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Abstract

In this paper we lay the foundation for a numerical algorithm to simu-
late high-dimensional coupled FBSDEs under weak coupling or monotonicity
conditions. In particular we prove convergence of a time discretization and
a Markovian iteration. The iteration di�ers from standard Picard iterations
for FBSDEs in that the dimension of the underlying Markovian process does
not increase with the number of iterations. This feature seems to be indis-
pensable for an e�cient iterative scheme from a numerical point of view. We
�nally suggest a fully explicit numerical algorithm and present some numerical
examples with up to 10-dimensional state space.

1 Introduction

Motivated by the aim to simulate high dimensional coupled forward backward
stochastic di�erential equations (FBSDEs) we study a time discretization and a
Markovian iteration for equations of the form





Xt = x+

∫ t

0

b(s,Xs, Ys)ds+

∫ t

0

σ(s,Xs, Ys)dWs;

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs;

(1.1)

where b, σ, f, g are deterministic and Lipschitz continuous functions which are ad-
ditionally supposed to satisfy some weak coupling or monotonicity condition. Note
that (1.1) is not in its most general form, since Z does not couple into the forward
SDE.

Most of the numerical algorithms for coupled FBSDEs, with the notably exception
of Delarue and Menozzi (2006), exploit the relation to quasi-linear parabolic PDEs
via the four-step-scheme (Ma et al., 1994). Under appropriate conditions (X,Y, Z)

are connected by

Yt = u(t,Xt); Zt = v(t,Xt)
4
= ux(t,Xt)σ(t,Xt, u(t,Xt)). (1.2)

where u is a classical solution of the PDE{
ut + 1

2
trace(σσ∗(t, x, u)uxx) + uxb(t, x, u) + f(t, x, u, uxσ(t, x, u)) = 0;

u(T, x) = g(x).
(1.3)

1



The main focus in these approaches is on the numerical solution of the PDE (1.3),
see Douglas et al. (1996), Milstein and Tretyakov (2006), and Ma et al. (2006).
Since the PDE approach requires existence of a classical solution to (1.3), there is
typically need for some smoothness, boundedness, and regularity conditions such as
uniform ellipticity of the di�erential operator. Moreover, solving (1.3) numerically by
standard PDE techniques becomes more di�cult, if not impossible, with increasing
spatial dimension. To overcome these limitations it seems necessary to tackle the
FBSDE (1.1) directly by probabilistic means.

A natural time discretization of equation (1.1) is




Xn
0

4
= x;

Xn
i+1

4
= Xn

i + b(ti, X
n
i , Y

n
i )h+ σ(ti, X

n
i , Y

n
i )∆Wi+1;

Y n
n

4
= g(Xn

n );

Ẑn
i

4
=

1

h
Eti{Y n

i+1∆Wi+1};
Y n

i

4
= Eti{Y n

i+1 + f(ti, X
n
i , Y

n
i+1, Ẑ

n
i )h};

(1.4)

where h 4
= T

n
and ti

4
= ih, i = 0, 1 · · · , n, and ∆Wi+1

4
= Wti+1

− Wti . Here, of
course, Eti denotes the conditional expectation E{·|Fti}. This time discretization
was investigated in detail by Zhang (2004) for decoupled FBSDEs. However, since
X is discretized forwardly and Y is discretized backwardly, (1.4) is by no means an
explicit discretization in the present situation due to the coupling. Note that one
can rewrite

Y n
i = un

i (Xn
i ); Ẑn

i = vn
i (Xn

i ), (1.5)

where 



un
n(x)

4
= g(x);

Xn,i,x
i+1

4
= x+ b(ti, x, u

n
i (x))h+ σ(ti, x, u

n
i (x))∆Wi+1;

Y n,i,x
i+1

4
= un

i+1(X
n,i,x
i+1 );

vn
i (x)

4
= 1

h
E{Y n,i,x

i+1 ∆Wi+1};
un

i (x)
4
= E

{
Y n,i,x

i+1 + f(ti, x, Y
n,i,x
i+1 , vn

i (x))h
}
.

(1.6)

Equation (1.6) is still implicit in un
i , but truly backwards in time. Combined with

a local updating technique it serves as starting point for the probabilistic scheme
in Delarue and Menozzi (2006). This type of scheme requires, however, apart from
estimating the expectations, a discretization of the state space. Such space dis-
cretization may again become prohibitive, when the dimension increases.

We, hence, propose to combine the time discretization (1.4) with an iterative scheme.
Indeed, it is known from results by Antonelli (1993) and Pardoux and Tang (1999)
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that under weak coupling or monotonicity conditions (1.1) has a unique solution
(X, Y, Z) which can be constructed via a Picard iteration





X̌m
t = x+

∫ t

0

b(s, X̌m
s , Y̌

m−1
s )ds+

∫ t

0

σ(s, X̌m
s , Y̌

m−1
s )dWs;

Y̌ m
t = g(X̌m

T ) +

∫ T

t

f(s, X̌m
s , Y̌

m
s , Žm

s )ds−
∫ T

t

Žm
s dWs.

(1.7)

The drawback of (1.7) is that the dimension of the underlying Markovian process
(X̌1, . . . , X̌m) increases with the number of iterations, and, consequently, Y̌ m

t is a
function of time and (X̌1, . . . , X̌m). This renders a combination of (1.4) with a
Picard iteration like (1.7), which was recently suggested by Riviere (2005) in theory,
impractical from a numerical point of view. The stochastic control approach in
Cvitani¢ and Zhang (2005) faces the same kind of di�culty.

In this paper we introduce an alternative iteration in a way that the dimension of
the underlying Markovian process does not change in the number of iterations. It
reads, in discretized form, un,0

i (x) = 0, and




Xn,m
0

4
= x;

Xn,m
i+1

4
= Xn,m

i + b(ti, X
n,m
i , un,m−1

i (Xn,m
i ))h+ σ(ti, X

n,m
i , un,m−1

i (Xn,m
i ))∆Wi+1;

Y n,m
n

4
= g(Xn,m

n );

Ẑn,m
i

4
=

1

h
Eti

{
Y n,m

i+1 ∆Wi+1

}
;

Y n,m
i

4
= Eti{Y n,m

i+1 + f(ti, X
n,m
i , Y n,m

i+1 , Ẑ
n,m
i )h};

un,m(Xn,m
i ) = Y n,m

i .

(1.8)
The main advantage is that here Y n,m

i is a function of time and Xn,m
i but does

not depend on (Xn,µ
i , µ = 1, . . . ,m − 1). Establishing the convergence of this new

`Markovian' iteration turns out to be more involved than for the standard Picard
iteration, because controlling the Lipschitz constant and the linear growth of un,m

i (x)

uniformly in i, n,m becomes crucial. This is indeed the reason, why we cannot allow
Z to couple in the forward SDE at the current state of our research.

We also indicate how this discretized Markovian iteration may be transformed into
a viable numerical scheme, replacing the conditional expectations by simulation
based least squares regression and estimating un,m this way. Such estimator was
introduced by Carrière (1996) and Longsta� and Schwartz (2001) in the context
of American options and is applied by Gobet et al. (2005) and Bender and Denk
(2005) for decoupled FBSDEs. Although a convergence analysis for this estimator
in the present context of a coupled FBSDE is beyond the scope of this paper, we
illustrate by some examples with up to 10-dimensional state space that the proposed
numerical algorithm works in practice.
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The paper is organized as follows: In Section 2 we state the main results on conver-
gence of the discretized Markovian iteration. The proof is given in several steps in
Sections 3�5, where we establish the control of the Lipschitz constant, of the linear
growth, and the convergence of un,m to un respectively. In Section 6 we investigate
the error due to the time discretization. To the best of our knowledge our conver-
gence theorem is the �rst of this type for coupled FBSDEs which also holds for a
degenerate di�usion coe�cient σ. In Section 7 we spell out the proposed numerical
scheme and present some numerical examples in Section 8.

2 Notations and Main Results

The main results of this paper estimate the error of the discretized Markovian it-
eration (1.8) as the number of time steps n and the number of iterations m tend
to in�nity. Before we can state these results, we need to �x some notations and
discuss some assumptions. From now on we suppose, in the theoretical part, that
all processes are one-dimensional. This is only to ease the notation and the atten-
tive reader will easily see that all results hold true for the multi-dimensional case
as well. The augmented �ltration generated by the Brownian motion is denoted by
F = {Ft, 0 ≤ t ≤ T}.
The �rst assumption concerns the Lipschitz continuity and monotonicity of the
coe�cients. It will be in force throughout the whole paper without further notice.

Assumption 1 (i) There exist (possibly negative) constants kb, kf such that

[b(t, x1, y)− b(t, x2, y)][x1 − x2] ≤ kb|x1 − x2|2;
[f(t, x, y1, z)− f(t, x, y2, z)][y1 − y2] ≤ kf |y1 − y2|2.

(ii) The coe�cients b, σ, f, g are uniformly Lipschitz continuous with respect to
(x, y, z). In particular, there are constants K, by, σx, σy, fx, fz, and gx such that

|b(t, x1, y1)− b(t, x2, y2)|2 ≤ K|x1 − x2|2 + by|y1 − y2|2;
|σ(t, x1, y1)− σ(t, x2, y2)| ≤ σx|x1 − x2|2 + σy|y1 − y2|2;
|f(t, x1, y1, z1)− f(t, x2, y2, z2)| ≤ fx|x1 − x2|2 +K|y1 − y2|2 + fz|z1 − z2|2;
|g(x1)− g(x2)|2 ≤ gx|x1 − x2|2.

(iii) b(t, 0, 0), σ(t, 0, 0), f(t, 0, 0, 0) are bounded. In particular, there are constants
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b0, σ0, f0, and g0 such that

|b(t, x, y)|2 ≤ b0 +K|x|2 + by|y|2;
|σ(t, x, y)|2 ≤ σ0 + σx|x|2 + σy|y|2;
|f(t, x, y, z)|2 ≤ f0 + fx|x|2 +K|y|2 + fz|z|2;
|g(x)|2 ≤ g0 + gx|x|2.

We emphasize that here by et al are constants, not partial derivatives. Indeed, we
will not assume any di�erentiability conditions throughout this paper. For conve-
nience we also suppose that K is an upper bound for all the constants above.

For results concerning the error due to the time discretization we require the follow-
ing assumption.

Assumption 2 The coe�cients (b, σ, f) are uniformly Hölder-1
2
continuous with

respect to t.

If Assumption 2 is in force, we use the same constant K to denote the square of the
Hölder constants.

To ensure that the iteration converges we further need to impose conditions which
guarantee that we are in one of the following �ve cases:

1. Small time duration, i.e. T is small.

2. Weak coupling of Y into the forward SDE, i.e. by and σy are small. In partic-
ular, if by = σy = 0, then the forward equation in (1.1) does not depend on
the backward one and thus (1.1) is decoupled.

3. Weak coupling of X into the backward SDE, i.e. fx and gx are small. In
particular, if fx = gx = 0, then the backward equation in (1.1) does not
depend on the forward one and thus (1.1) is also decoupled. In fact in this
case Z = 0 and (1.1) reduces to a decoupled system of ordinary di�erential
equations.

4. f is strongly decreasing in y, i.e. kf is very negative.

5. b is strongly decreasing in x, i.e. kb is very negative.

The above conditions will be made precise later. Generically, we will derive the
following theorems. The �rst theorem concerns the convergence of the iteration as
m tends to in�nity.
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Theorem 2.1 Under Assumption 1 let one of the conditions 1.�5. hold true. Then,
for su�ciently small h, (1.6) has an `essentially' unique solution un with linear
growth and there are constants C > 0 and 0 < c < 1 such that

max
0≤i≤n

|un,m
i (x)− un

i (x)|2 ≤ C(|x|2 +m)cm,

where un,m is given by (1.8).

Concerning the error due to the time discretization we obtain:

Theorem 2.2 Suppose Assumptions 1, 2 and one of the conditions 1.�5. is in force.
Then equation (1.3) admits a viscosity solution u(t, x) with linear growth and there
is a constant C > 0 such that for su�ciently small h,

max
0≤i≤n

|un
i (x)− u(ti, x)|2 ≤ C(1 + |x|2)h

Combining these two theorems one can derive with a little extra e�ort:

Theorem 2.3 Under the assumptions of Theorem 2.2 FBSDE (1.1) has a unique
solution (X, Y, Z) and there are constants C > 0 and 0 < c < 1 such that for
su�ciently small h,

sup
1≤i≤n

E
{

sup
t∈[ti−1,ti]

[|Xt −Xn,m
i−1 |2 + |Yt − Y n,m

i−1 |2]
}

+
n∑

i=1

E
{ ∫ ti

ti−1

|Zt − Ẑn,m
i−1 |2dt

}

≤ C(1 + |x|2)[mcm + h].

These generic results will be made precise in Theorems 5.1, 6.4, and 6.6 below.

We emphasize that none of the above theorems requires non-degeneracy of σ and,
in principle, X and W can have di�erent dimensions. Moreover, we do not suppose
any smoothness or boundedness conditions. However, we also underline again that
FBSDE (1.1) does not allow coupling through the control part Z.

Before we turn to the proofs in next sections we �rst explain an additional dif-
�culty that one faces when proving convergence of this Markovian iteration. In
a standard Picard iteration, like (1.7), one estimates |Y̌ m+1 − Y̌ m| in terms of
|X̌m+1 − X̌m| and then |X̌m+1 − X̌m| in terms of |Y̌ m − Y̌ m−1|. However, apply-
ing similar techniques to (1.8) yields only estimates of |Xn,m+1 −Xn,m| in terms of
|un,m(Xn,m+1) − un,m−1(Xn,m)|. Since Y n,m = un,m(Xn,m), it seems unavoidable to
control the Lipschitz constant of un,m to obtain estimates in terms of |Y n,m−Y n,m−1|.
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To study the behavior of the functions un,m, we introduce an important operator
Fn for each n. For any measurable functions ϕ = {ϕi}0≤i≤n−1, de�ne ψ and Φ as
follows. 




Φn(x)
4
= g(x);

Xϕ,i,x
i+1

4
= x+ b(ti, x, ϕi(x))h+ σ(ti, x, ϕi(x))∆Wi+1;

Y ϕ,i,x
i+1

4
= Φi+1(X

ϕ,i,x
i+1 );

ψi(x)
4
=

1

h
E

{
Y ϕ,i,x

i+1 ∆Wi+1

}
;

Φi(x)
4
= E

{
Y ϕ,i,x

i+1 + f(ti, x, Y
ϕ,i,x
i+1 , ψi(x))h

}
.

(2.1)

We then set Fn(ϕ)
4
= Φ. It is then obvious that un,m = Fn(un,m−1), and Fn(un) = un

if (1.6) has a solution un. We also point out that Y n,m, given by (1.8), can be
expressed in the form

Y n,m
i = Y n,m

i+1 + f(ti, X
n,m
i , Y n,m

i+1 , Ẑ
n,m
i )h−

∫ ti+1

ti

Zn,m
t dWt (2.2)

thanks to the martingale representation theorem. The analogous expression holds
for Y n de�ned in (1.4).

3 Lipschitz Continuity

In this section we obtain a uniform (in i, n,m) Lipschitz constant of un,m
i (x). To this

end we �rst investigate the Lipschitz continuity of Fn(ϕ). Given Lipschitz continuous
ϕ, let L(ϕi) denote the square of a Lipschitz constant of ϕi, and L(ϕ)

4
= supi L(ϕi).

Our aim is to derive the following theorem:

Theorem 3.1 Denote

L0
4
= [by + σy][gx + fxT ]Te[by+σy ][gx+fxT ]T+[2kb+2kf+2+σx+fz ]T ;

L1
4
= [gx + fxT ]

[
e[by+σy ][gx+fxT ]T+[2kb+2kf+2+σx+fz ]T+1 ∨ 1

]
;

(3.1)

If
L0 < e−1, (3.2)

then for any L > L1 and for h small enough, we have

L(un,m) ≤ L, ∀m.

Notice that (3.2) holds true in all �ve cases of Section 2. We prepare the proof of
Theorem 3.1 with several lemmas.
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Lemma 3.2 Fix i and for l = 1, 2, let

X l
i+1

4
= X l

i + b(ti, X
l
i , ϕ

l(X l
i))h+

∫ ti+1

ti

αl
tdt+[σ(ti, X

l
i , ϕ

l(X l
i))∆Wi+1 +

∫ ti+1

ti

βl
tdWt,

where X l
i is Fti-measurable and αl

t, β
l
t are F-adapted. Assume ϕ1 is uniformly Lip-

schitz continuous. Then for any λj > 0,

Eti{|∆Xi+1|2} ≤ [1 + A1h+ (1 + λ2)A2hL(ϕ1)]|∆Xi|2 + (1 + λ−1
2 )A2h|∆ϕ(X2

i )|2

+2(1 + λ−1
1 )Eti

{ ∫ ti+1

ti

[|∆αt|2 + |∆βt|2]dt
}

where

∆X
4
= X1 −X2; ∆α

4
= α1 − α2; ∆β

4
= β1 − β2; |∆ϕ| 4= |ϕ1 − ϕ2|.

and
A1

4
= λ1 + (1 + λ1h)(2kb + 1 +Kh) + (1 + λ1)σx;

A2
4
= (1 + λ1h)by +Kh+ (1 + λ1)σy.

(3.3)

Proof. Denote, for φ = b, σ,

∆φ
4
= φ(ti, X

1
i , ϕ

1(X1
i ))− φ(ti, X

2
i , ϕ

2(X2
i )).

Then

∆Xi+1 = ∆Xi + ∆bh+

∫ ti+1

ti

∆αtdt+ ∆σ∆Wi+1 +

∫ ti+1

ti

∆βtdWt.
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Thus, for h small enough,

Eti{|∆Xi+1|2}
= Eti

{
(∆Xi + ∆bh)2 + |

∫ ti+1

ti

∆αtdt|2 + 2(∆Xi + ∆bh)

∫ ti+1

ti

∆αtdt

+

∫ ti+1

ti

|∆σ + ∆βt|2dt+ 2∆σ∆Wi+1

∫ ti+1

ti

∆αtdt

+2

∫ ti+1

ti

∆βtdWt

∫ ti+1

ti

∆αtdt
}

≤ (1 + λ1h)(∆Xi + ∆bh)2 + (1 +
λ1

2
+
λ1

2
)|∆σ|2h

+Eti

{
[1 +

1

λ1h
+

2

λ1

+ 1]|
∫ ti+1

ti

∆αtdt|2 + [1 +
2

λ1

+ 1]

∫ ti+1

ti

|∆βt|2dt
}

≤ (1 + λ1h)[|∆Xi|2 + 2∆Xi∆bh+ |∆bh|2] + (1 + λ1)|∆σ|2h
+2(1 + λ−1

1 )Eti

{ ∫ ti+1

ti

[|∆αt|2 + |∆βt|2]dt
}

≤ (1 + λ1h)
[
|∆Xi|2 + 2kb|∆Xi|2h+ |∆Xi|2h+ by|ϕ1(X1

i )− ϕ2(X2
i )|2h

+K[|∆Xi|2 + |ϕ1(X1
i )− ϕ2(X2

i )|2]h2
]

+(1 + λ1)
[
σx|∆Xi|2 + σy|ϕ1(X1

i )− ϕ2(X2
i )|2

]
h

+2(1 + λ−1
1 )Eti

{ ∫ ti+1

ti

[|∆αt|2 + |∆βt|2]dt
}

= [1 + A1h]|∆Xi|2 + A2h|ϕ1(X1
i )− ϕ2(X2

i )|2

+2(1 + λ−1
1 )Eti

{ ∫ ti+1

ti

[|∆αt|2 + |∆βt|2]dt
}
.

Note that

|ϕ1(X1
i )− ϕ2(X2

i )| ≤ |ϕ1(X1
i )− ϕ1(X2

i )|+ |ϕ1(X2
i )− ϕ2(X2

i )|.

Then

|ϕ1(X1
i )− ϕ2(X2

i )|2 ≤ [1 + λ2]L(ϕ1)|∆Xi|2 + [1 + λ−1
2 ]|∆ϕ(X2

i )|2.

Hence

Eti{|∆Xi+1|2} ≤ [1 + A1h+ (1 + λ2)A2hL(ϕ1)]|∆Xi|2 + (1 + λ−1
2 )A2h|∆ϕ(X2

i )|2

+2(1 + λ−1
1 )E

{ ∫ ti+1

ti

[|∆αt|2 + |∆βt|2]dt
}
,

and the lemma is proved.
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Lemma 3.3 Fix i and for l = 1, 2, let

Y l
i = Y l

i+1 + f(ti, X
l
i , Y

l
i+1, Ẑ

l
i)h+ γ1

i+1h−
∫ ti+1

ti

Z l
tdWt;

where
Ẑ l

i

4
=

1

h
Eti

{
Y l

i+1∆Wi+1

}
.

Then for any λj > 0,

|∆Yi|2 + (1− A3)h|∆Ẑi|2

≤ Eti

{
(1 + A4h)|∆Yi+1|2 + A5h|∆Xi|2 + (λ−1

1 + h+ 2λ−1
3 h)h|∆γi+1|2

}
;

where

∆X
4
= X1 −X2; ∆Y

4
= Y 1 − Y 2; ∆Ẑ

4
= Ẑ1 − Ẑ2; ∆γ

4
= γ1 − γ2;

and
A3

4
= λ3 + (1 + λ1h)λ4 + (1 + λ1h+ 2λ−1

3 )Kh;

A4
4
= λ1 + (1 + λ1h)(2kf + 1 + λ−1

4 fz) + (1 + λ1h+ 2λ−1
3 )Kh;

A5
4
= (1 + λ1h)fx + (1 + λ1h+ 2λ−1

3 )Kh.

(3.4)

Proof. Denote

∆Z
4
= Z1 − Z2; ∆f

4
= f(ti, X

1
i , Y

1
i+1, Ẑ

1
i )− f(ti, X

2
i , Y

2
i+1, Ẑ

2
i ).

Then
∆Yi +

∫ ti+1

ti

∆ZtdWt = ∆Yi+1 + ∆fh+ h∆γi+1.

Thus

|∆Yti|2 + Eti

{ ∫ ti+1

ti

|∆Zt|2dt
}

≤ Eti

{
(1 + λ1h)[∆Yti+1

+ ∆fh]2 + (1 +
1

λ1h
)|h∆γi+1|2

}

≤ Eti

{
(1 + λ1h)[|∆Yti+1

|2 + 2∆Yti+1
∆fh+ |∆f |2h2] + (λ−1

1 + h)h|∆γi+1|2
}
.

Note that
Eti

{ ∫ ti+1

ti

|∆Zt|2dt
}
≥ 1

h
|Eti

{ ∫ ti+1

ti

∆Ztdt
}
|2;

and that

Eti

{ ∫ ti+1

ti

∆Ztdt
}

= Eti

{[
∆Yti+1

+ ∆fh+ h∆γi+1

]
∆Wi+1

}

= h∆Ẑi + hEti{[∆f + ∆γi+1]∆Wi+1

}
.
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Then

Eti

{ ∫ ti+1

ti

|∆Zt|2dt
}

≥ (1− λ3)h|∆Ẑi|2 − h

λ3

|Eti

{
[∆f + ∆γi+1]∆Wi+1

}
|2

≥ (1− λ3)h|∆Ẑi|2 − 2λ−1
3 h2Eti

{
|∆f |2 + |∆γi+1|2

}
.

Thus

|∆Yi|2 + (1− λ3)h|∆Ẑi|2

≤ Eti

{
(1 + λ1h)[|∆Yi+1|2 + 2∆Yi+1∆fh] + (1 + λ1h+ 2λ−1

3 )h2|∆f |2

+(λ−1
1 + h+ 2λ−1

3 h)h|∆γi+1|2
}

≤ Eti

{
(1 + λ1h)

[
|∆Yi+1|2 + 2kfh|∆Yi+1|2 + |∆Yi+1|2h+ fx|∆Xi|2h+ λ4|∆Ẑi|2h

+λ−1
4 fz|∆Yi+1|2h

]
+ (1 + λ1h+ 2λ−1

3 )h2K[|∆Xi|2 + |∆Yi+1|2 + |∆Ẑi|2]

+(λ−1
1 + h+ 2λ−1

3 h)h|∆γi+1|2
}

;

which implies the lemma immediately.

With these lemmas at hand we can study the Lipschitz continuity of Fn(ϕ) given
Lipschitz continuous ϕ.

Theorem 3.4 For any Lipschitz continuous ϕ, we have

L(Fn(ϕ)) ≤ [gx + A5T ]
[
exp

(
[A1 + A4 + A1A4h]T + [A2 + A2A4h]TL(ϕ)

)
∨ 1

]
;

where λ1 = λ2 = 0 and λ3, λ4 > 0 are chosen such that

A3 ≤ 1. (3.5)

Proof. Recall (2.1). Fix i and x1, x2. Denote

∆x
4
= x1 − x2; ∆X

4
= Xϕ,i,x1 −Xϕ,i,x2 ; ∆Y

4
= Y ϕ,i,x1 − Y ϕ,i,x2 ;

∆Φi
4
= Φi(x1)− Φi(x2); ∆ψi

4
= ψi(x1)− ψi(x2).

We apply Lemmas 3.2 and 3.3, setting λ1 = λ2 = 0, and obtain

E{|∆Xi+1|2} ≤ [1 + A1h+ A2hL(ϕ)]|∆x|2;
|∆Φi|2 + (1− A3)h|∆ψi|2 ≤ (1 + A4h)E{|∆Yi+1|2}+ A5h|∆x|2;

By (3.5) we have

|∆Φi|2 ≤ [1 + A4h]L(Φi+1)E{|∆Xi+1|2}+ A5h|∆x|2
≤ [1 + A4h][1 + A1h+ A2hL(ϕ)]L(Φi+1)|∆x|2 + A5h|∆x|2.
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Thus

L(Φi) ≤ [1 + A4h][1 + A1h+ A2hL(ϕ)]L(Φi+1) + A5h
4
= [1 + Ãh]L(Φi+1) + A5h ≤ [1 + Ã+h]L(Φi+1) + A5h; (3.6)

where Ã+ 4
= Ã ∨ 0 and

Ã
4
= A1 + A4 + A1A4h+ [A2 + A2A4h]L(ϕ). (3.7)

Note that L(Φn) = gx. Hence, we can apply the discrete Gronwall inequality to
(3.6) and get

L(Φ) ≤ eÃ+T [gx + A5T ] = [gx + A5T ][eÃT ∨ 1],

which, combined with (3.7), yields the assertion.

We are now in the position to give the proof of Theorem 3.1.
Proof of Theorem 3.1. First by induction one can easily show that Lm

4
= L(un,m) <

∞ for each (n,m). Due to Theorem 3.4 we have

Lm ≤ [gx + A5T ]
[
exp

(
[A1 + A4 + A1A4h]T + [A2 + A2A4h]TLm−1

)
∨ 1

]
;

for λ1 = λ2 = 0 and any λ3, λ4 > 0 satisfying (3.5).

Introducing
L̃m

4
= [A2 + A2A4h]TLm,

we get

L̃m ≤ [A2 + A2A4h][gx + A5T ]T
[
e[A1+A4+A1A4h]T eL̃m−1 ∨ 1

]
(3.8)

≤ [A2 + A2A4h][gx + A5T ]T
[
e[A1+A4+A1A4h]T eL̃m−1 + 1

]
.

Denote

L0(λ, h)
4
= [A2 + A2A4h][gx + A5T ]T ×

exp
(
[A2 + A2A4h][gx + A5T ]T + [A1 + A4 + A1A4h]T

)
. (3.9)

Obviously, L̃0 = 0. If
L0(λ, h) ≤ e−1, (3.10)

then, by induction, one can easily show that

L̃m ≤ [A2 + A2A4h][gx + A5T ]T + 1, ∀m.

We plug this into the right side of (3.8) to obtain

L̃m ≤ [A2 + A2A4h][gx + A5T ]T
[
e[A1+A4+A1A4h]T+[A2+A2A4h][gx+A5T ]T+1 ∨ 1

]
.
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Thus

Lm ≤ [gx + A5T ]
[
e[A1+A4+A1A4h]T+[A2+A2A4h][gx+A5T ]T+1 ∨ 1

] 4
= L1(λ, h). (3.11)

So we want to choose λ3, λ4 and h which satisfy (3.5) and minimize L0(λ, h). Recall
again that λ1 = λ2 = 0. In dependence of h we set, for small h,

λ3(h)
4
=
√
h, λ4(h)

4
= 1−

√
h−Kh− 2K

√
h. (3.12)

Then A3 = 1 and

lim
h↓0

L0(λ(h), h)

= [by + σy][gx + fxT ]T exp
(
[by + σy][gx + fxT ]T + [2kb + 2kf + 2 + σx + fz]T

)

= L0.

Note also that
lim
h↓0

L1(λ(h), h) = L1.

Suppose now that (3.2) holds true. Then for any L > L1, we obtain L0(λ(h), h) ≤
e−1 and L1(λ(h), h) ≤ L provided h is small enough. In view of (3.11) the theorem
is proved.

4 Linear Growth

This section is devoted to studying the linear growth of the functions un,m
i (x). Given

linear growing functions ϕi, assume

|ϕi(x)|2 ≤ G(ϕi)|x|2 +H(ϕi), ∀x;

and let
G(ϕ)

4
= sup

i
G(ϕi); H(ϕ)

4
= sup

i
H(ϕi).

To state the main result of this section we �rst introduce the functions

Γ0(x)
4
=
ex − 1

x
; Γ1(x, y)

4
= sup

0<θ<1
eθxΓ0(θy); ∀x, y ∈ IR; (4.1)
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and for G > 0,

c0(G)
4
= [by + σy]T ×[

gxΓ1

(
[2kf + 1 + fz]T, [(2kb + 1 + σx) + (by + σy)G]T

)

+fxTΓ0([2kf + 1 + fz]T )Γ0

(
[2kb + 1 + σx]T + [by + σy]GT

)]
;

L2(G)
4
=

[
e[2kf+1+fz ]T ∨ 1

]
g0 + f0TΓ0

(
[2kf + 1 + fz]T

)
+ [b0 + σ0]T ×

[
gxΓ1

(
[2kf + 1 + fz]T, [(2kb + 1 + σx) + (by + σy)G]T

)

+fxTΓ0([2kf + 1 + fz]T )Γ0

(
[2kb + 1 + σx]T + [by + σy]GT

)]
.

Theorem 4.1 Assume (3.2) holds true and

c0(L1) < 1; (4.2)

For any G > L1, c0(L1) < c0 < 1, L2 > L2(L1), and for h small enough we have

G(un,m) ≤ G; H(un,m) ≤ L2

1− c0
; ∀m.

Notice that

lim
x→−∞

Γ0(x) = 0; lim
x→−∞

Γ1(x, y) = 0; lim
y→−∞

Γ1(x, y) = 0. (4.3)

Hence, (4.2) is satis�ed in Cases 1�5 of Section 2.

Lemma 4.2 Assume

Xi+1 = Xi + b(ti, Xi, ϕ(Xi))h+ σ(ti, Xi, ϕ(Xi))∆Wi+1.

Then
Eti{|Xi+1|2} ≤ [1 + A1h+ A2hG(ϕ)]|Xi|2 + [B1 + A2H(ϕ)]h;

where λ1 = λ2 = 0 and
B1

4
= b0 + σ0 +Kb0h. (4.4)

Proof. Denote
bi

4
= b(ti, Xi, ϕ(Xi)); σi

4
= σ(ti, Xi, ϕ(Xi)).

Then

Eti{|Xi+1|2} = (Xi + bih)
2 + σ2

i h = X2
i + 2Xibih+ b2ih

2 + σ2
i h

≤ X2
i + 2kbX

2
i h+X2

i h+ [b0 + by|ϕ(Xi)|2]h
+K[b0 +X2

i + |ϕ(Xi)|2]h2 + [σ0 + σxX
2
i + σy|ϕ(Xi)|2]h

= [1 + A1h]|Xi|2 + A2h|ϕ(Xi)|2 +B1h

≤ [1 + A1h]|Xi|2 + A2h[G(ϕ)|Xi|2 +H(ϕ)] + B1h;
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which proves the lemma.

Following the arguments in Lemma 3.3, one can easily prove

Lemma 4.3 Assume

Yi = Yi+1 + f(ti, Xi, Yi+1, Ẑi)h−
∫ ti+1

ti

ZtdWt;

where
Ẑi =

1

h
Eti{Yi+1∆Wi+1}.

Then

|Yi|2 + (1− A3)h|Ẑi|2 ≤ [1 + A4h]Eti{|Yi+1|2}+ A5h|Xi|2 +B2h;

where λ1 = λ2 = 0 and
B2

4
= f0 +Kf0h. (4.5)

To derive bounds for the linear growth of Fn(ϕ), we de�ne discrete time versions of
Γ0 and Γ1 by

Γi
0(x)

4
=

(1 + xh)i − 1

x
; Γn

1 (x, y)
4
= sup

0≤i≤n
(1 + xh)iΓi

0(y); (4.6)

and discrete time versions of c0(G), L2(G) by

c0(λ, h,G)
4
= A2

[
gxΓ

n
1 (A4, A1 + A2G) + A5Γ

n
0 (A4)Γ

n
0 (A1 + A2G)

]
;

L2(λ, h,G)
4
= B1

[
gxΓ

n
1 (A4, A1 + A2G) + A5Γ

n
0 (A4)Γ

n
0 (A1 + A2G)

]

+[eA4T ∨ 1]g0 +B2Γ
n
0 (A4).

(4.7)

Theorem 4.4 For any linear growing ϕ,

G(Fn(ϕ)) ≤ [gx + A5T ]
[
e[A1+A4+A1A4h]T+[A2+A2A4h]TG(ϕ) ∨ 1

]
; (4.8)

H(Fn(ϕ)) ≤ c0(λ, h,G(ϕ))H(ϕ) + L2(λ, h,G(ϕ)). (4.9)

where λ1 = λ2 = 0 and λ3, λ4 > 0 are supposed to ful�ll (3.5).

Proof. Denote Φ
4
= Fn(ϕ). Fix (i0, x) and de�ne, for i = i0, · · · , n− 1,





Xi0

4
= x;

Xi+1
4
= Xi + b(ti, Xi, ϕi(Xi))h+ σ(ti, Xi, ϕi(Xi))∆Wi+1;

Yn
4
= g(Xn);

Ẑi
4
=

1

h
Eti{Yi+1∆Wi+1};

Yi
4
= Yi+1 + f(ti, Xi, Yi+1, Ẑi)h−

∫ ti+1

ti

ZtdWt.
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Then obviously Yi0 = Φi0(x). Since λ1 = λ2 = 0 we obtain from Lemma 4.2 that

E{|Xi+1|2} ≤ [1 + A1h+ A2hG(ϕ)]E{|Xi|2}+ [B1 + A2H(ϕ)]h.

Then

E{|Xi|2} ≤ [1 + A1h+ A2hG(ϕ)]i−i0E{|Xi0|2}

+[B1 + A2H(ϕ)]h
i−1∑
j=i0

[1 + A1h+ A2hG(ϕ)]j−i0

= [1 + A1h+ A2hG(ϕ)]i−i0|x|2 + [B1 + A2H(ϕ)]Γi−i0
0 (A1 + A2G(ϕ)).

Next, applying Lemma 4.3 and by (3.5) we have

E{|Yi|2} ≤ [1 + A4h]E{|Yi+1|2}+ A5hE{|Xi|2}+B2h.

Then

|Φi0(x)|2 = |Yi0|2

≤ (1 + A4h)
n−i0E{|Yn|2}+ A5h

n−1∑
i=i0

(1 + A4h)
i−i0E{|Xi|2}

+B2h

n−1∑
i=i0

(1 + A4h)
i−i0

≤ (1 + A4h)
n−i0 [g0 + gxE{|Xn|2}] + A5h

n−1∑
i=i0

(1 + A4h)
i−i0E{|Xi|2}

+B2Γ
n−i0
0 (A4)

≤ (1 + A4h)
n−i0g0 +B2Γ

n−i0
0 (A4) + (1 + A4h)

n−i0gx ×[
[1 + A1h+ A2hG(ϕ)]n−i0|x|2 + [B1 + A2H(ϕ)]Γn−i0

0 (A1 + A2G(ϕ))
]

+A5h

n−1∑
i=i0

(1 + A4h)
i−i0

[
[1 + A1h+ A2hG(ϕ)]i−i0|x|2

+[B1 + A2H(ϕ)]Γi−i0
0 (A1 + A2G(ϕ))

]
.

This implies

G(Φi0) ≤ (1 + A4h)
n−i0gx[1 + A1h+ A2hG(ϕ)]n−i0

+A5h

n−1∑
i=i0

(1 + A4h)
i−i0 [1 + A1h+ A2hG(ϕ)]i−i0 ;

H(Φi0) ≤ (1 + A4h)
n−i0g0 +B2Γ

n−i0
0 (A4)

+
[
gx(1 + A4h)

n−i0Γn−i0(A1 + A2G(ϕ))

+A5h

n−1∑
i=i0

(1 + A4h)
i−i0Γi−i0(A1 + A2G(ϕ))

]
[B1 + A2H(ϕ)].
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Note that, for 0 ≤ i ≤ n,

(1 + xh)i ≤ exT ∨ 1; Γi
0(x) ≤ Γn

0 (x); (1 + xh)iΓi
0(y) ≤ Γn

1 (x, y). (4.10)

Then

G(Φi0) ≤ [gx + A5T ]
[
e[A1+A4+A1A4h]T+[A2+A2A4h]TG(ϕ) ∨ 1

]
;

H(Φi0) ≤ [eA4T ∨ 1]g0 +B2Γ
n
0 (A4)

+
[
gxΓ

n
1 (A4, A1 + A2G(ϕ)) + A5Γ

n
0 (A4)Γ

n
0 (A1 + A2G(ϕ))

]

×[B1 + A2H(ϕ)].

Since the right hand side does not depend on i0, the assertion is proved.

After these preparations we give the proof of Theorem 4.1:

Proof of Theorem 4.1. Denote Gm
4
= G(un,m), Hm

4
= H(un,m). Obviously, G0 =

H0 = 0. We may now conclude from Theorem 4.4 that under (3.5)

Gm ≤ [gx + A5T ]
[
e[A1+A4+A1A4h]T+[A2+A2A4h]TGm−1 ∨ 1

]
; (4.11)

Hm ≤ c0(λ, h,Gm)Hm−1 + L2(λ, h,Gm). (4.12)

We now choose λ3(h) and λ4(h) as in (3.12) for small h. Since (3.2) holds true,
for any G > L1, we can follow the same arguments as in Theorem 3.1 and get
G(un,m) ≤ G from (4.11). Note that

lim
n→∞

Γn
0 (x) = TΓ0(xT );

lim
n→∞

Γn
1 (x, y) = TΓ1(xT, yT );

lim
h↓0

c0(λ(h), h,G) = c0(G);

lim
h↓0

L2(λ(h), h,G) = L2(G).

For any c0, c0(L1) < c0 < 1, and L2, L2(L1) < L2, we can choose G > L1 such
that c0(G) < c0 and L2(G) < L2. Then, for su�ciently small h, it holds that
c0(λ, h,G) ≤ c0 and L2(λ, h,G) ≤ L2. Now by (4.12) we get

Hm ≤ c0Hm−1 + L2,

which implies the result.

5 Convergence of the Markovian Iteration

We now make the assumptions of Theorem 2.1 precise and prove convergence of the
Markovian iteration as the number of iteration steps tends to in�nity.
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To this end we �rst introduce

c1(λ2, L)
4
= (1 + λ−1

2 )[by + σy]T ×[
gxΓ1

(
[2kf + 1 + fz]T, [2kb + 1 + σx + (1 + λ2)[by + σy]L]T

)

+fxTΓ0

(
[2kf + 1 + fz]T

)
Γ0

(
[2kb + 1 + σx + (1 + λ2)[by + σy]L]T

)]
;

c2(λ2, L,G)
4
=

[
e[2kb+1+σx+[by+σy]G]T ∨ 1

]
c1(λ2, L);

c2(L,G)
4
= inf

λ2>0
c2(λ2, L,G).

We are going to prove the following theorem:

Theorem 5.1 Assume (3.2) and

c2(L1, L1) < 1. (5.1)

(i) For any L̄ > L1, Ḡ > L1, L2 > L2(L1), c0(L1) < c0 < 1, there exists a solution
un to (1.6) such that

L(un) ≤ L̄; G(un) ≤ Ḡ; H(un) ≤ H̄
4
=

L2

1− c0
, (5.2)

if h is small enough.

(ii) For any c2(L1, L1) < c2 < 1, we may �nd c1 ≤ c2 such that for h small enough,

G(un,m − un) ≤ 3Ḡ

(1−√c2)2
cm2 ; (5.3)

H(un,m − un) ≤ 3H̄

(1−√c1)2
cm1

+
3

(1−√c2)4

[
[b0 + σ0] + [by + σy]H̄

]
TḠmcm2 . (5.4)

(iii) Fix G > 0 and suppose ũn is another solution to (1.6) with linear growth such
that G(ũn) ≤ G. Then ũn = un, if h (depending on G) is small enough.

Remark 5.2 (i) In view of (4.3), it is straightforward to see that (5.1) is also
satis�ed in Cases 1�5 of Section 2.

(ii) One can recover c0(L) from c1(λ2, L) by formally replacing λ2 and λ−1
2 by zero.

Consequently, we have for all L > 0,

c0(L) ≤ inf
λ2>0

c1(λ2, L) ≤ c2(L,L).

In particular, condition (5.1) implies (4.2).
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Again we �rst study the operator Fn to prepare the proof of Theorem 5.1.

Theorem 5.3 Assume ϕ1, ϕ2 have linear growth and ϕ1 is Lipschitz continuous.
Then

G(Fn(ϕ1)− Fn(ϕ2)) ≤ c2(λ2, h, L(ϕ1), G(ϕ2))G(∆ϕ)

H(Fn(ϕ1)− Fn(ϕ2)) ≤ c1(λ2, h, L(ϕ1))H(∆ϕ)

+c2(λ2, h, L(ϕ1), G(ϕ2))[B1 + A2H(ϕ2)]TG(∆ϕ).

where λ1 = 0, λ3, λ4 are chosen such that (3.5) holds, and

c1(λ2, h, L)
4
= (1 + λ−1

2 )A2

[
gxΓ

n
1 (A4, A1 + (1 + λ2)A2L)

+A5Γ
n
0 (A4)Γ

n
0 (A1 + (1 + λ2)A2L)

]
;

c2(λ2, h, L,G)
4
=

[
e[A1+A2G]T ∨ 1

]
c1(λ2, h, L).

Proof. For l = 1, 2, denote Φl 4= Fn(ϕl). Fix (i0, x) and de�ne, for i = i0, · · · , n−1,




X l
i0

4
= x;

X l
i+1

4
= X l

i + b(ti, X
l
i , ϕ

l
i(X

l
i))h+ σ(ti, X

l
i , ϕ

l
i(X

l
i))∆Wi+1;

Y l
n

4
= g(X l

n);

Ẑ l
i

4
=

1

h
Eti{Y l

i+1∆Wi+1};

Y l
i

4
= Y l

i+1 + f(ti, X
l
i , Y

l
i+1, Ẑ

l
i)h−

∫ ti+1

ti

Z l
tdWt.

Then obviously Y l
i0

= Φl
i0
(x).

Denote L 4
= L(ϕ1), and

∆X
4
= X1−X2; ∆Y

4
= Y 1−Y 2; ∆Ẑ

4
= Ẑ1−Ẑ1; ∆ϕ

4
= ϕ1−ϕ2; ∆Φ

4
= Φ1−Φ2.

Application of Lemma 3.2, with λ1 = 0, yields

E{|∆Xi+1|2} ≤ E
{

[1 + A1h+ (1 + λ2)A2hL]|∆Xi|2 + (1 + λ−1
2 )A2h|∆ϕ(X2

i )|2
}

≤ E
{

[1 + A1h+ (1 + λ2)A2hL]|∆Xi|2 + (1 + λ−1
2 )A2h

[
G(∆ϕ)|X2

i |2 +H(∆ϕ)
]}

≤ [1 + A1h+ (1 + λ2)A2hL]E{|∆Xi|2}
+(1 + λ−1

2 )A2h
[
G(∆ϕ) sup

i0≤j≤n
E{|X2

j |2}+H(∆ϕ)
]
.
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Note that ∆Xi0 = 0. Therefore,

sup
i0≤i≤n

E{|∆Xi|2} ≤ (1 + λ−1
2 )A2h×

[
G(∆ϕ) sup

i0≤j≤n
E{|X2

j |2}+H(∆ϕ)
] n−1∑

i=i0

[1 + A1h+ (1 + λ2)A2hL]i−i0

= (1 + λ−1
2 )A2

[
G(∆ϕ) sup

i0≤j≤n
E{|X2

j |2}+H(∆ϕ)
]
Γn−i0

0 (A1 + (1 + λ2)A2L).

Applying Lemma 4.2, we have

sup
i0≤i≤n

E{|X2
i |2} ≤

[
|x|2 + [B1 + A2H(ϕ2)]T

][
e[A1+A2G(ϕ2)]T ∨ 1

] 4
= Ã. (5.5)

Thus

sup
i0≤i≤n

E{|∆Xi|2} ≤ (1+λ−1
2 )A2Γ

n−i0
0 (A1 +(1+λ2)A2L)

[
G(∆ϕ)Ã+H(∆ϕ)

]
. (5.6)

Furthermore, we obtain from Lemma 3.3 and (3.5),

E{|∆Yi|2} ≤ [1 + A4h]E{|∆Yi+1|2}+ A5hE{|∆Xi|2}.

Hence

|∆Φi0(x)|2 = |∆Yi0|2
≤ (1 + A4h)

n−i0E{|∆Yn|2}+ A5Γ
n−i0
0 (A4) sup

i0≤i≤n
E{|∆Xi|2}

≤
[
(1 + A4h)

n−i0gx + A5Γ
n−i0
0 (A4)

]
sup

i0≤i≤n
E{|∆Xi|2}

≤ (1 + λ−1
2 )A2

[
G(∆ϕ)Ã+H(∆ϕ)

][
gx(1 + A4h)

n−i0Γn−i0
0 (A1 + (1 + λ2)A2L)

+A5Γ
n−i0
0 (A4)Γ

n−i0
0 (A1 + (1 + λ2)A2L)

]
.

In view of (4.10), we get

sup
i
|∆Φi(x)|2

≤
[
G(∆ϕ)Ã+H(∆ϕ)

]
c1(λ2, h, L)

= c1(λ2, h, L)
{
G(∆ϕ)

[
e[A1+A2G(ϕ2)]T ∨ 1

][
|x|2 + [B1 + A2H(ϕ2)]T

]
+H(∆ϕ)

}
;

which implies the theorem.

We can apply this theorem to estimate the distance between un,m and un,m−1.
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Theorem 5.4 Assume that L(un,m) ≤ L̄, G(un,m) ≤ Ḡ and H(un,m) ≤ H̄ for all
m ∈ N and su�ciently small h. Moreover let

c2(L̄, Ḡ) < 1.

Then for any c2(L̄, Ḡ) < c2 < 1, we may �nd c1 ≤ c2 such that for h small enough,

G(un,m − un,m−1) ≤ Ḡcm−1
2 ;

H(un,m − un,m−1) ≤ H̄cm−1
1 +

[
[b0 + σ0] + [by + σy]H̄

]
TḠ(m− 1)cm−1

2 .

Proof. Let λ1 = 0 and choose λ3, λ4 depending on h as in (3.12). Note that with
this choice

lim
h→0

Γn
1 (x, y) = TΓ1(xT, yT );

lim
h→0

c1(λ2, h, L) = c1(λ2, L);

lim
h→0

c2(λ2, h, L,G) = c2(λ2, L,G).

Hence we may �nd an appropriate λ2 such that for h small enough,

c2(λ2, h, L̄, Ḡ) < c2.

Since
c1(λ2, h, L̄) ≤ c2(λ2, h, L̄, Ḡ),

we may �nd an c1 ≤ c2 such that for small h

c1(λ2, h, L̄) ≤ c1.

Applying Theorem 5.3, we get, for small h,

G(un,m − un,m−1) ≤ c2G(un,m−1 − un,m−2); (5.7)
H(un,m − un,m−1) ≤ c1H(un,m−1 − un,m−2) (5.8)

+c2(λ2, h, L̄, Ḡ)[B1 + A2H̄]TG(un,m−1 − un,m−2).

Note that
G(un,1 − un,0) = G(un,1) ≤ Ḡ.

By (5.7) we therefore get

G(un,m − un,m−1) ≤ Ḡcm−1
2 .

Moreover, for h small enough we may also assume that

c2(λ2, h, L,G)[B1 + A2H̄] ≤ c2

[
[b0 + σ0] + [by + σy]H̄

]
.
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Then by (5.8) we get

H(un,m − un,m−1) ≤ cm−1
1 H(un,1 − un,0)

+c2

[
[b0 + σ0] + [by + σy]H̄

]
Tcm−1

1

m−1∑
i=1

G(un,i − un,i−1)

ci1

≤ cm−1
1 H(un,1) + c2

[
[b0 + σ0] + [by + σy]H̄

]
Tcm−1

1 Ḡ

m−1∑
i=1

ci−1
2

ci1

≤ H̄cm−1
1 +

[
[b0 + σ0] + [by + σy]H̄

]
TḠ[m− 1]cm−1

2 .

The proof is complete now.

Theorem 5.1 can now be proved by iterating the above theorem.

Proof of Theorem 5.1. Assume Ḡ, L̄, L2, c0, c2 satisfy the conditions speci�ed in the
theorem. Without loss of generality we assume c2(L̄, Ḡ) < c2. Recall that (5.1)
implies (4.2). Hence by Theorems 3.1 and 4.1, we get for h small enough

L(un,m) ≤ L̄; G(un,m) ≤ Ḡ; H(un,m) ≤ H̄.

Hence, (i) will follow directly from (ii).

To prove (ii), we denote

L̃
4
=

[
[b0 + σ0] + [by + σy]H̄

]
TḠ.

Applying Theorem 5.4, we get

|un,m
i (x)− un,m−1

i (x)|2 ≤ Ḡ|x|2cm−1
2 + H̄cm−1

1 + L̃[m− 1]cm−1
2 .

Then

|un,m
i (x)− un,m−1

i (x)| ≤
√
Ḡ|x|c

m−1
2

2 +
√
H̄c

m−1
2

1 +

√
L̃[m− 1]c

m−1
2

2 .

Thus for any m1 > m,

|un,m
i (x)− un,m1

i (x)| ≤
∞∑

j=m

[√
Ḡ|x|c

j
2
2 +

√
H̄c

j
2
1 +

√
L̃

m
jc

j
2
2

]

≤
√
Ḡ|x| c

m
2
2

1−√c2 +
√
H̄

c
m
2
1

1−√c1 +

√
L̃

m

m(1−√c2) +
√
c2

(1−√c2)2
c

m
2
2 .

Note that the right side above converges to 0 as m→∞. Then un,m
i (x) is a Cauchy

sequence and hence converges to some un
i (x). Moreover,

|un,m
i (x)− un

i (x)|2

≤ 3
[
Ḡ|x|2 cm2

(1−√c2)2
+ H̄

cm1
(1−√c1)2

+
L̃m

(1−√c2)4
cm2

]
;
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which leads to (5.3) and (5.4) and thus proves (ii).

It remains to prove (iii). For any G > 0, assume ũn is another solution to (1.6) with
linear growth such that G(ũn) ≤ G. Then Fn(ũn) = ũn. Note that ũn

n = g = un
n.

Assume ũn
i+1 = un

i+1. We now apply a local version of Theorem 5.3. That is, we
consider (2.1) only on the interval [ti, ti+1] with terminal condition Φi+1(x)

4
= un

i+1(x)

(instead of on [0, T ] with terminal condition g(x)). We note that in this case there
is only one time subinterval. One can check directly that

Γ1
0(x) = h; Γ1

1(x, y) = (1 + xh)h.

Setting ϕ1 4
= un, ϕ2 4

= ũn we get

G(un
i − ũn

i ) ≤ c̃2(h)G(un
i − ũn

i );

H(un
i − ũn

i ) ≤ c̃1(h)H(un
i − ũn

i ) + c̃2(h)[B1 + A2H(ũn)]TG(un
i − ũn

i );

where

c̃1(h)
4
= (1 + λ−1

2 )A2[L̄(1 + A4h)h+ A5h
2];

c̃2(h)
4
=

[
e[A1+A2G]h ∨ 1

]
c̃1(h).

For any G, we have c̃1(h) ≤ c̃2(h) < 1, provided h is small enough. Then G(un
i −

ũn
i ) = 0 and thus H(un

i − ũn
i ) = 0. Consequently ũn

i = un
i . Repeating the arguments

backwardly we get ũn = un.

6 Convergence of the Time Discretization

We now study the error due to the time discretization. We �rst introduce a contin-
uous time version of the operator Fn. Suppose ϕ is a function on [0, T ]× IR which is
Lipschitz in the space variable and let (Xϕ,r,x, Y ϕ,r,x, Zϕ,r,x) be the unique solution
to the decoupled FBSDE (0 ≤ r ≤ t ≤ T )




Xϕ,r,x
t = x+

∫ t

r

b(s,Xϕ,r,x
s , ϕ(s,Xϕ,r,x

s ))ds+

∫ t

r

σ(s,Xϕ,r,x
s , ϕ(s,Xϕ,r,x

s ))dWs;

Y ϕ,r,x
t = g(Xϕ,r,x

T ) +

∫ T

t

f(s,Xϕ,r,x
s , Y ϕ,r,x

s , Zϕ,r,x
s )ds−

∫ T

t

Zϕ,r,x
s dWs;

(6.1)
We then de�ne Φ(t, x)

4
= Y ϕ,t,x

t and F (ϕ)
4
= Φ. It is known from Pardoux and Peng

(1992) that, under Assumption 2 and if ϕ is additionally continuous as a function
in time and space, Φ is a viscosity solution to the following semilinear PDE:

{
Φt + 1

2
σ2(t, x, ϕ)Φxx + b(t, x, ϕ)Φx + f(t, x,Φ,Φxσ(t, x, ϕ)) = 0;

Φ(T, x) = g(x);
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We now de�ne recursively ũ0 4
= 0 and ũm 4

= F (ũm−1). Then the following theorem
can be proved similarly, actually more easily than, Theorem 5.1. We hence postpone
the proof to the appendix.

Theorem 6.1 Assume (3.2) and (5.1) hold true.

(i) ũm converges to some function u uniformly on compacts.

(ii) |u(t, x1)− u(t, x2)|2 ≤ L1|x1 − x2|2; |u(t, x)|2 ≤ L1|x|2 + L2(L1)
1−c0(L1)

.

(iii) F (u) = u. Moreover, if F (ũ) = ũ and ũ has linear growth, then ũ = u.

(iv) Under Assumption 2, u is a viscosity solution to (1.3).

From the previous theorem and some arguments similar to those in Delarue (2002)
or Zhang (2006) we can derive the following corollary. A detailed proof is again
given in the appendix.

Corollary 6.2 Assume all the conditions in Theorem 6.1 hold true. Then FBSDE
(1.1) has a unique solution (X, Y, Z). Moreover, it holds that Yt = u(t,Xt), and
thus 




Xt = x+

∫ t

0

b(s,Xs, u(s,Xs))ds+

∫ t

0

σ(s,Xs, u(s,Xs))dWs

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs;

(6.2)

From now on we �x some T0 > 0 and always assume T ≤ T0. Moreover, we denote
by C a generic constant which may depend on the coe�cients b, σ, f, g, and T0, but
is independent of n, h, T and x. The value of C may vary from line to line.

The decoupling relation Yt = u(t,Xt) together with the Lipschitz continuity of u
enables us to apply some estimates for decoupled FBSDEs directly in the present
situation.

Corollary 6.3 Under the assumptions of Theorem 6.1 the following estimates hold
true:

|u(s, x)− u(t, x)|2 ≤ C[1 + |x|2]|s− t|; (6.3)

E
{

sup
0≤t≤T

[|Xt|2 + |Yt|2] +

∫ T

0

|Zt|2dt
}
≤ C[1 + |x|2]. (6.4)

Moreover, if additionally Assumption 2 is in force, then

sup
i
E

{
sup

t∈[ti,ti+1]

[|Xt −Xti|2 + |Yt − Yti|2]
}

+
∑

i

E
{ ∫ ti+1

ti

|Zt − Z̃ti|2dt
}

≤ C[1 + |x|2]h, (6.5)
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where
Z̃ti

4
=

1

h
Eti

{ ∫ ti+1

ti

Ztdt
}

(6.6)

Proof. We exploit that, by Corollary 6.2, (X,Y, Z) solves (1.1) and (6.2). Since
(6.2) is a decoupled FBSDE with Lipschitz coe�cients, (6.4) is standard, see, e.g.
Lemma 2.4 in Zhang (2004). Moreover, (6.5) will follow from Theorem 3.4.3 in
Zhang (2001), once (6.3) is proved.

It thus remains to prove (6.3). Let (X t,x, Y t,x, Zt,x) denote the solution to (6.2) with
initial time t and initial value x. Then, for 0 ≤ s < t ≤ T ,

|u(s, x)− u(t, x)|2 = |E
{
Y s,x

s − Y s,x
t + u(t,Xs,x

t )− u(t, x)
}
|2

≤ CE
{
|
∫ t

s

f(r,Xs,x
r , Y s,x

r , Zs,x
r )dr|2 + |Xs,x

t −Xs,x
s |2

}

≤ CE
{

(t− s)

∫ t

s

|f(r,Xs,x
r , Y s,x

r , Zs,x
r )|2dr

+(t− s)

∫ t

s

|b(r,Xs,x
r , Y s,x

r )|2dr +

∫ t

s

|σ(r,Xs,x
r , Y s,x

r )|2dr
}

≤ CE
{

1 + sup
s≤r≤t

[|Xs,x
r |2 + |Y s,x

r |2] +

∫ t

s

|Zs,x
r |2dr

}
[t− s]

≤ C[1 + |x|2][t− s];

thanks to (6.4).

With this regularity results for (X,Y, Z) and u at hand, we restate and prove The-
orem 2.2.

Theorem 6.4 Suppose Assumption 2 is in force. Moreover, let (3.2) and (5.1) hold
true. Then

|un
i (x)− u(ti, x)|2 ≤ C[1 + |x|2]h.

Proof. We treat the case by + σy 6= 0 only. Otherwise the FBSDE is decoupled
and the Theorem is proved in Zhang (2004). We follow similar arguments as in
Theorem 5.3. Fix n and (i0, x). Consider (1.1) and (1.4) with initial time i0 and
initial value x. For notational simplicity we still denote their solutions as (X,Y, Z)

and (Xn, Y n, Zn, Ẑn), respectively. Denote

∆Xn
i

4
= Xti−Xn

i ; ∆Y n
i

4
= Yti−Y n

i ; ∆Ẑn
i

4
= Zti−Ẑn

i ; ∆un
i (x)

4
= u(ti, x)−un

i (x).

For t ∈ [ti, ti+1), denote

α1
t

4
= b(t,Xt, Yt)− b(ti, Xti , Yti); β1

t

4
= σ(t,Xt, Yt)− σ(ti, Xti , Yti).
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Then by Assumption 2 and (6.5) we have

E{|α1
t |2 + |β1

t |2} ≤ CE
{
h+ |Xt −Xti|2 + |Yt − Yti|2

}
≤ C[1 + |x|2]h.

We thus obtain from Lemma 3.2 (with λ1 > 0) and Theorem 6.1 (ii) that

E{|∆Xi+1|2}
≤ E

{
[1 + A1h+ (1 + λ2)A2hL1]|∆Xi|2 + (1 + λ−1

2 )A2h|∆un(Xn
i )|2

+2(1 + λ−1
1 )

∫ ti+1

ti

[|∆αt|2 + |∆βt|2]dt
}

≤ E
{

[1 + A1h+ (1 + λ2)A2hL1]|∆Xi|2

+(1 + λ−1
2 )A2h

[
G(∆un)|Xn

i |2 +H(∆un)
]}

+ C(1 + λ−1
1 )(1 + |x|2)h2.

Note that ∆Xi0 = 0, and by (5.5), we have

sup
i0≤i≤n

E{|Xn
i |2} ≤

[
|x|2 + [B1 + A2H(un)]T

][
e[A1+A2G(un)]T ∨ 1

] 4
= Ã.

Hence, by similar arguments as in Theorem 5.3 we get

sup
i0≤i≤n

E{|∆Xi|2} ≤ Γn−i0
0 (A1 + (1 + λ2)A2L1)×

[
(1 + λ−1

2 )A2[G(∆un)Ã+H(∆un)] + C(1 + λ−1
1 )[1 + |x|2]h

]
. (6.7)

Next, denote

γ1
i+1

4
=

1

h

∫ ti+1

ti

f(t,Xt, Yt, Zt)dt− f(ti, Xti , Yti+1
, Ẑti),

where
Ẑti

4
=

1

h
Eti

{
Yti+1

∆Wi+1

}
. (6.8)

Then, by (6.5),

E{|γ1
i+1|2} ≤

1

h
E

{ ∫ ti+1

ti

|f(t,Xt, Yt, Zt)− f(ti, Xti , Yti+1
, Ẑti)|2dt

}

≤ C

h
E

{ ∫ ti+1

ti

[
h+ |Xt −Xti|2 + |Yt − Yti|2 + |Zt − Ẑti|2]dt

}

≤ C[1 + |x|2]h+
C

h
E

{ ∫ ti+1

ti

[|Zt − Z̃ti|2 + |Z̃ti − Ẑti|2]dt
}

≤ C[1 + |x|2]h+ CE
{ ∫ ti+1

ti

|Zt|2dt
}

+
C

h
E

{ ∫ ti+1

ti

|Zt − Z̃ti|2dt
}
. (6.9)
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Here we made use of the estimate

h2E{|Z̃ti − Ẑti|2}
= E

{∣∣∣Eti{
∫ ti+1

ti

Ztdt}

−Eti{[Yti −
∫ ti+1

ti

f(t,Xt, Yt, Zt)dt+

∫ ti+1

ti

ZtdWt]∆Wi+1}
∣∣∣
2}

= E
{∣∣∣Eti{

∫ ti+1

ti

f(t,Xt, Yt, Zt)dt∆Wti+1

∣∣∣
2}

≤ E
{∣∣∣

∫ ti+1

ti

f(t,Xt, Yt, Zt)dt
∣∣∣
2}
E{|∆Wi+1|2}

≤ h2E
{ ∫ ti+1

ti

|f(t,Xt, Yt, Zt)|2dt
}

≤ Ch2E
{ ∫ ti+1

ti

[1 + |Xt|2 + |Yt|2 + |Zt|2]dt

≤ C[1 + |x|2]h3 + Ch2E
{ ∫ ti+1

ti

|Zt|2dt
}
.

Applying Lemma 3.3 we get, under (3.5),

E{|∆Yi|2} ≤ E
{

[1 + A4h]|∆Yi+1|2 + A5h|∆Xi|2

+C[λ−1
1 + λ−1

3 h+ h]
[
(1 + |x|2)h2 + h

∫ ti+1

ti

|Zt|2dt+

∫ ti+1

ti

|Zt − Z̃ti|2dt
]}
.
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Then, by (6.4), (6.5), and (6.7),

|∆un
i0
(x)|2 = |∆Yi0|2

≤ (1 + A4h)
n−i0E{|∆Yn|2}+ A5Γ

n−i0
0 (A4) sup

i0≤i≤n
E{|∆Xi|2}

+C[λ−1
1 + λ−1

3 h+ h](1 + A+
4 h)

n−i0 ×

E
{[

(1 + |x|2)h+ h

∫ T

ti0

|Zt|2dt+
n−1∑
i=i0

∫ ti+1

ti

|Zt − Z̃ti|2dt
]}

≤
[
(1 + A4h)

n−i0gx + A5Γ
n−i0
0 (A4)

]
sup

i0≤i≤n
E{|∆Xi|2}

+C[λ−1
1 + λ−1

3 h+ h]eA+
4 T (1 + |x|2)h

≤
[
(1 + λ−1

2 )A2[G(∆un)Ã+H(∆un)] + C(1 + λ−1
1 )[1 + |x|2]h

]
×

[
gx(1 + A4h)

n−i0Γn−i0
0 (A1 + (1 + λ2)A2L1)

+A5Γ
n−i0
0 (A4)Γ

n−i0
0 (A1 + (1 + λ2)A2L1)

]

+C[λ−1
1 + λ−1

3 h+ h]eA+
4 T (1 + |x|2)h

≤ (1 + λ−1
2 )A2[G(∆un)Ã+H(∆un)]Cλ

+C
[
Cλ(1 + λ−1

1 ) + [λ−1
1 + λ−1

3 h+ h]eA+
4 T

]
(1 + |x|2)h,

with

Cλ
4
= gx(1+A4h)

n−i0Γn−i0
0 (A1+(1+λ2)A2L1)+A5Γ

n−i0
0 (A4)Γ

n−i0
0 (A1+(1+λ2)A2L1).

By (4.10) we get

sup
i
|∆un

i (x)|2

≤
[
G(∆un)Ã+H(∆un)

]
c1(λ, h, L1)

+C
[
(1 + λ−1

1 ) + [λ−1
1 + λ−1

3 h+ h]eA+
4 T

]
(1 + |x|2)h

≤ c1(λ, h, L1)
{
G(∆un)

[
e[A1+A2G(un)]T ∨ 1

][
|x|2 + [B1 + A2H(un)]T

]
+H(∆un)

}

+C
[c1(λ, h, L1)

by + σy

(1 + λ−1
1 ) + [λ−1

1 + λ−1
3 h+ h]eA+

4 T
]
(1 + |x|2)h.

Thus
G(∆un) ≤ c2(λ, h, L1, G(un))G(∆un)

+C
[

c1(λ,h,L1)
by+σy

(1 + λ−1
1 ) + [λ−1

1 + λ−1
3 h+ h]eA+

4 T
]
h;

H(∆un) ≤ c1(λ, h, L1)H(∆un) + c2(λ, h, L1, G(un))[B1 + A2H(un)]TG(∆un)

+C
[

c1(λ,h,L1)
by+σy

(1 + λ−1
1 ) + [λ−1

1 + λ−1
3 h+ h]eA+

4 T
]
h.

(6.10)
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Fix some c2, c2(L1, L1) < c2 < 1. In dependence of c2 we may and do choose some
λ1 > 0 such that

lim
h↓0

c2(λ1, λ
∗
2, λ3(h), λ4(h), h, L1, L1) < c2,

where λ∗2 is the minimum argument of c2(λ2, L1, L1) and

λ3(h)
4
=
√
h; λ4(h)

4
=

1−
√
h−K(1 + λ1h)h− 2K

√
h

1 + λ1h
.

With this choice, A3 = 1 holds true, and, for su�ciently small h, we obtain

c1(λ, h, L1) ≤ c2(λ, h, L1, G(un)) ≤ c2 < 1.

Consequently (6.10) implies that for su�ciently small h

G(∆un) ≤ Ch; H(∆un) ≤ Ch,

and the assertion is proved.

As a direct consequence of Theorems 5.1 and 6.4 we have

Theorem 6.5 Under the assumptions of Theorem 6.4 we have for any c2(L1, L1) <

c2 < 1 and for h small enough

|un,m
i (x)− u(ti, x)|2 ≤ C(1 + |x|2)[mcm2 + h].

We close the theoretical part of this paper with a precise version of the generic
Theorem 2.3.

Theorem 6.6 Under the assumptions of Theorem 6.4 we have for any c2(L1, L1) <

c2 < 1 and for h small enough

sup
1≤i≤n

E
{

sup
t∈[ti−1,ti]

[|Xt −Xn,m
i−1 |2 + |Yt − Y n,m

i−1 |2]
}

+
n∑

i=1

E
{ ∫ ti

ti−1

|Zt − Ẑn,m
i−1 |2dt

}

≤ C(1 + |x|2)[mcm2 + h].

This theorem follows from the previous one by arguments which are fairly standard.
A detailed proof can be found in the appendix.

7 A Numerical Algorithm

We now brie�y explain how the discretized Markovian iteration above can be trans-
formed into a numerical algorithm which is viable also for high-dimensional prob-
lems. To this end we replace the conditional expectations by a simulation based
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least squares regression estimator, as was suggested e.g. by Gobet et al. (2005)
and Bender and Denk (2005) in the context of decoupled FBSDEs. An alternative
estimator based on Malliavin calculus is discussed in Bouchard and Touzi (2004) for
decoupled FBSDEs.

For the reader's convenience we spell out our algorithm for the coupled case. While
a convergence analysis is out of the scope of the present paper, we will illustrate the
algorithm by some numerical examples in the next section.

We assume that the number of time steps n is �xed for the remainder of this sec-
tion. In the algorithm conditional expectations are �rst replaced by orthogonal
projections on K basis functions. Then the orthogonal projections are approxi-
mated by simulating Λ trajectories. Hence, the algorithm can be described for the
one-dimensional case iteratively as follows. It is straightforward how this extends
to the multi-dimensional case.

• Fix some x0. Set ũn,0,K,Λ
i (x) = 0.

• Sample Λ independent copies of the time discretized Brownian motionW λ
ti
, i =

0, . . . , n, λ = 1, . . . ,Λ starting in 0 and denote the corresponding increments
by ∆W λ

i .

• Suppose ũn,m−1,K,Λ
i (x) is already constructed. Let X̃n,m,λ

0 = x0 and

X̃n,m,λ
i+1 = X̃n,m,λ

i + b(ti, X̃
n,m,λ
i , ũn,m−1,K,Λ

i (X̃n,m,λ
i ))h

+σ(ti, X̃
n,m,λ
i , ũn,m−1,K,Λ

i (X̃n,m,λ
i ))∆W λ

i+1,

where � for notational convenience � we suppress the dependence of X̃n,m,λ
i

on K through ũn,m−1,K,Λ. Note, X̃n,m,λ0

i depends on all Brownian increments
∆W λ

i , i = 1, . . . , n, λ = 1, . . . ,Λ through ũn,m−1,K,Λ
i . While we expect, that

this dependence will make a convergence analysis di�cult, the examples below
indicate that the algorithm works without re-simulating the Brownian paths
in every iteration step.

• Choose a set of Lipschitz continuous basis functions

Bn,m,K
i =

{
ηn,m,k

i (x), k = 1, . . . , K
}

such that {
ηn,m,k

i (X̃n,m,λ
i ), k = 1, . . . , K

}
(7.1)

forms a subset of L2(Ω, X̃n,m,λ
i ). From the construction below, it will be-

come evident, that ũn,m,K,Λ
i (x) inherits the Lipschitz continuity from the basis

functions. This feature seems to be important to ensure that the discretized
forward equations for X̃n,m+1,λ do not explode.
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• Let
An,m,K,Λ

i =
1√
Λ

(
ηn,m,k

i (X̃n,m,λ
i )

)
λ=1,...,Λ, k=1,...,K

.

De�ne, for i = n− 1, . . . , 1

ũn,m,K,L
n (x) = g(x)

ṽn,m,K,L
n (x) = 0

Ỹ n,m,K,λ
i+1 = ũn,m,K,Λ

i+1 (X̃n,m,λ
i+1 )

Z̃n,m,K,λ
i+1 = ṽn,m,K,Λ

i+1 (X̃n,m,λ
i+1 )

βn,m,K,Λ
i,· =

1√
Λ

(
An,m,K,Λ

i

)⊕ (
1

h
Ỹ n,m,K,·

i+1 ∆W ·
i+1

)

ṽn,m,K,Λ
i (x) =

K∑

k=1

βn,m,K,Λ
i,k ηn,m,k

i (x)

αn,m,K,Λ
i,· =

1√
Λ

(
An,m,K,Λ

i

)⊕ (
Ỹ n,m,K,·

i+1 + f(ti, X̃
n,m,·
i , Ỹ n,m,K,·

i+1 , Z̃n,m,K,·
i )h

)

ũn,m,K,Λ
i (x) =

K∑

k=1

αn,m,K,Λ
i,k ηn,m,k

i (x)

where the ⊕ denotes the pseudo inverse. Recall here that, by the de�nition of
the pseudo inverse, e.g. Ỹ n,m,K,·

i = ũn,m,K,Λ
i (X̃n,m,·

i ) satis�es

Ỹ n,m,K,·
i = arginf

{ 1

Λ

Λ∑

λ=1

∣∣∣Ỹ n,m,K,λ
i+1 + f(ti, X̃

n,m,λ
i , Ỹ n,m,K,λ

i+1 , Z̃n,m,K,·
i )h− yλ

∣∣∣
2

;

y = U(X̃n,m,·
i ), U ∈ Bn,m,K

i

}
.

• Let

Ỹ n,m,K,λ
1 = ũn,m,K,Λ

1 (X̃n,m,λ
1 )

Z̃n,m,K,λ
1 = ṽn,m,K,Λ

1 (X̃n,m,λ
1 )

Z̃n,m,K,λ
0 =

1

Λ

Λ∑

λ̄=1

1

h
Ỹ n,m,K,λ̄

1 ∆W λ̄
1

Ỹ n,m,K,λ
0 =

1

Λ

Λ∑

λ̄=1

Y n,m,K,λ̄
1 + f(0, x0, Ỹ

n,m,K,λ̄
1 , Z̃n,m,K,λ̄

0 )h.

We expect that the thus constructed (X̃n,m,λ, Ỹ n,m,K,λ, Z̃n,m,K,λ) are `close' to (Xn,m,λ,

Y n,m,λ, Ẑn,m,λ), the solution of the discretized Markovian iteration (1.8) with the
Brownian motion W replaced byW λ, if the basis functions are chosen appropriately
and the number Λ of simulated paths is su�ciently large. While an analysis of
the error by estimating the conditional expectations is left to future research, the
numerical examples in the next section support this conjecture.
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8 Numerical Examples

For the simulations we consider the example




Xd,t = xd,0 +

∫ t

0

σYudWd,u

Yt =
D∑

d=1

sin(Xd,T ) +

∫ T

t

−rYu +
1

2
e−3r(T−u)σ2

(
D∑

d=1

sin(Xd,u)

)3

du

−
∫ T

t

D∑

d=1

Zd,udWd,t,

where Wd,t, d = 1, . . . , D is a D-dimensional Brownian motion and σ > 0, r, xd,0 are
constants. Note that the corresponding di�erential operator degenerates at y = 0.

By Itô's formula one can easily check that this FBSDE decouples via the relation

Yt = e−r(T−t)

D∑

d=1

sin(Xd,t) (8.1)

Note, that for small σ the weak coupling condition of Y into X is satis�ed, while, for
large σ, the monotonicity condition of f can be ful�lled by choosing r large enough.

In the simulations we replace conditional expectations by least squares regression as
explained above with the `canonical' basis functions

1, xd, 1 ≤ d ≤ D, (−R) ∨ (xdxq) ∧R, 1 ≤ d ≤ q ≤ D,

i.e. monomials up to order two in x = (x1, . . . , xD). The truncation constant R
guarantees that the basis functions are Lipschitz continuous. We set

R = 10, Xd,0 = π, 1 ≤ d ≤ D, T = 1, Λ = 50000, n = 50.

With this initial condition we get Y0 = De−r(T−t). Recall also that the estimator
Ỹ n,m,K,λ

0 of Y0 does not depend on λ. We stop the iteration when two consecutive
estimates Ỹ n,m,K

0 := Ỹ n,m,K,λ
0 are within a distance of 10−4. This iteration level is

denoted mstop.

From (8.1) we can also approximate the true value of X via the usual Euler scheme
(applying the same simulated Brownian increments ∆W λ

i ). The corresponding ap-
proximation along the λth path is denoted X̌n,λ

i , and hence

Y̌ n,λ
i = e−r(T−ti)

D∑

d=1

sin(X̌n,λ
d,i )
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may be considered a close approximation of Yti . In the �gures below we display a
comparison between a typical path of Y̌ n,λ0

i (dashed line) and Ỹ n,mstop,K,λ0

i (solid line)
as well as the (absolute) empirical mean square error between Y̌ n,λ

i and Ỹ n,mstop,K,λ
i ,

λ = 1, . . . ,Λ. Precisely, the �gures on the right hand side show

1

Λ

Λ∑

λ=1

|Ỹ n,mstop,K,λ
i − Y̌ n,λ

i |2

as function of time. We consider the following cases:
Case 1: D = 4, σ = 0.2, r = 0. Then, mstop = 9.
Case 2: D = 4, σ = 0.4, r = 0. Then, mstop = 42.
Case 3: D = 4, σ = 0.4, r = 1. Then, mstop = 11.
Case 4: D = 10, σ = 0.1, r = 0. Then, mstop = 12.

The numbers of iteration required for termination and the �gures below (for cases
1�3) clearly illustrate how the convergence quality decreases in σ and increases in r,
as expected from the above discussion. We also report that for D = 4, σ = 1, r = 0

the coupling apparently becomes too strong for the algorithm to converge. Indeed,
we obtained values Ỹ n,m,K

0 ≈ 35 for odd m and Ỹ n,m,K
0 ≈ 0.63 for even m which did

not change signi�cantly with increasing number of iterations. We hence terminated
the experiment after 75 iteration steps. However, convergence can be enforced by
increasing r. For instance, for D = 4, σ = 1, r = 2.5, the algorithm terminated after
30 steps. The estimated value Ŷ n,30,K,λ

0 is 0.320 while the true value Y0 is 0.328. To
demonstrate that the space dimension four is no limitation for the proposed method,
we additionally include case 4 where X takes values in R10.
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Figure 1: Case 1
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A Proofs of Theorem 6.1 and Corollary 6.2

Denote
Ā1

4
= 2kb + 1 + σx;

Ā2
4
= by + σy;

Ā3
4
= λ4;

Ā4
4
= 2kf + 1 + λ−1

4 fz;

Ā5
4
= fx.

(A.1)

A.1 Lipschitz continuity

Lemma A.1 Given (ϕ1, ϕ2), (x1, x2), and t0, for i = 1, 2 and Θ = X, Y, Z denote

Θi 4= Θϕ,t0,xi ; ∆x
4
= x1 − x2; ∆ϕ

4
= ϕ1 − ϕ2; ∆Θ

4
= Θ1 −Θ2.
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Figure 4: Case 4

Then, for any λj ≥ 0,

d

dt
E{|∆Xt|2} ≤ [Ā1 + (1 + λ2)Ā2L(ϕ1)]E{|∆Xt|2}
+(1 + λ−1

2 )Ā2E{|∆ϕ(X2
t )|2};

− d

dt
E{|∆Yt|2}+ (1− Ā3)|∆Zt|2 ≤ Ā4E{|∆Yt|2}+ Ā5E{|∆Xt|2};

Proof. Applying Ito's formula we have

d(|∆Xt|2) = 2∆Xt∆bdt+ 2∆Xt∆σdWt + |∆σ|2dt
≤ 2∆Xt∆σdWt +

[
2kb|∆Xt|2 + |∆Xt|2 + by|ϕ1(X

1
t )− ϕ2(X

2
t )|2

+σx|∆Xt|2 + σy|ϕ1(X
1
t )− ϕ2(X

2
t )|2

]
dt.

Note that

|ϕ1(X
1
t )− ϕ2(X

2
t )|2 ≤ (1 + λ2)L(ϕ1)|∆Xt|2 + (1 + λ−1

2 )|∆ϕ(X2
t )|2.

Then

d(|∆Xt|2) ≤ 2∆Xt∆σdWt+
[
[Ā1+(1+λ2)Ā2L(ϕ1)]|∆Xt|2+(1+λ−1

2 )A2|∆ϕ(X2
t )|2

]
dt,

which implies the estimate for X.

Moreover,

−d|∆Yt|2 = −2∆Yt∆ZtdWt + 2∆Yt∆fdt− |∆Zt|2dt
≤ −2∆Yt∆ZtdWt +

[
2kf |∆Yt|2 + |∆Yt|2 + fx|∆Xt|2

+λ−1
4 fz|∆Yt|2 + λ4|∆Zt|2 − |∆Zt|2

]
dt.

This proves the estimate for Y and Z.
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Lemma A.2 For any Lipschitz continuous ϕ,

L(F (ϕ)) ≤ [gx + fxT ]
[
exp

(
[Ā1 + Ā4]T + Ā2TL(ϕ)

)
∨ 1

]
;

provided
Ā3 ≤ 1. (A.2)

Proof. Fix t0 and (x1, x2). Setting λ2 = 0 and ϕ1 = ϕ2 = ϕ, and applying Lemma
A.1, we get

E{|∆Xt|2} ≤ |∆x|2 + [Ā1 + Ā2L(ϕ1)]

∫ t

t0

E{|∆Xs|2}ds.

Then
E{|∆Xt|2} ≤ |∆x|2 exp

(
[Ā1 + Ā2L(ϕ1)][t− t0]

)
.

Moreover, since Ā3 = λ4 ≤ 1, we get

−d(eĀ4tE{|∆Yt|2}) ≤ Ā5e
Ā4tE{|∆Xt|2}dt.

Then

E{|∆Yt0|2} ≤ gxe
Ā4(T−t0)|∆XT |2 + Ā5

∫ T

t0

eĀ4(t−t0)E{|∆Xt|2}dt

≤
[
gxe

[Ā1+Ā2L(ϕ1)+Ā4](T−t0) + Ā5

∫ T

t0

e[Ā1+Ā2L(ϕ1)+Ā4](t−t0)dt
]
|∆x|2

≤ [gx + Ā5T ]
[
e[Ā1+Ā2L(ϕ1)+Ā4]T ∨ 1

]
|∆x|2.

Note that Y i
t0

= F (ϕ)(t0, xi), we get

L(F (ϕ)(t0, ·)) ≤ [gx + Ā5T ]
[
e[Ā1+Ā2L(ϕ1)+Ā4]T ∨ 1

]
.

Since the right side at above is independent of t0, the lemma is proved.

For the remainder of this appendix we shall always assume that λ4 = Ā3 = 1.

Lemma A.3 Assume (3.2) holds true. Then

L(ũm) ≤ L1, ∀m.

Proof. By Lemma A.3, with λ4 = 1, we have

L(ũm) ≤ [gx + Ā5T ]
[
e[Ā1+Ā4]T+Ā2L(ũm−1)T + 1

]
.
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Then
Ā2TL(ũm) ≤ Ā2T [gx + Ā5T ]

[
e[Ā1+Ā4]T+Ā2L(ũm−1)T + 1

]

Note, that L(ũ0) = 0. If L0 ≤ e−1, one can easily show by induction that

Ā2TL(ũm) ≤ Ā2T [gx + Ā5T ] + 1.

Thus
L(ũm) ≤ [gx + Ā5T ]

[
e[Ā1+Ā4]T+Ā2T [gx+Ā5T ]+1 ∨ 1

]
.

That is, L(ũm) ≤ L1.

A.2 Linear growth

Denote
B̄1

4
= b0 + σ0; B̄2

4
= f0. (A.3)

Lemma A.4 Given ϕ, t0, x, denote Θ
4
= Θϕ,t0,x for Θ = X,Y, Z. Then

d

dt
E{|Xt|2} ≤ [Ā1 + Ā2G(ϕ)]E{|Xt|2}+ [B̄1 + Ā2H(ϕ)];

− d

dt
E{|Yt|2}+ (1− Ā3)|Zt|2 ≤ Ā4E{|Yt|2}+ Ā5E{|Xt|2}+ B̄2.

Proof. By Ito's formula we have

d(|Xt|2) = 2XtσdWt + 2Xtbdt+ |σ|2dt
≤ 2XtσdWt +

[
2kb|Xt|2 + |Xt|2 + b0 + by|ϕ(Xt)|2 + σ0 + σx|Xt|2 + σy|ϕ(Xt)|2

]
dt

≤ 2XtσdWt +
[
Ā1|Xt|2 + B̄1 + Ā2[G(ϕ)|Xt|2 +H(ϕ)]

]
dt.

Taking the expectation yields the estimate for X.

Similarly,

−d|Yt|2 = −2YtZtdWt + 2Ytfdt− |Zt|2dt
= −2YtZtdWt + 2Yt

[
[f(t,Xt, Yt, Zt)− f(t,Xt, 0, Zt)]

+[f(t,Xt, 0, Zt)− f(t,Xt, 0, 0)] + f(t,Xt, 0, 0)
]
dt− |Zt|2dt

≤ −2YtZtdWt +
[
2kf |Yt|2 + λ−1

4 fz|Yt|2 + λ4|Zt|2 + |Yt|2 + f0 + fx|Xt|2 − |Zt|2
]
dt.

The estimate for (Y, Z) follows again by taking expectation.
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Lemma A.5 For any linear growing ϕ,

G(F (ϕ)) ≤ [gx + Ā5T ]
[
e[Ā1+Ā4]T+Ā2TG(ϕ) ∨ 1

]
; (A.4)

H(F (ϕ)) ≤ c0(G(ϕ))H(ϕ) + L2(G(ϕ)); (A.5)

with c0 and L2 as de�ned at the beginning of Section 4.

Proof. Fix t0 and x. Applying Lemma A.4 we have

E{|Xt|2} ≤ |x|2e[Ā1+Ā2G(ϕ)][t−t0] + [B̄1 + Ā2H(ϕ)]

∫ T

t0

e[Ā1+Ā2G(ϕ)][s−t0]ds.

Moreover, since λ4 = 1,

|F (ϕ)(t0, x)|2 = |Yt0|2

≤ eĀ4(T−t0)E{|YT |2}+

∫ T

t0

eĀ4[t−t0]
[
Ā5E{|Xt|2}+ B̄2

]
dt

≤ eĀ4(T−t0)
[
g0 + gx|x|2e[Ā1+Ā2G(ϕ)][T−t0]

+gx[B̄1 + Ā2H(ϕ)]

∫ T

t0

e[Ā1+Ā2G(ϕ)][s−t0]ds
]

+Ā5

∫ T

t0

eĀ4[t−t0]
[
|x|2e[Ā1+Ā2G(ϕ)][t−t0] + [B̄1 + Ā2H(ϕ)]

∫ T

t0

e[Ā1+Ā2G(ϕ)][s−t0]ds
]
dt

+B̄2

∫ T

t0

eĀ4[t−t0]dt.

This implies that

G(ϕ(t0, ·)) ≤ gxe
[Ā1+Ā4+Ā2G(ϕ)][T−t0] + Ā5

∫ T

t0

e[Ā1+Ā4+Ā2G(ϕ)][t−t0]dt

≤ [gx + Ā5T ]
[
e[Ā1+Ā4+Ā2G(ϕ)]T ∨ 1

]
;

H(ϕ(t0, ·)) ≤ Ā2T [gx + Ā5TΓ0(Ā4T )]Γ0([Ā1 + Ā2G(ϕ)]T )H(ϕ)

+g0e
Ā4(T−t0) + B̄1T [gx + Ā5TΓ0(Ā4T )]Γ0([Ā1 + Ā2G(ϕ)]T )

+B̄2Γ0(Ā4T )T.

The result now follows immediately.

Lemma A.6 Assume (3.2) and (4.2) hold true. Then

G(ũm) ≤ L1; H(ũm) ≤ L2(L1)

1− c0(L1)
; ∀m.
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Proof. By Lemma A.5, we have

G(ũm) ≤ [gx + Ā5T ]
[
e[Ā1+Ā4]T+Ā2TG(ũm−1) ∨ 1

]
;

H(ũm) ≤ c0(G(ũm−1))H(ũm−1) + L2(G(ũm−1)).

As in Lemma A.3 we obtain G(ũm) ≤ L1. Thus,

H(ũm) ≤ c0(L1)H(ũm−1) + L2(L1).

Therefore, H(ũm) ≤ L2(L1)
1−c0(L1)

.

A.3 Convergence

Lemma A.7 Assume ϕ1, ϕ2 have linear growth and ϕ1 is Lipschitz continuous.
Then

G(F (ϕ1)− F (ϕ2)) ≤ c2(λ2, L(ϕ1), G(ϕ2))G(∆ϕ)

H(F (ϕ1)− F (ϕ2)) ≤ c1(λ2, L(ϕ1))H(∆ϕ)

+c2(λ2, L(ϕ1), G(ϕ2))[B̄1 + Ā2H(ϕ2)]TG(∆ϕ).

Proof. We de�ne L 4
= L(ϕ1), G

4
= G(ϕ2). Moreover, we �x (t0, x) and denote, for

l = 1, 2 and Θ = X, Y, Z

Φl 4= F (ϕl); Θl 4= Θϕl,t0,x, ∆Θ
4
= Θ1 −Θ2; ∆ϕ

4
= ϕ1 − ϕ2; ∆Φ

4
= Φ1 − Φ2.

Applying Lemma A.1 and noting that ∆Xt0 = 0, we get

sup
t0≤t≤T

E{|∆Xt|2}

≤ (1 + λ−1
2 )Ā2

[
G(∆ϕ) sup

t0≤t≤T
E{|X2

t |2}+H(∆ϕ)
]

×(T − t0)Γ0([Ā1 + (1 + λ2)Ā2L](T − t0)).

From Lemma A.4, we obtain

sup
t0≤t≤T

E{|X2
t |2} ≤

[
|x|2 + [B̄1 + Ā2H(ϕ2)]T

][
e[Ā1+Ā2G]T ∨ 1

] 4
= Ã.

Thus

sup
t0≤t≤T

E{|∆Xt|2}

≤ (1 + λ−1
2 )Ā2

[
G(∆ϕ)Ã+H(∆ϕ)

]
(T − t0)Γ0([Ā1 + (1 + λ2)Ā2L][T − t0]).
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Applying the second inequality of Lemma A.1 with λ4 = 1,we get

|∆Φ(t0, x)|2 = |∆Yt0|2
≤ eĀ4[T−t0]E{|∆YT |2}+ Ā5(T − t0)Γ0(Ā4[T − t0]) sup

t0≤t≤T
E{|∆Xt|2}

≤
[
eĀ4[T−t0]gx + Ā5(T − t0)Γ0(Ā4[T − t0])

]
×

(1 + λ−1
2 )Ā2

[
G(∆ϕ)Ã+H(∆ϕ)

]
(T − t0)Γ0([Ā1 + (1 + λ2)Ā2L][T − t0])

≤ (1 + λ−1
2 )Ā2

[
G(∆ϕ)Ã+H(∆ϕ)

]
T ×

[
gxΓ1(Ā4T, [Ā1 + (1 + λ2)Ā2L]T ) + Ā5TΓ0(Ā4T )Γ0([Ā1 + (1 + λ2)Ā2L]T )

]
.

We can now plug in the de�nition of the constants to prove the assertion.

Lemma A.8 Assume (3.2) and (5.1) hold true. Let H̄ 4
= L2(L1)

1−c0(L1)
, c2

4
= c2(L1, L1),

and c1
4
= c1(λ2, L1) where λ2 is the minimum argument of c2(λ2, L1, L1). Then

G(ũm − ũm−1) ≤ L1c
m−1
2 ;

H(ũm − ũm−1) ≤ H̄cm−1
1 +

[
[b0 + σ0] + [by + σy]H̄

]
TL1(m− 1)cm−1

2 .

Proof. Let λ2 denote the minimum argument of c2(λ2, L1, L1). By Lemmas A.2
and A.5 we have

L(ũm) ≤ L1; G(ũm) ≤ L1; H(ũm) ≤ H̄.

Thanks to Lemma A.7, we get,

G(ũm − ũm−1) ≤ c2G(ũm−1 − ũm−2);

H(ũm − ũm−1) ≤ c1H(ũm−1 − ũm−2) + c2[B̄1 + Ā2H̄]TG(ũm−1 − ũm−2).

Note that

G(ũ1 − ũ0) = G(ũ1) ≤ L1; H(ũ1 − ũ0) = H(ũ1) ≤ H̄; .

Therefore, we have
G(ũm − ũm−1) ≤ L1c

m−1
2 ;

and then

H(ũm − ũm−1) ≤ cm−1
1 H(ũ1 − ũ0)

+c2

[
[b0 + σ0] + [by + σy]H̄

]
Tcm−1

1

m−1∑
i=1

G(ũi − ũi−1)

ci1

≤ cm−1
1 H̄ + c2

[
[b0 + σ0] + [by + σy]H̄

]
Tcm−1

1 L1

m−1∑
i=1

ci−1
2

ci1

≤ H̄cm−1
1 +

[
[b0 + σ0] + [by + σy]H̄

]
TL1[m− 1]cm−1

2 .
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The proof is complete now.

A.4 Proof of Theorem 6.1.

Analogous to Theorem 5.1 one can easily prove (i) and (ii). It is obvious that
F (u) = u.

We now prove the uniqueness. Assume F (ũ) = ũ and ũ has linear growth. To
emphasize the dependence of c1(λ2, L) and c2(λ2, L,G) on T , we denote them as
c1(λ2, L, T ) and c2(λ2, L,G, T ), respectively. Fix λ2 = 1. Choose δ > 0 small
enough such that

c1(1, L1, δ) ≤ c2(1, L1, G(ũ), δ) < 1.

Note that F is a local operator and u(T, x) = g(x) = ũ(T, x). We set ϕ1 = u, ϕ2 = ũ

and apply Lemma A.7 over [T − δ, T ], to get u(T − δ, x) = ũ(T − δ, x). Applying
Lemma A.7 again, but over [T −2δ, T −δ] with terminal condition u(T −δ, x), yields
u(T − 2δ, x) = ũ(T − 2δ, x). Repeating the arguments backwardly we obtain ũ = u.

Finally, we show that u is a viscosity solution of (1.3). From Corollary 6.3 we know
that u is 1/2-Hölder continuous in time and Lipschitz continuous in space. Hence,
under Assumption 2, by Pardoux and Peng (1992) we know that Φ = F (u) is a
viscosity solution of

{
Φt + 1

2
σ2(t, x, u)Φxx + b(t, x, u)Φx + f(t, x,Φ,Φxσ(t, x, u)) = 0;

Φ(T, x) = g(x).

Since F (u) = u, (iv) is proved.

A.5 Proof of Corollary 6.2

We �rst prove uniqueness. Assume (X l, Y l, Z l), l = 1, 2 are two solutions to (1.1).
Let u denote the limit function in Theorem 6.1, and δ 4

= T
k
for some integer k > 0

which will be speci�ed later. Note that




X l
t = X l

(n−1)δ +

∫ t

(n−1)δ

b(s,X l
s, Y

l
s )ds+

∫ t

(n−1)δ

σ(s,X l
s, Y

l
s )dWs;

Y l
t = g(X l

nδ) +

∫ nδ

t

f(s,X l
s, Y

l
s , Z

l
s)ds−

∫ nδ

t

Z l
sdWs;

t ∈ [(n−1)δ, nδ].

Moreover, given X l
(n−1)δ, the above FBSDE has a unique solution by Antonelli

(1993). By the Markovian structure of the problem we have Y l
t = ũ(t,X l

t), t ∈
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[(n − 1)δ, nδ] for some deterministic function ũ. Then obviously F (ũ) = ũ on
[(n− 1)δ, nδ]. Since, by Antonelli (1993), we have

|Y l
t |2 ≤ C[1 + |X l

t |2],

for some constant C > 0 which may depend on δ and the coe�cients, ũ has linear
growth. Then by Theorem 6.1, (iii), we derive ũ = u. Therefore, Y l

t = u(t,X l
t) for

t ∈ [(n− 1)δ, nδ]. Now we consider




X l
t = X l

(n−2)δ +

∫ t

(n−2)δ

b(s,X l
s, Y

l
s )ds+

∫ t

(n−2)δ

σ(s,X l
s, Y

l
s )dWs;

Y l
t = u((n− 1)δ,X l

(n−1)δ) +

∫ (n−1)δ

t

f(s,X l
s, Y

l
s , Z

l
s)ds−

∫ (n−1)δ

t

Z l
sdWs;

for t ∈ [(n − 2)δ, (n − 1)δ]. Thanks to Theorem 6.1, (ii), we may choose the same
δ to ensure the uniqueness of solutions to the above FBSDE. Then by the same
arguments we have Y l

t = u(t,X l
t) for t ∈ [(n−2)δ, (n−1)δ]. Repeating the arguments

backwardly we get Y l
t = u(t,X l

t) for t ∈ [0, T ]. Then on [0, δ] we have




X l
t = x+

∫ t

0

b(s,X l
s, u(s,X

l
s))ds+

∫ t

0

σ(s,X l
s, u(s,X

l
s)dWs;

Y l
t = u(δ,X l

δ) +

∫ δ

t

f(s,X l
s, Y

l
s , Z

l
s)ds−

∫ δ

t

Z l
sdWs.

By the uniqueness of solutions to this decoupled FBSDE, we get (X1
t , Y

1
t , Z

1
t ) =

(X2
t , Y

2
t , Z

2
t ) for t ∈ [0, δ]. In particular, X1

δ = X2
δ . Now repeating the arguments

forwardly we obtain (X1
t , Y

1
t , Z

1
t ) = (X2

t , Y
2
t , Z

2
t ) for t ∈ [0, T ].

We now prove the existence. For the same δ as above, we consider




Xt = x+

∫ t

0

b(s,Xs, Ys)ds+

∫ t

0

σ(s,Xs, Ys)dWs;

Yt = u(δ,Xδ) +

∫ δ

t

f(s,Xs, Ys, Zs)ds−
∫ δ

t

ZsdWs.

By Antonelli (1993) (X, Y, Z) exists on [0, δ]. By the arguments in the above proof of
uniqueness, we know that Yt = u(t,Xt), t ∈ [0, δ]. Now we can construct forwardly a
solution (X, Y, Z) on [0, T ]. Obviously, (X,Y, Z) satis�es both (1.1) and (6.2) over
[0, T ].
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B Proof of Theorem 6.6

Throughout the proof we will apply Corollary 6.3 several times without further
notice. By (6.2) we have

Xti+1
= Xti + b(ti, Xti , u(ti, Xti))h+

∫ ti+1

ti

[b(t,Xt, Yt)− b(ti, Xti , Yti)]dt

+σ(ti, Xti , u(ti, Xti))∆Wi+1 +

∫ ti+1

ti

[σ(t,Xt, Yt)− σ(ti, Xti , Yti)]dWt.

Applying Lemma 3.2 on X and Xn,m we get

E{|Xti+1
−Xn,m

i+1 |2}
≤ E

{
[1 + A1h+ (1 + λ2)A2hL1]|Xti −Xn,m

i |2

+(1 + λ−1
2 )A2h|u(ti, Xn,m

i )− un,m
i (Xn,m

i )|2 + 2(1 + λ−1
1 )×∫ ti+1

ti

[|b(t,Xt, Yt)− b(ti, Xti , Yti)|2 + |σ(t,Xt, Yt)− σ(ti, Xti , Yti)|2]dt
}

≤ E
{

[1 + A1h+ (1 + λ2)A2hL1]|Xti −Xn,m
i |2

+C(1 + λ−1
2 )A2h(mc

m
2 + h)

×[1 + |Xn,m
i −Xti|2 + |Xti|2] + C(1 + λ−1

1 )(1 + |x|)h2
}

≤ (1 + Ch)E{|Xti −Xn,m
i |2}+ Ch[1 + |x|2][mcm2 + h].

Since Xt0 −Xn,m
0 = 0, we obtain

sup
i
E{|Xti −Xn,m

i |2} ≤ C[1 + |x|2][mcm2 + h].

Moreover,

E
{

sup
ti≤t≤ti+1

|Xt −Xn,m
i |2

}
≤ 2E

{
sup

ti≤t≤ti+1

|Xt −Xti|2 + |Xti −Xn,m
i |2

}

≤ C[1 + |x|2][mcm2 + h].

hence, the estimate for X is proved.

Similarly, recall (6.8) and note that

Yti = Yti+1
+ f(ti, Xti , Yti+1

, Ẑti)h−
∫ ti+1

ti

ZtdWt

+

∫ ti+1

ti

[f(t,Xt, Yt, Zt)− f(ti, Xti , Yti+1
, Ẑti)]dt.
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Applying Lemma 3.3 and following the arguments in (6.9), we have

E
{
|Yti − Y n,m

i |2 + (1− A3)h|Ẑti − Ẑn,m
i |2

}

≤ E
{

[1 + A4h]|Yti+1
− Y n,m

i+1 |2 + A5h|Xti −Xn,m
i |2

+(λ−1
1 + h+ 2λ−1

3 h)

∫ ti+1

ti

|f(t,Xt, Yt, Zt)− f(ti, Xti , Yti+1
, Ẑti)|2dt

}

≤ E
{

[1 + A4h]|Yti+1
− Y n,m

i+1 |2 + Ch

∫ ti+1

ti

|Zt|2dt+ C

∫ ti+1

ti

|Zt − Z̃ti|2dt
}

+Ch[1 + |x|2][mcm2 + h]. (B.6)

Note that

E{|Ytn − Y n,m
n |2} = E{|g(Xtn)− g(Xn,m

n )|2}
≤ CE{|Xtn −Xn,m

n |2} ≤ C[1 + |x|2][mcm2 + h].

Choose λ appropriately such that A3 < 1 for small h. Then

sup
0≤i≤n

E{|Yti − Y n,m
i |2}

≤ CE
{
h

∫ T

0

|Zt|2dt+
n−1∑
i=0

∫ ti+1

ti

|Zt − Z̃ti|2dt
}

+ C[1 + |x|2][mcm2 + h]

≤ C[1 + |x|2][mcm2 + h].

The estimate for Y easily follows.

Moreover, (B.6) implies

(1− A3)hE
{
|Ẑti − Ẑn,m

i |2
}

(1 + A4)
i

≤ E
{

(1 + A4h)
i+1|Yti+1

− Y n,m
i+1 |2 − (1 + A4)

i|Yti − Y n,m
i |2

}

+CE
{
h

∫ ti+1

ti

|Zt|2dt+

∫ ti+1

ti

|Zt − Z̃ti|2dt
}

+ Ch[1 + |x|2][mcm2 + h].

Summing over i, we get (with the same estimates as for Y ),
n−1∑
i=0

E
{
|Ẑti − Ẑn,m

i |2
}
h ≤ Ch[1 + |x|2][mcm2 + h].

We can �nally write
n∑

i=1

E
{ ∫ ti

ti−1

|Zt − Ẑn,m
i−1 |2dt

}
≤ 2

n∑
i=1

E
{ ∫ ti

ti−1

|Zt − Ẑti−1
|2dt+ |Ẑti−1

− Ẑn,m
i−1 |2h

}

The �rst term can be treated along the lines of (6.9), and so the estimate for Z
follows.
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