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Abstra
tWe present solutions to some dis
ounted optimal stopping problems for themaximum pro
ess in a model driven by a Brownian motion and a 
ompoundPoisson pro
ess with exponential jumps. The method of proof is based onredu
ing the initial problems to integro-di�erential free-boundary problemswhere the normal re�e
tion and smooth �t may break down and the latterthen be repla
ed by the 
ontinuous �t. The results 
an be interpreted aspri
ing perpetual Ameri
an lookba
k options with �xed and �oating strikes ina jump-di�usion model.1 Introdu
tionThe main aim of this paper is to present solutions to the dis
ounted optimal stoppingproblems (2.4) and (5.1) for the maximum asso
iated with the pro
ess X de�ned in(2.1) that solves the sto
hasti
 di�erential equation (2.2) driven by a Brownian mo-tion and a 
ompound Poisson pro
ess with exponentially distributed jumps. Theseproblems are related to the option pri
ing theory in mathemati
al �nan
e, wherethe pro
ess X 
an des
ribe the pri
e of a risky asset (e.g., a sto
k) on a �nan
ialmarket. In that 
ase the values (2.4) and (5.1) 
an be formally interpreted as fairpri
es of perpetual lookba
k options of Ameri
an type with �xed and �oating strikesin a jump-di�usion market model, respe
tively. For a 
ontinuous model the prob-lems (2.4) and (5.1) were solved by Pedersen [21℄, Guo and Shepp [13℄, and Beibeland Ler
he [4℄.Observe that when K = 0 the problems (2.4) and (5.1) turn into the 
lassi
alRussian option problem introdu
ed and expli
itly solved by Shepp and Shiryaev[30℄ by means of redu
ing the initial problem to an optimal stopping problem for a(
ontinuous) two-dimensional Markov pro
ess and solving the latter problem usingthe smooth-�t and normal-re�e
tion 
onditions. It was further observed in [31℄that the 
hange-of-measure theorem allows to redu
e the Russian option problemto a one-dimensional optimal stopping problem that explained the simpli
ity of thesolution in [30℄. Building on the optimal stopping analysis of Shepp and Shiryaev[30℄-[31℄, Du�e and Harrison [7℄ derived a rational e
onomi
 value for the Russianoption and then extended their arbitrage arguments to perpetual lookba
k options.More re
ently, Shepp, Shiryaev and Sulem [32℄ proposed a barrier version of theRussian option where the de
ision about stopping should be taken before the pri
epro
ess rea
hes a 'dangerous' positive level. Peskir [24℄ presented a solution tothe Russian option problem in the �nite horizon 
ase (see also [8℄ for a numeri
1



algorithm for solving the 
orresponding free-boundary problem and [10℄ for a studyof asymptoti
 behavior of the optimal stopping boundary near expiration).In the re
ent years, the Russian option problem in models with jumps was studiedquite extensively. Gerber, Mi
haud and Shiu [12℄ and then Morde
ki and Moreira[20℄ obtained 
losed form solutions to the perpetual Russian option problems fordi�usions with negative exponential jumps. Asmussen, Avram and Pistorius [2℄ de-rived expli
it expressions for the pri
es of perpetual Russian options in the dense
lass of Lévy pro
esses with phase-type jumps in both dire
tions by redu
ing theinitial problem to the �rst passage time problem and solving the latter by martingalestopping and Wiener-Hopf fa
torization. Avram, Kyprianou and Pistorius [3℄ stud-ied exit problems for spe
trally negative Lévy pro
esses and applied the results tosolving optimal stopping problems asso
iated with perpetual Russian and Ameri
anput options.In 
ontrast to the Russian option problem, the problem (2.4) is ne
essarily two-dimensional in the sense that it 
annot be redu
ed to an optimal stopping prob-lem for a one-dimensional (time-homogeneous) Markov pro
ess. Some other two-dimensional optimal stopping problems for 
ontinuous pro
esses were earlier 
on-sidered in [6℄ and [22℄. The main feature of the optimal stopping problems for themaximum pro
ess in 
ontinuous models is that the normal-re�e
tion 
ondition atthe diagonal holds and the optimal boundary 
an be 
hara
terized as a unique solu-tion of a (�rst-order) nonlinear ordinary di�erential equation (see, e.g., [6℄, [30℄-[31℄,[22℄, [21℄ and [13℄). The key point in solving optimal stopping problems for jumppro
esses established in [25℄-[26℄ is that the smooth �t at the optimal boundary maybreak down and then be repla
ed by the 
ontinuous �t (see also [1℄ for ne
essaryand su�
ient 
onditions for the o

urren
e of smooth-�t 
ondition and referen
esto the related literature and [27℄ for an extensive overview).In the present paper we derive solutions to the problems (2.4) and (5.1) in a jump-di�usion model driven by a Brownian motion and a 
ompound Poisson pro
ess withexponential jumps. Su
h model was 
onsidered in [18℄-[19℄, [15℄-[17℄ and [11℄ wherethe optimal stopping problems related to pri
ing Ameri
an 
all and put options and
onvertible bonds were solved, respe
tively. We show that under some relationshipson the parameters of the model the optimal stopping boundary 
an be uniquelydetermined as a 
omponent of a two-dimensional system of (�rst-order) nonlinearordinary di�erential equations.The paper is organized as follows. In Se
tion 2, we formulate the optimal stop-ping problem for a two-dimensional Markov pro
ess related to the perpetual Amer-i
an �xed-strike lookba
k option problem and redu
e it to an equivalent integro-di�erential free-boundary problem. In Se
tion 3, we present a solution to the free-boundary problem and derive (�rst-order) nonlinear ordinary di�erential equationsfor the optimal stopping boundary under di�erent relationships on the parameters ofthe model as well as spe
ify the asymptoti
 behavior of the boundary. In Se
tion 4,we verify that the solution of the free-boundary problem turns out to be a solution ofthe initial optimal stopping problem. In Se
tion 5, we give some 
on
luding remarks2



as well as present an expli
it solution to the optimal stopping problem related tothe perpetual Ameri
an �oating-strike lookba
k option problem. The main resultsof the paper are stated in Theorems 4.1 and 5.1.2 Formulation of the problemIn this se
tion we introdu
e the setting and notation of the two-dimensional optimalstopping problem whi
h is related to the perpetual Ameri
an �xed-strike lookba
koption problem and formulate an equivalent integro-di�erential free-boundary prob-lem.2.1. For a pre
ise formulation of the problem let us 
onsider a probability spa
e
(Ω,F , P ) with a standard Brownian motion B = (Bt)t≥0 and a jump pro
ess J =
(Jt)t≥0 de�ned by Jt =

∑Nt

i=1 Yi, where N = (Nt)t≥0 is a Poisson pro
ess of theintensity λ and (Yi)i∈N is a sequen
e of independent random variables exponentiallydistributed with parameter 1 (B, N and (Yi)i∈N are supposed to be independent).Assume that there exists a pro
ess X = (Xt)t≥0 given by:
Xt = x exp

((
r − σ2/2 − λθ/(1 − θ)

)
t + σ Bt + θ Jt

) (2.1)and hen
e solving the sto
hasti
 di�erential equation:
dXt = rXt− dt + σXt− dBt + Xt−

∫ ∞

0

(
eθy − 1

)
(µ(dt, dy)− ν(dt, dy)) (X0 = x)(2.2)where µ(dt, dy) is the measure of jumps of the pro
ess J with the 
ompensator

ν(dt, dy) = λdtI(y > 0)e−ydy, and x > 0 is given and �xed. It 
an be assumedthat the pro
ess X des
ribes a sto
k pri
e on a �nan
ial market, where r > 0 is theinterest rate, and σ ≥ 0 and θ < 1, θ 6= 0, are the volatilities of 
ontinuous and jumppart, respe
tively. Note that the assumption θ < 1 guarantees that the jumps of Xare integrable and that is not a restri
tion. With the pro
ess X let us asso
iate themaximum pro
ess S = (St)t≥0 de�ned by:
St =

(
max
0≤u≤t

Xu

)
∨ s (2.3)for an arbitrary s ≥ x > 0. The main purpose of the present paper is to derive asolution to the optimal stopping problem for the time-homogeneous (strong) Markovpro
ess (X, S) = (Xt, St)t≥0 given by:

V∗(x, s) = sup
τ

Ex,s

[
e−(r+δ)τ (Sτ − K)+

] (2.4)where the supremum is taken over all stopping times τ of the pro
ess X (i.e., stoppingtimes with respe
t to the natural �ltration of X), and Px,s is a probability measureunder whi
h the (two-dimensional) pro
ess (X, S) de�ned in (2.1)-(2.3) starts at3



(x, s) ∈ E. Here by E = {(x, s) | 0 < x ≤ s} we denote the state spa
e of thepro
ess (X, S). The value (2.4) 
oin
ides with an arbitrage-free pri
e of a �xed-strike lookba
k Ameri
an option with the strike pri
e K > 0 and the dis
ountingrate δ > 0 (see, e.g., [34℄). Note that in the 
ontinuous 
ase σ > 0 and θ = 0 theproblem (2.4) was solved in [21℄ and [13℄. It is also seen that if σ = 0 and 0 < θ < 1with r − λθ/(1 − θ) ≥ 0, then the optimal stopping time in (2.4) is in�nite.2.2. Let us �rst determine the stru
ture of the optimal stopping time in the problem(2.4).Applying the arguments from [6; Subse
tion 3.2℄ and [22; Proposition 2.1℄ to theoptimal stopping problem (2.4) we see that it is never optimal to stop when Xt = Stfor t ≥ 0 (this fa
t will be also proved independently below). It follows dire
tly fromthe stru
ture of (2.4) that it is never optimal to stop when St ≤ K for t ≥ 0. Inother words, this shows that all points (x, s) from the set:
C ′ = {(x, s) ∈ E | 0 < x ≤ s ≤ K} (2.5)and from the diagonal {(x, s) ∈ E | x = s} belong to the 
ontinuation region:
C∗ = {(x, s) ∈ E | V∗(x, s) > (s − K)+}. (2.6)Let us �x (x, s) ∈ C∗ and let τ∗ = τ∗(x, s) denote the optimal stopping time in (2.4).Then, taking some point (y, s) su
h that 0 < y ≤ s, by virtue of the stru
ture ofoptimal stopping problem (2.4) and (2.3) with (2.1) we get:

V∗(y, s) ≥ Ey,s

[
e−λτ∗(Sτ∗ − K)+

]
≥ Ex,s

[
e−λτ∗(Sτ∗ − K)+

]
= V∗(x, s) > (s − K)+.(2.7)These arguments together with the 
omments in [6; Subse
tion 3.3℄ and [22; Sub-se
tion 3.3℄ as well as the assumption that V∗(x, s) is 
ontinuous show that thereexists a fun
tion g∗(s) for s > K su
h that the 
ontinuation region (2.6) is an openset 
onsisting of (2.5) and of the set:

C ′′
∗ = {(x, s) ∈ E | g∗(s) < x ≤ s, s > K} (2.8)while the stopping region is the 
losure of the set:

D∗ = {(x, s) ∈ E | 0 < x < g∗(s), s > K}. (2.9)Let us now show that in (2.8)-(2.9) the fun
tion g∗(s) is in
reasing on (K,∞) (thisfa
t will be also proved independently below). Sin
e in (2.4) the fun
tion s − K islinear in s on (K,∞), by means of standard arguments it is shown that V∗(x, s) −
(s − K) is de
reasing in s on (K,∞). Hen
e, if for given (x, s) ∈ C ′′

∗ we take s′su
h that K < s′ < s, then V∗(x, s′) − (s′ − K) ≥ V∗(x, s) − (s − K) > 0 so that
(x, s′) ∈ C ′′

∗ , and thus the desired assertion follows.Let us denote by W∗(x, s) and a∗s the value fun
tion and the boundary of the optimalstopping problem related to the Russian option problem. It is easily seen that in 
ase4



K = 0 the fun
tion W∗(x, s) 
oin
ides with (2.4) and (5.1), while under di�erentrelationships on the parameters of the model a∗ < 1 
an be uniquely determinedby (5.11), (5.13), (5.15) and (5.17), respe
tively. Suppose that g∗(s) > a∗s for some
s > K. Then for any x ∈ (a∗s, g∗(s)) given and �xed we have W∗(x, s) − K >
s−K = V∗(x, s) 
ontradi
ting the obvious fa
t that W∗(x, s) −K ≤ V∗(x, s) for all
(x, s) ∈ E with s > K as it is 
learly seen from (2.4). Thus, we may 
on
lude that
g∗(s) ≤ a∗s < s for all s > K.2.3. Standard arguments imply that in this 
ase the in�nitesimal operator L ofthe pro
ess (X, S) a
ts on a fun
tion F ∈ C2,1(E) (or F ∈ C1,1(E) when σ = 0)a

ording to the rule:
(LF )(x, s) = (r+ζ)xFx(x, s)+

σ2

2
x2 Fxx(x, s)+

∫ ∞

0

(
F

(
xeθy, xeθy ∨s

)
−F (x, s)

)
λe−y dy(2.10)for all 0 < x < s with ζ = −λθ/(1 − θ). Using standard arguments based on thestrong Markov property it follows that V∗ ∈ C2,1(C∗ ≡ C ′ ∪C ′′

∗ ) (or V∗ ∈ C1,1(C∗ ≡
C ′ ∪ C ′′

∗ ) when σ = 0). In order to �nd analyti
 expressions for the unknown valuefun
tion V∗(x, s) from (2.4) and the unknown boundary g∗(s) from (2.8)-(2.9) usingthe results of general theory of optimal stopping problems for Markov pro
esses (see,e.g., [33; Chapter III, Se
tion 8℄ or [27℄) we 
an formulate the following integro-di�erential free-boundary problem:
(LV )(x, s) = (r + δ)V (x, s) for (x, s) ∈ C ≡ C ′ ∪ C ′′ (2.11)
V (x, s)

∣∣
x=g(s)+

= s − K (
ontinuous �t) (2.12)
V (x, s) = (s − K)+ for (x, s) ∈ D (2.13)
V (x, s) > (s − K)+ for (x, s) ∈ C (2.14)where C ′′ and D are de�ned as C ′′

∗ and D∗ in (2.8) and (2.9) with g(s) instead of
g∗(s), respe
tively, and (2.12) playing the role of instantaneous-stopping 
ondition issatis�ed for all s > K. Observe that the superharmoni
 
hara
terization of the valuefun
tion (see [9℄ and [33℄) implies that V∗(x, s) is the smallest fun
tion satisfying(2.11)-(2.13) with the boundary g∗(s). Moreover, under some relationships on theparameters of the model whi
h are spe
i�ed below, the following 
onditions 
an besatis�ed or break down:

Vx(x, s)
∣∣
x=g(s)+

= 0 (smooth �t) (2.15)
Vs(x, s)

∣∣
x=s−

= 0 (normal re�e
tion) (2.16)for all s > K. Note that in the 
ase σ > 0 and θ = 0 the free-boundary problem(2.11)-(2.16) was solved in [21℄ and [13℄.2.4. In order to spe
ify the boundary g∗(s) as a solution of the free-boundary problem(2.11)-(2.14) and (2.15)-(2.16), for further 
onsiderations we need to observe thatfrom (2.4) it follows that the inequalities:
0 ≤ sup

τ
Ex,s

[
e−(r+δ)τ Sτ

]
−K ≤ sup

τ
Ex,s

[
e−(r+δ)τ (Sτ −K)+

]
≤ sup

τ
Ex,s

[
e−(r+δ)τ Sτ

](2.17)5



whi
h are equivalent to:
0 ≤ W∗(x, s) − K ≤ V∗(x, s) ≤ W∗(x, s) (2.18)hold for all (x, s) ∈ E with s > K. Thus, setting x = s in (2.18) we get:
0 ≤

W∗(s, s)

s
−

K

s
≤

V∗(s, s)

s
≤

W∗(s, s)

s
(2.19)for all s > K so that letting s go to in�nity in (2.19) we obtain:

lim inf
s→∞

V∗(s, s)

s
= lim sup

s→∞

V∗(s, s)

s
= lim

s→∞

W∗(s, s)

s
. (2.20)3 Solution of the free-boundary problemIn this se
tion we obtain solutions to the free-boundary problem (2.11)-(2.16) andderive ordinary di�erential equations for the optimal boundary under di�erent rela-tionships on the parameters of the model (2.1)-(2.2).3.1. By means of straightforward 
al
ulations we redu
e equation (2.11) to the form:

(r + ζ)xVx(x, s) +
σ2

2
x2 Vxx(x, s) − αλxα G(x, s) = (r + δ + λ)V (x, s) (3.1)with α = 1/θ and ζ = −λθ/(1 − θ), where taking into a

ount 
onditions (2.12)-(2.13) we set:

G(x, s) = −

∫ s

x

V (z, s)
dz

zα+1
−

∫ ∞

s

V (z, z)
dz

zα+1
if α = 1/θ > 1 (3.2)

G(x, s) =

∫ x

g(s)

V (z, s)
dz

zα+1
−

s − K

αg(s)α
if α = 1/θ < 0 (3.3)for all 0 < x < g(s) and s > K. Then from (3.1) and (3.2)-(3.3) it follows that thefun
tion G(x, s) solves the following (third-order) ordinary di�erential equation:

σ2

2
x3 Gxxx(x, s) +

[
σ2(α + 1) + r + ζ

]
x2 Gxx(x, s) (3.4)

+

[
(α + 1)

(
σ2α

2
+ r + ζ

)
− (r + δ + λ)

]
xGx(x, s) − αλ G(x, s) = 0for 0 < x < g(s) and s > K, whi
h has the following general solution:

G(x, s) = C1(s)
xβ1

β1
+ C2(s)

xβ2

β2
+ C3(s)

xβ3

β3
(3.5)6



where C1(s), C2(s) and C3(s) are some arbitrary fun
tions and β3 < β2 < β1 arethe real roots of the 
orresponding (
hara
teristi
) equation:
σ2

2
β3 +

[
σ2

(
α −

1

2

)
+ r + ζ

]
β2 +

[
α

(
σ2(α − 1)

2
+ r + ζ

)
− (r + δ + λ)

]
β − αλ = 0.(3.6)Therefore, di�erentiating both sides of the formulas (3.2)-(3.3) we get that theintegro-di�erential equation (3.1) has the general solution:

V (x, s) = C1(s) xγ1 + C2(s) xγ2 + C3(s) xγ3 (3.7)where we set γi = βi +α for i = 1, 2, 3. Further we assume that the fun
tions C1(s),
C2(s) and C3(s) as well as the boundary g(s) are 
ontinuously di�erentiable for
s > K. Observe that if σ = 0 and r+ζ < 0 then it is seen that (3.4) degenerates intoa se
ond-order ordinary di�erential equation, and in that 
ase we 
an set C3(s) ≡ 0in (3.5) as well as in (3.7), while the roots of equation (3.6) are expli
itly given by:

βi =
r + δ + λ

2(r + ζ)
−

α

2
− (−1)i

√(
r + δ + λ

2(r + ζ)
−

α

2

)2

+
αλ

r + ζ
(3.8)for i = 1, 2.3.2. Let us �rst determine the boundary g∗(s) for the 
ase σ > 0 and α = 1/θ < 0.Then we have β3 < 0 < β2 < −α < 1 − α < β1 so that γ3 < α < γ2 < 0 < 1 < γ1with γi = βi +α, where βi for i = 1, 2, 3 are the roots of equation (3.6). Sin
e in this
ase the pro
ess X 
an leave the part of 
ontinuation region g∗(s) < x ≤ s and hitsthe diagonal {(x, s) ∈ E | x = s} only 
ontinuously, we may assume that both thesmooth-�t and normal-re�e
tion 
onditions (2.15) and (2.16) are satis�ed. Hen
e,applying 
onditions (3.3), (2.12) and (2.15) to the fun
tions (3.5) and (3.7), we getthat the following equalities hold:

C1(s)
g(s)γ1

β1

+ C2(s)
g(s)γ2

β2

+ C3(s)
g(s)γ3

β3

= −
s − K

α
(3.9)

C1(s) g(s)γ1 + C2(s) g(s)γ2 + C3(s) g(s)γ3 = s − K (3.10)
γ1C1(s) g(s)γ1 + γ2C2(s) g(s)γ2 + γ3C3(s) g(s)γ3 = 0 (3.11)for s > K. Thus, by means of straightforward 
al
ulations, from (3.9)-(3.11) weobtain that the solution of system (2.11)-(2.13)+(2.15) takes the form:

V (x, s; g(s)) =
β1γ2γ3(s − K)/α

(γ2 − γ1)(γ1 − γ3)

( x

g(s)

)γ1 (3.12)
+

β2γ1γ3(s − K)/α

(γ2 − γ1)(γ3 − γ2)

( x

g(s)

)γ2

+
β3γ1γ2(s − K)/α

(γ1 − γ3)(γ3 − γ2)

( x

g(s)

)γ37



for 0 < x < g(s) and s > K. Then applying 
ondition (2.16) to the fun
tion (3.7)we get:
C ′

1(s) sγ1 + C ′
2(s) sγ2 + C ′

3(s) sγ3 = 0 (3.13)from where using the solution of system (3.9)-(3.11) it follows that the fun
tion g(s)solves the following (�rst-order) ordinary di�erential equation:
g′(s) =

g(s)

γ1γ2γ3(s − K)
(3.14)

×
β1γ2γ3(γ2 − γ3)(s/g(s))γ1 − β2γ1γ3(γ1 − γ3)(s/g(s))γ2 + β3γ1γ2(γ1 − γ2)(s/g(s))γ3

β1(γ2 − γ3)(s/g(s))γ1 − β2(γ1 − γ3)(s/g(s))γ2 + β3(γ1 − γ2)(s/g(s))γ3for s > K with γi = βi + α, where βi for i = 1, 2, 3 are the roots of equation(3.6). By means of standard arguments it 
an be shown that the right-hand side ofequation (3.14) is positive so that the fun
tion g(s) is stri
tly in
reasing on (K,∞).Let us denote h∗(s) = g∗(s)/s for all s > K and set h = lim sups→∞h∗(s) and h =
lim infs→∞h∗(s). In order to spe
ify the solution of equation (3.14) whi
h 
oin
ideswith the optimal stopping boundary g∗(s), we observe that from the expression(3.12) it follows that (2.20) dire
tly implies:

β1γ2γ3(γ3 − γ2)h
−γ1 + β2γ1γ3(γ1 − γ3)h

−γ2

+ β3γ1γ2(γ2 − γ1)h
−γ3 (3.15)

= β1γ2γ3(γ3 − γ2)h
−γ1

+ β2γ1γ3(γ1 − γ3)h
−γ2 + β3γ1γ2(γ2 − γ1)h

−γ3

= β1γ2γ3(γ3 − γ2)a
−γ1

∗ + β2γ1γ3(γ1 − γ3)a
−γ2

∗ + β3γ1γ2(γ2 − γ1)a
−γ3

∗where a∗ is uniquely determined by (5.11) under K = 0. Then, using the fa
t that
h∗(s) = g∗(s)/s ≤ a∗ for s > K and thus h ≤ h ≤ a∗ < 1, from (3.15) we get that
h = h = a∗. Hen
e, we obtain that the optimal boundary g∗(s) should satisfy theproperty:

lim
s→∞

g∗(s)

s
= a∗ (3.16)whi
h gives a 
ondition on the in�nity for the equation (3.14). By virtue of theresults on the existen
e and uniqueness of solutions for �rst-order ordinary di�er-ential equations, we may therefore 
on
lude that 
ondition (3.16) uniquely spe
i�esthe solution of equation (3.14) that 
orresponds to the problem (2.4). Taking intoa

ount the expression (3.12), we also note that from inequalities (2.18) it followsthat the optimal boundary g∗(s) satis�es the properties:

g∗(K+) = 0 and g∗(s) ∼ A∗(s − K)1/γ1 under s ↓ K (3.17)for some 
onstant A∗ > 0 whi
h 
an be also determined by means of 
ondition (3.16)above.3.3. Let us now determine the boundary g∗(s) for the 
ase σ = 0 and α = 1/θ < 0.Then we have 0 < β2 < −α < 1 − α < β1 so that α < γ2 < 0 < 1 < γ1 with
γi = βi +α, where βi for i = 1, 2 are given by (3.6). In this 
ase, applying 
onditions8



(3.3) and (2.12) to the fun
tions (3.5) and (3.7) with C3(s) ≡ 0, we get that thefollowing equalities hold:
C1(s)

g(s)γ1

β1

+ C2(s)
g(s)γ2

β2

= −
s − K

α
(3.18)

C1(s) g(s)γ1 + C2(s) g(s)γ2 = s − K (3.19)for s > K. Thus, by means of straightforward 
al
ulations, from (3.18)-(3.19) weobtain that the solution of system (2.11)-(2.13) takes the form:
V (x, s; g(s)) =

β1γ2(s − K)

α(γ1 − γ2)

( x

g(s)

)γ1

−
β2γ1(s − K)

α(γ1 − γ2)

( x

g(s)

)γ2 (3.20)for 0 < x < g(s) and s > K. Sin
e in this 
ase r + ζ > 0 so that the pro
ess Xhits the diagonal {(x, s) ∈ E | x = s} only 
ontinuously, we may assume that thenormal-re�e
tion 
ondition (2.16) holds. Hen
e, applying 
ondition (2.16) to thefun
tion (3.7) with C3(s) ≡ 0, we get:
C ′

1(s) sγ1 + C ′
2(s) sγ2 = 0 (3.21)from where using the solution of system (3.18)-(3.19) it follows that the fun
tion

g(s) solves the di�erential equation:
g′(s) =

g(s)

γ1γ2(s − K)

β1γ2(s/g(s))γ1 − β2γ1(s/g(s))γ2

β1(s/g(s))γ1 − β2(s/g(s))γ2

(3.22)for s > K with γi = βi + α, where βi for i = 1, 2 are given by (3.8). By means ofstandard arguments it 
an be shown that the right-hand side of equation (3.22) ispositive so that the fun
tion g(s) is stri
tly in
reasing on (K,∞). Note that in this
ase the smooth-�t 
ondition (2.15) fails to hold, that 
an be explained by the fa
tthat leaving the part of 
ontinuation region g∗(s) < x ≤ s the pro
ess X 
an passthrough the boundary g∗(s) only by jumping. Su
h an e�e
t was earlier observedin [25℄-[26℄ by solving some other optimal stopping problems for jump pro
esses.A

ording to the results in [1℄ we may 
on
lude that this property appears be
ause of�nite intensity of jumps and exponential distribution of jump sizes of the 
ompoundPoisson pro
ess J .Let us re
all that h = lim sups→∞h∗(s) and h = lim infs→∞h∗(s) with h∗(s) =
g∗(s)/s for all s > K. In order to spe
ify the solution of equation (3.22) whi
h 
oin-
ides with the optimal stopping boundary g∗(s), we observe that from the expression(3.20) it follows that (2.20) dire
tly implies:

β1γ2h
−γ1

− β2γ1h
−γ2 = β1γ2h

−γ1 − β2γ1h
−γ2

= β1γ2a
−γ1

∗ − β2γ1a
−γ2

∗ (3.23)where a∗ is uniquely determined by (5.13) under K = 0. Then, using the fa
t that
h∗(s) = g∗(s)/s ≤ a∗ for s > K and thus h ≤ h ≤ a∗ < 1, from (3.23) we getthat h = h = a∗. Hen
e, we obtain that the optimal boundary g∗(s) should satisfythe property (3.16) whi
h gives a 
ondition on the in�nity for the equation (3.22).9



By virtue of the results on the existen
e and uniqueness of solutions for �rst-orderordinary di�erential equations, we may therefore 
on
lude that 
ondition (3.16)uniquely spe
i�es the solution of equation (3.22) that 
orresponds to the problem(2.4). Taking into a

ount the expression (3.20), we also note that from inequalities(2.18) it follows that the optimal boundary g∗(s) satis�es the properties (3.17) forsome 
onstant A∗ > 0 whi
h 
an be also determined by means of 
ondition (3.16)above.3.4. Let us now determine the optimal boundary g∗(s) for the 
ase σ > 0 and
α = 1/θ > 1. Then we have β3 < −α < 1 − α < β2 < 0 < β1 so that γ3 < 0 <
1 < γ2 < α < γ1 with γi = βi + α, where βi for i = 1, 2, 3 are the roots of equation(3.6). By virtue of the same arguments as mentioned above, in this 
ase we may alsoassume that both the smooth-�t and normal-re�e
tion 
onditions (2.15) and (2.16)hold. Hen
e, applying 
onditions (3.3), (2.12) and (2.15) to the fun
tions (3.5) and(3.7), respe
tively, we get that the following equalities hold:

C1(s)
sγ1

β1
+ C2(s)

sγ2

β2
+ C3(s)

sγ3

β3
= f(s)sα(s − K) (3.24)

C1(s) g(s)γ1 + C2(s) g(s)γ2 + C3(s) g(s)γ3 = s − K (3.25)
γ1C1(s) g(s)γ1 + γ2C2(s) g(s)γ2 + γ3C3(s) g(s)γ3 = 0 (3.26)where we set:

f(s) = −
1

s − K

∫ ∞

s

V (z, z)
dz

zα+1
(3.27)for s > K. Thus, by means of straightforward 
al
ulations, from (3.24)-(3.26) weobtain that the solution of system (2.11)-(2.13)+(2.15) takes the form:

V (x, s; g(s)) (3.28)
=

β1(s − K)[β2β3(γ2 − γ3)s
αf(s) + β3γ3(s/g(s))γ2 − β2γ2(s/g(s))γ3 ]

β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3

( x

g(s)

)γ1

+
β2(s − K)[β1β3(γ3 − γ1)s

αf(s) − β3γ3(s/g(s))γ1 + β1γ1(s/g(s))γ3 ]

β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3

( x

g(s)

)γ2

+
β3(s − K)[β1β2(γ1 − γ2)s

αf(s) + β2γ2(s/g(s))γ1 − β1γ1(s/g(s))γ2 ]

β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3

( x

g(s)

)γ3for 0 < x < g(s) and s > K. Inserting the expressions (3.5) and (3.7) into the for-mula (3.2), letting x = s and di�erentiating the both sides of the obtained equality,we get:
C ′

1(s)
sγ1

β1
+ C ′

2(s)
sγ2

β2
+ C ′

3(s)
sγ3

β3
= 0 (3.29)from where using the solution of system (3.24)-(3.26) it follows that the fun
tion

10



f(s) solves the di�erential equation:
f ′(s) = −

f(s)

s − K
(3.30)

+
β1β2β3f(s)[(γ2 − γ3)(s/g(s))γ1 − (γ1 − γ3)(s/g(s))γ2 + (γ1 − γ2)(s/g(s))γ3 ]

s[β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3 ]

+
β3γ3(γ1 − γ2)(s/g(s))γ1+γ2 − β2γ2(γ1 − γ3)(s/g(s))γ1+γ3 + β1γ1(γ2 − γ3)(s/g(s))γ2+γ3

sα+1[β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3 ]for s > K. Applying the 
ondition (2.16) to the fun
tion (3.7), we get that theequality (3.13) holds, from where it follows that the fun
tion g(s) solves the di�er-ential equation:
g′(s) =

g(s)

s − K
(3.31)

×
β3γ3(γ1 − γ2)(s/g(s))γ1+γ2 − β2γ2(γ1 − γ3)(s/g(s))γ1+γ3 + β1γ1(γ2 − γ3)(s/g(s))γ2+γ3

β3(γ1 − γ2)(s/g(s))γ1+γ2 − β2(γ1 − γ3)(s/g(s))γ1+γ3 + β1(γ2 − γ3)(s/g(s))γ2+γ3

×
β2β3(γ2 − γ3)(s/g(s))γ1 − β1β3(γ1 − γ3)(s/g(s))γ2 + β1β2(γ1 − γ2)(s/g(s))γ3

η2η3(γ2 − γ3)(s/g(s))γ1 − η1η3(γ1 − γ3)(s/g(s))γ2 + η1η2(γ1 − γ2)(s/g(s))γ3 − ρf(s)sαfor s > K with ηi = βiγi for i = 1, 2, 3, and ρ = β1β2β3(γ1 − γ2)(γ1 − γ3)(γ2 − γ3).In order to spe
ify the solution of equation (3.30) let us de�ne the fun
tion:
f∗(s) = −

1

s − K

∫ ∞

s

V∗(z, z)
dz

zα+1
(3.32)for all s > K. Then by virtue of the inequalities (2.18), using the expression (5.14)we obtain the fun
tion (3.32) is well-de�ned and should satisfy the property:

lim
s→∞

f∗(s) sα = γ2(γ3 − 1)/[(γ2 − γ1)(β1(γ3 − 1)aγ1

∗ − β3(γ1 − 1)aγ3

∗ )] (3.33)
+ γ3(γ1 − 1)/[(γ3 − γ2)(β2(γ1 − 1)aγ2

∗ − β1(γ2 − 1)aγ1

∗ )]

+ γ1(γ2 − 1)/[(γ1 − γ3)(β3(γ2 − 1)aγ3

∗ − β2(γ3 − 1)aγ2

∗ )]where a∗ is uniquely determined by (5.15) under K = 0. From (3.27) and (3.32) ittherefore follows that (3.33) gives a 
ondition on the in�nity for the equation (3.30).Let us re
all that h = lim sups→∞h∗(s) and h = lim infs→∞h∗(s) with h∗(s) =
g∗(s)/s for all s > K. In order to spe
ify the solution of equation (3.31) whi
h
oin
ides with the optimal stopping boundary g∗(s), we observe that from the ex-pressions (3.28) and (3.33) it follows that (2.20) dire
tly implies:

(γ2 − γ3)h
−γ1

+ (γ3 − γ1)h
−γ2 + (γ1 − γ2)h

−γ3

β2β3(γ2 − γ3)h
−γ1 − β1β3(γ1 − γ3)h

−γ2 + β1β2(γ1 − γ2)h
−γ3

(3.34)
=

(γ2 − γ3)h
−γ1 + (γ3 − γ1)h

−γ2

+ (γ1 − γ2)h
−γ3

β2β3(γ2 − γ3)h
−γ1

− β1β3(γ1 − γ3)h
−γ2

+ β1β2(γ1 − γ2)h
−γ3

=
(γ2 − γ3)a

−γ1

∗ + (γ3 − γ1)a
−γ2

∗ + (γ1 − γ2)a
−γ3

∗

β2β3(γ2 − γ3)a
−γ1

∗ − β1β3(γ1 − γ3)a
−γ2

∗ + β1β2(γ1 − γ2)a
−γ3

∗

.11



Then, using the fa
t that h∗(s) = g∗(s)/s ≤ a∗ for s > K and thus h ≤ h ≤ a∗ < 1,from (3.34) we get that h = h = a∗. Hen
e, we obtain that the optimal boundary
g∗(s) should satisfy the property (3.16) whi
h gives a 
ondition on the in�nity forthe equation (3.31). By virtue of the results on the existen
e and uniqueness ofsolutions for systems of �rst-order ordinary di�erential equations, we may therefore
on
lude that 
onditions (3.33) and (3.16) uniquely spe
i�es the solution of system(3.30)+(3.31) that 
orresponds to the problem (2.4). Taking into a

ount the ex-pression (3.28), we also note that from inequalities (2.18) it follows that the optimalboundary g∗(s) satis�es the properties (3.17) for some 
onstant A∗ > 0 whi
h 
anbe also determined by means of the 
ondition (3.16) above.3.5. Let us �nally determine the boundary g∗(s) for the 
ase σ = 0 and α = 1/θ > 1with r + ζ = r − λθ/(1 − θ) < 0. Then we have β2 < −α < 1 − α < β1 < 0 so that
γ2 < 0 < 1 < γ1 with γi = βi + α, where βi for i = 1, 2 are given by (3.6). Sin
ein this 
ase the pro
ess X 
an leave the 
ontinuation region g∗(s) < x ≤ s only
ontinuously, we may assume that the smooth-�t 
ondition (2.15) holds. Hen
e,applying 
onditions (2.12) and (2.15) to the fun
tion (3.7), we get that the followingequalities hold:

C1(s) g(s)γ1 + C2(s) g(s)γ2 = s − K (3.35)
γ1C1(s) g(s)γ1 + γ2C2(s) g(s)γ2 = 0 (3.36)for s > K. Thus, by means of straightforward 
al
ulations, from (3.35)-(3.36) weobtain that the solution of system (2.11)-(2.13)+(2.15) takes the form:

V (x, s; g(s)) =
γ2(s − K)

γ2 − γ1

( x

g(s)

)γ1

−
γ1(s − K)

γ2 − γ1

( x

g(s)

)γ2 (3.37)for 0 < x < g(s) and s > K. Inserting the expressions (3.5) and (3.7) with C3(s) ≡ 0into the formula (3.2), letting x = s and di�erentiating the both sides of the obtainedequality, we get:
C ′

1(s)
sγ1

β1
+ C ′

2(s)
sγ2

β2
= 0 (3.38)from where using the solution of system (3.35)-(3.36) it follows that the fun
tion

g(s) satis�es the di�erential equation:
g′(s) =

g(s)

γ1γ2(s − K)

β2γ2(s/g(s))γ1 − β1γ1(s/g(s))γ2

β2(s/g(s))γ1 − β1(s/g(s))γ2

(3.39)for s > K with γi = βi + α, where βi for i = 1, 2 are given by (3.8). By meansof standard arguments it 
an be shown that the right-hand side of equation (3.39)is positive so that the fun
tion g(s) is stri
tly in
reasing on (K,∞). Note that inthis 
ase the normal-re�e
tion 
ondition (2.16) fails to hold, that 
an be explainedby the fa
t that the pro
ess X 
an hit the diagonal {(x, s) ∈ E | x = s} only byjumping. 12



Let us re
all that h = lim sups→∞h∗(s) and h = lim infs→∞h∗(s) with h∗(s) =
g∗(s)/s for all s > K. In order to spe
ify the solution of equation (3.39) whi
h 
oin-
ides with the optimal stopping boundary g∗(s), we observe that from the expression(3.37) it follows that (2.20) dire
tly implies:

γ2h
−γ1

− γ1h
−γ2 = γ2h

−γ1 − γ1h
−γ2

= γ2a
−γ1

∗ − γ1a
−γ2

∗ (3.40)

where a∗ is uniquely determined by (5.17) under K = 0. Then, using the fa
t that
h∗(s) = g∗(s)/s ≤ a∗ for s > K and thus h ≤ h ≤ a∗ < 1, from (3.40) we getthat h = h = a∗. Hen
e, we obtain that the optimal boundary g∗(s) should satisfythe property (3.16) whi
h gives a 
ondition on the in�nity for the equation (3.39).By virtue of the results on the existen
e and uniqueness of solutions for �rst-orderordinary di�erential equations, we may therefore 
on
lude that 
ondition (3.16)uniquely spe
i�es the solution of equation (3.39) that 
orresponds to the problem(2.4). Taking into a

ount the expression (3.37), we also note that from inequalities(2.18) it follows that the optimal boundary g∗(s) satis�es the properties (3.17) forsome 
onstant A∗ > 0 whi
h 
an be also determined by means of the 
ondition(3.16) above.3.6. Observe that the arguments above show that if we start at the point (x, s) ∈ C ′then it is easily seen that the pro
ess (X, S) 
an be stopped optimally after it passes13



through the point (K, K). Thus, using standard arguments based on the strongMarkov property it follows that:
V∗(x, s) = U(x; K) V∗(K, K) (3.41)for all (x, s) ∈ C ′ with V∗(K, K) = lims↓K V∗(K, s), where we set:

U(x; K) = Ex

[
e−(r+δ)σ∗

] (3.42)and
σ∗ = inf{t ≥ 0 | Xt ≥ K}. (3.43)Here Ex denotes the expe
tation under the assumption that X0 = x for some 0 <

x ≤ K.By means of straightforward 
al
ulations based on solving the 
orresponding bound-ary value problem (see also [2℄-[3℄ and [17℄) it follows that when α = 1/θ < 0 holds,we have:
U(x; K) =

( x

K

)γ1 (3.44)with γ1 = β1 + α, where if σ > 0 then β1 is the largest root of equation (3.6), whileif σ = 0 then β1 is given by (3.8). It also follows that when α = 1/θ > 1 holds, thenwe have:
U(x; K) =

β1γ2

α(γ1 − γ2)

( x

K

)γ1

−
β2γ1

α(γ1 − γ2)

( x

K

)γ2 (3.45)with γi = βi + α, where if σ > 0 then βi for i = 1, 2 are the two largest roots ofequation (3.6), while if σ = 0 and r + ζ = r− λθ/(1− θ) < 0 then βi for i = 1, 2 aregiven by (3.8).4 Main result and proofIn this se
tion using the fa
ts proved above we formulate and prove the main resultof the paper.Theorem 4.1. Let the pro
ess (X, S) be de�ned in (2.1)-(2.3). Then the valuefun
tion of the problem (2.4) takes the expression:
V∗(x, s) =





V (x, s; g∗(s)), if g∗(s) < x < s and s > K

U(x; K)V∗(K, K), if 0 < x ≤ s ≤ K

s − K, if 0 < x ≤ g∗(s) and s > K

(4.1)[with V∗(K, K) = lims↓K V∗(K, s)℄ and the optimal stopping time is expli
itly givenby:
τ∗ = inf{t ≥ 0 |Xt ≤ g∗(St)} (4.2)where the fun
tions V (x, s; g(s)) and U(x; K) as well as the in
reasing boundary

g∗(s) ≤ a∗s < s for s > K satisfying g∗(K+) = 0 and g∗(s) ∼ A∗(s − K)1/γ under
s ↓ K [see Figure 1 above℄ are spe
i�ed as follows:14



(i): if σ > 0 and θ < 0 then V (x, s; g(s)) is given by (3.12), U(x; K) is given by(3.44), and g∗(s) is uniquely determined from the di�erential equation (3.14) andthe 
ondition (3.16), where γi = βi + 1/θ and βi for i = 1, 2, 3 are the roots ofequation (3.6), while a∗ is found from equation (5.11) under K = 0;(ii): if σ = 0 and θ < 0 then V (x, s; g(s)) is given by (3.20), U(x; K) is given by(3.44), and g∗(s) is uniquely determined from the di�erential equation (3.22) andthe 
ondition (3.16), where γi = βi +1/θ and βi for i = 1, 2 are given by (3.8), while
a∗ is found from equation (5.13) under K = 0;(iii): if σ > 0 and 0 < θ < 1 then V (x, s; g(s)) is given by (3.28), U(x; K) is givenby (3.45), and g∗(s) is uniquely determined from the system of di�erential equations(3.30)+(3.31) and the 
onditions (3.33)+(3.16), where γi = βi + 1/θ and βi for
i = 1, 2, 3 are the roots of equation (3.6), while a∗ is found from equation (5.15)under K = 0;(iv): if σ = 0 and 0 < θ < 1 with r − λθ/(1 − θ) < 0 then V (x, s; g(s)) is givenby (3.37), U(x; K) is given by (3.45), and g∗(s) is uniquely determined from thedi�erential equation (3.39) and the 
ondition (3.16), where γi = βi + 1/θ and βi for
i = 1, 2 are given by (3.8), while a∗ is found from equation (5.17) under K = 0.Proof. In order to verify the assertions stated above, it remains us to show that thefun
tion (4.1) 
oin
ides with the value fun
tion (2.4) and the stopping time τ∗ from(4.2) with the boundary g∗(s) spe
i�ed above is optimal. For this, let us denoteby V (x, s) the right-hand side of the expression (4.1). In this 
ase, by means ofstraightforward 
al
ulations and the assumptions above it follows that the fun
tion
V (x, s) solves the system (2.11)-(2.13), and 
ondition (2.15) is satis�ed when either
σ > 0 or r − λθ/(1 − θ) < 0 holds, while 
ondition (2.16) is satis�ed when either
σ > 0 or θ < 0 holds. Then taking into a

ount the fa
t that the boundary g∗(s)is assumed to be 
ontinuously di�erentiable for s > K and applying the 
hange-of-variable formula from [23; Theorem 3.1℄ to e−(r+δ)tV (Xt, St), we obtain:

e−(r+δ)t V (Xt, St) = V (x, s) (4.3)
+

∫ t

0

e−(r+δ)u (LV − (r + δ)V )(Xu, Su)I(Xu 6= g∗(Su)) du

+

∫ t

0

e−(r+δ)u Vs(Xu−, Su−) dSu −
∑

0<u≤t

e−(r+δ)u Vs(Xu−, Su−) ∆Su + Mtwhere the pro
ess (Mt)t≥0 de�ned by:
Mt =

∫ t

0
e−(r+δ)u Vx(Xu−, Su−)σXu− dBu (4.4)

+

∫ t

0

∫ ∞

0
e−(r+δ)u

(
V

(
Xu−eθy,Xu−eθy ∨ Su−

)
− V (Xu−, Su−)

)
(µ(du, dy) − ν(du, dy))is a lo
al martingale under Px,s. Observe that when either σ > 0 or 0 < θ < 1, thetime spent by the pro
ess X at the diagonal {(x, s) ∈ E | 0 < x ≤ s} is of Lebesgue15



measure zero that allows to extend (LV − (r+δ)V )(x, s) arbitrarily to x = s. Wheneither σ > 0 or θ < 0, the time spent by the pro
ess X at the boundary g∗(S) isof Lebesgue measure zero that allows to extend (LV − (r + δ)V )(x, s) to x = g∗(s)and set the indi
ator in the formula (4.3) to one. Note that when either σ > 0 or
θ < 0, the pro
ess S in
reases only 
ontinuously, and hen
e in (4.3) the sum withrespe
t to ∆Su is zero and the same is the integral with respe
t to dSu, sin
e at thediagonal {(x, s) ∈ E | x = s} we assume (2.16). When σ = 0 and 0 < θ < 1, thepro
ess S in
reases only by jumping, and thus in (4.3) the integral with respe
t to
dSu is 
ompensated by the sum with respe
t to ∆Su.By virtue of the arguments from the previous se
tion we may 
on
lude that (LV −
(r + δ)V )(x, s) ≤ 0 for all (x, s) ∈ E. Moreover, by means of straightforward
al
ulations it 
an be shown that the property (2.14) also holds that together with(2.12)-(2.13) yields V (x, s) ≥ (s−K)+ for all (x, s) ∈ E. From the expression (4.3)it therefore follows that the inequalities:

e−(r+δ)τ (Sτ − K)+ ≤ e−(r+δ)τ V (Xτ , Sτ ) ≤ V (x, s) + Mτ (4.5)hold for any �nite stopping time τ of the pro
ess X.Let (σn)n∈N be an arbitrary lo
alizing sequen
e of stopping times for the pro
ess
(Mt)t≥0. Then taking in (4.5) expe
tation with respe
t to Px,s, by means of theoptional sampling theorem we get:

Ex,s

[
e−(r+δ)(τ∧σn) (Sτ∧σn

− K)+
]
≤ Ex,s

[
e−(r+δ)(τ∧σn) V (Xτ∧σn

, Sτ∧σn
)
] (4.6)

≤ V (x, s) + Ex,s

[
Mτ∧σn

]
= V (x, s)for all (x, s) ∈ E. Hen
e, letting n go to in�nity and using Fatou's lemma, we obtainthat for any �nite stopping time τ the inequalities:

Ex,s

[
e−(r+δ)τ (Sτ − K)+

]
≤ Ex,s

[
e−(r+δ)τ V (Xτ , Sτ )

]
≤ V (x, s) (4.7)are satis�ed for all (x, s) ∈ E.By virtue of the fa
t that the fun
tion V (x, s) together with the boundary g∗(s)satisfy the system (2.11)-(2.14), by the stru
ture of stopping time τ∗ in (4.2) andthe expression (4.3) it follows that the equality:

e−(r+δ)(τ∗∧σn) V (Xτ∗∧σn
, Sτ∗∧σn

) = V (x, s) + Mτ∗∧σn
(4.8)holds. Then, using the expression (4.5), by virtue of the fa
t that the fun
tion

V (x, s) is in
reasing, we may 
on
lude that the inequalities:
−V (x, s) ≤ Mτ∗∧σn

≤ V (g∗(Sτ∗∧σn
), Sτ∗∧σn

) − V (x, s) (4.9)are satis�ed for all (x, s) ∈ E, where (σn)n∈N is a lo
alizing sequen
e for (Mt)t≥0.Taking into a

ount 
onditions (3.16) and (3.33), from the stru
ture of the fun
tions(3.12), (3.20), (3.28) and (3.37) it follows that:
V (g∗(St), St) ≤ K ′ St (4.10)16



for some K ′ > 0. Hen
e, letting n go to in�nity in the expression (4.8) and usingthe 
onditions (2.12)-(2.13) as well as the property:
Ex,s

[
sup
t≥0

e−(r+δ)t St

]
= Ex,s

[
sup
t≥0

e−(r+δ)t Xt

]
< ∞ (4.11)(the latter 
an be proved by means of the same arguments as in [31℄ and using thefa
t that the pro
esses B and J are independent and the jumps of J are integrable),by means of the Lebesgue dominated 
onvergen
e theorem we obtain the equality:

Ex,s

[
e−(r+δ)τ∗ (Sτ∗ − K)+

]
= V (x, s) (4.12)for all (x, s) ∈ E, from where the desired assertion follows dire
tly. �5 Con
lusionsIn this se
tion we give some 
on
luding remarks and present an expli
it solution tothe optimal stopping problem whi
h is related to the perpetual Ameri
an �xed-strikelookba
k option problem.5.1. We have 
onsidered the perpetual �xed-strike lookba
k Ameri
an option op-timal stopping problem in a jump-di�usion model. In order to be able to derive(�rst-order) nonlinear di�erential equations for the optimal boundary that sepa-rates the 
ontinuation and stopping regions, we have let the jumps of the driving
ompound Poisson pro
ess be exponentially distributed. It was shown that not onlythe smooth-�t 
ondition at the optimal boundary, but also the normal-re�e
tion
ondition at the diagonal may break down be
ause of the o

urren
e of jumps inthe model. We have seen that under some relationships on the parameters of themodel the optimal boundary 
an be found as a 
omponent of the solution of a two-dimensional system of ordinary di�erential equations that shows the di�eren
e ofthe jump-di�usion 
ase from the 
ontinuous 
ase. We have also derived spe
ial 
on-ditions that spe
ify in the family of solutions of the system of nonlinear di�erentialequations the unique solution that 
orresponds to the initial optimal stopping prob-lem. The existen
e and uniqueness of su
h a solution 
an be obtained by standardmethods of �rst-order ordinary di�erential equations.In the rest of the paper we derive a solution to the �oating-strike lookba
k Ameri
anoption problem in the jumps-di�usion model (2.1)-(2.3). In 
ontrast to the �xed-strike 
ase, by means of the 
hange-of-measure theorem, the related two-dimensionaloptimal stopping problem 
an be redu
ed to an optimal stopping problem for a one-dimensional strong Markov pro
ess (St/Xt)t≥0 that explains the simplisity of thestru
ture of the solution in (5.18)-(5.19) (see [31℄ and [4℄).5.2. Let us now 
onsider the following optimal stopping problem:

Ṽ∗(x, s) = sup
τ

Ex,s

[
e−(r+δ)τ (Sτ − KXτ )

+
] (5.1)17



where the supremum is taken over all stopping times τ of the pro
ess X. The value(2.4) 
oin
ides with an arbitrage-free pri
e of a �oating-strike lookba
k Ameri
anoption (or 'partial lookba
k' as it is 
alled in [5℄) with K > 0 and the dis
ountingrate δ > 0. Note that in the 
ontinuous 
ase σ > 0 and θ = 0 the problem (5.1) wassolved in [4℄. It is also seen that if σ = 0 and 0 < θ < 1 with r − λθ/(1 − θ) ≥ 0,then the optimal stopping time in (5.1) is in�nite in 
ase K < 1 and equals zero in
ase K ≥ 1.Using the same arguments as in [4℄ it 
an be shown that the 
ontinuation region forthe problem (5.1) is an open set of the form:
C̃∗ = {(x, s) ∈ E | b∗s < x ≤ s} (5.2)while the stopping region is the 
losure of the set:
D̃∗ = {(x, s) ∈ E | 0 < x < b∗s}. (5.3)From (5.1) it is easily seen that b∗ ≤ 1/K in (5.2)-(5.3).In order to �nd analyti
 expressions for the unknown value fun
tion Ṽ∗(x, s) from(5.1) and the unknown boundary b∗s from (5.2)-(5.3), we 
an formulate the followingintegro-di�erential free-boundary problem:

(LṼ )(x, s) = (r + δ)Ṽ (x, s) for (x, s) ∈ C̃ (5.4)
Ṽ (x, s)

∣∣
x=bs+

= s(1 − Kb) (
ontinuous �t) (5.5)
Ṽ (x, s) = (s − Kx)+ for (x, s) ∈ D̃ (5.6)
Ṽ (x, s) > (s − Kx)+ for (x, s) ∈ C̃ (5.7)where C̃ and D̃ are de�ned as C̃∗ and D̃∗ in (5.2) and (5.3) with b instead of

b∗, respe
tively, and (5.5) playing the role of instantaneous-stopping 
ondition issatis�ed for all s > 0. Moreover, under some relations on the parameters of themodel whi
h are spe
i�ed below, the following 
onditions 
an be satis�ed or breakdown:
Ṽx(x, s)

∣∣
x=bs+

= −K (smooth �t) (5.8)
Ṽs(x, s)

∣∣
x=s−

= 0 (normal re�e
tion) (5.9)for all s > 0. Note that in the 
ase σ > 0 and θ = 0 the free-boundary problem(5.4)-(5.9) was solved in [4℄.Following the s
hema of arguments from the previous se
tion, by means of straight-forward 
al
ulations it 
an be shown that in 
ase σ > 0 and α = 1/θ < 0 the solution
18



of system (5.4)-(5.7)+(5.8) takes the form:
Ṽ (x, s; bs) =

β1[(1 − α)γ2γ3 + α(γ2 − 1)(γ3 − 1)Kb]s

α(1 − α)(γ2 − γ1)(γ1 − γ3)

( x

bs

)γ1 (5.10)
+

β2[(1 − α)γ1γ3 + α(γ1 − 1)(γ3 − 1)Kb]s

α(1 − α)(γ2 − γ1)(γ3 − γ2)

( x

bs

)γ2

+
β3[(1 − α)γ1γ2 + α(γ1 − 1)(γ2 − 1)Kb]s

α(1 − α)(γ1 − γ3)(γ3 − γ2)

( x

bs

)γ3and from 
ondition (5.9) it follows that b solves the equation:
β1(γ1 − 1)[(1 − α)γ2γ3 + α(γ2 − 1)(γ3 − 1)Kb]

(γ2 − γ1)(γ1 − γ3)bγ1

(5.11)
+

β2(γ2 − 1)[(1 − α)γ1γ3 + α(γ1 − 1)(γ3 − 1)Kb]

(γ2 − γ1)(γ3 − γ2)bγ2

=
β3(γ3 − 1)[(1 − α)γ1γ2 + α(γ1 − 1)(γ2 − 1)Kb]

(γ3 − γ1)(γ3 − γ2)bγ3

;in 
ase σ = 0 and α = 1/θ < 0 the solution of system (5.4)-(5.7) takes the form:
Ṽ (x, s; bs) =

β1[(1 − α)γ2 + α(γ2 − 1)Kb]s

α(1 − α)(γ1 − γ2)

( x

bs

)γ1

−
β2[(1 − α)γ1 + α(γ1 − 1)Kb]s

α(1 − α)(γ1 − γ2)

( x

bs

)γ2(5.12)and from 
ondition (5.9) it follows that b solves the equation:
bγ1−γ2 =

β2(γ2 − 1)

β1(γ1 − 1)

(1 − α)γ1 + α(γ1 − 1)Kb

(1 − α)γ2 + α(γ2 − 1)Kb
; (5.13)in 
ase σ > 0 and α = 1/θ > 1 the solution of system (5.4)-(5.7)+(5.9) takes theform:

Ṽ (x, s; bs) =
β1(γ3 − 1)[γ2 − (γ2 − 1)Kb]bγ1s

(γ2 − γ1)[β1(γ3 − 1)bγ1 − β3(γ1 − 1)bγ3 ]

( x

bs

)γ1 (5.14)
+

β2(γ1 − 1)[γ3 − (γ3 − 1)Kb]bγ2s

(γ3 − γ2)[β2(γ1 − 1)bγ2 − β1(γ2 − 1)bγ1 ]

( x

bs

)γ2

+
β3(γ2 − 1)[γ1 − (γ1 − 1)Kb]bγ3s

(γ1 − γ3)[β3(γ2 − 1)bγ3 − β2(γ3 − 1)bγ2 ]

( x

bs

)γ3and from 
ondition (5.8) it follows that b solves the equation:
β1(γ1 − 1)(γ3 − 1)[γ2 − (γ2 − 1)Kb]

(γ2 − γ1)[β1(γ3 − 1)bγ1 − β3(γ1 − 1)bγ3 ]
(5.15)

+
β2(γ1 − 1)(γ2 − 1)[γ3 − (γ3 − 1)Kb]

(γ3 − γ2)[β2(γ1 − 1)bγ2 − β1(γ2 − 1)bγ1 ]

=
β3(γ2 − 1)(γ3 − 1)[γ1 − (γ1 − 1)Kb]

(γ3 − γ1)[β3(γ2 − 1)bγ3 − β2(γ3 − 1)bγ2 ]
;19



while in 
ase σ = 0 and α = 1/θ > 1 with r + ζ = r − λθ/(1 − θ) < 0 the solutionof system (5.4)-(5.7) takes the form:
Ṽ (x, s; bs) =

[γ2 − (γ2 − 1)Kb]s

γ2 − γ1

( x

bs

)γ1

−
[γ1 − (γ1 − 1)Kb]s

γ2 − γ1

( x

bs

)γ2 (5.16)and from 
ondition (5.8) it follows that b solves the equation:
bγ1−γ2 =

β2

β1

γ2(γ1 − 1) + [γ1 − γ2(γ1 − 1)]Kb

γ1(γ2 − 1) + [γ2 − γ1(γ2 − 1)]Kb
. (5.17)Summarizing the fa
ts proved above we formulate the following assertion.Theorem 5.1. Let the pro
ess (X, S) be de�ned in (2.1)-(2.3). Then the valuefun
tion of the problem (5.1) takes the expression:

Ṽ∗(x, s) =

{
Ṽ (x, s; b∗s), if b∗s < x < s

s − Kx, if 0 < x ≤ b∗s
(5.18)and the optimal stopping time is expli
itly given by:

τ̃∗ = inf{t ≥ 0 | Xt ≤ b∗St} (5.19)where the fun
tion Ṽ (x, s; bs) and the boundary b∗s ≤ s/K for s > 0 are spe
i�edas follows:(i): if σ > 0 and θ < 0 then Ṽ (x, s; bs) is given by (5.10) and b∗ is uniquelydetermined from equation (5.11), where γi = βi + 1/θ and βi for i = 1, 2, 3 are theroots of equation (3.6);(ii): if σ = 0 and θ < 0 then Ṽ (x, s; bs) is given by (5.12) and b∗ is uniquelydetermined from equation (5.13), where γi = βi + 1/θ and βi for i = 1, 2 are givenby (3.8);(iii): if σ > 0 and 0 < θ < 1 then Ṽ (x, s; bs) is given by (5.14) and b∗ is uniquelydetermined from equation (5.15), where γi = βi + 1/θ and βi for i = 1, 2, 3 are theroots of equation (3.6);(iv): if σ = 0 and 0 < θ < 1 with r − λθ/(1 − θ) < 0 then Ṽ (x, s; bs) is given by(5.16) and b∗ is uniquely determined from equation (5.17), where γi = βi + 1/θ and
βi for i = 1, 2 are given by (3.8).These assertions 
an be proved by means of the same arguments as in Theorem 4.1above.Referen
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