℄. The main feature of the optimal stopping problems for themaximum proess in ontinuous models is that the normal-re�etion ondition atthe diagonal holds and the optimal boundary an be haraterized as a unique solu-tion of a (�rst-order) nonlinear ordinary di�erential equation (see, e.g., [6℄, [30℄-[31℄,[22℄, [21℄ and [13℄). The key point in solving optimal stopping problems for jumpproesses established in [25℄-[26℄ is that the smooth �t at the optimal boundary maybreak down and then be replaed by the ontinuous �t (see also [1℄ for neessaryand su�ient onditions for the ourrene of smooth-�t ondition and referenesto the related literature and [27℄ for an extensive overview).In the present paper we derive solutions to the problems (2.4) and (5.1) in a jump-di�usion model driven by a Brownian motion and a ompound Poisson proess withexponential jumps. Suh model was onsidered in [18℄-[19℄, [15℄-[17℄ and [11℄ wherethe optimal stopping problems related to priing Amerian all and put options andonvertible bonds were solved, respetively. We show that under some relationshipson the parameters of the model the optimal stopping boundary an be uniquelydetermined as a omponent of a two-dimensional system of (�rst-order) nonlinearordinary di�erential equations.The paper is organized as follows. In Setion 2, we formulate the optimal stop-ping problem for a two-dimensional Markov proess related to the perpetual Amer-ian �xed-strike lookbak option problem and redue it to an equivalent integro-di�erential free-boundary problem. In Setion 3, we present a solution to the free-boundary problem and derive (�rst-order) nonlinear ordinary di�erential equationsfor the optimal stopping boundary under di�erent relationships on the parameters ofthe model as well as speify the asymptoti behavior of the boundary. In Setion 4,we verify that the solution of the free-boundary problem turns out to be a solution ofthe initial optimal stopping problem. In Setion 5, we give some onluding remarks2



as well as present an expliit solution to the optimal stopping problem related tothe perpetual Amerian �oating-strike lookbak option problem. The main resultsof the paper are stated in Theorems 4.1 and 5.1.2 Formulation of the problemIn this setion we introdue the setting and notation of the two-dimensional optimalstopping problem whih is related to the perpetual Amerian �xed-strike lookbakoption problem and formulate an equivalent integro-di�erential free-boundary prob-lem.2.1. For a preise formulation of the problem let us onsider a probability spae
(Ω,F , P ) with a standard Brownian motion B = (Bt)t≥0 and a jump proess J =
(Jt)t≥0 de�ned by Jt =

∑Nt

i=1 Yi, where N = (Nt)t≥0 is a Poisson proess of theintensity λ and (Yi)i∈N is a sequene of independent random variables exponentiallydistributed with parameter 1 (B, N and (Yi)i∈N are supposed to be independent).Assume that there exists a proess X = (Xt)t≥0 given by:
Xt = x exp

((
r − σ2/2 − λθ/(1 − θ)

)
t + σ Bt + θ Jt

) (2.1)and hene solving the stohasti di�erential equation:
dXt = rXt− dt + σXt− dBt + Xt−

∫ ∞

0

(
eθy − 1

)
(µ(dt, dy)− ν(dt, dy)) (X0 = x)(2.2)where µ(dt, dy) is the measure of jumps of the proess J with the ompensator

ν(dt, dy) = λdtI(y > 0)e−ydy, and x > 0 is given and �xed. It an be assumedthat the proess X desribes a stok prie on a �nanial market, where r > 0 is theinterest rate, and σ ≥ 0 and θ < 1, θ 6= 0, are the volatilities of ontinuous and jumppart, respetively. Note that the assumption θ < 1 guarantees that the jumps of Xare integrable and that is not a restrition. With the proess X let us assoiate themaximum proess S = (St)t≥0 de�ned by:
St =

(
max
0≤u≤t

Xu

)
∨ s (2.3)for an arbitrary s ≥ x > 0. The main purpose of the present paper is to derive asolution to the optimal stopping problem for the time-homogeneous (strong) Markovproess (X, S) = (Xt, St)t≥0 given by:

V∗(x, s) = sup
τ

Ex,s

[
e−(r+δ)τ (Sτ − K)+

] (2.4)where the supremum is taken over all stopping times τ of the proess X (i.e., stoppingtimes with respet to the natural �ltration of X), and Px,s is a probability measureunder whih the (two-dimensional) proess (X, S) de�ned in (2.1)-(2.3) starts at3



(x, s) ∈ E. Here by E = {(x, s) | 0 < x ≤ s} we denote the state spae of theproess (X, S). The value (2.4) oinides with an arbitrage-free prie of a �xed-strike lookbak Amerian option with the strike prie K > 0 and the disountingrate δ > 0 (see, e.g., [34℄). Note that in the ontinuous ase σ > 0 and θ = 0 theproblem (2.4) was solved in [21℄ and [13℄. It is also seen that if σ = 0 and 0 < θ < 1with r − λθ/(1 − θ) ≥ 0, then the optimal stopping time in (2.4) is in�nite.2.2. Let us �rst determine the struture of the optimal stopping time in the problem(2.4).Applying the arguments from [6; Subsetion 3.2℄ and [22; Proposition 2.1℄ to theoptimal stopping problem (2.4) we see that it is never optimal to stop when Xt = Stfor t ≥ 0 (this fat will be also proved independently below). It follows diretly fromthe struture of (2.4) that it is never optimal to stop when St ≤ K for t ≥ 0. Inother words, this shows that all points (x, s) from the set:
C ′ = {(x, s) ∈ E | 0 < x ≤ s ≤ K} (2.5)and from the diagonal {(x, s) ∈ E | x = s} belong to the ontinuation region:
C∗ = {(x, s) ∈ E | V∗(x, s) > (s − K)+}. (2.6)Let us �x (x, s) ∈ C∗ and let τ∗ = τ∗(x, s) denote the optimal stopping time in (2.4).Then, taking some point (y, s) suh that 0 < y ≤ s, by virtue of the struture ofoptimal stopping problem (2.4) and (2.3) with (2.1) we get:

V∗(y, s) ≥ Ey,s

[
e−λτ∗(Sτ∗ − K)+

]
≥ Ex,s

[
e−λτ∗(Sτ∗ − K)+

]
= V∗(x, s) > (s − K)+.(2.7)These arguments together with the omments in [6; Subsetion 3.3℄ and [22; Sub-setion 3.3℄ as well as the assumption that V∗(x, s) is ontinuous show that thereexists a funtion g∗(s) for s > K suh that the ontinuation region (2.6) is an openset onsisting of (2.5) and of the set:

C ′′
∗ = {(x, s) ∈ E | g∗(s) < x ≤ s, s > K} (2.8)while the stopping region is the losure of the set:

D∗ = {(x, s) ∈ E | 0 < x < g∗(s), s > K}. (2.9)Let us now show that in (2.8)-(2.9) the funtion g∗(s) is inreasing on (K,∞) (thisfat will be also proved independently below). Sine in (2.4) the funtion s − K islinear in s on (K,∞), by means of standard arguments it is shown that V∗(x, s) −
(s − K) is dereasing in s on (K,∞). Hene, if for given (x, s) ∈ C ′′

∗ we take s′suh that K < s′ < s, then V∗(x, s′) − (s′ − K) ≥ V∗(x, s) − (s − K) > 0 so that
(x, s′) ∈ C ′′

∗ , and thus the desired assertion follows.Let us denote by W∗(x, s) and a∗s the value funtion and the boundary of the optimalstopping problem related to the Russian option problem. It is easily seen that in ase4



K = 0 the funtion W∗(x, s) oinides with (2.4) and (5.1), while under di�erentrelationships on the parameters of the model a∗ < 1 an be uniquely determinedby (5.11), (5.13), (5.15) and (5.17), respetively. Suppose that g∗(s) > a∗s for some
s > K. Then for any x ∈ (a∗s, g∗(s)) given and �xed we have W∗(x, s) − K >
s−K = V∗(x, s) ontraditing the obvious fat that W∗(x, s) −K ≤ V∗(x, s) for all
(x, s) ∈ E with s > K as it is learly seen from (2.4). Thus, we may onlude that
g∗(s) ≤ a∗s < s for all s > K.2.3. Standard arguments imply that in this ase the in�nitesimal operator L ofthe proess (X, S) ats on a funtion F ∈ C2,1(E) (or F ∈ C1,1(E) when σ = 0)aording to the rule:
(LF )(x, s) = (r+ζ)xFx(x, s)+

σ2

2
x2 Fxx(x, s)+

∫ ∞

0

(
F

(
xeθy, xeθy ∨s

)
−F (x, s)

)
λe−y dy(2.10)for all 0 < x < s with ζ = −λθ/(1 − θ). Using standard arguments based on thestrong Markov property it follows that V∗ ∈ C2,1(C∗ ≡ C ′ ∪C ′′

∗ ) (or V∗ ∈ C1,1(C∗ ≡
C ′ ∪ C ′′

∗ ) when σ = 0). In order to �nd analyti expressions for the unknown valuefuntion V∗(x, s) from (2.4) and the unknown boundary g∗(s) from (2.8)-(2.9) usingthe results of general theory of optimal stopping problems for Markov proesses (see,e.g., [33; Chapter III, Setion 8℄ or [27℄) we an formulate the following integro-di�erential free-boundary problem:
(LV )(x, s) = (r + δ)V (x, s) for (x, s) ∈ C ≡ C ′ ∪ C ′′ (2.11)
V (x, s)

∣∣
x=g(s)+

= s − K (ontinuous �t) (2.12)
V (x, s) = (s − K)+ for (x, s) ∈ D (2.13)
V (x, s) > (s − K)+ for (x, s) ∈ C (2.14)where C ′′ and D are de�ned as C ′′

∗ and D∗ in (2.8) and (2.9) with g(s) instead of
g∗(s), respetively, and (2.12) playing the role of instantaneous-stopping ondition issatis�ed for all s > K. Observe that the superharmoni haraterization of the valuefuntion (see [9℄ and [33℄) implies that V∗(x, s) is the smallest funtion satisfying(2.11)-(2.13) with the boundary g∗(s). Moreover, under some relationships on theparameters of the model whih are spei�ed below, the following onditions an besatis�ed or break down:

Vx(x, s)
∣∣
x=g(s)+

= 0 (smooth �t) (2.15)
Vs(x, s)

∣∣
x=s−

= 0 (normal re�etion) (2.16)for all s > K. Note that in the ase σ > 0 and θ = 0 the free-boundary problem(2.11)-(2.16) was solved in [21℄ and [13℄.2.4. In order to speify the boundary g∗(s) as a solution of the free-boundary problem(2.11)-(2.14) and (2.15)-(2.16), for further onsiderations we need to observe thatfrom (2.4) it follows that the inequalities:
0 ≤ sup

τ
Ex,s

[
e−(r+δ)τ Sτ

]
−K ≤ sup

τ
Ex,s

[
e−(r+δ)τ (Sτ −K)+

]
≤ sup

τ
Ex,s

[
e−(r+δ)τ Sτ

](2.17)5



whih are equivalent to:
0 ≤ W∗(x, s) − K ≤ V∗(x, s) ≤ W∗(x, s) (2.18)hold for all (x, s) ∈ E with s > K. Thus, setting x = s in (2.18) we get:
0 ≤

W∗(s, s)

s
−

K

s
≤

V∗(s, s)

s
≤

W∗(s, s)

s
(2.19)for all s > K so that letting s go to in�nity in (2.19) we obtain:

lim inf
s→∞

V∗(s, s)

s
= lim sup

s→∞

V∗(s, s)

s
= lim

s→∞

W∗(s, s)

s
. (2.20)3 Solution of the free-boundary problemIn this setion we obtain solutions to the free-boundary problem (2.11)-(2.16) andderive ordinary di�erential equations for the optimal boundary under di�erent rela-tionships on the parameters of the model (2.1)-(2.2).3.1. By means of straightforward alulations we redue equation (2.11) to the form:

(r + ζ)xVx(x, s) +
σ2

2
x2 Vxx(x, s) − αλxα G(x, s) = (r + δ + λ)V (x, s) (3.1)with α = 1/θ and ζ = −λθ/(1 − θ), where taking into aount onditions (2.12)-(2.13) we set:

G(x, s) = −

∫ s

x

V (z, s)
dz

zα+1
−

∫ ∞

s

V (z, z)
dz

zα+1
if α = 1/θ > 1 (3.2)

G(x, s) =

∫ x

g(s)

V (z, s)
dz

zα+1
−

s − K

αg(s)α
if α = 1/θ < 0 (3.3)for all 0 < x < g(s) and s > K. Then from (3.1) and (3.2)-(3.3) it follows that thefuntion G(x, s) solves the following (third-order) ordinary di�erential equation:

σ2

2
x3 Gxxx(x, s) +

[
σ2(α + 1) + r + ζ

]
x2 Gxx(x, s) (3.4)

+

[
(α + 1)

(
σ2α

2
+ r + ζ

)
− (r + δ + λ)

]
xGx(x, s) − αλ G(x, s) = 0for 0 < x < g(s) and s > K, whih has the following general solution:

G(x, s) = C1(s)
xβ1

β1
+ C2(s)

xβ2

β2
+ C3(s)

xβ3

β3
(3.5)6



where C1(s), C2(s) and C3(s) are some arbitrary funtions and β3 < β2 < β1 arethe real roots of the orresponding (harateristi) equation:
σ2

2
β3 +

[
σ2

(
α −

1

2

)
+ r + ζ

]
β2 +

[
α

(
σ2(α − 1)

2
+ r + ζ

)
− (r + δ + λ)

]
β − αλ = 0.(3.6)Therefore, di�erentiating both sides of the formulas (3.2)-(3.3) we get that theintegro-di�erential equation (3.1) has the general solution:

V (x, s) = C1(s) xγ1 + C2(s) xγ2 + C3(s) xγ3 (3.7)where we set γi = βi +α for i = 1, 2, 3. Further we assume that the funtions C1(s),
C2(s) and C3(s) as well as the boundary g(s) are ontinuously di�erentiable for
s > K. Observe that if σ = 0 and r+ζ < 0 then it is seen that (3.4) degenerates intoa seond-order ordinary di�erential equation, and in that ase we an set C3(s) ≡ 0in (3.5) as well as in (3.7), while the roots of equation (3.6) are expliitly given by:

βi =
r + δ + λ

2(r + ζ)
−

α

2
− (−1)i

√(
r + δ + λ

2(r + ζ)
−

α

2

)2

+
αλ

r + ζ
(3.8)for i = 1, 2.3.2. Let us �rst determine the boundary g∗(s) for the ase σ > 0 and α = 1/θ < 0.Then we have β3 < 0 < β2 < −α < 1 − α < β1 so that γ3 < α < γ2 < 0 < 1 < γ1with γi = βi +α, where βi for i = 1, 2, 3 are the roots of equation (3.6). Sine in thisase the proess X an leave the part of ontinuation region g∗(s) < x ≤ s and hitsthe diagonal {(x, s) ∈ E | x = s} only ontinuously, we may assume that both thesmooth-�t and normal-re�etion onditions (2.15) and (2.16) are satis�ed. Hene,applying onditions (3.3), (2.12) and (2.15) to the funtions (3.5) and (3.7), we getthat the following equalities hold:

C1(s)
g(s)γ1

β1

+ C2(s)
g(s)γ2

β2

+ C3(s)
g(s)γ3

β3

= −
s − K

α
(3.9)

C1(s) g(s)γ1 + C2(s) g(s)γ2 + C3(s) g(s)γ3 = s − K (3.10)
γ1C1(s) g(s)γ1 + γ2C2(s) g(s)γ2 + γ3C3(s) g(s)γ3 = 0 (3.11)for s > K. Thus, by means of straightforward alulations, from (3.9)-(3.11) weobtain that the solution of system (2.11)-(2.13)+(2.15) takes the form:

V (x, s; g(s)) =
β1γ2γ3(s − K)/α

(γ2 − γ1)(γ1 − γ3)

( x

g(s)

)γ1 (3.12)
+

β2γ1γ3(s − K)/α

(γ2 − γ1)(γ3 − γ2)

( x

g(s)

)γ2

+
β3γ1γ2(s − K)/α

(γ1 − γ3)(γ3 − γ2)

( x

g(s)

)γ37



for 0 < x < g(s) and s > K. Then applying ondition (2.16) to the funtion (3.7)we get:
C ′

1(s) sγ1 + C ′
2(s) sγ2 + C ′

3(s) sγ3 = 0 (3.13)from where using the solution of system (3.9)-(3.11) it follows that the funtion g(s)solves the following (�rst-order) ordinary di�erential equation:
g′(s) =

g(s)

γ1γ2γ3(s − K)
(3.14)

×
β1γ2γ3(γ2 − γ3)(s/g(s))γ1 − β2γ1γ3(γ1 − γ3)(s/g(s))γ2 + β3γ1γ2(γ1 − γ2)(s/g(s))γ3

β1(γ2 − γ3)(s/g(s))γ1 − β2(γ1 − γ3)(s/g(s))γ2 + β3(γ1 − γ2)(s/g(s))γ3for s > K with γi = βi + α, where βi for i = 1, 2, 3 are the roots of equation(3.6). By means of standard arguments it an be shown that the right-hand side ofequation (3.14) is positive so that the funtion g(s) is stritly inreasing on (K,∞).Let us denote h∗(s) = g∗(s)/s for all s > K and set h = lim sups→∞h∗(s) and h =
lim infs→∞h∗(s). In order to speify the solution of equation (3.14) whih oinideswith the optimal stopping boundary g∗(s), we observe that from the expression(3.12) it follows that (2.20) diretly implies:

β1γ2γ3(γ3 − γ2)h
−γ1 + β2γ1γ3(γ1 − γ3)h

−γ2

+ β3γ1γ2(γ2 − γ1)h
−γ3 (3.15)

= β1γ2γ3(γ3 − γ2)h
−γ1

+ β2γ1γ3(γ1 − γ3)h
−γ2 + β3γ1γ2(γ2 − γ1)h

−γ3

= β1γ2γ3(γ3 − γ2)a
−γ1

∗ + β2γ1γ3(γ1 − γ3)a
−γ2

∗ + β3γ1γ2(γ2 − γ1)a
−γ3

∗where a∗ is uniquely determined by (5.11) under K = 0. Then, using the fat that
h∗(s) = g∗(s)/s ≤ a∗ for s > K and thus h ≤ h ≤ a∗ < 1, from (3.15) we get that
h = h = a∗. Hene, we obtain that the optimal boundary g∗(s) should satisfy theproperty:

lim
s→∞

g∗(s)

s
= a∗ (3.16)whih gives a ondition on the in�nity for the equation (3.14). By virtue of theresults on the existene and uniqueness of solutions for �rst-order ordinary di�er-ential equations, we may therefore onlude that ondition (3.16) uniquely spei�esthe solution of equation (3.14) that orresponds to the problem (2.4). Taking intoaount the expression (3.12), we also note that from inequalities (2.18) it followsthat the optimal boundary g∗(s) satis�es the properties:

g∗(K+) = 0 and g∗(s) ∼ A∗(s − K)1/γ1 under s ↓ K (3.17)for some onstant A∗ > 0 whih an be also determined by means of ondition (3.16)above.3.3. Let us now determine the boundary g∗(s) for the ase σ = 0 and α = 1/θ < 0.Then we have 0 < β2 < −α < 1 − α < β1 so that α < γ2 < 0 < 1 < γ1 with
γi = βi +α, where βi for i = 1, 2 are given by (3.6). In this ase, applying onditions8



(3.3) and (2.12) to the funtions (3.5) and (3.7) with C3(s) ≡ 0, we get that thefollowing equalities hold:
C1(s)

g(s)γ1

β1

+ C2(s)
g(s)γ2

β2

= −
s − K

α
(3.18)

C1(s) g(s)γ1 + C2(s) g(s)γ2 = s − K (3.19)for s > K. Thus, by means of straightforward alulations, from (3.18)-(3.19) weobtain that the solution of system (2.11)-(2.13) takes the form:
V (x, s; g(s)) =

β1γ2(s − K)

α(γ1 − γ2)

( x

g(s)

)γ1

−
β2γ1(s − K)

α(γ1 − γ2)

( x

g(s)

)γ2 (3.20)for 0 < x < g(s) and s > K. Sine in this ase r + ζ > 0 so that the proess Xhits the diagonal {(x, s) ∈ E | x = s} only ontinuously, we may assume that thenormal-re�etion ondition (2.16) holds. Hene, applying ondition (2.16) to thefuntion (3.7) with C3(s) ≡ 0, we get:
C ′

1(s) sγ1 + C ′
2(s) sγ2 = 0 (3.21)from where using the solution of system (3.18)-(3.19) it follows that the funtion

g(s) solves the di�erential equation:
g′(s) =

g(s)

γ1γ2(s − K)

β1γ2(s/g(s))γ1 − β2γ1(s/g(s))γ2

β1(s/g(s))γ1 − β2(s/g(s))γ2

(3.22)for s > K with γi = βi + α, where βi for i = 1, 2 are given by (3.8). By means ofstandard arguments it an be shown that the right-hand side of equation (3.22) ispositive so that the funtion g(s) is stritly inreasing on (K,∞). Note that in thisase the smooth-�t ondition (2.15) fails to hold, that an be explained by the fatthat leaving the part of ontinuation region g∗(s) < x ≤ s the proess X an passthrough the boundary g∗(s) only by jumping. Suh an e�et was earlier observedin [25℄-[26℄ by solving some other optimal stopping problems for jump proesses.Aording to the results in [1℄ we may onlude that this property appears beause of�nite intensity of jumps and exponential distribution of jump sizes of the ompoundPoisson proess J .Let us reall that h = lim sups→∞h∗(s) and h = lim infs→∞h∗(s) with h∗(s) =
g∗(s)/s for all s > K. In order to speify the solution of equation (3.22) whih oin-ides with the optimal stopping boundary g∗(s), we observe that from the expression(3.20) it follows that (2.20) diretly implies:

β1γ2h
−γ1

− β2γ1h
−γ2 = β1γ2h

−γ1 − β2γ1h
−γ2

= β1γ2a
−γ1

∗ − β2γ1a
−γ2

∗ (3.23)where a∗ is uniquely determined by (5.13) under K = 0. Then, using the fat that
h∗(s) = g∗(s)/s ≤ a∗ for s > K and thus h ≤ h ≤ a∗ < 1, from (3.23) we getthat h = h = a∗. Hene, we obtain that the optimal boundary g∗(s) should satisfythe property (3.16) whih gives a ondition on the in�nity for the equation (3.22).9



By virtue of the results on the existene and uniqueness of solutions for �rst-orderordinary di�erential equations, we may therefore onlude that ondition (3.16)uniquely spei�es the solution of equation (3.22) that orresponds to the problem(2.4). Taking into aount the expression (3.20), we also note that from inequalities(2.18) it follows that the optimal boundary g∗(s) satis�es the properties (3.17) forsome onstant A∗ > 0 whih an be also determined by means of ondition (3.16)above.3.4. Let us now determine the optimal boundary g∗(s) for the ase σ > 0 and
α = 1/θ > 1. Then we have β3 < −α < 1 − α < β2 < 0 < β1 so that γ3 < 0 <
1 < γ2 < α < γ1 with γi = βi + α, where βi for i = 1, 2, 3 are the roots of equation(3.6). By virtue of the same arguments as mentioned above, in this ase we may alsoassume that both the smooth-�t and normal-re�etion onditions (2.15) and (2.16)hold. Hene, applying onditions (3.3), (2.12) and (2.15) to the funtions (3.5) and(3.7), respetively, we get that the following equalities hold:

C1(s)
sγ1

β1
+ C2(s)

sγ2

β2
+ C3(s)

sγ3

β3
= f(s)sα(s − K) (3.24)

C1(s) g(s)γ1 + C2(s) g(s)γ2 + C3(s) g(s)γ3 = s − K (3.25)
γ1C1(s) g(s)γ1 + γ2C2(s) g(s)γ2 + γ3C3(s) g(s)γ3 = 0 (3.26)where we set:

f(s) = −
1

s − K

∫ ∞

s

V (z, z)
dz

zα+1
(3.27)for s > K. Thus, by means of straightforward alulations, from (3.24)-(3.26) weobtain that the solution of system (2.11)-(2.13)+(2.15) takes the form:

V (x, s; g(s)) (3.28)
=

β1(s − K)[β2β3(γ2 − γ3)s
αf(s) + β3γ3(s/g(s))γ2 − β2γ2(s/g(s))γ3 ]

β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3

( x

g(s)

)γ1

+
β2(s − K)[β1β3(γ3 − γ1)s

αf(s) − β3γ3(s/g(s))γ1 + β1γ1(s/g(s))γ3 ]

β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3

( x

g(s)

)γ2

+
β3(s − K)[β1β2(γ1 − γ2)s

αf(s) + β2γ2(s/g(s))γ1 − β1γ1(s/g(s))γ2 ]

β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3

( x

g(s)

)γ3for 0 < x < g(s) and s > K. Inserting the expressions (3.5) and (3.7) into the for-mula (3.2), letting x = s and di�erentiating the both sides of the obtained equality,we get:
C ′

1(s)
sγ1

β1
+ C ′

2(s)
sγ2

β2
+ C ′

3(s)
sγ3

β3
= 0 (3.29)from where using the solution of system (3.24)-(3.26) it follows that the funtion

10



f(s) solves the di�erential equation:
f ′(s) = −

f(s)

s − K
(3.30)

+
β1β2β3f(s)[(γ2 − γ3)(s/g(s))γ1 − (γ1 − γ3)(s/g(s))γ2 + (γ1 − γ2)(s/g(s))γ3 ]

s[β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3 ]

+
β3γ3(γ1 − γ2)(s/g(s))γ1+γ2 − β2γ2(γ1 − γ3)(s/g(s))γ1+γ3 + β1γ1(γ2 − γ3)(s/g(s))γ2+γ3

sα+1[β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3 ]for s > K. Applying the ondition (2.16) to the funtion (3.7), we get that theequality (3.13) holds, from where it follows that the funtion g(s) solves the di�er-ential equation:
g′(s) =

g(s)

s − K
(3.31)

×
β3γ3(γ1 − γ2)(s/g(s))γ1+γ2 − β2γ2(γ1 − γ3)(s/g(s))γ1+γ3 + β1γ1(γ2 − γ3)(s/g(s))γ2+γ3

β3(γ1 − γ2)(s/g(s))γ1+γ2 − β2(γ1 − γ3)(s/g(s))γ1+γ3 + β1(γ2 − γ3)(s/g(s))γ2+γ3

×
β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3

η2η3(γ2 − γ3)(s/g(s))γ1 − η1η3(γ1 − γ3)(s/g(s))γ2 + η1η2(γ1 − γ2)(s/g(s))γ3 − ρf(s)sαfor s > K with ηi = βiγi for i = 1, 2, 3, and ρ = β1β2β3(γ1 − γ2)(γ1 − γ3)(γ2 − γ3).In order to speify the solution of equation (3.30) let us de�ne the funtion:
f∗(s) = −

1

s − K

∫ ∞

s

V∗(z, z)
dz

zα+1
(3.32)for all s > K. Then by virtue of the inequalities (2.18), using the expression (5.14)we obtain the funtion (3.32) is well-de�ned and should satisfy the property:

lim
s→∞

f∗(s) sα = γ2(γ3 − 1)/[(γ2 − γ1)(β1(γ3 − 1)aγ1

∗ − β3(γ1 − 1)aγ3

∗ )] (3.33)
+ γ3(γ1 − 1)/[(γ3 − γ2)(β2(γ1 − 1)aγ2

∗ − β1(γ2 − 1)aγ1

∗ )]

+ γ1(γ2 − 1)/[(γ1 − γ3)(β3(γ2 − 1)aγ3

∗ − β2(γ3 − 1)aγ2

∗ )]where a∗ is uniquely determined by (5.15) under K = 0. From (3.27) and (3.32) ittherefore follows that (3.33) gives a ondition on the in�nity for the equation (3.30).Let us reall that h = lim sups→∞h∗(s) and h = lim infs→∞h∗(s) with h∗(s) =
g∗(s)/s for all s > K. In order to speify the solution of equation (3.31) whihoinides with the optimal stopping boundary g∗(s), we observe that from the ex-pressions (3.28) and (3.33) it follows that (2.20) diretly implies:

(γ2 − γ3)h
−γ1

+ (γ3 − γ1)h
−γ2 + (γ1 − γ2)h

−γ3

β2β3(γ2 − γ3)h
−γ1 − β1β3(γ1 − γ3)h

−γ2 + β1β2(γ1 − γ2)h
−γ3

(3.34)
=

(γ2 − γ3)h
−γ1 + (γ3 − γ1)h

−γ2

+ (γ1 − γ2)h
−γ3

β2β3(γ2 − γ3)h
−γ1

− β1β3(γ1 − γ3)h
−γ2

+ β1β2(γ1 − γ2)h
−γ3

=
(γ2 − γ3)a

−γ1

∗ + (γ3 − γ1)a
−γ2

∗ + (γ1 − γ2)a
−γ3

∗

β2β3(γ2 − γ3)a
−γ1

∗ − β1β3(γ1 − γ3)a
−γ2

∗ + β1β2(γ1 − γ2)a
−γ3

∗

.11



Then, using the fat that h∗(s) = g∗(s)/s ≤ a∗ for s > K and thus h ≤ h ≤ a∗ < 1,from (3.34) we get that h = h = a∗. Hene, we obtain that the optimal boundary
g∗(s) should satisfy the property (3.16) whih gives a ondition on the in�nity forthe equation (3.31). By virtue of the results on the existene and uniqueness ofsolutions for systems of �rst-order ordinary di�erential equations, we may thereforeonlude that onditions (3.33) and (3.16) uniquely spei�es the solution of system(3.30)+(3.31) that orresponds to the problem (2.4). Taking into aount the ex-pression (3.28), we also note that from inequalities (2.18) it follows that the optimalboundary g∗(s) satis�es the properties (3.17) for some onstant A∗ > 0 whih anbe also determined by means of the ondition (3.16) above.3.5. Let us �nally determine the boundary g∗(s) for the ase σ = 0 and α = 1/θ > 1with r + ζ = r − λθ/(1 − θ) < 0. Then we have β2 < −α < 1 − α < β1 < 0 so that
γ2 < 0 < 1 < γ1 with γi = βi + α, where βi for i = 1, 2 are given by (3.6). Sinein this ase the proess X an leave the ontinuation region g∗(s) < x ≤ s onlyontinuously, we may assume that the smooth-�t ondition (2.15) holds. Hene,applying onditions (2.12) and (2.15) to the funtion (3.7), we get that the followingequalities hold:

C1(s) g(s)γ1 + C2(s) g(s)γ2 = s − K (3.35)
γ1C1(s) g(s)γ1 + γ2C2(s) g(s)γ2 = 0 (3.36)for s > K. Thus, by means of straightforward alulations, from (3.35)-(3.36) weobtain that the solution of system (2.11)-(2.13)+(2.15) takes the form:

V (x, s; g(s)) =
γ2(s − K)

γ2 − γ1

( x

g(s)

)γ1

−
γ1(s − K)

γ2 − γ1

( x

g(s)

)γ2 (3.37)for 0 < x < g(s) and s > K. Inserting the expressions (3.5) and (3.7) with C3(s) ≡ 0into the formula (3.2), letting x = s and di�erentiating the both sides of the obtainedequality, we get:
C ′

1(s)
sγ1

β1
+ C ′

2(s)
sγ2

β2
= 0 (3.38)from where using the solution of system (3.35)-(3.36) it follows that the funtion

g(s) satis�es the di�erential equation:
g′(s) =

g(s)

γ1γ2(s − K)

β2γ2(s/g(s))γ1 − β1γ1(s/g(s))γ2

β2(s/g(s))γ1 − β1(s/g(s))γ2

(3.39)for s > K with γi = βi + α, where βi for i = 1, 2 are given by (3.8). By meansof standard arguments it an be shown that the right-hand side of equation (3.39)is positive so that the funtion g(s) is stritly inreasing on (K,∞). Note that inthis ase the normal-re�etion ondition (2.16) fails to hold, that an be explainedby the fat that the proess X an hit the diagonal {(x, s) ∈ E | x = s} only byjumping. 12



Let us reall that h = lim sups→∞h∗(s) and h = lim infs→∞h∗(s) with h∗(s) =
g∗(s)/s for all s > K. In order to speify the solution of equation (3.39) whih oin-ides with the optimal stopping boundary g∗(s), we observe that from the expression(3.37) it follows that (2.20) diretly implies:

γ2h
−γ1

− γ1h
−γ2 = γ2h

−γ1 − γ1h
−γ2

= γ2a
−γ1

∗ − γ1a
−γ2

∗ (3.40)

where a∗ is uniquely determined by (5.17) under K = 0. Then, using the fat that
h∗(s) = g∗(s)/s ≤ a∗ for s > K and thus h ≤ h ≤ a∗ < 1, from (3.40) we getthat h = h = a∗. Hene, we obtain that the optimal boundary g∗(s) should satisfythe property (3.16) whih gives a ondition on the in�nity for the equation (3.39).By virtue of the results on the existene and uniqueness of solutions for �rst-orderordinary di�erential equations, we may therefore onlude that ondition (3.16)uniquely spei�es the solution of equation (3.39) that orresponds to the problem(2.4). Taking into aount the expression (3.37), we also note that from inequalities(2.18) it follows that the optimal boundary g∗(s) satis�es the properties (3.17) forsome onstant A∗ > 0 whih an be also determined by means of the ondition(3.16) above.3.6. Observe that the arguments above show that if we start at the point (x, s) ∈ C ′then it is easily seen that the proess (X, S) an be stopped optimally after it passes13



through the point (K, K). Thus, using standard arguments based on the strongMarkov property it follows that:
V∗(x, s) = U(x; K) V∗(K, K) (3.41)for all (x, s) ∈ C ′ with V∗(K, K) = lims↓K V∗(K, s), where we set:

U(x; K) = Ex

[
e−(r+δ)σ∗

] (3.42)and
σ∗ = inf{t ≥ 0 | Xt ≥ K}. (3.43)Here Ex denotes the expetation under the assumption that X0 = x for some 0 <

x ≤ K.By means of straightforward alulations based on solving the orresponding bound-ary value problem (see also [2℄-[3℄ and [17℄) it follows that when α = 1/θ < 0 holds,we have:
U(x; K) =

( x

K

)γ1 (3.44)with γ1 = β1 + α, where if σ > 0 then β1 is the largest root of equation (3.6), whileif σ = 0 then β1 is given by (3.8). It also follows that when α = 1/θ > 1 holds, thenwe have:
U(x; K) =

β1γ2

α(γ1 − γ2)

( x

K

)γ1

−
β2γ1

α(γ1 − γ2)

( x

K

)γ2 (3.45)with γi = βi + α, where if σ > 0 then βi for i = 1, 2 are the two largest roots ofequation (3.6), while if σ = 0 and r + ζ = r− λθ/(1− θ) < 0 then βi for i = 1, 2 aregiven by (3.8).4 Main result and proofIn this setion using the fats proved above we formulate and prove the main resultof the paper.Theorem 4.1. Let the proess (X, S) be de�ned in (2.1)-(2.3). Then the valuefuntion of the problem (2.4) takes the expression:
V∗(x, s) =





V (x, s; g∗(s)), if g∗(s) < x < s and s > K

U(x; K)V∗(K, K), if 0 < x ≤ s ≤ K

s − K, if 0 < x ≤ g∗(s) and s > K

(4.1)[with V∗(K, K) = lims↓K V∗(K, s)℄ and the optimal stopping time is expliitly givenby:
τ∗ = inf{t ≥ 0 |Xt ≤ g∗(St)} (4.2)where the funtions V (x, s; g(s)) and U(x; K) as well as the inreasing boundary

g∗(s) ≤ a∗s < s for s > K satisfying g∗(K+) = 0 and g∗(s) ∼ A∗(s − K)1/γ under
s ↓ K [see Figure 1 above℄ are spei�ed as follows:14



(i): if σ > 0 and θ < 0 then V (x, s; g(s)) is given by (3.12), U(x; K) is given by(3.44), and g∗(s) is uniquely determined from the di�erential equation (3.14) andthe ondition (3.16), where γi = βi + 1/θ and βi for i = 1, 2, 3 are the roots ofequation (3.6), while a∗ is found from equation (5.11) under K = 0;(ii): if σ = 0 and θ < 0 then V (x, s; g(s)) is given by (3.20), U(x; K) is given by(3.44), and g∗(s) is uniquely determined from the di�erential equation (3.22) andthe ondition (3.16), where γi = βi +1/θ and βi for i = 1, 2 are given by (3.8), while
a∗ is found from equation (5.13) under K = 0;(iii): if σ > 0 and 0 < θ < 1 then V (x, s; g(s)) is given by (3.28), U(x; K) is givenby (3.45), and g∗(s) is uniquely determined from the system of di�erential equations(3.30)+(3.31) and the onditions (3.33)+(3.16), where γi = βi + 1/θ and βi for
i = 1, 2, 3 are the roots of equation (3.6), while a∗ is found from equation (5.15)under K = 0;(iv): if σ = 0 and 0 < θ < 1 with r − λθ/(1 − θ) < 0 then V (x, s; g(s)) is givenby (3.37), U(x; K) is given by (3.45), and g∗(s) is uniquely determined from thedi�erential equation (3.39) and the ondition (3.16), where γi = βi + 1/θ and βi for
i = 1, 2 are given by (3.8), while a∗ is found from equation (5.17) under K = 0.Proof. In order to verify the assertions stated above, it remains us to show that thefuntion (4.1) oinides with the value funtion (2.4) and the stopping time τ∗ from(4.2) with the boundary g∗(s) spei�ed above is optimal. For this, let us denoteby V (x, s) the right-hand side of the expression (4.1). In this ase, by means ofstraightforward alulations and the assumptions above it follows that the funtion
V (x, s) solves the system (2.11)-(2.13), and ondition (2.15) is satis�ed when either
σ > 0 or r − λθ/(1 − θ) < 0 holds, while ondition (2.16) is satis�ed when either
σ > 0 or θ < 0 holds. Then taking into aount the fat that the boundary g∗(s)is assumed to be ontinuously di�erentiable for s > K and applying the hange-of-variable formula from [23; Theorem 3.1℄ to e−(r+δ)tV (Xt, St), we obtain:

e−(r+δ)t V (Xt, St) = V (x, s) (4.3)
+

∫ t

0

e−(r+δ)u (LV − (r + δ)V )(Xu, Su)I(Xu 6= g∗(Su)) du

+

∫ t

0

e−(r+δ)u Vs(Xu−, Su−) dSu −
∑

0<u≤t

e−(r+δ)u Vs(Xu−, Su−) ∆Su + Mtwhere the proess (Mt)t≥0 de�ned by:
Mt =

∫ t

0
e−(r+δ)u Vx(Xu−, Su−)σXu− dBu (4.4)

+

∫ t

0

∫ ∞

0
e−(r+δ)u

(
V

(
Xu−eθy,Xu−eθy ∨ Su−

)
− V (Xu−, Su−)

)
(µ(du, dy) − ν(du, dy))is a loal martingale under Px,s. Observe that when either σ > 0 or 0 < θ < 1, thetime spent by the proess X at the diagonal {(x, s) ∈ E | 0 < x ≤ s} is of Lebesgue15



measure zero that allows to extend (LV − (r+δ)V )(x, s) arbitrarily to x = s. Wheneither σ > 0 or θ < 0, the time spent by the proess X at the boundary g∗(S) isof Lebesgue measure zero that allows to extend (LV − (r + δ)V )(x, s) to x = g∗(s)and set the indiator in the formula (4.3) to one. Note that when either σ > 0 or
θ < 0, the proess S inreases only ontinuously, and hene in (4.3) the sum withrespet to ∆Su is zero and the same is the integral with respet to dSu, sine at thediagonal {(x, s) ∈ E | x = s} we assume (2.16). When σ = 0 and 0 < θ < 1, theproess S inreases only by jumping, and thus in (4.3) the integral with respet to
dSu is ompensated by the sum with respet to ∆Su.By virtue of the arguments from the previous setion we may onlude that (LV −
(r + δ)V )(x, s) ≤ 0 for all (x, s) ∈ E. Moreover, by means of straightforwardalulations it an be shown that the property (2.14) also holds that together with(2.12)-(2.13) yields V (x, s) ≥ (s−K)+ for all (x, s) ∈ E. From the expression (4.3)it therefore follows that the inequalities:

e−(r+δ)τ (Sτ − K)+ ≤ e−(r+δ)τ V (Xτ , Sτ ) ≤ V (x, s) + Mτ (4.5)hold for any �nite stopping time τ of the proess X.Let (σn)n∈N be an arbitrary loalizing sequene of stopping times for the proess
(Mt)t≥0. Then taking in (4.5) expetation with respet to Px,s, by means of theoptional sampling theorem we get:

Ex,s

[
e−(r+δ)(τ∧σn) (Sτ∧σn

− K)+
]
≤ Ex,s

[
e−(r+δ)(τ∧σn) V (Xτ∧σn

, Sτ∧σn
)
] (4.6)

≤ V (x, s) + Ex,s

[
Mτ∧σn

]
= V (x, s)for all (x, s) ∈ E. Hene, letting n go to in�nity and using Fatou's lemma, we obtainthat for any �nite stopping time τ the inequalities:

Ex,s

[
e−(r+δ)τ (Sτ − K)+

]
≤ Ex,s

[
e−(r+δ)τ V (Xτ , Sτ )

]
≤ V (x, s) (4.7)are satis�ed for all (x, s) ∈ E.By virtue of the fat that the funtion V (x, s) together with the boundary g∗(s)satisfy the system (2.11)-(2.14), by the struture of stopping time τ∗ in (4.2) andthe expression (4.3) it follows that the equality:

e−(r+δ)(τ∗∧σn) V (Xτ∗∧σn
, Sτ∗∧σn

) = V (x, s) + Mτ∗∧σn
(4.8)holds. Then, using the expression (4.5), by virtue of the fat that the funtion

V (x, s) is inreasing, we may onlude that the inequalities:
−V (x, s) ≤ Mτ∗∧σn

≤ V (g∗(Sτ∗∧σn
), Sτ∗∧σn

) − V (x, s) (4.9)are satis�ed for all (x, s) ∈ E, where (σn)n∈N is a loalizing sequene for (Mt)t≥0.Taking into aount onditions (3.16) and (3.33), from the struture of the funtions(3.12), (3.20), (3.28) and (3.37) it follows that:
V (g∗(St), St) ≤ K ′ St (4.10)16



for some K ′ > 0. Hene, letting n go to in�nity in the expression (4.8) and usingthe onditions (2.12)-(2.13) as well as the property:
Ex,s

[
sup
t≥0

e−(r+δ)t St

]
= Ex,s

[
sup
t≥0

e−(r+δ)t Xt

]
< ∞ (4.11)(the latter an be proved by means of the same arguments as in [31℄ and using thefat that the proesses B and J are independent and the jumps of J are integrable),by means of the Lebesgue dominated onvergene theorem we obtain the equality:

Ex,s

[
e−(r+δ)τ∗ (Sτ∗ − K)+

]
= V (x, s) (4.12)for all (x, s) ∈ E, from where the desired assertion follows diretly. �5 ConlusionsIn this setion we give some onluding remarks and present an expliit solution tothe optimal stopping problem whih is related to the perpetual Amerian �xed-strikelookbak option problem.5.1. We have onsidered the perpetual �xed-strike lookbak Amerian option op-timal stopping problem in a jump-di�usion model. In order to be able to derive(�rst-order) nonlinear di�erential equations for the optimal boundary that sepa-rates the ontinuation and stopping regions, we have let the jumps of the drivingompound Poisson proess be exponentially distributed. It was shown that not onlythe smooth-�t ondition at the optimal boundary, but also the normal-re�etionondition at the diagonal may break down beause of the ourrene of jumps inthe model. We have seen that under some relationships on the parameters of themodel the optimal boundary an be found as a omponent of the solution of a two-dimensional system of ordinary di�erential equations that shows the di�erene ofthe jump-di�usion ase from the ontinuous ase. We have also derived speial on-ditions that speify in the family of solutions of the system of nonlinear di�erentialequations the unique solution that orresponds to the initial optimal stopping prob-lem. The existene and uniqueness of suh a solution an be obtained by standardmethods of �rst-order ordinary di�erential equations.In the rest of the paper we derive a solution to the �oating-strike lookbak Amerianoption problem in the jumps-di�usion model (2.1)-(2.3). In ontrast to the �xed-strike ase, by means of the hange-of-measure theorem, the related two-dimensionaloptimal stopping problem an be redued to an optimal stopping problem for a one-dimensional strong Markov proess (St/Xt)t≥0 that explains the simplisity of thestruture of the solution in (5.18)-(5.19) (see [31℄ and [4℄).5.2. Let us now onsider the following optimal stopping problem:

Ṽ∗(x, s) = sup
τ

Ex,s

[
e−(r+δ)τ (Sτ − KXτ )

+
] (5.1)17



where the supremum is taken over all stopping times τ of the proess X. The value(2.4) oinides with an arbitrage-free prie of a �oating-strike lookbak Amerianoption (or 'partial lookbak' as it is alled in [5℄) with K > 0 and the disountingrate δ > 0. Note that in the ontinuous ase σ > 0 and θ = 0 the problem (5.1) wassolved in [4℄. It is also seen that if σ = 0 and 0 < θ < 1 with r − λθ/(1 − θ) ≥ 0,then the optimal stopping time in (5.1) is in�nite in ase K < 1 and equals zero inase K ≥ 1.Using the same arguments as in [4℄ it an be shown that the ontinuation region forthe problem (5.1) is an open set of the form:
C̃∗ = {(x, s) ∈ E | b∗s < x ≤ s} (5.2)while the stopping region is the losure of the set:
D̃∗ = {(x, s) ∈ E | 0 < x < b∗s}. (5.3)From (5.1) it is easily seen that b∗ ≤ 1/K in (5.2)-(5.3).In order to �nd analyti expressions for the unknown value funtion Ṽ∗(x, s) from(5.1) and the unknown boundary b∗s from (5.2)-(5.3), we an formulate the followingintegro-di�erential free-boundary problem:

(LṼ )(x, s) = (r + δ)Ṽ (x, s) for (x, s) ∈ C̃ (5.4)
Ṽ (x, s)

∣∣
x=bs+

= s(1 − Kb) (ontinuous �t) (5.5)
Ṽ (x, s) = (s − Kx)+ for (x, s) ∈ D̃ (5.6)
Ṽ (x, s) > (s − Kx)+ for (x, s) ∈ C̃ (5.7)where C̃ and D̃ are de�ned as C̃∗ and D̃∗ in (5.2) and (5.3) with b instead of

b∗, respetively, and (5.5) playing the role of instantaneous-stopping ondition issatis�ed for all s > 0. Moreover, under some relations on the parameters of themodel whih are spei�ed below, the following onditions an be satis�ed or breakdown:
Ṽx(x, s)

∣∣
x=bs+

= −K (smooth �t) (5.8)
Ṽs(x, s)

∣∣
x=s−

= 0 (normal re�etion) (5.9)for all s > 0. Note that in the ase σ > 0 and θ = 0 the free-boundary problem(5.4)-(5.9) was solved in [4℄.Following the shema of arguments from the previous setion, by means of straight-forward alulations it an be shown that in ase σ > 0 and α = 1/θ < 0 the solution
18



of system (5.4)-(5.7)+(5.8) takes the form:
Ṽ (x, s; bs) =

β1[(1 − α)γ2γ3 + α(γ2 − 1)(γ3 − 1)Kb]s

α(1 − α)(γ2 − γ1)(γ1 − γ3)

( x

bs

)γ1 (5.10)
+

β2[(1 − α)γ1γ3 + α(γ1 − 1)(γ3 − 1)Kb]s

α(1 − α)(γ2 − γ1)(γ3 − γ2)

( x

bs

)γ2

+
β3[(1 − α)γ1γ2 + α(γ1 − 1)(γ2 − 1)Kb]s

α(1 − α)(γ1 − γ3)(γ3 − γ2)

( x

bs

)γ3and from ondition (5.9) it follows that b solves the equation:
β1(γ1 − 1)[(1 − α)γ2γ3 + α(γ2 − 1)(γ3 − 1)Kb]

(γ2 − γ1)(γ1 − γ3)bγ1

(5.11)
+

β2(γ2 − 1)[(1 − α)γ1γ3 + α(γ1 − 1)(γ3 − 1)Kb]

(γ2 − γ1)(γ3 − γ2)bγ2

=
β3(γ3 − 1)[(1 − α)γ1γ2 + α(γ1 − 1)(γ2 − 1)Kb]

(γ3 − γ1)(γ3 − γ2)bγ3

;in ase σ = 0 and α = 1/θ < 0 the solution of system (5.4)-(5.7) takes the form:
Ṽ (x, s; bs) =

β1[(1 − α)γ2 + α(γ2 − 1)Kb]s

α(1 − α)(γ1 − γ2)

( x

bs

)γ1

−
β2[(1 − α)γ1 + α(γ1 − 1)Kb]s

α(1 − α)(γ1 − γ2)

( x

bs

)γ2(5.12)and from ondition (5.9) it follows that b solves the equation:
bγ1−γ2 =

β2(γ2 − 1)

β1(γ1 − 1)

(1 − α)γ1 + α(γ1 − 1)Kb

(1 − α)γ2 + α(γ2 − 1)Kb
; (5.13)in ase σ > 0 and α = 1/θ > 1 the solution of system (5.4)-(5.7)+(5.9) takes theform:

Ṽ (x, s; bs) =
β1(γ3 − 1)[γ2 − (γ2 − 1)Kb]bγ1s

(γ2 − γ1)[β1(γ3 − 1)bγ1 − β3(γ1 − 1)bγ3 ]

( x

bs

)γ1 (5.14)
+

β2(γ1 − 1)[γ3 − (γ3 − 1)Kb]bγ2s

(γ3 − γ2)[β2(γ1 − 1)bγ2 − β1(γ2 − 1)bγ1 ]

( x

bs

)γ2

+
β3(γ2 − 1)[γ1 − (γ1 − 1)Kb]bγ3s

(γ1 − γ3)[β3(γ2 − 1)bγ3 − β2(γ3 − 1)bγ2 ]

( x

bs

)γ3and from ondition (5.8) it follows that b solves the equation:
β1(γ1 − 1)(γ3 − 1)[γ2 − (γ2 − 1)Kb]

(γ2 − γ1)[β1(γ3 − 1)bγ1 − β3(γ1 − 1)bγ3 ]
(5.15)

+
β2(γ1 − 1)(γ2 − 1)[γ3 − (γ3 − 1)Kb]

(γ3 − γ2)[β2(γ1 − 1)bγ2 − β1(γ2 − 1)bγ1 ]

=
β3(γ2 − 1)(γ3 − 1)[γ1 − (γ1 − 1)Kb]

(γ3 − γ1)[β3(γ2 − 1)bγ3 − β2(γ3 − 1)bγ2 ]
;19



while in ase σ = 0 and α = 1/θ > 1 with r + ζ = r − λθ/(1 − θ) < 0 the solutionof system (5.4)-(5.7) takes the form:
Ṽ (x, s; bs) =

[γ2 − (γ2 − 1)Kb]s

γ2 − γ1

( x

bs

)γ1

−
[γ1 − (γ1 − 1)Kb]s

γ2 − γ1

( x

bs

)γ2 (5.16)and from ondition (5.8) it follows that b solves the equation:
bγ1−γ2 =

β2

β1

γ2(γ1 − 1) + [γ1 − γ2(γ1 − 1)]Kb

γ1(γ2 − 1) + [γ2 − γ1(γ2 − 1)]Kb
. (5.17)Summarizing the fats proved above we formulate the following assertion.Theorem 5.1. Let the proess (X, S) be de�ned in (2.1)-(2.3). Then the valuefuntion of the problem (5.1) takes the expression:

Ṽ∗(x, s) =

{
Ṽ (x, s; b∗s), if b∗s < x < s

s − Kx, if 0 < x ≤ b∗s
(5.18)and the optimal stopping time is expliitly given by:

τ̃∗ = inf{t ≥ 0 | Xt ≤ b∗St} (5.19)where the funtion Ṽ (x, s; bs) and the boundary b∗s ≤ s/K for s > 0 are spei�edas follows:(i): if σ > 0 and θ < 0 then Ṽ (x, s; bs) is given by (5.10) and b∗ is uniquelydetermined from equation (5.11), where γi = βi + 1/θ and βi for i = 1, 2, 3 are theroots of equation (3.6);(ii): if σ = 0 and θ < 0 then Ṽ (x, s; bs) is given by (5.12) and b∗ is uniquelydetermined from equation (5.13), where γi = βi + 1/θ and βi for i = 1, 2 are givenby (3.8);(iii): if σ > 0 and 0 < θ < 1 then Ṽ (x, s; bs) is given by (5.14) and b∗ is uniquelydetermined from equation (5.15), where γi = βi + 1/θ and βi for i = 1, 2, 3 are theroots of equation (3.6);(iv): if σ = 0 and 0 < θ < 1 with r − λθ/(1 − θ) < 0 then Ṽ (x, s; bs) is given by(5.16) and b∗ is uniquely determined from equation (5.17), where γi = βi + 1/θ and
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