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Abstract

We present solutions to some discounted optimal stopping problems for the
maximum process in a model driven by a Brownian motion and a compound
Poisson process with exponential jumps. The method of proof is based on
reducing the initial problems to integro-differential free-boundary problems
where the normal reflection and smooth fit may break down and the latter
then be replaced by the continuous fit. The results can be interpreted as
pricing perpetual American lookback options with fixed and floating strikes in
a jump-diffusion model.

1 Introduction

The main aim of this paper is to present solutions to the discounted optimal stopping
problems (2.4) and (5.1) for the maximum associated with the process X defined in
(2.1) that solves the stochastic differential equation (2.2) driven by a Brownian mo-
tion and a compound Poisson process with exponentially distributed jumps. These
problems are related to the option pricing theory in mathematical finance, where
the process X can describe the price of a risky asset (e.g., a stock) on a financial
market. In that case the values (2.4) and (5.1) can be formally interpreted as fair
prices of perpetual lookback options of American type with fized and floating strikes
in a jump-diffusion market model, respectively. For a continuous model the prob-
lems (2.4) and (5.1) were solved by Pedersen [21]|, Guo and Shepp [13], and Beibel
and Lerche [4].

Observe that when K = 0 the problems (2.4) and (5.1) turn into the classical
Russian option problem introduced and explicitly solved by Shepp and Shiryaev
[30] by means of reducing the initial problem to an optimal stopping problem for a
(continuous) two-dimensional Markov process and solving the latter problem using
the smooth-fit and normal-reflection conditions. It was further observed in [31]
that the change-of-measure theorem allows to reduce the Russian option problem
to a one-dimensional optimal stopping problem that explained the simplicity of the
solution in [30]. Building on the optimal stopping analysis of Shepp and Shiryaev
|30]-|31], Duffie and Harrison |7| derived a rational economic value for the Russian
option and then extended their arbitrage arguments to perpetual lookback options.
More recently, Shepp, Shiryaev and Sulem [32| proposed a barrier version of the
Russian option where the decision about stopping should be taken before the price
process reaches a 'dangerous’ positive level. Peskir [24]| presented a solution to
the Russian option problem in the finite horizon case (see also [8] for a numeric
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algorithm for solving the corresponding free-boundary problem and [10] for a study
of asymptotic behavior of the optimal stopping boundary near expiration).

In the recent years, the Russian option problem in models with jumps was studied
quite extensively. Gerber, Michaud and Shiu [12| and then Mordecki and Moreira
[20] obtained closed form solutions to the perpetual Russian option problems for
diffusions with negative exponential jumps. Asmussen, Avram and Pistorius |2| de-
rived explicit expressions for the prices of perpetual Russian options in the dense
class of Lévy processes with phase-type jumps in both directions by reducing the
initial problem to the first passage time problem and solving the latter by martingale
stopping and Wiener-Hopf factorization. Avram, Kyprianou and Pistorius [3] stud-
ied exit problems for spectrally negative Lévy processes and applied the results to
solving optimal stopping problems associated with perpetual Russian and American
put options.

In contrast to the Russian option problem, the problem (2.4) is necessarily two-
dimensional in the sense that it cannot be reduced to an optimal stopping prob-
lem for a one-dimensional (time-homogeneous) Markov process. Some other two-
dimensional optimal stopping problems for continuous processes were earlier con-
sidered in [6] and [22]. The main feature of the optimal stopping problems for the
maximum process in continuous models is that the normal-reflection condition at
the diagonal holds and the optimal boundary can be characterized as a unique solu-
tion of a (first-order) nonlinear ordinary differential equation (see, e.g., [6], [30]-[31],
[22], [21] and [13]). The key point in solving optimal stopping problems for jump
processes established in [25]-[26] is that the smooth fit at the optimal boundary may
break down and then be replaced by the continuous fit (see also [1| for necessary
and sufficient conditions for the occurrence of smooth-fit condition and references
to the related literature and [27] for an extensive overview).

In the present paper we derive solutions to the problems (2.4) and (5.1) in a jump-
diffusion model driven by a Brownian motion and a compound Poisson process with
exponential jumps. Such model was considered in [18]-[19], [15]-[17] and [11] where
the optimal stopping problems related to pricing American call and put options and
convertible bonds were solved, respectively. We show that under some relationships
on the parameters of the model the optimal stopping boundary can be uniquely
determined as a component of a two-dimensional system of (first-order) nonlinear
ordinary differential equations.

The paper is organized as follows. In Section 2, we formulate the optimal stop-
ping problem for a two-dimensional Markov process related to the perpetual Amer-
ican fived-strike lookback option problem and reduce it to an equivalent integro-
differential free-boundary problem. In Section 3, we present a solution to the free-
boundary problem and derive (first-order) nonlinear ordinary differential equations
for the optimal stopping boundary under different relationships on the parameters of
the model as well as specify the asymptotic behavior of the boundary. In Section 4,
we verify that the solution of the free-boundary problem turns out to be a solution of
the initial optimal stopping problem. In Section 5, we give some concluding remarks



as well as present an explicit solution to the optimal stopping problem related to
the perpetual American floating-strike lookback option problem. The main results
of the paper are stated in Theorems 4.1 and 5.1.

2 Formulation of the problem

In this section we introduce the setting and notation of the two-dimensional optimal
stopping problem which is related to the perpetual American fixed-strike lookback
option problem and formulate an equivalent integro-differential free-boundary prob-
lem.

2.1. For a precise formulation of the problem let us consider a probability space
(Q,F, P) with a standard Brownian motion B = (B;);>¢ and a jump process J =
(Ji)i>0 defined by J; = vaztlYi, where N = (N;);>0 is a Poisson process of the
intensity A and (Y;);en is a sequence of independent random variables exponentially
distributed with parameter 1 (B, N and (Y;);en are supposed to be independent).
Assume that there exists a process X = (X;);>0 given by:

X, = x exp <(r—02/2—)\9/(1—9))t+UBt+9Jt> (2.1)
and hence solving the stochastic differential equation:

dX, = rX, dt +0X, dB,+ X,_ / (¢ — 1) (uldt.dy) — v(dt. dy)) (Xo=2)
0

(2.2)
where p(dt,dy) is the measure of jumps of the process J with the compensator
v(dt,dy) = Adtl(y > 0)e Ydy, and = > 0 is given and fixed. It can be assumed
that the process X describes a stock price on a financial market, where r > 0 is the
interest rate, and o > 0 and 6 < 1, 6 # 0, are the volatilities of continuous and jump
part, respectively. Note that the assumption 6 < 1 guarantees that the jumps of X
are integrable and that is not a restriction. With the process X let us associate the
mazimum process S = (5¢):>o defined by:

Sy = < max Xu) Vs (2.3)
0<u<t
for an arbitrary s > x > 0. The main purpose of the present paper is to derive a

solution to the optimal stopping problem for the time-homogeneous (strong) Markov
process (X, 5) = (Xi, St)i>0 given by:

Vi(z,s) =sup B, ;[e "T7(S, — K)*] (2.4)

T

where the supremum is taken over all stopping times 7 of the process X (i.e., stopping
times with respect to the natural filtration of X'), and P, ; is a probability measure
under which the (two-dimensional) process (X, S) defined in (2.1)-(2.3) starts at
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(x,s) € E. Here by E = {(z,s) | 0 < < s} we denote the state space of the
process (X, S). The value (2.4) coincides with an arbitrage-free price of a fixed-
strike lookback American option with the strike price K > 0 and the discounting
rate 0 > 0 (see, e.g., [34]). Note that in the continuous case 0 > 0 and 6 = 0 the
problem (2.4) was solved in [21| and [13|. It is also seen that if o =0 and 0 < 6 < 1
with 7 — A/(1 — 6) > 0, then the optimal stopping time in (2.4) is infinite.

2.2. Let us first determine the structure of the optimal stopping time in the problem
(2.4).

Applying the arguments from [6; Subsection 3.2] and [22; Proposition 2.1| to the
optimal stopping problem (2.4) we see that it is never optimal to stop when X; = S,
for t > 0 (this fact will be also proved independently below). It follows directly from
the structure of (2.4) that it is never optimal to stop when S; < K for ¢t > 0. In
other words, this shows that all points (z, s) from the set:

C'={(x,s) e E|0<z<s<K} (2.5)
and from the diagonal {(x,s) € E | x = s} belong to the continuation region:
C.={(z,s) € E|Vi(z,s) > (s— K)"}. (2.6)

Let us fix (z,s) € C, and let 7, = 7.(x, s) denote the optimal stopping time in (2.4).
Then, taking some point (y, s) such that 0 < y < s, by virtue of the structure of
optimal stopping problem (2.4) and (2.3) with (2.1) we get:

Vily,s) > Bys[e ™ (S, — K)] > B, [e7™(S-

*

— K)] =Vi(z,s) > (s — K)*.

(2.7)
These arguments together with the comments in |6; Subsection 3.3| and [22; Sub-
section 3.3| as well as the assumption that Vi(z,s) is continuous show that there
exists a function g, (s) for s > K such that the continuation region (2.6) is an open
set consisting of (2.5) and of the set:

C!={(z,5) € E|gu(s) <x<s,s>K} (2.8)
while the stopping region is the closure of the set:

D, ={(z,s) e E|0 <z <g.s),s>K}. (2.9)

Let us now show that in (2.8)-(2.9) the function g.(s) is increasing on (K, 00) (this
fact will be also proved independently below). Since in (2.4) the function s — K is
linear in s on (K, 00), by means of standard arguments it is shown that V.(x,s) —
(s — K) is decreasing in s on (K,00). Hence, if for given (z,s) € C! we take &
such that K < s’ < s, then V,(z,58') — (s’ — K) > Vi(z,s) — (s — K) > 0 so that
(x,s") € C”, and thus the desired assertion follows.

Let us denote by W, (z, s) and a,s the value function and the boundary of the optimal
stopping problem related to the Russian option problem. It is easily seen that in case
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K = 0 the function W,(x,s) coincides with (2.4) and (5.1), while under different
relationships on the parameters of the model a, < 1 can be uniquely determined
by (5.11), (5.13), (5.15) and (5.17), respectively. Suppose that g.(s) > a.s for some
s > K. Then for any z € (a.s,g«(s)) given and fixed we have W,(z,s) — K >
s — K = V,(z, s) contradicting the obvious fact that W,(z,s) — K < V,(z,s) for all
(xz,s) € E with s > K as it is clearly seen from (2.4). Thus, we may conclude that
9x(s) < ays < s forall s > K.

2.3. Standard arguments imply that in this case the infinitesimal operator L of
the process (X, S) acts on a function F' € C*'(E) (or F € C"(F) when o = 0)
according to the rule:
2 0

(LE)(x,s) = (r+ )z Fy(x,s)+ %x2 Fop(x, 8)+/ <F(me€y,$eey\/s) — F(x, s)) Ae Y dy

’ (2.10)
for all 0 < z < s with ( = —\0/(1 — 0). Using standard arguments based on the
strong Markov property it follows that V, € C*1(C, = C'uC”) (or V, € CHY(C, =
C"U ) when 0 = 0). In order to find analytic expressions for the unknown value
function V.(x, s) from (2.4) and the unknown boundary g.(s) from (2.8)-(2.9) using
the results of general theory of optimal stopping problems for Markov processes (see,
e.g., [33; Chapter III, Section 8] or [27]) we can formulate the following integro-
differential free-boundary problem:

(LV)(z,s) = (r+0)V(x,s) for (z,s)eC=C"ul” (2.11)
V(x, s)}ng(S)Jr =s— K (continuous fit) (2.12)
V(z,s)=(s— K)* for (z,5)€ D (2.13)
V(x,s) > (s— K)t for (z,5)€C (2.14)

where C” and D are defined as C/ and D, in (2.8) and (2.9) with g(s) instead of
g«(8), respectively, and (2.12) playing the role of instantaneous-stopping condition is
satisfied for all s > K. Observe that the superharmonic characterization of the value
function (see [9] and [33]) implies that V,(z,s) is the smallest function satisfying
(2.11)-(2.13) with the boundary g¢.(s). Moreover, under some relationships on the
parameters of the model which are specified below, the following conditions can be
satisfied or break down:

‘/x(x’s)}x:g(s)-l— =0 (smooth fit) (2.15)

Vi(x, S)LE =0 (normal reflection) (2.16)

for all s > K. Note that in the case ¢ > 0 and § = 0 the free-boundary problem
(2.11)-(2.16) was solved in |21] and [13].

=s

2.4. In order to specify the boundary g.(s) as a solution of the free-boundary problem
(2.11)-(2.14) and (2.15)-(2.16), for further considerations we need to observe that
from (2.4) it follows that the inequalities:

0<supF, [e—(r+5)7 ST} — K < sup E,., [6_(T+5)T (ST . K)+] < sup B, [e—(r+5)7 ST}
T ' ' (2.17)



which are equivalent to:
0 < Wilz,s) — K <Vi(z,s) < Wi(x,s) (2.18)
hold for all (z,s) € E with s > K. Thus, setting x = s in (2.18) we get:

Wi(ss) K _ Vilss) _ Wi(s.s)

0< < < (2.19)
s s s s
for all s > K so that letting s go to infinity in (2.19) we obtain:
‘/* 9 . ‘/* 9 . W* )
lim infM = lim sup Vals;9) = lim ﬂ (2.20)
5—00 S S—00 S §—00 S

3 Solution of the free-boundary problem

In this section we obtain solutions to the free-boundary problem (2.11)-(2.16) and
derive ordinary differential equations for the optimal boundary under different rela-
tionships on the parameters of the model (2.1)-(2.2).

3.1. By means of straightforward calculations we reduce equation (2.11) to the form:
2
(r+Q)a Vy(z,s) + %x2 Viz(x,8) — aXa® G(z,s) = (r+ 0+ \)V(z,s) (3.1)

with @ = 1/0 and ( = —\0/(1 — ), where taking into account conditions (2.12)-
(2.13) we set:

B dz > dz
G(z,s) = —/w V(z,s) g —/s V(z, 2) g if a=1/0>1 (3.2)

v dz s— K
G(x,s :/ Vi(z,s — if a=1/60<0 3.3
D RCE E e / (33

for all 0 < z < g(s) and s > K. Then from (3.1) and (3.2)-(3.3) it follows that the
function G(z, s) solves the following (third-order) ordinary differential equation:

0.2

?ZE?’ Gowo(z,8) + [0*(a+ 1) + 7+ (]2* Guu(a, s) (3.4)

+ {(a+1) (“270‘+r+<) —(r+5+)\)] 2 Gy(z,5) — aXG(z,8) = 0

for 0 < 2 < g(s) and s > K, which has the following general solution:

51 B2 B3
G(z,s) = Ci(s) ”Tﬁ—l + Oy(s) 2—2 + Cy(s) ‘7;—3 (3.5)



where C(s), Cs(s) and C3(s) are some arbitrary functions and 3 < y < [ are
the real roots of the corresponding (characteristic) equation:

2(q —
—53 [ <a—%> +T+C] 3%+ [a <%1)+7’+C> —(r+5+)\)] B —aX=0.
(3.6)
Therefore, differentiating both sides of the formulas (3.2)-(3.3) we get that the
integro-differential equation (3.1) has the general solution:

Vi(z,s) = Ci(s) x™ + Cy(s) 27 4+ Cs(s) 27 (3.7)

where we set v; = (3; +« for i = 1,2, 3. Further we assume that the functions Ci(s),
Cy(s) and C3(s) as well as the boundary g(s) are continuously differentiable for
s > K. Observe that if 0 = 0 and r+( < 0 then it is seen that (3.4) degenerates into
a second-order ordinary differential equation, and in that case we can set C3(s) =0
n (3.5) as well as in (3.7), while the roots of equation (3.6) are explicitly given by:

r+d+A o« Sl (r+d+x a\ ar
bi=Srvo 2 Y \/(W_E) IS )

forv=1,2.

3.2. Let us first determine the boundary g.(s) for the case 0 > 0 and o = 1/6 < 0.
Then we have 03 <0< fhy < —a<l—a<fsothat y<a<ym<0<l<my
with v; = 3; 4+ «, where ; for i = 1,2, 3 are the roots of equation (3.6). Since in this
case the process X can leave the part of continuation region g.(s) < x < s and hits
the diagonal {(z,s) € F'|x = s} only continuously, we may assume that both the
smooth-fit and normal-reflection conditions (2.15) and (2.16) are satisfied. Hence,
applying conditions (3.3), (2.12) and (2.15) to the functions (3.5) and (3.7), we get
that the following equalities hold:

g(s)™ g(s) gls)»  s—-K
Ci(s) 3, + Cy(s) 5, + Cs(s) 5 - (3.9)
Ci(s) g(s)™ + Ca(s) g(5)” + Cs(s) g(5)” = s = K (3.10)
11C1(8) g(5)™ +72Ca(s) g(5)™ +13Cs5(s) g(s5)™ =0 (3.11)

for s > K. Thus, by means of straightforward calculations, from (3.9)-(3.11) we
obtain that the solution of system (2.11)-(2.13)+(2.15) takes the form:

. Bivays(s — K)/a
Viesio) = 05 =0 G
Bay173(s — )/04
o=
B37172(s — )/a s
+(71 —73) (73 — 72) <9(3))

é))w (3.12)




for 0 < x < g(s) and s > K. Then applying condition (2.16) to the function (3.7)
we get:
Cl(s) 8™ + Ch(s) s + C4(s) s =0 (3.13)

from where using the solution of system (3.9)-(3.11) it follows that the function g(s)
solves the following (first-order) ordinary differential equation:

/ o q(s)
gls) = 117273(s — K)
Bivavz(v2 — 13)(5/9(s))" — Bayiva(v1 — 13)(5/9(5))" + Bayiva (1 — 12)(s/9(s))

Bi(v2 —73)(s/9(8)" = Ba(v1 —73)(s/9(5))72 + B3(71 — 12)(s/9(s))"

for s > K with v, = §; + a, where §; for ¢ = 1,2,3 are the roots of equation
(3.6). By means of standard arguments it can be shown that the right-hand side of
equation (3.14) is positive so that the function g(s) is strictly increasing on (K, 00).

(3.14)

X

Let us denote h,(s) = g.(s)/s for all s > K and set h = limsup,_, h.(s) and h =
liminf, . h.(s). In order to specify the solution of equation (3.14) which coincides
with the optimal stopping boundary g.(s), we observe that from the expression
(3.12) it follows that (2.20) directly implies:

Bivays(73 — )BT + Bemiya(rr — 3)B "+ Bamie(re — v)R " (3.15)

= [r17273(73 — 72)E_PY1 + Boy1ya( — 13) R + By (e — )R
= Biv2v3(vs — v2)a, " + Boyivs(yn — v3)a, ™ 4 Bavie(ve — 11)a,

where a, is uniquely determined by (5.11) under K = 0. Then, using the fact that
hi(s) = g«(s)/s < a, for s > K and thus h < h < a, < 1, from (3.15) we get that

h = h = a,. Hence, we obtain that the optimal boundary g.(s) should satisfy the
property:
lim 9:(5)

§—00 S

= a, (3.16)

which gives a condition on the infinity for the equation (3.14). By virtue of the
results on the existence and uniqueness of solutions for first-order ordinary differ-
ential equations, we may therefore conclude that condition (3.16) uniquely specifies
the solution of equation (3.14) that corresponds to the problem (2.4). Taking into
account the expression (3.12), we also note that from inequalities (2.18) it follows
that the optimal boundary g.(s) satisfies the properties:

g (K+)=0 and g.(s) ~ A, (s — K)Y" under s|K (3.17)

for some constant A, > 0 which can be also determined by means of condition (3.16)
above.

3.3. Let us now determine the boundary g.(s) for the case 0 =0 and o = 1/6 < 0.
Then we have 0 < fy < —a < 1 —a < 1 so that a < 75, < 0 < 1 < 7 with
vi = i+, where 3; for i = 1,2 are given by (3.6). In this case, applying conditions



(3.3) and (2.12) to the functions (3.5) and (3.7) with Cs(s) = 0, we get that the
following equalities hold:

96 ) s K
01(8) ﬁl -+ CQ( ) B2 o (318)
Ci(s)g(s)™ + Ca(s) g(s)” =s — K (3.19)

for s > K. Thus, by means of straightforward calculations, from (3.18)-(3.19) we
obtain that the solution of system (2.11)-(2.13) takes the form:

Viesms) =SB0 () - S G e

for 0 < z < ¢g(s) and s > K. Since in this case r + ¢ > 0 so that the process X
hits the diagonal {(z,s) € E|z = s} only continuously, we may assume that the
normal-reflection condition (2.16) holds. Hence, applying condition (2.16) to the
function (3.7) with Cs(s) = 0, we get:

Ci(s) 8™ + Cy(s) s =0 (3.21)

from where using the solution of system (3.18)-(3.19) it follows that the function
g(s) solves the differential equation:

_ 9(s) B172(s/g(s))"" — Bayi(s/g(s))”
M2(s — K) - Bi(s/g(s))" — Ba(s/g(s))r

for s > K with v; = f3; + «, where [3; for i = 1,2 are given by (3.8). By means of
standard arguments it can be shown that the right-hand side of equation (3.22) is
positive so that the function g(s) is strictly increasing on (K, 00). Note that in this
case the smooth-fit condition (2.15) fails to hold, that can be explained by the fact
that leaving the part of continuation region g,(s) < x < s the process X can pass
through the boundary g¢.(s) only by jumping. Such an effect was earlier observed
in [25]-[26] by solving some other optimal stopping problems for jump processes.
According to the results in [1] we may conclude that this property appears because of
finite intensity of jumps and exponential distribution of jump sizes of the compound
Poisson process J.

g'(s) (3.22)

Let us recall that h = limsup, . h.(s) and h = liminf, . h.(s) with h.(s) =
g«(s)/s for all s > K. In order to specify the solution of equation (3.22) which coin-
cides with the optimal stopping boundary g.(s), we observe that from the expression
(3.20) it follows that (2.20) directly implies:

ﬂﬂzﬁﬂl — Boyih™ ™ = Biyh™ " — 527@_% = fivea, " — Boyia, (3.23)

where a, is uniquely determined by (5.13) under K = 0. Then, using the fact that
h.(s) = g.(s)/s < a, for s > K and thus h < h < a, < 1, from (3.23) we get
that h = h = a,. Hence, we obtain that the optimal boundary g.(s) should satisfy
the property (3.16) which gives a condition on the infinity for the equation (3.22).
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By virtue of the results on the existence and uniqueness of solutions for first-order
ordinary differential equations, we may therefore conclude that condition (3.16)
uniquely specifies the solution of equation (3.22) that corresponds to the problem
(2.4). Taking into account the expression (3.20), we also note that from inequalities
(2.18) it follows that the optimal boundary g.(s) satisfies the properties (3.17) for
some constant A, > 0 which can be also determined by means of condition (3.16)
above.

3.4. Let us now determine the optimal boundary g.(s) for the case ¢ > 0 and
a =1/0 > 1. Then we have 3 < —a < 1 —a < f, < 0 < [# so that y3 < 0 <
1 <7 < a <y with v, = 6; + «, where §; for ¢+ = 1,2, 3 are the roots of equation
(3.6). By virtue of the same arguments as mentioned above, in this case we may also
assume that both the smooth-fit and normal-reflection conditions (2.15) and (2.16)
hold. Hence, applying conditions (3.3), (2.12) and (2.15) to the functions (3.5) and
(3.7), respectively, we get that the following equalities hold:

Ci(s) ‘% + Cy(s) % + Cy(s) ‘% — F(5)5%(s — ) (3.24)
Ci(s) g(s)™ + Ca(s) g(s)™ + C3(s) g(s)™ = s — K (3.25)
71C1(8) g(8)™ +12C2(s) g(s)™ + 43C3(s) g(s5)"* = 0 (3.26)
where we set:
fls)= - = - / TV ) fojl (3.27)

for s > K. Thus, by means of straightforward calculations, from (3.24)-(3.26) we
obtain that the solution of system (2.11)-(2.13)+(2.15) takes the form:

V(zx,s;9(s)) (3.28)
_ B1(s — K)[B283(2 —73)s* f(s) + B37v3(s/9(5))"? — Baya(s/g(s)) ] ( T )”’1
B2B3(v2 —3)(5/9(5))" — B1B3(71 — ¥3)(5/9(5))72 + B1f2(71 — 72)(s/9(s))7® \g(s)

+ B2(s — K)[B185(y3 — 71)s” f(s) — B3y3(s/g(s))" + Bivi(s/g(s)) ] ( z )72
BaBs(v2 — v3)(s/9(s))" — BiB3(v1 — ¥3)(8/9(5))72 + B1Ba(1 — 12)(s/9(s))7 \g(s)

N B3(s — K)[B1B2(y1 — 72)s* f(s) + Baya(s/g(s))" — Biyi(s/g(s))?] ( T )“’3
B2B3(v2 —3)(5/9(5))" — B1B3(71 — ¥3)(5/9(5))72 + Bi1f2(71 — 72)(s/9(s))* \g(s)

for 0 < 2 < g(s) and s > K. Inserting the expressions (3.5) and (3.7) into the for-
mula (3.2), letting © = s and differentiating the both sides of the obtained equality,

we get:
871 Y2 S’YB

Ci(s) 5+ Cals) 86_2 HOy(s) =0 (3.29)

from where using the solution of system (3.24)-(3.26) it follows that the function
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f(s) solves the differential equation:

i) = L)

B1B283f(s)[(v2 —73)(5/9(8))" — (71 —73)(5/9(8))" 4+ (71 — 72)(5/9(5)) "]
5[B283(v2 — ¥3)(5/9(s))" — B1B3(v1 — 13)(s/9(5))72 + B1B2(71 —72)(s/9(s))73]
(
V2)

(3.30)

Bav3(v1 — 72)(s/g(s)) " 72 — Boya(y1 — 73)(5/9(5)) 93 4 Bivi(y2 — ¥3)(s/g(s)) 28
59T BaB3(v2 — ¥3)(s/9(s))1t — B1B3(v1 —¥3)(5/9(8))72 4 B1F2(71 — 72)(s5/9(5))72]

for s > K. Applying the condition (2.16) to the function (3.7), we get that the
equality (3.13) holds, from where it follows that the function g(s) solves the differ-
ential equation:

_|_

g/(s) _ g(s)
s— K
Bav3(y1 —72)(s/g()) 72 — Bayal(yr —¥3)(5/9(8)) 7% + Biyi(y2 — v3)(s/g(s))72 7
Bs(v1 —v2)(s/9(s)) 172 = Ba(y1 — 3)(8/9(8))+7 + Br(v2 — v3)(s/g(s)) 7218

B2B3(v2 —v3)(5/9(s))™ — B1B3(v1 — ¥3)(5/9(5))7 + B1f2(v1 — 72)(s/9(s))7
n2n3(v2 —¥3)(5/9(s))" —mnz(y1 —3)(5/9(8))72 +mma(v1 —12)(s/g9(s))7 — pf(s)s™

for s > K with n;, = ﬂl’}/l for ¢ = 1 2 3 and P = 516263(”)/1 — )(’}/1 — ’}/3)(’}/2 — ’}/3)

In order to specify the solution of equation (3. 30) let us define the function:

(3.31)

X

fuls) = S_K o (3.32)

for all s > K. Then by virtue of the 1nequa11t1es (2.18), using the expression (5.14)
we obtain the function (3.32) is well-defined and should satisfy the property:

lim fo(s) s* = 72(ys — 1)/[(v2 — 1) (B1 (s — 1)ad* — Bs(y — 1)al®)] (3.33)

+73(n = 1)/[(v3 —72)(B2(n — 1)al® = Bi(r2 — 1)al")]
+71(v2 = 1)/ —93)(Bs(r2 — D)al* — Ba(ys — 1)al?)]

where a, is uniquely determined by (5.15) under K = 0. From (3.27) and (3.32) it
therefore follows that (3.33) gives a condition on the infinity for the equation (3.30).

Let us recall that = limsup, . _h.(s) and h = liminf, ., h.(s) with h,(s) =
gx(s)/s for all s > K. In order to specify the solution of equation (3.31) which
coincides with the optimal stopping boundary g.(s), we observe that from the ex-
pressions (3.28) and (3.33) it follows that (2.20) directly implies:

(2 —73)h "+ (33 =) + (11— )b
BoB3(v2 — 3)h " = BiBs(y — 3)h " + BifBa(nn — o)
_ (2 =@k + (= y)h "+ (1 =)k "
B2B3(72 — 73)EJY1 — B1Bs(n — %a)ﬁ_ny2 + 515211 — 72)5_73
_ (72 —y3)a;" + (93 — 71)ar ™ + (11 — y2)a
BaB3(v2 —y3)as " — BifBs(y1 — v3)ax * 4 Bifa(y1 — Ye2)ax

(3.34)
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Then, using the fact that h.(s) = g.(s)/s < a, for s > K and thus h < h < a, < 1,
from (3.34) we get that h = h = a,. Hence, we obtain that the optimal boundary
g«(s) should satisfy the property (3.16) which gives a condition on the infinity for
the equation (3.31). By virtue of the results on the existence and uniqueness of
solutions for systems of first-order ordinary differential equations, we may therefore
conclude that conditions (3.33) and (3.16) uniquely specifies the solution of system
(3.30)+(3.31) that corresponds to the problem (2.4). Taking into account the ex-
pression (3.28), we also note that from inequalities (2.18) it follows that the optimal
boundary g.(s) satisfies the properties (3.17) for some constant A, > 0 which can
be also determined by means of the condition (3.16) above.

3.5. Let us finally determine the boundary g.(s) for the case c =0 and a =1/6 > 1
with r +(=7r—X0/(1 —0) < 0. Then we have f; < —a <1 —a < ff; <0 so that
72 < 0 <1< vy with v, = 6; + a, where (§; for i = 1,2 are given by (3.6). Since
in this case the process X can leave the continuation region ¢.(s) < = < s only
continuously, we may assume that the smooth-fit condition (2.15) holds. Hence,
applying conditions (2.12) and (2.15) to the function (3.7), we get that the following
equalities hold:

Ci(s)g(s)" + Cas) g(s)™ =5 — K (3.35)
MC1(s) g(s)" + 72Ca(s) g(s)”* =0 (3.36)

for s > K. Thus, by means of straightforward calculations, from (3.35)-(3.36) we
obtain that the solution of system (2.11)-(2.13)+(2.15) takes the form:

Visigle)) = 2EZE (L7 OB (2™

for 0 < x < g(s) and s > K. Inserting the expressions (3.5) and (3.7) with C3(s) =0
into the formula (3.2), letting = s and differentiating the both sides of the obtained
equality, we get:

sn g2
Ci(s) — + Ci(s) — =0 (3.38)
o o
from where using the solution of system (3.35)-(3.36) it follows that the function

g(s) satisfies the differential equation:

J(s) = g(s)  Bava(s/g(s) = Bini(s/g(s))™
Ny2(s — K)  Ba(s/g(s)) — Bi(s/g(s))r

for s > K with v, = ; + a, where f3; for i = 1,2 are given by (3.8). By means
of standard arguments it can be shown that the right-hand side of equation (3.39)
is positive so that the function g(s) is strictly increasing on (K, 00). Note that in
this case the normal-reflection condition (2.16) fails to hold, that can be explained
by the fact that the process X can hit the diagonal {(z,s) € E |z = s} only by
jumping.

(3.39)
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Let us recall that h = limsup, . h.(s) and h = liminf, ., h.(s) with h,(s) =
g«(s)/s for all s > K. In order to specify the solution of equation (3.39) which coin-
cides with the optimal stopping boundary g.(s), we observe that from the expression
(3.37) it follows that (2.20) directly implies:

Yoh T = b = R — b = pa" — ya (3.40)

x

Figure 1. A computar draming of the optimal stopping bomndary o.(=).

where a, is uniquely determined by (5.17) under K = 0. Then, using the fact that
h.(s) = g.(s)/s < a, for s > K and thus h < h < a, < 1, from (3.40) we get
that h = h = a,. Hence, we obtain that the optimal boundary g.(s) should satisfy
the property (3.16) which gives a condition on the infinity for the equation (3.39).
By virtue of the results on the existence and uniqueness of solutions for first-order
ordinary differential equations, we may therefore conclude that condition (3.16)
uniquely specifies the solution of equation (3.39) that corresponds to the problem
(2.4). Taking into account the expression (3.37), we also note that from inequalities
(2.18) it follows that the optimal boundary g.(s) satisfies the properties (3.17) for
some constant A, > 0 which can be also determined by means of the condition
(3.16) above.

3.6. Observe that the arguments above show that if we start at the point (z, s) € C’
then it is easily seen that the process (X, S) can be stopped optimally after it passes
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through the point (K, K). Thus, using standard arguments based on the strong
Markov property it follows that:

Vi(z,s) = U(x; K) Vi (K, K) (3.41)
for all (z,s) € C" with Vi.(K, K) = lim, x Vi(K, s), where we set:
Uz; K) = By [e” 7] (3.42)
and
o.=inf{t > 0| X; > K}. (3.43)

Here E, denotes the expectation under the assumption that Xy = = for some 0 <
< K.

By means of straightforward calculations based on solving the corresponding bound-
ary value problem (see also [2|-|3| and [17]) it follows that when o = 1/6 < 0 holds,
we have:

U(x; K) = (%)% (3.44)

with 41 = 1 + «, where if ¢ > 0 then [ is the largest root of equation (3.6), while
if o = 0 then (3 is given by (3.8). It also follows that when av = 1/0 > 1 holds, then

have:
we have V(e K) = & <£>71 B & <£)’72 (3.45)
’ a(y —7) \K aln =) \K '

with v, = §; + o, where if ¢ > 0 then [; for ¢ = 1,2 are the two largest roots of
equation (3.6), whileif o =0 and r+{ =7r— /(1 —60) < 0 then j; for i = 1,2 are
given by (3.8).

4 Main result and proof

In this section using the facts proved above we formulate and prove the main result
of the paper.

Theorem 4.1. Let the process (X,S) be defined in (2.1)-(2.3). Then the value
function of the problem (2.4) takes the expression:

V(z,s;g.(s)), if g«(s)<zx<s and s>K
Vi(w,s) = Uz K)V(K, K), if 0<z<s<K (4.1)
s — K, if 0<x<g.s) and s>K

[with V.(K, K) = limg x Vi(K, s)| and the optimal stopping time is explicitly given
by:

7. = inf{t > 0] X; < g.(S;)} (4.2)
where the functions V(x,s;g(s)) and U(x; K) as well as the increasing boundary
9.(8) < a.s < s for s > K satisfying g.(K+) = 0 and g.(s) ~ A.(s — K)Y7 under
s | K [see Figure 1 above| are specified as follows:
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(i): if o > 0 and 0 < 0 then V(z,s;9(s)) is given by (3.12), U(x; K) is given by
(3.44), and g.(s) is uniquely determined from the differential equation (3.14) and
the condition (3.16), where v; = (; + 1/0 and (; for i = 1,2,3 are the roots of
equation (3.6), while a is found from equation (5.11) under K = 0;

(11): if 0 =0 and 6 < 0 then V(x,s;9(s)) is given by (3.20), U(x; K) is given by
(3.44), and g.(s) is uniquely determined from the differential equation (3.22) and
the condition (3.16), where ~; = B;+1/0 and 5; fori = 1,2 are given by (3.8), while
a, is found from equation (5.13) under K = 0;

(1i7): if 0 >0 and 0 < 0 < 1 then V(x,s;g(s)) is given by (3.28), U(x; K) is given
by (3.45), and g.(s) is uniquely determined from the system of differential equations
(3.30)+(3.31) and the conditions (3.38)+(3.16), where v; = B; + 1/6 and ; for
i = 1,2,3 are the roots of equation (3.6), while a, is found from equation (5.15)
under K =0;

(iw): if c =0 and 0 < 0 <1 withr —\/(1 —0) <0 then V(z,s;g(s)) is given
by (3.37), U(z; K) is given by (3.45), and g.(s) is uniquely determined from the
differential equation (3.39) and the condition (3.16), where ~; = B;+1/0 and B; for
i =1,2 are given by (3.8), while a, is found from equation (5.17) under K = 0.

Proof. In order to verify the assertions stated above, it remains us to show that the
function (4.1) coincides with the value function (2.4) and the stopping time 7, from
(4.2) with the boundary g.(s) specified above is optimal. For this, let us denote
by V(z,s) the right-hand side of the expression (4.1). In this case, by means of
straightforward calculations and the assumptions above it follows that the function
V(z, s) solves the system (2.11)-(2.13), and condition (2.15) is satisfied when either
o> 0orr—A/(1—0) < 0 holds, while condition (2.16) is satisfied when either
o > 0 or § < 0 holds. Then taking into account the fact that the boundary g.(s)
is assumed to be continuously differentiable for s > K and applying the change-of-
variable formula from [23; Theorem 3.1] to e~ "+9*V(X,, S;), we obtain:

eIV (X, ) =V, s) (4.3)

b [ LY (4 V)X S (K £ (5))

t
[Ny Sy S, = 3T TN S) A8, + M,
0

O<u<t

where the process (M;)>o defined by:
t
M, = / ey (X Sy ) 0 Xy dB, (4.4)
0
t o]
+/ / e~ (r+ou (V(Xu_eey,Xu_eey V Su-) — V(Xu_,Su_)) (u(du, dy) — v(du, dy))
0o Jo

is a local martingale under P, ;. Observe that when either o > 0 or 0 < 6 < 1, the
time spent by the process X at the diagonal {(z,s) € E'| 0 < z < s} is of Lebesgue
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measure zero that allows to extend (LV — (r+6)V)(z, s) arbitrarily to = s. When
either ¢ > 0 or § < 0, the time spent by the process X at the boundary g.(95) is
of Lebesgue measure zero that allows to extend (LV — (r 4+ 0)V)(z, s) to & = g.(s)
and set the indicator in the formula (4.3) to one. Note that when either o > 0 or
0 < 0, the process S increases only continuously, and hence in (4.3) the sum with
respect to AS, is zero and the same is the integral with respect to dS,, since at the
diagonal {(z,s) € E | x = s} we assume (2.16). When ¢ = 0 and 0 < 6 < 1, the
process S increases only by jumping, and thus in (4.3) the integral with respect to
dS, is compensated by the sum with respect to AS,,.

By virtue of the arguments from the previous section we may conclude that (LV —
(r+96)V)(z,s) < 0 for all (z,s) € E. Moreover, by means of straightforward
calculations it can be shown that the property (2.14) also holds that together with
(2.12)-(2.13) yields V(z,s) > (s — K)™ for all (z,s) € E. From the expression (4.3)
it therefore follows that the inequalities:

6—(r+5)7 (ST _ K)"‘ < 6_(T+5)T V(XT, Sq—) < V(I‘, 8) + MT (45)

hold for any finite stopping time 7 of the process X.

Let (0,)nen be an arbitrary localizing sequence of stopping times for the process
(M;)i>0. Then taking in (4.5) expectation with respect to P, ,, by means of the
optional sampling theorem we get:

E,. [6_(7«+5)(mon) (S po — K)*} <E,, [e—(r+5)(TAon) V(XTM”,STAU”)} (4.6)
<V(z,8) + Eys[Mrng,| = V(z,s)

for all (z,s) € E. Hence, letting n go to infinity and using Fatou’s lemma, we obtain
that for any finite stopping time 7 the inequalities:

E. . [e_(”‘S)T (S, = K)"| < E,, [e_(rM)T V(X;,5)] <V(x,s) (4.7)

are satisfied for all (z,s) € E.

By virtue of the fact that the function V(z,s) together with the boundary g.(s)
satisfy the system (2.11)-(2.14), by the structure of stopping time 7, in (4.2) and
the expression (4.3) it follows that the equality:

e~ TN V(X S pen) =V (2, 8) + Mype, (4.8)

holds. Then, using the expression (4.5), by virtue of the fact that the function
V(x, s) is increasing, we may conclude that the inequalities:

—V($, 5) S MT*/\crn S V(g*(ST*/\Un)v ST*/\O'n> - V($, 5) (49)

are satisfied for all (z,s) € E, where (0,)nen is a localizing sequence for (M;)¢>o.
Taking into account conditions (3.16) and (3.33), from the structure of the functions
(3.12), (3.20), (3.28) and (3.37) it follows that:

V(g:(Sh), S) < K'Sy (4.10)
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for some K’ > 0. Hence, letting n go to infinity in the expression (4.8) and using
the conditions (2.12)-(2.13) as well as the property:

E, | sup e~ (r+o)t St} =FE, [sup et X | < 0o (4.11)
>0 >0

(the latter can be proved by means of the same arguments as in 31| and using the
fact that the processes B and J are independent and the jumps of J are integrable),
by means of the Lebesgue dominated convergence theorem we obtain the equality:

%

By s[e ™ (S, — K)T] = V(x,s) (4.12)

for all (z,s) € E, from where the desired assertion follows directly. [J

5 Conclusions

In this section we give some concluding remarks and present an explicit solution to
the optimal stopping problem which is related to the perpetual American fixed-strike
lookback option problem.

5.1. We have considered the perpetual fixed-strike lookback American option op-
timal stopping problem in a jump-diffusion model. In order to be able to derive
(first-order) nonlinear differential equations for the optimal boundary that sepa-
rates the continuation and stopping regions, we have let the jumps of the driving
compound Poisson process be exponentially distributed. It was shown that not only
the smooth-fit condition at the optimal boundary, but also the normal-reflection
condition at the diagonal may break down because of the occurrence of jumps in
the model. We have seen that under some relationships on the parameters of the
model the optimal boundary can be found as a component of the solution of a two-
dimensional system of ordinary differential equations that shows the difference of
the jump-diffusion case from the continuous case. We have also derived special con-
ditions that specify in the family of solutions of the system of nonlinear differential
equations the unique solution that corresponds to the initial optimal stopping prob-
lem. The existence and uniqueness of such a solution can be obtained by standard
methods of first-order ordinary differential equations.

In the rest of the paper we derive a solution to the floating-strike lookback American
option problem in the jumps-diffusion model (2.1)-(2.3). In contrast to the fixed-
strike case, by means of the change-of-measure theorem, the related two-dimensional
optimal stopping problem can be reduced to an optimal stopping problem for a one-
dimensional strong Markov process (S;/X;)i>0 that explains the simplisity of the
structure of the solution in (5.18)-(5.19) (see [31] and [4]).

5.2. Let us now consider the following optimal stopping problem:

Vi(z,s) = sup E, s [e "7 (S, — KX,)"] (5.1)
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where the supremum is taken over all stopping times 7 of the process X. The value
(2.4) coincides with an arbitrage-free price of a floating-strike lookback American
option (or 'partial lookback’ as it is called in [5]) with K > 0 and the discounting
rate 6 > 0. Note that in the continuous case o > 0 and 6 = 0 the problem (5.1) was
solved in [4]. It is also seen that if 0 =0 and 0 < 0 < 1 with r — X\0/(1 —6) > 0,
then the optimal stopping time in (5.1) is infinite in case K < 1 and equals zero in
case K > 1.

Using the same arguments as in |4] it can be shown that the continuation region for
the problem (5.1) is an open set of the form:

C,={(z,s) €E|bs<z<s} (5.2)
while the stopping region is the closure of the set:
D, ={(z,s) € E|0<x <b,s)}. (5.3)

From (5.1) it is easily seen that b, < 1/K in (5.2)-(5.3).

In order to find analytic expressions for the unknown value function 17;(:17, s) from
(5.1) and the unknown boundary b,s from (5.2)-(5.3), we can formulate the following
integro-differential free-boundary problem:

(LV)(z,s) = (r + 8V (x,s) for (z,5)eC (
V(z, 8)’m2b8+ = s(1 — Kb) (continuous fit) (
Vi(z,s)=(s— Kz)* for (z,s)€D (
V(z,s)> (s — Kz)* for (z,5)eC (

where C' and D are defined as C, and D, in (5.2) and (5.3) with b instead of
b, respectively, and (5.5) playing the role of instantaneous-stopping condition is
satisfied for all s > 0. Moreover, under some relations on the parameters of the
model which are specified below, the following conditions can be satisfied or break
down:

= —K (smooth fit) (5.8)

x=bs+
Vi(z, s)| =0 (normal reflection) (5.9)

T=8—

for all s > 0. Note that in the case ¢ > 0 and # = 0 the free-boundary problem
(5.4)-(5.9) was solved in [4].

Following the schema of arguments from the previous section, by means of straight-
forward calculations it can be shown that in case ¢ > 0 and o = 1/ < 0 the solution
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of system (5.4)-(5.7)+(5.8) takes the form:

_ Bil(1 = a)yas + alre — 1) (s — DKYs ( v )“ (5.10)

Vi, 5;bs) a(l—a)(yv2 =)0 —3) bs

Bol(1 — a)y1y3 + a(yr — 1) (3 — 1) Kb]s (3)%
a(l—a)(v2 —7) (3 —2) bs

B3[(1 — @)1y + a(y — 1) (72 — 1)Kb]s <£>V3
a(l —a)(nm —73) (1 —72) bs

_|_

and from condition (5.9) it follows that b solves the equation:

Bi(yr — DI — a)yeys + alyy — 1) (ys — 1) K]
(V2 = 71) (71 — 3)b™
Ba(ya — D[(1 — a)n1ys + oy — 1) (3 — 1) K]
(72 = 1) (73 — 2)b7
_ By = DA —a)mye +a(n —1)(re — 1KY
(73 = 71) (73 — 72)b73 7

(5.11)

_|_

in case 0 = 0 and a = 1/6 < 0 the solution of system (5.4)-(5.7) takes the form:

V(x,s;bs) =

= Al — )y + a(ye — DEbs ( x )71 ~ Be[(1 — )y + oy — 1) KD]s ( x )W

a(l —a)(n —72) bs a(l —a)(y —2) bs
(5.12)
and from condition (5.9) it follows that b solves the equation:

Biln —1) (1 —a)y +a(y — 1)KDb’

in case ¢ > 0 and o = 1/6 > 1 the solution of system (5.4)-(5.7)+(5.9) takes the
form:

S Bl =Dhe = (e = DK T\
Vo) = o it - Do — B - Dol () 1
Ba(n — Dlys — (93 — D EB]b™s (g)”
(73 = 72)[B2(71 = Db = Br (72 — 1)b71] \bs
L Pl = Dy = (n = DEDJI™s (ﬁ)%
(71 = 78)[Bs(72 = Db — Ba(ys — 1)b72] \bs
and from condition (5.8) it follows that b solves the equation:
S — D3 — Dy — (92 — DK (5.15)

(v2 = 7)[Bi(ys — Db — B3(y1 — 1)bs]
Ba(r1 — 1)(y2 — 1)z — (73 — 1) KD
(73 — 72)[Ba(y1 — 1)b72 — By (72 — 1)b7]
Ba(v2— Dy — Dim — (n — KD
(73 = 7)[Bs(r2 — 1) — Fa(ys — 1)b72]’
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while in case 0 = 0 and a« = 1/0 > 1 with r + ( =r — A0/(1 — #) < 0 the solution
of system (5.4)-(5.7) takes the form:

~ —(r—-1K 1 —(nm-1)K
V(x,s;bs) = 2 = (02 — 1)KDbls <£>V = —1)Kbs (ﬁ)w (5.16)
T2 N bs T2 N bs
and from condition (5.8) it follows that b solves the equation:
b'Yl_'Y2 — @ 72(71 _ 1) + [/71 - /72(71 - 1)]Kb (517)

B yi(ye — 1)+ [y2 — (e — 1) KD

Summarizing the facts proved above we formulate the following assertion.

Theorem 5.1. Let the process (X,S) be defined in (2.1)-(2.3). Then the value
function of the problem (5.1) takes the expression:

~ V(x,s:b.s), if bos <<
V() = 4 V(@ sibes), U bes <@ <s (5.18)
s — Ku, if 0<axz<bs
and the optimal stopping time is explicitly given by:

where the function ‘7(3:,5; bs) and the boundary b.s < s/K for s > 0 are specified
as follows:

(i): if o > 0 and 0 < 0 then V(m,s;bs) is given by (5.10) and b, is uniquely
determined from equation (5.11), where ~; = B; + 1/0 and G; for i = 1,2,3 are the
roots of equation (3.6);

(ii): if o = 0 and 8 < 0 then V(z,s;bs) is given by (5.12) and b, is uniquely
determined from equation (5.13), where ~; = B; + 1/0 and [; for i = 1,2 are given
by (3.8);

(iii): if o > 0 and 0 < 6 < 1 then V(z, s;bs) is given by (5.14) and b, is uniquely
determined from equation (5.15), where ~; = B; + 1/0 and G; for i = 1,2,3 are the
roots of equation (3.6);

(iv): if o =0 and 0 < 6 <1 with r — A\0/(1 — 6) < 0 then V(z, s;bs) is given by
(5.16) and b, is uniquely determined from equation (5.17), where ~v; = 3; + 1/6 and
B; for i =1,2 are given by (3.8).

These assertions can be proved by means of the same arguments as in Theorem 4.1
above.
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